1
|
Sacks MS. A Mathematical Model for Postimplant Collagen Remodeling in an Autologous Engineered Pulmonary Arterial Conduit. J Biomech Eng 2024; 146:111006. [PMID: 38980683 PMCID: PMC11369691 DOI: 10.1115/1.4065903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
This study was undertaken to develop a mathematical model of the long-term in vivo remodeling processes in postimplanted pulmonary artery (PA) conduits. Experimental results from two extant ovine in vivo studies, wherein polyglycolic-acid (PGA)/poly-L-lactic acid tubular conduits were constructed, cell seeded, incubated for 4 weeks, and then implanted in mature sheep to obtain the remodeling data for up to two years. Explanted conduit analysis included detailed novel structural and mechanical studies. Results in both studies indicated that the in vivo conduits remained dimensionally stable up to 80 weeks, so that the conduits maintained a constant in vivo stress and deformation state. In contrast, continued remodeling of the constituent collagen fiber network as evidenced by an increase in effective tissue uniaxial tangent modulus, which then stabilized by one year postimplant. A mesostructural constitute model was then applied to extant planar biaxial mechanical data and revealed several interesting features, including an initial pronounced increase in effective collagen fiber modulus, paralleled by a simultaneous shift toward longer, more uniformly length-distributed collagen fibers. Thus, while the conduit remained dimensionally stable, its internal collagen fibrous structure and resultant mechanical behaviors underwent continued remodeling that stabilized by one year. A time-evolving structural mixture-based mathematical model specialized for this unique form of tissue remodeling was developed, with a focus on time-evolving collagen fiber stiffness as the driver for tissue-level remodeling. The remodeling model was able to fully reproduce (1) the observed tissue-level increases in stiffness by time-evolving simultaneous increases in collagen fiber modulus and lengths, (2) maintenance of the constant collagen fiber angular dispersion, and (3) stabilization of the remodeling processes at one year. Collagen fiber remodeling geometry was directly verified experimentally by histological analysis of the time-evolving collagen fiber crimp, which matches model predictions very closely. Interestingly, the remodeling model indicated that the basis for tissue homeostasis was maintenance of the collagen fiber ensemble stress for all orientations, and not individual collagen fiber stresses. Unlike other growth and remodeling models that traditionally treat changes in the external boundary conditions (e.g., changes in blood pressure) as the primary input stimuli, the driver herein is changes to the internal constituent collagen fiber themselves due to cellular mediated cross-linking.
Collapse
Affiliation(s)
- Michael S Sacks
- James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
2
|
Zeng L, Liu F, Yu Q, Jin C, Yang J, Suo Z, Tang J. Flaw-insensitive fatigue resistance of chemically fixed collagenous soft tissues. SCIENCE ADVANCES 2023; 9:eade7375. [PMID: 36867693 PMCID: PMC9984180 DOI: 10.1126/sciadv.ade7375] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Bovine pericardium (BP) has been used as leaflets of prosthetic heart valves. The leaflets are sutured on metallic stents and can survive 400 million flaps (~10-year life span), unaffected by the suture holes. This flaw-insensitive fatigue resistance is unmatched by synthetic leaflets. We show that the endurance strength of BP under cyclic stretch is insensitive to cuts as long as 1 centimeter, about two orders of magnitude longer than that of a thermoplastic polyurethane (TPU). The flaw-insensitive fatigue resistance of BP results from the high strength of collagen fibers and soft matrix between them. When BP is stretched, the soft matrix enables a collagen fiber to transmit tension over a long length. The energy in the long length dissipates when the fiber breaks. We demonstrate that a BP leaflet greatly outperforms a TPU leaflet. It is hoped that these findings will aid the development of soft materials for flaw-insensitive fatigue resistance.
Collapse
Affiliation(s)
- Liangsong Zeng
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Fengkai Liu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Qifeng Yu
- Shanghai NewMed Medical Corporation, Shanghai, China
| | - Chenyu Jin
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, USA
| | - Jingda Tang
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
3
|
D'Andrea L, Cardamone M, Bogoni F, Forzinetti E, Enei V, Valle F, Giordano G, Gastaldi D, Vena P. Anisotropic Mechanical Response of Bovine Pericardium Membrane Through Bulge Test and In-Situ Confocal-Laser Scanning. J Biomech Eng 2023; 145:1152325. [PMID: 36472464 DOI: 10.1115/1.4056398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
In this work, we present a new experimental setup for the assessment of the anisotropic properties of Bovine Pericardium (BP) membranes. The chemically fixed BP samples have been subjected to a bulge test with in situ confocal laser scanning at increasing applied pressure. The high resolution topography provided by the confocal laser scanning has allowed to obtain a quantitative measure of the bulge displacement; after polynomial fitting, principal curvatures have been obtained and a degree of anisotropy (DA) has been defined as the normalized difference between the maximum and minimum principal curvatures. The experiments performed on the BP membranes have allowed us to obtain pressure-displacement data which clearly exhibit distinct principal curvatures indicating an anisotropic response. A comparison with curvatures data obtained on isotropic Nitrile Buthadiene Rubber (NBR) samples has confirmed the effectiveness of the experimental setup for this specific purpose. Numerical simulations of the bulge tests have been performed with the purpose of identifying a range of constitutive parameters which well describes the obtained range of DA on the BP membranes. The DA values have been partially validated with biaxial tests available in literature and with suitably performed uni-axial tensile tests.
Collapse
Affiliation(s)
- Luca D'Andrea
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Maddalena Cardamone
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Francesca Bogoni
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Elisa Forzinetti
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Viviana Enei
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | | | | | - Dario Gastaldi
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| | - Pasquale Vena
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Milano 20133, Italy
| |
Collapse
|
4
|
Zhang Y, Zhang W, Snow T, Ju Y, Liu Y, Smith AJ, Prabakar S. Minimising Chemical Crosslinking for Stabilising Collagen in Acellular Bovine Pericardium: Mechanistic Insights via Structural Characterisations. Acta Biomater 2022; 152:113-123. [DOI: 10.1016/j.actbio.2022.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/01/2022]
|
5
|
|
6
|
Biomechanics of mitral valve leaflets: Second harmonic generation microscopy, biaxial mechanical tests and tissue modeling. Acta Biomater 2022; 141:244-254. [PMID: 35007783 DOI: 10.1016/j.actbio.2022.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/30/2022]
Abstract
Collagen fibers are the main load carrier in the mitral valve (MV) leaflets. Their orientation and dispersion are an important factor for the mechanical behavior. Most recent studies of collagen fibers in MVs lack either entire thickness study or high transmural resolution. The present study uses second harmonic generation (SHG) microscopy in combination with planar biaxial mechanical tests to better model and examine collagen fibers and mechanical properties of MV leaflets. SHG in combination with tissue clearing enables the collagen fibers to be examined through the entire thickness of the MV leaflets. Planar biaxial mechanical tests, on the other hand, enable the characterization of the mechanical tissue behavior, which is represented by a structural tissue model. Twelve porcine MV leaflets are examined. The SHG recording shows that the mean fiber angle for all samples varies on average by ±12° over the entire thickness and the collagen fiber dispersion changes strongly over the thickness. A constitutive model based on the generalized structure tensor approach is used for the associated tissue characterization. The model represents the tissue with three mechanical parameters plus the mean fiber direction and the dispersion, and predicts the biomechanical response of the leaflets with a good agreement (average r2=0.94). It is found that the collagen structure can be represented by a mean direction and a dispersion with a single family of fibers despite the variation in the collagen fiber direction and the dispersion over the entire thickness of MV leaflets. STATEMENT OF SIGNIFICANCE: Despite its prominent role in the mechanical behavior of mitral valve (MV) leaflets, the collagen structure has not yet been investigated over the entire thickness with high transmural resolution. The present study quantifies the detailed through thickness collagen fiber structure and examines the effects of its variation on MV tissue modeling. This is important because the study evaluates the assumption that the collagen fibers can be modeled with a representative single fiber family despite the variation across the thickness. In addition, the current comprehensive data set paves the way for quantifying the disruption of collagen fibers in myxomatous MV leaflets associated with disrupted collagen fibers.
Collapse
|
7
|
Silva H, Tassone C, Ross EG, Lee JT, Zhou W, Nelson D. Collagen Fibril Orientation in Tissue Specimens From Atherosclerotic Plaque Explored Using Small Angle X-Ray Scattering. J Biomech Eng 2022; 144:024505. [PMID: 34529040 PMCID: PMC10782870 DOI: 10.1115/1.4052432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/22/2021] [Indexed: 01/12/2023]
Abstract
Atherosclerotic plaques can gradually develop in certain arteries. Disruption of fibrous tissue in plaques can result in plaque rupture and thromboembolism, leading to heart attacks and strokes. Collagen fibrils are important tissue building blocks and tissue strength depends on how fibrils are oriented. Fibril orientation in plaque tissue may potentially influence vulnerability to disruption. While X-ray scattering has previously been used to characterize fibril orientations in soft tissues and bones, it has never been used for characterization of human atherosclerotic plaque tissue. This study served to explore fibril orientation in specimens from human plaques using small angle X-ray scattering (SAXS). Plaque tissue was extracted from human femoral and carotid arteries, and each tissue specimen contained a region of calcified material. Three-dimensional (3D) collagen fibril orientation was determined along scan lines that started away from and then extended toward a given calcification. Fibrils were found to be oriented mainly in the circumferential direction of the plaque tissue at the majority of locations away from calcifications. However, in a number of cases, the dominant fibril direction differed near a calcification, changing from circumferential to longitudinal or thickness (radial) directions. Further study is needed to elucidate how these fibril orientations may influence plaque tissue stress-strain behavior and vulnerability to rupture.
Collapse
Affiliation(s)
- Herbert Silva
- NASA, 2101 NASA Parkway Building 13 R 208, Houston, TX 77058
| | - Christopher Tassone
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA 94025
| | - Elsie Gyang Ross
- Division of Vascular Surgery, Stanford Medical Center, 300 Pasteur Drive, Stanford, CA 94305
| | - Jason T. Lee
- Division of Vascular Surgery, Stanford Medical Center, 300 Pasteur Drive, Stanford, CA 94305
| | - Wei Zhou
- Vascular Surgery Division, College of Medicine, University of Arizona, Tucson, AZ 85724
| | - Drew Nelson
- Mechanical Engineering Department, Stanford University, Stanford, CA 94305
| |
Collapse
|
8
|
Ma JZ, Liu Q, Wu M, Tian Z. Preparation and assistant-dyeing of formaldehyde-free amphoteric acrylic retanning agent. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00066-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
With the enhancement of environmental protection consciousness, concerns have been raised about non-toxic and biodegradable leather retanning agents. According to the European standard 2002/231/EC, the free formaldehyde content of leather products should be less than 150 mg/kg. As one of the retanning agents in the market, the content of free formaldehyde in the Multifunctional retanning agent (MTA) is 372.22 mg/kg and higher than the limit value. In this work, glutaraldehyde as an alternative of formaldehyde was used to modify acrylic polymer and an amphoteric acrylic retanning agent was prepared. Then it was used in retanning process, and its retanning and assistant-dyeing properties were investigated. The results showed that the free formaldehyde content of amphoteric acrylic retanning agent modified with glutaraldehyde was only 4.17 mg/kg. Meanwhile, the presence of amino groups in the amphoteric acrylic retanning agent improved the dyeing properties of leather by electrostatic attraction. Compared with the leather treated with anionic acrylic retanning agent, the residual dye concentration of the dyeing effluent of the retanned leather with amphoteric acrylic retanning agent decreased from 17.4 mg/L to 10.0 mg/L, and the dyed leather had better resistances to friction and water-washing. In addition, the BOD5/COD value of the wastewater after Mannich base polymer retanning was only 0.32, indicating that the retanning agent was biodegradable. Moreover, the leather retanned with amphoteric acrylic retanning agent had good thermal stability, fullness and physical and mechanical properties.
Graphical abstract
Collapse
|
9
|
Reynolds NH, McEvoy E, Panadero Pérez JA, Coleman RJ, McGarry JP. Influence of multi-axial dynamic constraint on cell alignment and contractility in engineered tissues. J Mech Behav Biomed Mater 2020; 112:104024. [PMID: 33007624 DOI: 10.1016/j.jmbbm.2020.104024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 10/23/2022]
Abstract
In this study an experimental rig is developed to investigate the influence of tissue constraint and cyclic loading on cell alignment and active cell force generation in uniaxial and biaxial engineered tissues constructs. Addition of contractile cells to collagen hydrogels dramatically increases the measured forces in uniaxial and biaxial constructs under dynamic loading. This increase in measured force is due to active cell contractility, as is evident from the decreased force after treatment with cytochalasin D. Prior to dynamic loading, cells are highly aligned in uniaxially constrained tissues but are uniformly distributed in biaxially constrained tissues, demonstrating the importance of tissue constraints on cell alignment. Dynamic uniaxial stretching resulted in a slight increase in cell alignment in the centre of the tissue, whereas dynamic biaxial stretching had no significant effect on cell alignment. Our active modelling framework accurately predicts our experimental trends and suggests that a slightly higher (3%) total SF formation occurs at the centre of a biaxial tissue compared to the uniaxial tissue. However, high alignment of SFs and lateral compaction in the case of the uniaxially constrained tissue results in a significantly higher (75%) actively generated cell contractile stress, compared to the biaxially constrained tissue. These findings have significant implications for engineering of contractile tissue constructs.
Collapse
Affiliation(s)
- Noel H Reynolds
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Eoin McEvoy
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | | | - Ryan J Coleman
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - J Patrick McGarry
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland.
| |
Collapse
|
10
|
Jett SV, Hudson LT, Baumwart R, Bohnstedt BN, Mir A, Burkhart HM, Holzapfel GA, Wu Y, Lee CH. Integration of polarized spatial frequency domain imaging (pSFDI) with a biaxial mechanical testing system for quantification of load-dependent collagen architecture in soft collagenous tissues. Acta Biomater 2020; 102:149-168. [PMID: 31734412 PMCID: PMC8101699 DOI: 10.1016/j.actbio.2019.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
Collagen fiber networks provide the structural strength of tissues, such as tendons, skin and arteries. Quantifying the fiber architecture in response to mechanical loads is essential towards a better understanding of the tissue-level mechanical behaviors, especially in assessing disease-driven functional changes. To enable novel investigations into these load-dependent fiber structures, a polarized spatial frequency domain imaging (pSFDI) device was developed and, for the first time, integrated with a biaxial mechanical testing system. The integrated instrument is capable of a wide-field quantification of the fiber orientation and the degree of optical anisotropy (DOA), representing the local degree of fiber alignment. The opto-mechanical instrument''s performance was assessed through uniaxial loading on tendon tissues with known collagen fiber microstructures. Our results revealed that the bulk fiber orientation angle of the tendon tissue changed minimally with loading (median ± 0.5*IQR of 52.7° ± 3.3° and 51.9° ± 3.3° under 0 and 3% longitudinal strains, respectively), whereas on a micro-scale, the fibers became better aligned with the direction of loading: the DOA (mean ± SD) increased from 0.149 ± 0.032 to 0.198 ± 0.056 under 0 and 3% longitudinal strains, respectively, p < 0.001. The integrated instrument was further applied to study two representative mitral valve anterior leaflet (MVAL) tissues subjected to various biaxial loads. The fiber orientations within these representative MVAL tissue specimens demonstrated noticeable heterogeneity, with the local fiber orientations dependent upon the sample, the spatial and transmural locations, and the applied loading. Our results also showed that fibers were generally better aligned under equibiaxial (DOA = 0.089 ± 0.036) and circumferentially-dominant loading (DOA = 0.086 ± 0.037) than under the radially-dominant loading (DOA = 0.077 ± 0.034), indicating circumferential predisposition. These novel findings exemplify a deeper understanding of the load-dependent collagen fiber microstructures obtained through the use of the integrated opto-mechanical instrument. STATEMENT OF SIGNIFICANCE: In this study, a novel quantitative opto-mechanical system was developed by combining a polarized Spatial Frequency Domain Imaging (pSFDI) device with a biaxial mechanical tester. The integrated system was used to quantify the load-dependent collagen fiber microstructures in representative tendon and mitral valve anterior leaflet (MVAL) tissues. Our results revealed that MVAL's fiber architectures exhibited load-dependent spatial and transmural heterogeneities, suggesting further microstructural complexity than previously reported in heart valve tissues. These novel findings were possible through the system's ability to, for the first time, capture the load-dependent collagen architecture in the mitral valve anterior leaflet tissue over a wide field of view (e.g., 10 × 10 mm for the MVAL tissue specimens). Such capabilities afford unique future opportunities to improve patient outcomes through concurrent mechanical and microstructural assessments of healthy and diseased tissues in conditions such as heart valve regurgitation and calcification.
Collapse
Affiliation(s)
- Samuel V Jett
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Luke T Hudson
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Ryan Baumwart
- Center for Veterinary Health Sciences, Oklahoma State University, 2065 W. Farm Rd., Stillwater, OK 74078, United States
| | - Bradley N Bohnstedt
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, 1000 N Lincoln Blvd #400, Oklahoma City, OK 73104, United States
| | - Arshid Mir
- Division of Pediatric Cardiology, Department of Pediatrics, The University of Oklahoma Health Sciences Center, 1200 Children's Ave., Suite 2F, Oklahoma City, OK 73104, United States
| | - Harold M Burkhart
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Oklahoma Health Sciences Center, 800 Stanton L. Young Blvd. Suite 9000, Oklahoma City, OK 73104, United States
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16/2 8010 Graz, Austria; Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, Affiliated Faculty Member, Institute for Biomedical Engineering, Science, and Technology, The University of Oklahoma, 865 Asp Ave., Felgar Hall Rm. 219C, Norman, OK 73019-3609, United States; Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, 202 West Boyd St., Norman, OK 73019, United States.
| |
Collapse
|
11
|
A constitutive relation for the tissue composed of type-I collagen fibers under uniaxial tension. J Mech Behav Biomed Mater 2019; 97:222-228. [DOI: 10.1016/j.jmbbm.2019.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/10/2019] [Accepted: 05/17/2019] [Indexed: 02/04/2023]
|
12
|
Joyce K, Rochev Y, Rahmani S. Assessment of the uniaxial experimental parameters utilised for the mechanical testing of bovine pericardium. J Mech Behav Biomed Mater 2019; 96:27-37. [DOI: 10.1016/j.jmbbm.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/09/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
|
13
|
Wells HC, Sizeland KH, Kirby N, Hawley A, Mudie S, Haverkamp RG. Acellular dermal matrix collagen responds to strain by intermolecular spacing contraction with fibril extension and rearrangement. J Mech Behav Biomed Mater 2018; 79:1-8. [DOI: 10.1016/j.jmbbm.2017.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/28/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
|
14
|
Collier TA, Nash A, Birch HL, de Leeuw NH. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen. J Biomol Struct Dyn 2018; 37:537-549. [PMID: 29380684 DOI: 10.1080/07391102.2018.1433553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.
Collapse
Affiliation(s)
- Thomas A Collier
- a Institute of Natural and Mathematical Sciences , Massey University , Auckland 0632 , New Zealand
| | - Anthony Nash
- b Department of Physiology, Anatomy and Genetics , University of Oxford , South Parks Road, Oxford OX1 3QX , UK
| | - Helen L Birch
- c Institute of Orthopaedics and Musculoskeletal Science, UCL, RNOH Stanmore Campus , London , UK
| | - Nora H de Leeuw
- d School of Chemistry , Cardiff University , Main Building, Park Place, Cardiff CF10 3AT , UK
| |
Collapse
|
15
|
Bagno A, Aguiari P, Fiorese M, Iop L, Spina M, Gerosa G. Native Bovine and Porcine Pericardia Respond to Load With Additive Recruitment of Collagen Fibers. Artif Organs 2017; 42:540-548. [PMID: 29280157 DOI: 10.1111/aor.13065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
Bovine and porcine pericardia are currently used for manufacturing prosthetic heart valves: their design has become an increasingly important area of investigation in parallel with progressively expanding indications for the transcutaneous approach to heart valves replacement. Before being cut and shaped, pericardial tissues are expected to be properly characterized. Actually, the mechanical assessment of these biomaterials lacks standardized protocols. In particular, the role of preconditioning for achieving a constant mechanical response of tissue samples is still controversial. In the present work, the mechanical response to uniaxial load of native bovine and porcine pericardia, with and without preconditioning was assessed; moreover, the mechanical behavior of pericardia was investigated and explained. It was demonstrated that: (i) pericardial tissue samples hold memory of the loading history but just within the extent of the deformation applied; (ii) the behavior of native bovine and porcine pericardia in response to load is explained by a mechanism based on the additive recruitment of collagen fibers; (iii) the current concept that plasticity is absent in pericardium has to be at least in part reconsidered.
Collapse
Affiliation(s)
- Andrea Bagno
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Paola Aguiari
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Michele Fiorese
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Laura Iop
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Michele Spina
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Gino Gerosa
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Sizeland KH, Wells HC, Kelly SJ, Nesdale KE, May BCH, Dempsey SG, Miller CH, Kirby N, Hawley A, Mudie S, Ryan T, Cookson D, Haverkamp RG. Collagen Fibril Response to Strain in Scaffolds from Ovine Forestomach for Tissue Engineering. ACS Biomater Sci Eng 2017; 3:2550-2558. [DOI: 10.1021/acsbiomaterials.7b00588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katie H. Sizeland
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Hannah C. Wells
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
| | - Susyn J.R. Kelly
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
| | - Keira E. Nesdale
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
| | - Barnaby C. H. May
- Aroa Biosurgery, 2 Kingsford
Smith Place, Airport Oaks, Auckland 2022, New Zealand
| | - Sandi G. Dempsey
- Aroa Biosurgery, 2 Kingsford
Smith Place, Airport Oaks, Auckland 2022, New Zealand
| | | | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Adrian Hawley
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Stephen Mudie
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Tim Ryan
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - David Cookson
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Melbourne, Victoria 3168, Australia
| | - Richard G. Haverkamp
- School
of Engineering and Advanced Technology, Massey University, Palmerston
North 4472, New Zealand
| |
Collapse
|
17
|
Deymier AC, Nair AK, Depalle B, Qin Z, Arcot K, Drouet C, Yoder CH, Buehler MJ, Thomopoulos S, Genin GM, Pasteris JD. Protein-free formation of bone-like apatite: New insights into the key role of carbonation. Biomaterials 2017; 127:75-88. [PMID: 28279923 PMCID: PMC5415386 DOI: 10.1016/j.biomaterials.2017.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 02/26/2017] [Indexed: 11/20/2022]
Abstract
The nanometer-sized plate-like morphology of bone mineral is necessary for proper bone mechanics and physiology. However, mechanisms regulating the morphology of these mineral nanocrystals remain unclear. The dominant hypothesis attributes the size and shape regulation to organic-mineral interactions. Here, we present data supporting the hypothesis that physicochemical effects of carbonate integration within the apatite lattice control the morphology, size, and mechanics of bioapatite mineral crystals. Carbonated apatites synthesized in the absence of organic molecules presented plate-like morphologies and nanoscale crystallite dimensions. Experimentally-determined crystallite size, lattice spacing, solubility and atomic order were modified by carbonate concentration. Molecular dynamics (MD) simulations and density functional theory (DFT) calculations predicted changes in surface energy and elastic moduli with carbonate concentration. Combining these results with a scaling law predicted the experimentally observed scaling of size and energetics with carbonate concentration. The experiments and models describe a clear mechanism by which crystal dimensions are controlled by carbonate substitution. Furthermore, the results demonstrate that carbonate substitution is sufficient to drive the formation of bone-like crystallites. This new understanding points to pathways for biomimetic synthesis of novel, nanostructured biomaterials.
Collapse
Affiliation(s)
- Alix C Deymier
- Dept. of Orthopedic Surgery, Columbia University, New York, NY 10032, USA.
| | - Arun K Nair
- Dept. of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | | | - Zhao Qin
- Dept. of Civil and Environmental Engineering, MIT, Boston, MA 02139, USA
| | - Kashyap Arcot
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS/UPS/INP, Ensiacet, Toulouse 31030, France
| | - Claude H Yoder
- Dept. of Chemistry, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Markus J Buehler
- Dept. of Civil and Environmental Engineering, MIT, Boston, MA 02139, USA
| | | | - Guy M Genin
- Dept. of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Jill D Pasteris
- Dept. of Earth and Planetary Sciences, Washington University, St Louis, MO 63130, USA.
| |
Collapse
|
18
|
Xu C, Huang Y, Tang L, Hong Y. Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:2169-2180. [PMID: 28036169 PMCID: PMC7479969 DOI: 10.1021/acsami.6b15009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mechanical match between synthetic scaffold and host tissue remains challenging in tissue regeneration. The elastic soft tissues exhibit low initial moduli with a J-shaped tensile curve. Suitable synthetic polymer scaffolds require low initial modulus and elasticity. To achieve these requirements, random copolymers poly(δ-valerolactone-co-ε-caprolactone) (PVCL) and hydrophilic poly(ethylene glycol) (PEG) were combined into a triblock copolymer, PVCL-PEG-PVCL, which was used as a soft segment to synthesize a family of biodegradable elastomeric polyurethanes (PU) with low initial moduli. The triblock copolymers were varied in chemical components, molecular weights, and hydrophilicities. The mechanical properties of polyurethanes in dry and wet states can be tuned by altering the molecular weights and hydrophilicities of the soft segments. Increasing the length of either PVCL or PEG in the soft segments reduced initial moduli of the polyurethane films and scaffolds in dry and wet states. The polymer films are found to have good cell compatibility and to support fibroblast growth in vitro. Selected polyurethanes were processed into porous scaffolds by a thermally induced phase-separation technique. The scaffold from PU-PEG1K-PVCL6K had an initial modulus of 0.60 ± 0.14 MPa, which is comparable with the initial modulus of human myocardium (0.02-0.50 MPa). In vivo mouse subcutaneous implantation of the porous scaffolds showed minimal chronic inflammatory response and intensive cell infiltration, which indicated good tissue compatibility of the scaffolds. Biodegradable polyurethane elastomers with low initial modulus and good biocompatibility and processability would be an attractive alternative scaffold material for soft tissue regeneration, especially for heart muscle.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Yihui Huang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
- Corresponding author: Yi Hong, , Tel: +1-817-272-0562; Fax: +1-817-272-2251
| |
Collapse
|
19
|
Huang S, Huang HYS. Biaxial stress relaxation of semilunar heart valve leaflets during simulated collagen catabolism: Effects of collagenase concentration and equibiaxial strain state. Proc Inst Mech Eng H 2016; 229:721-31. [PMID: 26405097 DOI: 10.1177/0954411915604336] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart valve leaflet collagen turnover and remodeling are innate to physiological homeostasis; valvular interstitial cells routinely catabolize damaged collagen and affect repair. Moreover, evidence indicates that leaflets can adapt to altered physiological (e.g. pregnancy) and pathological (e.g. hypertension) mechanical load states, tuning collagen structure and composition to changes in pressure and flow. However, while valvular interstitial cell-secreted matrix metalloproteinases are considered the primary effectors of collagen catabolism, the mechanisms by which damaged collagen fibers are selectively degraded remain unclear. Growing evidence suggests that the collagen fiber strain state plays a key role, with the strain-dependent configuration of the collagen molecules either masking or presenting proteolytic sites, thereby protecting or accelerating collagen proteolysis. In this study, the effects of equibiaxial strain state on collagen catabolism were investigated in porcine aortic valve and pulmonary valve tissues. Bacterial collagenase (0.2 and 0.5 mg/mL) was utilized to simulate endogenous matrix metalloproteinases, and biaxial stress relaxation and biochemical collagen concentration served as functional and compositional measures of collagen catabolism, respectively. At a collagenase concentration of 0.5 mg/mL, increasing the equibiaxial strain imposed during stress relaxation (0%, 37.5%, and 50%) yielded significantly lower median collagen concentrations in the aortic valve (p = 0.0231) and pulmonary valve (p = 0.0183), suggesting that relatively large strain magnitudes may enhance collagen catabolism. Collagen concentration decreases were paralleled by trends of accelerated normalized stress relaxation rate with equibiaxial strain in aortic valve tissues. Collectively, these in vitro results indicate that biaxial strain state is capable of affecting the susceptibility of valvular collagens to catabolism, providing a basis for further investigation of how such phenomena may manifest at different strain magnitudes or in vivo.
Collapse
Affiliation(s)
- Siyao Huang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Hsiao-Ying Shadow Huang
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
20
|
Sacks MS, Zhang W, Wognum S. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus 2016; 6:20150090. [PMID: 26855761 DOI: 10.1098/rsfs.2015.0090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exogenous cross-linking of soft collagenous tissues is a common method for biomaterial development and medical therapies. To enable improved applications through computational methods, physically realistic constitutive models are required. Yet, despite decades of research, development and clinical use, no such model exists. In this study, we develop the first rigorous full structural model (i.e. explicitly incorporating various features of the collagen fibre architecture) for exogenously cross-linked soft tissues. This was made possible, in-part, with the use of native to cross-linked matched experimental datasets and an extension to the collagenous structural constitutive model so that the uncross-linked collagen fibre responses could be mapped to the cross-linked configuration. This allowed us to separate the effects of cross-linking from kinematic changes induced in the cross-linking process, which in turn allowed the non-fibrous tissue matrix component and the interaction effects to be identified. It was determined that the matrix could be modelled as an isotropic material using a modified Yeoh model. The most novel findings of this study were that: (i) the effective collagen fibre modulus was unaffected by cross-linking and (ii) fibre-ensemble interactions played a large role in stress development, often dominating the total tissue response (depending on the stress component and loading path considered). An important utility of the present model is its ability to separate the effects of exogenous cross-linking on the fibres from changes due to the matrix. Applications of this approach include the utilization in the design of novel chemical treatments to produce specific mechanical responses and the study of fatigue damage in bioprosthetic heart valve biomaterials.
Collapse
Affiliation(s)
- Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering , The University of Texas at Austin , 201 East 24th Street, PO Box 5.236, Stop C0200, Austin, TX 78712 , USA
| | - Will Zhang
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical Engineering , The University of Texas at Austin , 201 East 24th Street, PO Box 5.236, Stop C0200, Austin, TX 78712 , USA
| | - Silvia Wognum
- Department of Biomedical Engineering , Eindhoven University of Technology , PO Box 513, 5600 MB Eindhoven , The Netherlands
| |
Collapse
|
21
|
Jayyosi C, Coret M, Bruyère-Garnier K. Characterizing liver capsule microstructure via in situ bulge test coupled with multiphoton imaging. J Mech Behav Biomed Mater 2016; 54:229-43. [DOI: 10.1016/j.jmbbm.2015.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022]
|
22
|
Aguiari P, Fiorese M, Iop L, Gerosa G, Bagno A. Mechanical testing of pericardium for manufacturing prosthetic heart valves. Interact Cardiovasc Thorac Surg 2015; 22:72-84. [DOI: 10.1093/icvts/ivv282] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/03/2015] [Indexed: 01/15/2023] Open
|
23
|
Wells HC, Sizeland KH, Kirby N, Hawley A, Mudie S, Haverkamp RG. Collagen Fibril Structure and Strength in Acellular Dermal Matrix Materials of Bovine, Porcine, and Human Origin. ACS Biomater Sci Eng 2015; 1:1026-1038. [PMID: 33429533 DOI: 10.1021/acsbiomaterials.5b00310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strength is an important characteristic of acellular dermal matrix (ADM) materials used for surgical scaffolds. Strength depends on the material's structure, which may vary with the source from which the product is produced, including species and animal age. Here, variations in the physical properties and structures of ADM materials from three species are investigated: bovine (fetal and neonatal), porcine, and human materials. Thickness normalized, the bovine materials have a similar strength (tear strength of 75-124 N/m) to the human material (79 N/m), and these are both stronger than the porcine material (43 N/m). Thickness-normalized tensile strengths were similar among all species (18-34 N/mm2 for bovine although higher in fetal material, 18 N/mm2 for human and 21 N/mm2 for porcine). Structure is investigated with synchrotron-based small-angle X-ray scattering (SAXS) for collagen fibril orientation index (OI) and scanning electron microscopy (SEM). SEM reveals a more open structure in bovine ADM than in the porcine and human material. A correlation is found between OI and thickness-normalized tear strength in neonatal bovine material measured with the X-rays edge-on to the sample, but this relationship does not extend across species. The collagen fibril arrangement, viewed perpendicular to the surface, varies between species, with the human material having a unimodal distribution and rather isotropic (OI 0.08), the porcine being strongly bimodal and rather highly oriented (OI 0.61), the neonatal bovine between these two extremes with a bimodal distribution tending toward isotropic (OI 0.14-0.21) and the fetal bovine material being bimodal and less isotropic than neonatal (OI 0.24). The OI varies less through the thickness of the porcine and human materials than through the bovine materials. The similarities and differences in structure may inform the suitability of these materials for particular surgical applications.
Collapse
Affiliation(s)
- Hannah C Wells
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Katie H Sizeland
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, Victoria, Australia
| | - Adrian Hawley
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, Victoria, Australia
| | - Stephen Mudie
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, Victoria, Australia
| | - Richard G Haverkamp
- School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
24
|
Lee CH, Zhang W, Liao J, Carruthers CA, Sacks JI, Sacks MS. On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys J 2015; 108:2074-87. [PMID: 25902446 PMCID: PMC4407258 DOI: 10.1016/j.bpj.2015.03.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/07/2015] [Accepted: 03/10/2015] [Indexed: 11/21/2022] Open
Abstract
In this study, we evaluated the hypothesis that the constituent fibers follow an affine deformation kinematic model for planar collagenous tissues. Results from two experimental datasets were utilized, taken at two scales (nanometer and micrometer), using mitral valve anterior leaflet (MVAL) tissues as the representative tissue. We simulated MVAL collagen fiber network as an ensemble of undulated fibers under a generalized two-dimensional deformation state, by representing the collagen fibrils based on a planar sinusoidally shaped geometric model. The proposed approach accounted for collagen fibril amplitude, crimp period, and rotation with applied macroscopic tissue-level deformation. When compared to the small angle x-ray scattering measurements, the model fit the data well, with an r(2) = 0.976. This important finding suggests that, at the homogenized tissue-level scale of ∼1 mm, the collagen fiber network in the MVAL deforms according to an affine kinematics model. Moreover, with respect to understanding its function, affine kinematics suggests that the constituent fibers are largely noninteracting and deform in accordance with the bulk tissue. It also suggests that the collagen fibrils are tightly bounded and deform as a single fiber-level unit. This greatly simplifies the modeling efforts at the tissue and organ levels, because affine kinematics allows a straightforward connection between the macroscopic and local fiber strains. It also suggests that the collagen and elastin fiber networks act independently of each other, with the collagen and elastin forming long fiber networks that allow for free rotations. Such freedom of rotation can greatly facilitate the observed high degree of mechanical anisotropy in the MVAL and other heart valves, which is essential to heart valve function. These apparently novel findings support modeling efforts directed toward improving our fundamental understanding of tissue biomechanics in healthy and diseased conditions.
Collapse
Affiliation(s)
- Chung-Hao Lee
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Will Zhang
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Jun Liao
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, Starkville, Mississippi
| | | | - Jacob I Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas
| | - Michael S Sacks
- Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
25
|
Yang W, Sherman VR, Gludovatz B, Schaible E, Stewart P, Ritchie RO, Meyers MA. On the tear resistance of skin. Nat Commun 2015; 6:6649. [PMID: 25812485 PMCID: PMC4389263 DOI: 10.1038/ncomms7649] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/12/2015] [Indexed: 01/12/2023] Open
Abstract
Tear resistance is of vital importance in the various functions of skin, especially protection from predatorial attack. Here, we mechanistically quantify the extreme tear resistance of skin and identify the underlying structural features, which lead to its sophisticated failure mechanisms. We explain why it is virtually impossible to propagate a tear in rabbit skin, chosen as a model material for the dermis of vertebrates. We express the deformation in terms of four mechanisms of collagen fibril activity in skin under tensile loading that virtually eliminate the possibility of tearing in pre-notched samples: fibril straightening, fibril reorientation towards the tensile direction, elastic stretching and interfibrillar sliding, all of which contribute to the redistribution of the stresses at the notch tip. It is known that skin has a large tear resistance, but little is known of the mechanism behind this. Here, the authors carry out a structural analysis of rabbit skin to show how the deformation of collagen fibrils in the skin results in a strong resistance to tear propagation.
Collapse
Affiliation(s)
- Wen Yang
- Materials Science and Engineering Program, University of California, San Diego, California 92093, USA
| | - Vincent R Sherman
- Materials Science and Engineering Program, University of California, San Diego, California 92093, USA
| | - Bernd Gludovatz
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Polite Stewart
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Robert O Ritchie
- 1] Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA [2] Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Marc A Meyers
- 1] Materials Science and Engineering Program, University of California, San Diego, California 92093, USA [2] Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA [3] Department of NanoEngineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
26
|
Sizeland KH, Edmonds RL, Basil-Jones MM, Kirby N, Hawley A, Mudie S, Haverkamp RG. Changes to collagen structure during leather processing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2499-2505. [PMID: 25658513 DOI: 10.1021/jf506357j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As hides and skins are processed to produce leather, chemical and physical changes take place that affect the strength and other physical properties of the material. The structural basis of these changes at the level of the collagen fibrils is not fully understood and forms the basis of this investigation. Synchrotron-based small-angle X-ray scattering (SAXS) is used to quantify fibril orientation and D-spacing through eight stages of processing from fresh green ovine skins to staked dry crust leather. Both the D-spacing and fibril orientation change with processing. The changes in thickness of the leather during processing affect the fibril orientation index (OI) and account for much of the OI differences between process stages. After thickness is accounted for, the main difference in OI is due to the hydration state of the material, with dry materials being less oriented than wet. Similarly significant differences in D-spacing are found at different process stages. These are due also to the moisture content, with dry samples having a smaller D-spacing. This understanding is useful for relating structural changes that occur during different stages of processing to the development of the final physical characteristics of leather.
Collapse
Affiliation(s)
- Katie H Sizeland
- School of Engineering and Advanced Technology, Massey University , Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
27
|
Kayed HR, Sizeland KH, Kirby N, Hawley A, Mudie ST, Haverkamp RG. Collagen cross linking and fibril alignment in pericardium. RSC Adv 2015. [DOI: 10.1039/c4ra10658j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cross linking was found to be a factor in collagen fibril alignment in pericardium tissue.
Collapse
Affiliation(s)
- Hanan R. Kayed
- School of Engineering and Advanced Technology
- Massey University
- New Zealand
| | - Katie H. Sizeland
- School of Engineering and Advanced Technology
- Massey University
- New Zealand
| | | | | | | | | |
Collapse
|
28
|
Kayed HR, Kirby N, Hawley A, Mudie ST, Haverkamp RG. Collagen fibril strain, recruitment and orientation for pericardium under tension and the effect of cross links. RSC Adv 2015. [DOI: 10.1039/c5ra21870e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The response to stress of collagen fibrils in bovine pericardium depends on the nature of the cross links.
Collapse
Affiliation(s)
- Hanan R. Kayed
- School of Engineering and Advanced Technology
- Massey University
- Palmerston North, New Zealand
| | | | | | | | - Richard G. Haverkamp
- School of Engineering and Advanced Technology
- Massey University
- Palmerston North, New Zealand
| |
Collapse
|
29
|
Age dependent differences in collagen alignment of glutaraldehyde fixed bovine pericardium. BIOMED RESEARCH INTERNATIONAL 2014. [PMID: 25295250 DOI: 10.1155/2014/189197(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bovine pericardium is used for heart valve leaflet replacement where the strength and thinness are critical properties. Pericardium from neonatal animals (4-7 days old) is advantageously thinner and is considered as an alternative to that from adult animals. Here, the structures of adult and neonatal bovine pericardium tissues fixed with glutaraldehyde are characterized by synchrotron-based small angle X-ray scattering (SAXS) and compared with the mechanical properties of these materials. Significant differences are observed between adult and neonatal tissue. The glutaraldehyde fixed neonatal tissue has a higher modulus of elasticity (83.7 MPa) than adult pericardium (33.5 MPa) and a higher normalised ultimate tensile strength (32.9 MPa) than adult pericardium (19.1 MPa). Measured edge on to the tissue, the collagen in neonatal pericardium is significantly more aligned (orientation index (OI) 0.78) than that in adult pericardium (OI 0.62). There is no difference in the fibril diameter between neonatal and adult pericardium. It is shown that high alignment in the plane of the tissue provides the mechanism for the increased strength of the neonatal material. The superior strength of neonatal compared with adult tissue supports the use of neonatal bovine pericardium in heterografts.
Collapse
|
30
|
Szczesny SE, Elliott DM. Incorporating plasticity of the interfibrillar matrix in shear lag models is necessary to replicate the multiscale mechanics of tendon fascicles. J Mech Behav Biomed Mater 2014; 40:325-338. [PMID: 25262202 DOI: 10.1016/j.jmbbm.2014.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 11/18/2022]
Abstract
Despite current knowledge of tendon structure, the fundamental deformation mechanisms underlying tendon mechanics and failure are unknown. We recently showed that a shear lag model, which explicitly assumed plastic interfibrillar load transfer between discontinuous fibrils, could explain the multiscale fascicle mechanics, suggesting that fascicle yielding is due to plastic deformation of the interfibrillar matrix. However, it is unclear whether alternative physical mechanisms, such as elastic interfibrillar deformation or fibril yielding, also contribute to fascicle mechanical behavior. The objective of the current work was to determine if plasticity of the interfibrillar matrix is uniquely capable of explaining the multiscale mechanics of tendon fascicles including the tissue post-yield behavior. This was examined by comparing the predictions of a continuous fibril model and three separate shear lag models incorporating an elastic, plastic, or elastoplastic interfibrillar matrix with multiscale experimental data. The predicted effects of fibril yielding on each of these models were also considered. The results demonstrated that neither the continuous fibril model nor the elastic shear lag model can successfully predict the experimental data, even if fibril yielding is included. Only the plastic or elastoplastic shear lag models were capable of reproducing the multiscale tendon fascicle mechanics. Differences between these two models were small, although the elastoplastic model did improve the fit of the experimental data at low applied tissue strains. These findings suggest that while interfibrillar elasticity contributes to the initial stress response, plastic deformation of the interfibrillar matrix is responsible for tendon fascicle post-yield behavior. This information sheds light on the physical processes underlying tendon failure, which is essential to improve our understanding of tissue pathology and guide the development of successful repair.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd St, Philadelphia, PA 19104, United States.
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, 125 East Delaware Avenue, Newark, DE 19716, United States.
| |
Collapse
|
31
|
Age dependent differences in collagen alignment of glutaraldehyde fixed bovine pericardium. BIOMED RESEARCH INTERNATIONAL 2014; 2014:189197. [PMID: 25295250 PMCID: PMC4180201 DOI: 10.1155/2014/189197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/02/2014] [Indexed: 11/18/2022]
Abstract
Bovine pericardium is used for heart valve leaflet replacement where the strength and thinness are critical properties. Pericardium from neonatal animals (4–7 days old) is advantageously thinner and is considered as an alternative to that from adult animals. Here, the structures of adult and neonatal bovine pericardium tissues fixed with glutaraldehyde are characterized by synchrotron-based small angle X-ray scattering (SAXS) and compared with the mechanical properties of these materials. Significant differences are observed between adult and neonatal tissue. The glutaraldehyde fixed neonatal tissue has a higher modulus of elasticity (83.7 MPa) than adult pericardium (33.5 MPa) and a higher normalised ultimate tensile strength (32.9 MPa) than adult pericardium (19.1 MPa). Measured edge on to the tissue, the collagen in neonatal pericardium is significantly more aligned (orientation index (OI) 0.78) than that in adult pericardium (OI 0.62). There is no difference in the fibril diameter between neonatal and adult pericardium. It is shown that high alignment in the plane of the tissue provides the mechanism for the increased strength of the neonatal material. The superior strength of neonatal compared with adult tissue supports the use of neonatal bovine pericardium in heterografts.
Collapse
|
32
|
Jayyosi C, Fargier G, Coret M, Bruyère-Garnier K. Photobleaching as a tool to measure the local strain field in fibrous membranes of connective tissues. Acta Biomater 2014; 10:2591-601. [PMID: 24568925 DOI: 10.1016/j.actbio.2014.02.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/16/2022]
Abstract
Connective tissues are complex structures which contain collagen and elastin fibers. These fiber-based structures have a great influence on material mechanical properties and need to be studied at the microscopic scale. Several microscopy techniques have been developed in order to image such microstructures; among them are two-photon excited fluorescence microscopy and second harmonic generation. These observations have been coupled with mechanical characterization to link microstructural kinematics to macroscopic material parameter evolution. In this study, we present a new approach to measure local strain in soft biological tissues using a side-effect of fluorescence microscopy: photobleaching. Controlling the loss of fluorescence induced by photobleaching, we create a pattern on our sample that we can monitor during mechanical loading. The image analysis allows three-dimensional displacements of the patterns at various loading levels to be computed. Then, local strain distribution is derived using the finite element discretization on a four-node element mesh created from our photobleached pattern. Photobleaching tests on a human liver capsule have revealed that this technique is non-destructive and does not have any impact on mechanical properties. This method is likely to have other applications in biological material studies, considering that all collagen-elastin fiber-based biological tissues possess autofluorescence properties and thus can be photobleached.
Collapse
Affiliation(s)
- C Jayyosi
- Université de Lyon, F-69622 Lyon;IFSTTAR, LBMC, UMR-T9406; Université Lyon 1, France.
| | - G Fargier
- Plateforme IVTV, CNRS, 36 Avenue Guy de Collongue, Bâtiment G8, 69134 Ecully Cedex, France
| | - M Coret
- LUNAM Université, GEM, UMR CNRS 6183, Ecole Centrale de Nantes, Université de Nantes, France
| | - K Bruyère-Garnier
- Université de Lyon, F-69622 Lyon;IFSTTAR, LBMC, UMR-T9406; Université Lyon 1, France
| |
Collapse
|
33
|
Voorhees AP, Han HC. A model to determine the effect of collagen fiber alignment on heart function post myocardial infarction. Theor Biol Med Model 2014; 11:6. [PMID: 24456675 PMCID: PMC3914851 DOI: 10.1186/1742-4682-11-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adverse remodeling of the left ventricle (LV) following myocardial infarction (MI) leads to heart failure. Recent studies have shown that scar anisotropy is a determinant of cardiac function post-MI, however it remains unclear how changes in extracellular matrix (ECM) organization and structure contribute to changes in LV function. The objective of this study is to develop a model to identify potential mechanisms by which collagen structure and organization affect LV function post-MI. METHODS A four-region, multi-scale, cylindrical model of the post-MI LV was developed. The mechanical properties of the infarct region are governed by a constitutive equation based on the uncrimping of collagen fibers. The parameters of this constitutive equation include collagen orientation, angular dispersion, fiber stiffness, crimp angle, and density. Parametric variation of these parameters was used to elucidate the relationship between collagen properties and LV function. RESULTS The mathematical model of the LV revealed several factors that influenced cardiac function post-MI. LV function was maximized when collagen fibers were aligned longitudinally. Increased collagen density was also found to improve stroke volume for longitudinal alignments while increased fiber stiffness decreased stroke volume for circumferential alignments. CONCLUSIONS The results suggest that cardiac function post-MI is best preserved through increased circumferential compliance. Further, this study identifies several collagen fiber-level mechanisms that could potentially regulate both infarct level and organ level mechanics. Improved understanding of the multi-scale relationships between the ECM and LV function will be beneficial in the design of new diagnostic and therapeutic technologies.
Collapse
Affiliation(s)
- Andrew P Voorhees
- Biomedical Engineering Program, UTSA-UTHSCSA 1 UTSA Circle, San Antonio, TX 78249, USA
| | - Hai-Chao Han
- Biomedical Engineering Program, UTSA-UTHSCSA 1 UTSA Circle, San Antonio, TX 78249, USA
- Department of Mechanical Engineering, The University of Texas at San Antonio Biomedical Engineering Program, UTSA-UTHSCSA, 1 UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
34
|
Wu KCW, Yang CY, Cheng CM. Using cell structures to develop functional nanomaterials and nanostructures – case studies of actin filaments and microtubules. Chem Commun (Camb) 2014; 50:4148-57. [DOI: 10.1039/c4cc00005f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Actin filaments and microtubules are utilized as building blocks to create functional nanomaterials and nanostructures for nature-inspired small-scale devices and systems.
Collapse
Affiliation(s)
- Kevin Chia-Wen Wu
- Department of Chemical Engineering
- National Taiwan University
- Taipei 10617, Taiwan
| | - Chung-Yao Yang
- Institute of Nanoengineering and Microsystems
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Chao-Min Cheng
- Institute of Nanoengineering and Microsystems
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| |
Collapse
|
35
|
Bel-Brunon A, Coret M, Bruyère-Garnier K, Combescure A. Compared prediction of the experimental failure of a thin fibrous tissue by two macroscopic damage models. J Mech Behav Biomed Mater 2013; 27:262-72. [PMID: 23773977 DOI: 10.1016/j.jmbbm.2013.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 05/16/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
Several models for fibrous biological tissues have been proposed in the past, taking into account the fibrous microstructure through different homogenization methods. The aim of this paper is to compare theoretically and experimentally two existing homogenization methods - the Angular Integration method and the Generalized Structure Tensor method - by adapting them to a damage model for a planar fibrous tissue made of linear elastic and brittle fibers. The theoretical implementation of the homogenization methods reveals some differences once damage starts in the fibrous tissue; in particular, the anisotropy of the tissue evolves differently. The experimental aspect of this work consists in identifying the parameters of the damage model, with both homogenization methods, using inflation tests until rupture on a biological membrane. The numerical identification method is based on the simulation of the tests with the real geometry of the samples and the real boundary conditions computed by Stereo Digital Image Correlation. The identification method is applied to human liver capsule. The collagen fibers Young's modulus (19±6MPa) as well as their ultimate longitudinal strain (33±4%) are determined; no significant difference was observed between the two methods. However, by using the experimental boundary conditions, we could observe that the damage progression is faster for the Angular Integration version of the model.
Collapse
Affiliation(s)
- A Bel-Brunon
- Université de Lyon, Lyon F-69000, France; INSA-Lyon, LaMCoS UMR5259, F-69621, France; Ifsttar, UMRT9406, LBMC, F-69675 Bron, France; Université Lyon 1, F-69622 Villeurbanne, France.
| | | | | | | |
Collapse
|
36
|
Collagen fiber alignment and maximum principal strain in the glenohumeral capsule predict location of failure during uniaxial extension. Biomech Model Mechanobiol 2013; 13:379-85. [PMID: 23728935 DOI: 10.1007/s10237-013-0503-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
Abstract
The glenohumeral joint is frequently dislocated resulting in injury to the glenohumeral capsule. Repair techniques that focus on restoring the capsule after dislocation to re-establish its stabilizing function could benefit from predictions of the location of failure in this continuous sheet of tissue with a random collagen fiber alignment in the unloaded state. Therefore, the objective of this study was to determine the collagen fiber alignment and maximum principal strain in all regions of the capsule during uniaxial extension to failure and to determine whether these parameters could predict the location of tissue failure. Collagen fiber alignment, quantified using a small-angle light-scattering device, and maximum principal strain in the capsule were determined at 5% increments of elongation until tissue failure. A contingency table analyzed with Fischer's exact test demonstrated that peak collagen fiber alignment, represented by the normalized orientation index (p < 0.001) and maximum principal strain (p < 0.001), is significant in predicting location of failure. The direct correlation between the maximum principal strain and collagen fiber alignment measured prior to failure to the location of tissue failure suggests these parameters can be used as a predictive tool to help locate the areas of the glenohumeral capsule that are susceptible to failure. In the future, changes in collagen fiber alignment following injury could be used to develop a constitutive model for injured capsular tissue.
Collapse
|
37
|
Sizeland KH, Basil-Jones MM, Edmonds RL, Cooper SM, Kirby N, Hawley A, Haverkamp RG. Collagen orientation and leather strength for selected mammals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:887-892. [PMID: 23298142 DOI: 10.1021/jf3043067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Collagen is the main structural component of leather, skin, and some other applications such as medical scaffolds. All of these materials have a mechanical function, so the manner in which collagen provides them with their strength is of fundamental importance and was investigated here. This study shows that the tear strength of leather across seven species of mammals depends on the degree to which collagen fibrils are aligned in the plane of the tissue. Tear-resistant material has the fibrils contained within parallel planes with little crossover between the top and bottom surfaces. The fibril orientation is observed using small-angle X-ray scattering in leather, produced from skin, with tear strengths (normalized for thickness) of 20-110 N/mm. The orientation index, 0.420-0.633, is linearly related to tear strength such that greater alignment within the plane of the tissue results in stronger material. The statistical confidence and diversity of animals suggest that this is a fundamental determinant of strength in tissue. This insight is valuable in understanding the performance of leather and skin in biological and industrial applications.
Collapse
Affiliation(s)
- Katie H Sizeland
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | | | |
Collapse
|
38
|
Masoumi N, Jean A, Zugates JT, Johnson KL, Engelmayr GC. Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering. J Biomed Mater Res A 2012; 101:104-14. [PMID: 22826211 DOI: 10.1002/jbm.a.34305] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 05/01/2012] [Accepted: 05/22/2012] [Indexed: 02/04/2023]
Abstract
Microfabricated poly(glycerol sebacate) (PGS) scaffolds may be applicable to tissue engineering heart valve leaflets by virtue of their controllable microstructure, stiffness, and elasticity. In this study, PGS scaffolds were computationally designed and microfabricated by laser ablation to match the anisotropy and peak tangent moduli of native bovine aortic heart valve leaflets. Finite element simulations predicted PGS curing conditions, scaffold pore shape, and strut width capable of matching the scaffold effective stiffnesses to the leaflet peak tangent moduli. On the basis of simulation predicted effective stiffnesses of 1.041 and 0.208 MPa for the scaffold preferred (PD) and orthogonal, cross-preferred (XD) material directions, scaffolds with diamond-shaped pores were microfabricated by laser ablation of PGS cured 12 h at 160°C. Effective stiffnesses measured for the scaffold PD (0.83 ± 0.13 MPa) and XD (0.21 ± 0.03 MPa) were similar to both predicted values and peak tangent moduli measured for bovine aortic valve leaflets in the circumferential (1.00 ± 0.16 MPa) and radial (0.26 ± 0.03 MPa) directions. Scaffolds cultivated with fibroblasts for 3 weeks accumulated collagen (736 ± 193 μg/g wet weight) and DNA (17 ± 4 μg/g wet weight). This study provides a basis for the computational design of biomimetic microfabricated PGS scaffolds for tissue-engineered heart valves.
Collapse
Affiliation(s)
- Nafiseh Masoumi
- Department of Bioengineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
39
|
Basil-Jones MM, Edmonds RL, Norris GE, Haverkamp RG. Collagen fibril alignment and deformation during tensile strain of leather: a small-angle X-ray scattering study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:1201-1208. [PMID: 22233427 DOI: 10.1021/jf2039586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The distribution and effect of applied strain on the collagen fibrils that make up leather may have an important bearing on the ultimate strength and other physical properties of the material. While sections of ovine and bovine leather were being subjected to tensile strain up to rupture, synchrotron-based small-angle X-ray scattering (SAXS) spectra were recorded edge-on to the leather at points from the corium to the grain. Measurements of both fibril orientation and collagen d spacing showed that, initially, the fibers reorient under strain, becoming more aligned. As the strain increases (5-10% strain), further fibril reorientation diminishes until, at 37% strain, the d spacing increases by up to 0.56%, indicating that significant tensile forces are being transmitted to individual fibrils. These changes, however, are not uniform through the cross-section of leather and differ between leathers of different strengths. The stresses are taken up more evenly through the leather cross-section in stronger leathers in comparison to weaker leathers, where stresses tended to be concentrated during strain. These observations contribute to our understanding of the internal strains and structural changes that take place in leather under stress.
Collapse
Affiliation(s)
- Melissa M Basil-Jones
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
40
|
The Intrinsic Fatigue Mechanism of the Porcine Aortic Valve Extracellular Matrix. Cardiovasc Eng Technol 2012. [DOI: 10.1007/s13239-011-0080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
41
|
Robitaille MC, Zareian R, Dimarzio CA, Wan KT, Ruberti JW. Small-angle light scattering to detect strain-directed collagen degradation in native tissue. Interface Focus 2011; 1:767-76. [PMID: 23050081 DOI: 10.1098/rsfs.2011.0039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 07/12/2011] [Indexed: 11/12/2022] Open
Abstract
It has been demonstrated that there is a mechanochemical relationship between collagen and collagenolytic enzymes such that increased tensile mechanical strain reduces the enzymatic cutting rate. This mechanochemical relationship has the potential to permit directed remodelling of tissue-engineered constructs in vitro and to shed light on the generation of load-adapted collagen-based connective tissue. In this investigation, we demonstrate that small-angle light scattering (SALS) has the sensitivity to dynamically detect the preferential enzymatic degradation of a subset of unloaded collagen fibrils within differentially loaded native tissue. Detection of the difference in the relative degradation rate of unloaded fibrils versus loaded fibrils was manifested through changes in the spatial distribution of the SALS signal. Specifically, we found a linear increase in the eccentricity of the SALS data that was consistent with preferential retention of the collagen fibrils aligned with the applied tensile strain. We conclude that SALS is simple, inexpensive and may provide a useful optical screening method permitting real-time monitoring of strain-controlled tissue and construct remodelling.
Collapse
Affiliation(s)
- Michael C Robitaille
- Mechanical and Industrial Engineering Department , Northeastern University , 360 Huntington Avenue, Boston, MA 02115 , USA
| | | | | | | | | |
Collapse
|
42
|
Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 2011; 90:953-68. [PMID: 21220360 DOI: 10.1177/0022034510391799] [Citation(s) in RCA: 423] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding.
Collapse
Affiliation(s)
- Y Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou District, Wuhan 430030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tedder ME, Simionescu A, Chen J, Liao J, Simionescu DT. Assembly and testing of stem cell-seeded layered collagen constructs for heart valve tissue engineering. Tissue Eng Part A 2010; 17:25-36. [PMID: 20673028 DOI: 10.1089/ten.tea.2010.0138] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tissue engineering holds great promise for treatment of valvular diseases. Despite excellent progress in the field, current approaches do not fully take into account each patient's valve anatomical uniqueness, the presence of a middle spongiosa cushion that allows shearing of external fibrous layers (fibrosa and ventricularis), and the need for autologous valvular interstitial cells. In this study we propose a novel approach to heart valve tissue engineering based on bioreactor conditioning of mesenchymal stem cell-seeded, valve-shaped constructs assembled from layered collagenous scaffolds. Fibrous scaffolds were prepared by decellularization of porcine pericardium and spongiosa scaffolds by decellularization and elastase treatment of porcine pulmonary arteries. To create anatomically correct constructs, we created silicone molds from native porcine aortic valves, dried two identical fibrous scaffolds onto the molds, and stabilized them with penta-galloyl-glucose a reversible collagen-binding polyphenol that reduces biodegradation. The layers were fused with a protein/aldehyde scaffold bio-adhesive and neutralized to reduce cytotoxicity. Spongiosa scaffolds, seeded with human bone marrow-derived stem cells, were inserted within the valve-shaped layered scaffolds and sutured inside the original aortic root. The final product was mounted in a heart valve bioreactor and cycled in cell culture conditions. Most cells were alive after 8 days, elongated significantly, and stained positive for vimentin, similar to native human valvular interstitial cells, indicating feasibility of our approach.
Collapse
Affiliation(s)
- Mary E Tedder
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634-0905, USA
| | | | | | | | | |
Collapse
|
44
|
Clemmer J, Liao J, Davis D, Horstemeyer MF, Williams LN. A mechanistic study for strain rate sensitivity of rabbit patellar tendon. J Biomech 2010; 43:2785-91. [PMID: 20678772 DOI: 10.1016/j.jbiomech.2010.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 11/29/2022]
Abstract
The ultrastructural mechanism for strain rate sensitivity of collagenous tissue has not been well studied at the collagen fibril level. Our objective is to reveal the mechanistic contribution of tendon's key structural component to strain rate sensitivity. We have investigated the structure of the collagen fibril undergoing tension at different strain rates. Tendon fascicles were pulled and fixed within the linear region (12% local tissue strain) at multiple strain rates. Although samples were pulled to the same percent elongation, the fibrils were noticed to elongate differently, increasing with strain rate. For the 0.1, 10, and 70%/s strain rates, there were 1.84±3.6%, 5.5±1.9%, and 7.03±2.2% elongations (mean±S.D.), respectively. We concluded that the collagen fibrils underwent significantly greater recruitment (fibril strain relative to global tissue strain) at higher strain rates. A better understanding of tendon mechanisms at lower hierarchical levels would help establish a basis for future development of constitutive models and assist in tissue replacement design.
Collapse
Affiliation(s)
- John Clemmer
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | |
Collapse
|
45
|
Powell HM, McFarland KL, Butler DL, Supp DM, Boyce ST. Uniaxial Strain Regulates Morphogenesis, Gene Expression, and Tissue Strength in Engineered Skin. Tissue Eng Part A 2010; 16:1083-92. [DOI: 10.1089/ten.tea.2009.0542] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Heather M. Powell
- Research Department, Shriners Burns Hospital, Cincinnati, Ohio
- Departments of Materials Science and Engineering and Biomedical Engineering, Comprehensive Wound Center, The Ohio State University, Columbus, Ohio
| | | | - David L. Butler
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Dorothy M. Supp
- Research Department, Shriners Burns Hospital, Cincinnati, Ohio
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Steven T. Boyce
- Research Department, Shriners Burns Hospital, Cincinnati, Ohio
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
46
|
Timmins LH, Wu Q, Yeh AT, Moore JE, Greenwald SE. Structural inhomogeneity and fiber orientation in the inner arterial media. Am J Physiol Heart Circ Physiol 2010; 298:H1537-45. [PMID: 20173046 DOI: 10.1152/ajpheart.00891.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microstructural orientation of vascular wall constituents is of interest to scientists and clinicians because alterations in their native states are associated with various cardiovascular diseases. In the arterial media, the orientation of these constituents is often described as circumferential. However, it has been noted that, just below the endothelial surface, the vascular wall constituents are oriented axially. To further study this reported change in orientation, and to resolve previous observations (which were made under conditions of no load), we used nonlinear optical microscopy to examine the orientation of collagen and elastin fibers in the inner medial region of bovine common carotid arteries. Images were obtained from this part of the arterial wall under varying degrees of mechanical strain: 0%, 10% axial, 10% circumferential, and 10% biaxial. We observed that close to the endothelium these components are aligned in the axial direction but abruptly change to a circumferential alignment at a depth of approximately 20 mum from the endothelial surface. The application of mechanical strain resulted in a significantly greater degree of fiber alignment, both collagen and elastin, in the strain direction, regardless of their initial unloaded orientation. Furthermore, variations in strain conditions resulted in an increase or a decrease in the overall degree of fiber alignment in the subendothelial layer depending on the direction of the applied strain. This high-resolution investigation adds more detail to existing descriptions of complex structure-function relationships in vascular tissue, which is essential for a better understanding of the pathophysiological processes resulting from injury, disease progression, and interventional therapies.
Collapse
|
47
|
Annovazzi L, Genna F. An engineering, multiscale constitutive model for fiber-forming collagen in tension. J Biomed Mater Res A 2010; 92:254-66. [PMID: 19180522 DOI: 10.1002/jbm.a.32352] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This work proposes a nonlinear constitutive model for a single collagen fiber. Fiber-forming collagen can exhibit different hierarchies of basic units, called fascicles, bundles, fibrils, microfibrils, and so forth, down to the molecular (tropocollagen) level. Exploiting the fact that at each hierarchy level the microstructure can be seen, at least approximately, as that of a wavy, or crimped, extensible cable, the proposed stress-strain model considers a given number of levels, each of which contributes to the overall mechanical behavior according to its own geometrical features (crimp, or waviness), as well as to the basic mechanical properties of the tropocollagen. The crimp features at all levels are assumed to be random variables, whose statistical integration furnishes a stress-strain curve for a collagen fiber. The soundness of this model-the first, to the Authors' knowledge, to treat a single collagen fiber as a microstructured nonlinear structural element-is checked by its application to collagen fibers for which experimental results are available: rat tail tendon, periodontal ligament, and engineered ones. Here, no attempt is made to obtain a stress-strain law for generic collagenous tissues, which exhibit specific features, often much more complex than those of a single fiber. However, it is trivial to observe that the availability of a sound, microstructurally based constitutive law for a single collagen fiber (but applicable at any sub-level, or to any other material with a similar microstructure) is essential for assembling complex constitutive models for any collagenous fibrous tissue.
Collapse
Affiliation(s)
- Lorella Annovazzi
- Department of Civil Engineering, University of Brescia, Via Branze, Brescia, Italy
| | | |
Collapse
|
48
|
Tedder ME, Liao J, Weed B, Stabler C, Zhang H, Simionescu A, Simionescu DT. Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Eng Part A 2009; 15:1257-68. [PMID: 18928400 DOI: 10.1089/ten.tea.2008.0263] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scaffolds for heart valve tissue engineering must function immediately after implantation but also need to tolerate cell infiltration and gradual remodeling. We hypothesized that moderately cross-linked collagen scaffolds would fulfill these requirements. To test our hypothesis, scaffolds prepared from decellularized porcine pericardium were treated with penta-galloyl glucose (PGG), a collagen-binding polyphenol, and tested for biodegradation, biaxial mechanical properties, and in vivo biocompatibility. For controls, we used un-cross-linked scaffolds and glutaraldehyde-treated scaffolds. Results confirmed complete pericardium decellularization and the ability of scaffolds to encourage fibroblast chemotaxis and to aid in creation of anatomically correct valve-shaped constructs. Glutaraldehyde cross-linking fully stabilized collagen but did not allow for tissue remodeling and calcified when implanted subdermally in rats. PGG-treated collagen was initially resistant to collagenase and then degraded gradually, indicating partial stabilization. Moreover, PGG-treated pericardium exhibited excellent biaxial mechanical properties, did not calcify in vivo, and supported infiltration by host fibroblasts and subsequent matrix remodeling. In conclusion, PGG-treated acellular pericardium is a promising scaffold for heart valve tissue engineering.
Collapse
Affiliation(s)
- Mary E Tedder
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of extracellular matrix to the mechanical properties of the heart. J Mol Cell Cardiol 2009; 48:490-6. [PMID: 19686759 DOI: 10.1016/j.yjmcc.2009.08.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/08/2009] [Accepted: 08/04/2009] [Indexed: 01/24/2023]
Abstract
Extracellular matrix (ECM) components play essential roles in development, remodeling, and signaling in the cardiovascular system. They are also important in determining the mechanics of blood vessels, valves, pericardium, and myocardium. The goal of this brief review is to summarize available information regarding the mechanical contributions of ECM in the myocardium. Fibrillar collagen, elastin, and proteoglycans all play crucial mechanical roles in many tissues in the body generally and in the cardiovascular system specifically. The myocardium contains all three components, but their mechanical contributions are relatively poorly understood. Most studies of ECM contributions to myocardial mechanics have focused on collagen, but quantitative prediction of mechanical properties of the myocardium, or changes in those properties with disease, from measured tissue structure is not yet possible. Circumstantial evidence suggests that the mechanics of cardiac elastin and proteoglycans merit further study. Work in other tissues used a combination of correlation, modification or digestion, and mathematical modeling to establish mechanical roles for specific ECM components; this work can provide guidance for new experiments and modeling studies in myocardium.
Collapse
Affiliation(s)
- Gregory M Fomovsky
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
50
|
Newton D, Mahajan R, Ayres C, Bowman JR, Bowlin GL, Simpson DG. Regulation of material properties in electrospun scaffolds: Role of cross-linking and fiber tertiary structure. Acta Biomater 2009; 5:518-29. [PMID: 18676212 DOI: 10.1016/j.actbio.2008.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/09/2008] [Accepted: 06/18/2008] [Indexed: 11/16/2022]
Abstract
We cross-linked scaffolds of electrospun collagen to varying degrees with glutaraldehyde using an ethanol-based solvent system and subsequently defined how the percentage of cross-linking impacts bulk and microscale material properties and fiber structure. At hydration, electrospun fibers underwent coiling; the extent of coiling was proportional to the percentage of cross-linking introduced into the samples and was largely suppressed as cross-linking approached saturation. These data suggest that electrospun collagen fibers are not deposited in a minimal energy state; fiber coiling may reflect a molecular reorganization. This result has functional/structural implications for protein-based electrospun scaffolds. Changes in fiber topology that develop during post-electrospinning processing may alter monomer organization, mask or unmask receptor binding sites, and/or change the biological properties of these nanomaterials. Hydrated scaffolds were mounted into a custom stretching device installed on a microscope stage and photographed after incremental changes in strain. Changes in fiber alignment were measured using the two-dimensional fast Fourier transform method. Fibers in all scaffolds underwent alignment in response to strain; however, the rate and extent of alignment that could be achieved varied as a function of cross-linking. We propose four distinct modes of scaffold response to strain: fiber uncoiling, fiber reorientation, fiber elongation and interfiber sliding. We conclude that bulk material properties and local microscale architecture must be simultaneously considered to optimize the performance of electrospun scaffolds.
Collapse
Affiliation(s)
- Dan Newton
- Virginia Commonwealth University, Department of Anatomy and Neurobiology, 1101 East Marshall Street, Box 980709, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|