1
|
Kim H, Jo K, Choi H, Hahn SK. Biocompatible polymer-based micro/nanorobots for theranostic translational applications. J Control Release 2024; 374:606-626. [PMID: 39208932 DOI: 10.1016/j.jconrel.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Recently, micro/nanorobots (MNRs) with self-propulsion have emerged as a promising smart platform for diagnostic, therapeutic and theranostic applications. Especially, polymer-based MNRs have attracted huge attention due to their inherent biocompatibility and versatility, making them actively explored for various medical applications. As the translation of MNRs from laboratory to clinical settings is imperative, the use of appropriate polymers for MNRs is a key strategy, which can prompt the advancement of MNRs to the next phase. In this review, we describe the multifunctional versatile polymers in MNRs, and their biodegradability, motion control, cargo loading and release, adhesion, and other characteristics. After that, we review the theranostic applications of polymer-based MNRs to bioimaging, biosensing, drug delivery, and tissue engineering. Furthermore, we address the challenges that must be overcome to facilitate the translational development of polymeric MNRs with future perspectives. This review would provide valuable insights into the state-of-the-art technologies associated with polymeric MNRs and contribute to their progression for further clinical development.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyungjoo Jo
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyunsik Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
2
|
Irrsack E, Aydin S, Bleckmann K, Schuller J, Dringen R, Koch M. Local Administrations of Iron Oxide Nanoparticles in the Prefrontal Cortex and Caudate Putamen of Rats Do Not Compromise Working Memory and Motor Activity. Neurotox Res 2023; 42:6. [PMID: 38133743 PMCID: PMC10746586 DOI: 10.1007/s12640-023-00684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Iron oxide nanoparticles (IONPs) have come into focus for their use in medical applications although possible health risks for humans, especially in terms of brain functions, have not yet been fully clarified. The present study investigates the effects of IONPs on neurobehavioural functions in rats. For this purpose, we infused dimercaptosuccinic acid-coated IONPs into the medial prefrontal cortex (mPFC) and caudate putamen (CPu). Saline (VEH) and ferric ammonium citrate (FAC) were administered as controls. One- and 4-week post-surgery mPFC-infused animals were tested for their working memory performance in the delayed alternation T-maze task and in the open field (OF) for motor activity, and CPu-infused rats were tested for their motor activity in the OF. After completion of the experiments, the brains were examined histologically and immunohistochemically. We did not observe any behavioural or structural abnormalities in the rats after administration of IONPs in the mPFC and the CPu. In contrast, administration of FAC into the CPu resulted in decreased motor activity and increased the number of microglia in the mPFC. Perls' Prussian blue staining revealed that FAC- and IONP-treated rats had more iron-containing ramified cells than VEH-treated rats, indicating iron uptake by microglia. Our results demonstrate that local infusions of IONPs into selected brain regions have no adverse impact on locomotor behaviour and working memory.
Collapse
Affiliation(s)
- Ellen Irrsack
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany.
| | - Sidar Aydin
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Katja Bleckmann
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Julia Schuller
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable, Technology, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| | - Michael Koch
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, Bremen, 28334, Germany
| |
Collapse
|
3
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
4
|
Yu Y, Payne C, Marina N, Korsak A, Southern P, García‐Prieto A, Christie IN, Baker RR, Fisher EMC, Wells JA, Kalber TL, Pankhurst QA, Gourine AV, Lythgoe MF. Remote and Selective Control of Astrocytes by Magnetomechanical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104194. [PMID: 34927381 PMCID: PMC8867145 DOI: 10.1002/advs.202104194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Indexed: 05/06/2023]
Abstract
Astrocytes play crucial and diverse roles in brain health and disease. The ability to selectively control astrocytes provides a valuable tool for understanding their function and has the therapeutic potential to correct dysfunction. Existing technologies such as optogenetics and chemogenetics require the introduction of foreign proteins, which adds a layer of complication and hinders their clinical translation. A novel technique, magnetomechanical stimulation (MMS), that enables remote and selective control of astrocytes without genetic modification is described here. MMS exploits the mechanosensitivity of astrocytes and triggers mechanogated Ca2+ and adenosine triphosphate (ATP) signaling by applying a magnetic field to antibody-functionalized magnetic particles that are targeted to astrocytes. Using purpose-built magnetic devices, the mechanosensory threshold of astrocytes is determined, a sub-micrometer particle for effective MMS is identified, the in vivo fate of the particles is established, and cardiovascular responses are induced in rats after particles are delivered to specific brainstem astrocytes. By eliminating the need for device implantation and genetic modification, MMS is a method for controlling astroglial activity with an improved prospect for clinical application than existing technologies.
Collapse
Affiliation(s)
- Yichao Yu
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Christopher Payne
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Paul Southern
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
| | - Ana García‐Prieto
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
- Departamento Física Aplicada IUniversidad del País VascoBilbao48013Spain
| | - Isabel N. Christie
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Rebecca R. Baker
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular DiseasesQueen Square Institute of NeurologyUniversity College LondonQueen SquareLondonWC1N 3BGUK
| | - Jack A. Wells
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Tammy L. Kalber
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Quentin A. Pankhurst
- Healthcare Biomagnetics LaboratoryUniversity College London21 Albemarle StreetLondonW1S 4BSUK
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceResearch Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Mark F. Lythgoe
- Centre for Advanced Biomedical ImagingDivision of MedicineUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| |
Collapse
|
5
|
Irrsack E, Schuller J, Petters C, Willmann W, Dringen R, Koch M. Effects of Local Administration of Iron Oxide Nanoparticles in the Prefrontal Cortex, Striatum, and Hippocampus of Rats. Neurotox Res 2021; 39:2056-2071. [PMID: 34705254 PMCID: PMC8639550 DOI: 10.1007/s12640-021-00432-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 10/26/2022]
Abstract
Iron oxide nanoparticles (IONPs) are used for diverse medical approaches, although the potential health risks, for example adverse effects on brain functions, are not fully clarified. Several in vitro studies demonstrated that the different types of brain cells are able to accumulate IONPs and reported a toxic potential for IONPs, at least for microglia. However, little information is available for the in vivo effects of direct application of IONPs into the brain over time. Therefore, we examined the cellular responses and the distribution of iron in the rat brain at different time points after local infusion of IONPs into selected brain areas. Dispersed IONPs or an equivalent amount of low molecular weight iron complex ferric ammonium citrate or vehicle were infused into the medial prefrontal cortex (mPFC), the caudate putamen (CPu), or the dorsal hippocampus (dHip). Rats were sacrificed 1 day, 1 week, or 4 weeks post-infusion and brain sections were histologically examined for treatment effects on astrocytes, microglia, and neurons. Glial scar formation was observed in the mPFC and CPu 1 week post-infusion independent of the substance and probably resulted from the infusion procedure. Compared to vehicle, IONPs did not cause any obvious additional adverse effects and no additional tissue damage, while the infusion of ferric ammonium citrate enhanced neurodegeneration in the mPFC. Results of iron staining indicate that IONPs were mainly accumulated in microglia. Our results demonstrate that local infusions of IONPs in selected brain areas do not cause any additional adverse effects or neurodegeneration compared to vehicle.
Collapse
Affiliation(s)
- Ellen Irrsack
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany.
| | - Julia Schuller
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Charlotte Petters
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Wiebke Willmann
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen (CBIB), and Centre for Environmental Research and Sustainable Technology, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| | - Michael Koch
- Department of Neuropharmacology, Centre for Cognitive Sciences, University of Bremen, PO Box 330440, 28334, Bremen, Germany
| |
Collapse
|
6
|
Mazgaj R, Lipiński P, Szudzik M, Jończy A, Kopeć Z, Stankiewicz AM, Kamyczek M, Swinkels D, Żelazowska B, Starzyński RR. Comparative Evaluation of Sucrosomial Iron and Iron Oxide Nanoparticles as Oral Supplements in Iron Deficiency Anemia in Piglets. Int J Mol Sci 2021; 22:9930. [PMID: 34576090 PMCID: PMC8466487 DOI: 10.3390/ijms22189930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis. Here, we evaluate the therapeutic efficacy of non-invasive supplementation with Sucrosomial iron (SI), a highly bioavailable iron supplement preventing IDA in humans and mice and various iron oxide nanoparticles (IONPs). Analysis of red blood cell indices and plasma iron parameters shows that not all iron preparations used in the study efficiently counteracted IDA comparable to FeDex-based supplementation. We found no signs of iron toxicity of any tested iron compounds, as evaluated based on the measurement of several toxicological markers that could indicate the occurrence of oxidative stress or inflammation. Neither SI nor IONPs increased hepcidin expression with alterations in ferroportin (FPN) protein level. Finally, the analysis of the piglet gut microbiota indicates the individual pattern of bacterial diversity across taxonomic levels, independent of the type of supplementation. In light of our results, SI but not IONPs used in the experiment emerges as a promising nutritional iron supplement, with a high potential to correct IDA in piglets.
Collapse
Affiliation(s)
- Rafał Mazgaj
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Mateusz Szudzik
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Zuzanna Kopeć
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Adrian M. Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Marian Kamyczek
- Pig Hybridization Centre, National Research Institute of Animal Production, 43-246 Pawłowice, Poland;
| | - Dorine Swinkels
- Department of Laboratory Medicine (TLM 830), Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands;
- Hepcidin Analysis, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Beata Żelazowska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, 28-130 Jastrzębiec, Poland; (R.M.); (M.S.); (A.J.); (Z.K.); (A.M.S.); (B.Ż.)
| |
Collapse
|
7
|
Glover JC, Aswendt M, Boulland JL, Lojk J, Stamenković S, Andjus P, Fiori F, Hoehn M, Mitrecic D, Pavlin M, Cavalli S, Frati C, Quaini F. In vivo Cell Tracking Using Non-invasive Imaging of Iron Oxide-Based Particles with Particular Relevance for Stem Cell-Based Treatments of Neurological and Cardiac Disease. Mol Imaging Biol 2021; 22:1469-1488. [PMID: 31802361 DOI: 10.1007/s11307-019-01440-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.
Collapse
Affiliation(s)
- Joel C Glover
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway. .,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway.
| | - Markus Aswendt
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Jean-Luc Boulland
- Laboratory for Neural Development and Optical Recording (NDEVOR), Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, PB 1105, Blindern, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Jasna Lojk
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia
| | - Stefan Stamenković
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, PB 52, 10001 Belgrade, Serbia
| | - Fabrizio Fiori
- Department of Applied Physics, Università Politecnica delle Marche - Di.S.C.O., Via Brecce Bianche, 60131, Ancona, Italy
| | - Mathias Hoehn
- Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Leo-Brandt-Str. 5, 52425, Jülich, Germany
| | - Dinko Mitrecic
- Laboratory for Stem Cells, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mojca Pavlin
- Group for Nano and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, Trzaska cesta 25, Ljubljana, Slovenia.,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Stefano Cavalli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | |
Collapse
|
8
|
Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging - An Immune Perspective. Front Immunol 2021; 12:688927. [PMID: 34211476 PMCID: PMC8239972 DOI: 10.3389/fimmu.2021.688927] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Iron oxide nanoparticles (IONPs) bear big hopes in nanomedicine due to their (potential) applications in tumor therapy, drug delivery or bioimaging. However, as foreign entities, such particles may be recognized by the immune system and, thus, lead to inflammation, hypersensitivity or anaphylactic shock. In addition, an overload with iron is known to cause oxidative stress. In this short review, we summarize the biological effects of such particles with a major focus on IONP-formulations used for bioimaging purposes and their effects on the human immune system. We conclude that especially the characteristics of the particles (size, shape, surface charge, coating, etc.) as well as the presence of bystander substances, such as bacterial endotoxin are important factors determining the resulting biological and immunological effects of IONPs. Further studies are needed in order to establish clear structure-activity relationships.
Collapse
Affiliation(s)
- Mark Geppert
- Division of Allergy and Immunology, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
9
|
Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, Sarfraz RM, Farooq MA. Nano-scaled materials may induce severe neurotoxicity upon chronic exposure to brain tissues: A critical appraisal and recent updates on predisposing factors, underlying mechanism, and future prospects. J Control Release 2020; 328:873-894. [PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hnin Ei Thu
- Innoscience Research Sdn. Bhd., Suites B-5-7, Level 5, Skypark@ One City, Jalan Ust 25/1, Subang Jaya 47650, Selangor, Malaysia; Department of Pharmacology, Faculty of Medicine, Lincoln University College, Selangor, Malaysia.
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy & Thumbay Research Institute for Precision Medicine Gulf Medical University, United Arab Emirates
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, 2409 West University Avenue, PHR 4.116, Austin TX78712, USA; Department of Pharmacy, University of Malakand, Dir Lower, Chakdara, KPK, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | | | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| |
Collapse
|
10
|
Coccini T, Pignatti P, Spinillo A, De Simone U. Developmental Neurotoxicity Screening for Nanoparticles Using Neuron-Like Cells of Human Umbilical Cord Mesenchymal Stem Cells: Example with Magnetite Nanoparticles. NANOMATERIALS 2020; 10:nano10081607. [PMID: 32824247 PMCID: PMC7466682 DOI: 10.3390/nano10081607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022]
Abstract
Metallic nanoparticles (NPs), as iron oxide NPs, accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Human stem cell-derived in vitro models may provide more realistic platforms to study NPs effects on neural cells, and to obtain relevant information on the potential for early or late DNT effects in humans. Primary neuronal-like cells (hNLCs) were generated from mesenchymal stem cells derived from human umbilical cord lining and the effects caused by magnetite (Fe3O4NPs, 1-50 μg/mL) evaluated. Neuronal differentiation process was divided into stages: undifferentiated, early, mid- and fully-differentiated (from day-2 to 8 of induction) based on different neuronal markers and morphological changes over time. Reduction in neuronal differentiation induction after NP exposure was observed associated with NP uptake: β-tubulin III (β-Tub III), microtubule-associated protein 2 (MAP-2), enolase (NSE) and nestin were downregulated (10-40%), starting from 25 μg/mL at the early stage. Effects were exacerbated at higher concentrations and persisted up to 8 days without cell morphology alterations. Adenosine triphosphate (ATP) and caspase-3/7 activity data indicated Fe3O4NPs-induced cell mortality in a concentration-dependent manner and increases of apoptosis: effects appeared early (from day-3), started at low concentrations (≥5 μg/mL) and persisted. This new human cell-based model allows different stages of hNLCs to be cultured, exposed to NPs/chemicals, and analyzed for different endpoints at early or later developmental stage.
Collapse
Affiliation(s)
- Teresa Coccini
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-592416
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100 Pavia, Italy;
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy;
| | - Uliana De Simone
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100 Pavia, Italy;
| |
Collapse
|
11
|
Salinomycin-Loaded Iron Oxide Nanoparticles for Glioblastoma Therapy. NANOMATERIALS 2020; 10:nano10030477. [PMID: 32155938 PMCID: PMC7153627 DOI: 10.3390/nano10030477] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Salinomycin is an antibiotic introduced recently as a new and effective anticancer drug. In this study, magnetic iron oxide nanoparticles (IONPs) were utilized as a drug carrier for salinomycin for potential use in glioblastoma (GBM) chemotherapy. The biocompatible polyethylenimine (PEI)-polyethylene glycol (PEG)-IONPs (PEI-PEG-IONPs) exhibited an efficient uptake in both mouse brain-derived microvessel endothelial (bEnd.3) and human U251 GBM cell lines. The salinomycin (Sali)-loaded PEI-PEG-IONPs (Sali-PEI-PEG-IONPs) released salinomycin over 4 days, with an initial release of 44% ± 3% that increased to 66% ± 5% in acidic pH. The Sali-IONPs inhibited U251 cell proliferation and decreased their viability (by approximately 70% within 48 h), and the nanoparticles were found to be effective in reactive oxygen species-mediated GBM cell death. Gene studies revealed significant activation of caspases in U251 cells upon treatment with Sali-IONPs. Furthermore, the upregulation of tumor suppressors (i.e., p53, Rbl2, Gas5) was observed, while TopII, Ku70, CyclinD1, and Wnt1 were concomitantly downregulated. When examined in an in vitro blood–brain barrier (BBB)-GBM co-culture model, Sali-IONPs had limited penetration (1.0% ± 0.08%) through the bEnd.3 monolayer and resulted in 60% viability of U251 cells. However, hyperosmotic disruption coupled with an applied external magnetic field significantly enhanced the permeability of Sali-IONPs across bEnd.3 monolayers (3.2% ± 0.1%) and reduced the viability of U251 cells to 38%. These findings suggest that Sali-IONPs combined with penetration enhancers, such as hyperosmotic mannitol and external magnetic fields, can potentially provide effective and site-specific magnetic targeting for GBM chemotherapy.
Collapse
|
12
|
De Simone U, Spinillo A, Caloni F, Gribaldo L, Coccini T. Neuron-Like Cells Generated from Human Umbilical Cord Lining-Derived Mesenchymal Stem Cells as a New In Vitro Model for Neuronal Toxicity Screening: Using Magnetite Nanoparticles as an Example. Int J Mol Sci 2019; 21:E271. [PMID: 31906090 PMCID: PMC6982086 DOI: 10.3390/ijms21010271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/15/2022] Open
Abstract
The wide employment of iron nanoparticles in environmental and occupational settings underlines their potential to enter the brain. Human cell-based systems are recommended as relevant models to reduce uncertainty and to improve prediction of human toxicity. This study aimed at demonstrating the in vitro differentiation of the human umbilical cord lining-derived-mesenchymal stem cells (hCL-MSCs) into neuron-like cells (hNLCs) and the benefit of using them as an ideal primary cell source of human origin for the neuronal toxicity of Fe3O4NPs (magnetite-nanoparticles). Neuron-like phenotype was confirmed by: live morphology; Nissl body staining; protein expression of different neuronal-specific markers (immunofluorescent staining), at different maturation stages (i.e., day-3-early and day-8-full differentiated), namely β-tubulin III, MAP-2, enolase (NSE), glial protein, and almost no nestin and SOX-2 expression. Synaptic makers (SYN, GAP43, and PSD95) were also expressed. Fe3O4NPs determined a concentration- and time-dependent reduction of hNLCs viability (by ATP and the Trypan Blue test). Cell density decreased (20-50%) and apoptotic effects were detected at ≥10 μg/mL in both types of differentiated hNLCs. Three-day-differentiated hNLCs were more susceptible (toxicity appeared early and lasted for up to 48 h) than 8-day-differentiated cells (delayed effects). The study demonstrated that (i) hCL-MSCs easily differentiated into neuronal-like cells; (ii) the hNCLs susceptibility to Fe3O4NPs; and (iii) human primary cultures of neurons are new in vitro model for NP evaluation.
Collapse
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, Via Maugeri 10, 27100 Pavia, Italy;
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, 27100 Pavia, Italy;
| | - Francesca Caloni
- Dipartimento di Medicina Veterinaria (DIMEVET), Università degli Studi di Milano, 20133 Milano, Italy;
| | - Laura Gribaldo
- Chemical Safety and Alternative Methods Unit, Directorate F—Health, Consumers and Reference Materials, Directorate General Joint Research Centre, European Commission, 21027 Ispra, Italy;
| | - Teresa Coccini
- Laboratory of Clinical & Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-Benefit Corporation, IRCCS Pavia, Via Maugeri 10, 27100 Pavia, Italy;
| |
Collapse
|
13
|
Fahmy HM, Aly EM, Mohamed FF, Noor NA, Elsayed AA. Neurotoxicity of green- synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats. Neurotoxicology 2019; 77:80-93. [PMID: 31899250 DOI: 10.1016/j.neuro.2019.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
AIMS The aim of the present study was to evaluate the toxicity of magnetic iron oxide nanoparticles (MIONs) which were synthesized using carob leaf extract on various brain areas of Wistar rats. MAIN METHODS Carob leaf synthesized-MIONs were characterized using different techniques: Dynamic Light Scattering (DLS), Transmission Electron Microscope (TEM), UV-vis spectrophotometer, Fourier Transform infrared (FTIR), X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM). The toxicity of MIONs in vivo was evaluated by: monitoring rat's body weight, measuring iron content in different brain areas, evaluating some oxidative stress parameters, estimating acetylcholinesterase (AChE) in addition to histopathological investigations. KEY FINDINGS The present study demonstrated no body weight changes of MIONs- treated rats. According to the conditions of the present study, the hippocampus and striatum were the most affected areas and demonstrated neuronal degeneration due to MIONs exposure. MIONs treatment of Wistar rats, also affected the iron homeostasis in both striatum and midbrain by decreasing iron content in these areas. The least affected areas were thalamus and cerebellum. The histopathological examination of brain areas demonstrated moderate neuronal degeneration in hippocampus and striatum, mild neuronal degeneration in cortex and slight degeneration in hypothalamus and pons-medulla areas were detected. SIGNIFICANCE The results suggested that MIONs have a toxic impact on different brain areas and the effect varies according to the brain area.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Esraa M Aly
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Faten F Mohamed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12613, Giza, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Anwar A Elsayed
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
14
|
Fernández-Bertólez N, Costa C, Brandão F, Duarte JA, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Evaluation of cytotoxicity and genotoxicity induced by oleic acid-coated iron oxide nanoparticles in human astrocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:816-829. [PMID: 31415110 DOI: 10.1002/em.22323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/23/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Iron oxide nanoparticles (ION) are gaining importance as diagnostic and therapeutic tool of central nervous system diseases. Although oleic acid-coated ION (O-ION) have been described as stable and biocompatible, their potential neurotoxicity was scarcely evaluated in human nervous cells so far. The primary aim of this work was to assess the molecular and cellular effects of O-ION on human astrocytes (A172 cells) under different experimental conditions. An extensive set of cyto- and genotoxicity tests was carried out, including lactate dehydrogenase release assay, cell cycle alterations, and cell death production, as well as comet assay, γH2AX assay, and micronucleus (MN) test, considering also iron ion release capacity and alterations in DNA repair ability. Results showed a moderate cytotoxicity related to cell cycle arrest and cell death promotion, regardless of serum presence. O-ION induced genotoxic effects, namely primary DNA damage, as detected by the comet assay and H2AX phosphorylation, but A172 cells were able to repair this particular damage because no chromosome alterations were found (confirmed by MN test results). Accordingly, no effects on the DNA repair ability were observed. The presence of serum proteins did not influence O-ION toxicity. Iron ions released from the O-ION surface seemed not to be responsible for the cytotoxic and genotoxic effects observed. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
- Department of Cell and Molecular Biology, Facultad de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, 15071-A Coruña, Spain
| | - Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Fátima Brandão
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - José Alberto Duarte
- CIAFEL, Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
| | - Joao Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Eduardo Pásaro
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
| | - Vanessa Valdiglesias
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Blanca Laffon
- Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, DICOMOSA Group, Campus Elviña s/n, 15071-A Coruña, Spain
| |
Collapse
|
15
|
Maher BA. Airborne Magnetite- and Iron-Rich Pollution Nanoparticles: Potential Neurotoxicants and Environmental Risk Factors for Neurodegenerative Disease, Including Alzheimer’s Disease. J Alzheimers Dis 2019; 71:361-375. [DOI: 10.3233/jad-190204] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Ge D, Du Q, Ran B, Liu X, Wang X, Ma X, Cheng F, Sun B. The neurotoxicity induced by engineered nanomaterials. Int J Nanomedicine 2019; 14:4167-4186. [PMID: 31239675 PMCID: PMC6559249 DOI: 10.2147/ijn.s203352] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely used in various fields due to their novel physicochemical properties. However, the use of ENMs has led to an increased exposure in humans, and the safety of ENMs has attracted much attention. It is universally acknowledged that ENMs could enter the human body via different routes, eg, inhalation, skin contact, and intravenous injection. Studies have proven that ENMs can cross or bypass the blood-brain barrier and then access the central nervous system and cause neurotoxicity. Until now, diverse in vivo and in vitro models have been developed to evaluate the neurotoxicity of ENMs, and oxidative stress, inflammation, DNA damage, and cell death have been identified as being involved. However, due to various physicochemical properties of ENMs and diverse study models in existing studies, it remains challenging to establish the structure-activity relationship of nanomaterials in neurotoxicity. In this paper, we aimed to review current studies on ENM-induced neurotoxicity, with an emphasis on the molecular and cellular mechanisms involved. We hope to provide a rational material design strategy for ENMs when they are applied in biomedical or other engineering applications.
Collapse
Affiliation(s)
- Dan Ge
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Qiqi Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingqing Ran
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xingyu Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian116024, People’s Republic of China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian116024, People’s Republic of China
- Department of Chemical Engineering, Dalian University of Technology, Dalian116024, People’s Republic of China
| |
Collapse
|
17
|
Magnetic Particle Imaging in Neurosurgery. World Neurosurg 2019; 125:261-270. [DOI: 10.1016/j.wneu.2019.01.180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023]
|
18
|
Tracking of NiFe2O4 nanoparticles in barley (Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Khan AM, Korzeniowska B, Gorshkov V, Tahir M, Schrøder H, Skytte L, Rasmussen KL, Khandige S, Møller-Jensen J, Kjeldsen F. Silver nanoparticle-induced expression of proteins related to oxidative stress and neurodegeneration in an in vitro human blood-brain barrier model. Nanotoxicology 2019; 13:221-239. [DOI: 10.1080/17435390.2018.1540728] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asif Manzoor Khan
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Barbara Korzeniowska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Henrik Schrøder
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Lilian Skytte
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kaare Lund Rasmussen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Fernández-Bertólez N, Costa C, Bessa MJ, Park M, Carriere M, Dussert F, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V. Assessment of oxidative damage induced by iron oxide nanoparticles on different nervous system cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 845:402989. [PMID: 31561889 DOI: 10.1016/j.mrgentox.2018.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022]
Abstract
Iron oxide nanoparticles (ION) have received much attention for their utility in biomedical applications, such as magnetic resonance imaging, drug delivery and hyperthermia, but concerns regarding their potential harmful effects are also growing. Even though ION may induce different toxic effects in a wide variety of cell types and animal systems, there is a notable lack of toxicological data on the human nervous system, particularly important given the increasing number of applications on this specific system. An important mechanism of nanotoxicity is reactive oxygen species (ROS) generation and oxidative stress. On this basis, the main objective of this work was to assess the oxidative potential of silica-coated (S-ION) and oleic acid-coated (O-ION) ION on human SH-SY5Y neuronal and A172 glial cells. To this aim, ability of ION to generate ROS (both in the absence and presence of cells) was determined, and consequences of oxidative potential were assessed (i) on DNA by means of the 8-oxo-7,8-dihydroguanine DNA glycosylase (OGG1)-modified comet assay, and (ii) on antioxidant reserves by analyzing ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Conditions tested included a range of concentrations, two exposure times (3 and 24 h), and absence and presence of serum in the cell culture media. Results confirmed that, even though ION were not able to produce ROS in acellular environments, ROS formation was increased in the neuronal and glial cells by ION exposure, and was parallel to induction of oxidative DNA damage and, only in the case of neuronal cells treated with S-ION, to decreases in the GSH/GSSG ratio. Present findings suggest the production of oxidative stress as a potential action mechanism leading to the previously reported cellular effects, and indicate that ION may pose a health risk to human nervous system cells by generating oxidative stress, and thus should be used with caution.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain; Universidade da Coruña, Department of Cell and Molecular Biology, Facultad de Ciencias, Campus A Zapateira s/n, 15071-A Coruña, Spain
| | - Carla Costa
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Maria João Bessa
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Margriet Park
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marie Carriere
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000 Grenoble, France
| | - Fanny Dussert
- Univ. Grenoble-Alpes, CEA, CNRS, INAC-SyMMES, Chimie Interface Biologie pour l'Environnement, la Santé et la Toxicologie (CIBEST), 38000 Grenoble, France
| | - João Paulo Teixeira
- Portuguese National Institute of Health, Department of Environmental Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| | - Eduardo Pásaro
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain
| | - Blanca Laffon
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain.
| | - Vanessa Valdiglesias
- Universidade da Coruña, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain; Universidade do Porto, EPIUnit - Instituto de Saúde Pública, Rua das Taipas, 135, 4050-600 Porto, Portugal
| |
Collapse
|
21
|
Willmann W, Dringen R. Monitoring of the Cytoskeleton-Dependent Intracellular Trafficking of Fluorescent Iron Oxide Nanoparticles by Nanoparticle Pulse-Chase Experiments in C6 Glioma Cells. Neurochem Res 2018; 43:2055-2071. [PMID: 30196349 DOI: 10.1007/s11064-018-2627-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Iron oxide nanoparticles (IONPs) are used for various biomedical and therapeutic approaches. To investigate the uptake and the intracellular trafficking of IONPs in neural cells we have performed nanoparticle pulse-chase experiments to visualize the internalization and the fate of fluorescent IONPs in C6 glioma cells and astrocyte cultures. Already a short exposure to IONPs for 10 min at 4 °C (nanoparticle pulse) allowed binding of substantial amounts of nanoparticles to the cells, while internalization of IONPs into the cell was prevented. The uptake of bound IONPs and the intracellular trafficking was started by increasing the temperature to 37 °C (chase period). While hardly any cellular fluorescence nor any iron staining was detectable directly after the nanoparticle pulse, dotted cellular fluorescence and iron patterns appeared already within a few minutes after start of the chase incubation and became intensified in the perinuclear region during further incubation for up to 90 min. Longer chase incubations resulted in separation of the fluorescent coat from the core of the internalized IONPs. Disruption of actin filaments in C6 cells strongly impaired the internalization of IONPs, whereas destabilization of microtubules traped IONP-containing vesicles to the plasma membrane. In conclusion, nanoparticle pulse-chase experiments allowed to synchronize the cellular uptake of fluorescent IONPs and to identify for C6 cells an actin-dependent early and a microtubule-dependent later process in the intracellular trafficking of fluorescent IONPs.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
22
|
Willmann W, Dringen R. How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don't Forgets. Neurochem Res 2018; 44:1330-1345. [PMID: 30088236 DOI: 10.1007/s11064-018-2598-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Due to their exciting properties, engineered nanoparticles have obtained substantial attention over the last two decades. As many types of nanoparticles are already used for technical and biomedical applications, the chances that cells in the brain will encounter nanoparticles have strongly increased. To test for potential consequences of an exposure of brain cells to engineered nanoparticles, cell culture models for different types of neural cells are frequently used. In this review article we will discuss experimental strategies and important controls that should be used to investigate the physicochemical properties of nanoparticles for the cell incubation conditions applied as well as for studies on the biocompatibility and the cellular uptake of nanoparticles in neural cells. The main focus of this article will be the interaction of cultured neural cells with iron oxide nanoparticles, but similar considerations are important for studying the consequences of an exposure of other types of cultured cells with other types of nanoparticles. Our article aims to improve the understanding of the special technical challenges of working with nanoparticles on cultured neural cells, to identify potential artifacts and to prevent misinterpretation of data on the potential adverse or beneficial consequences of a treatment of cultured cells with nanoparticles.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
23
|
Fernández-Bertólez N, Costa C, Brandão F, Kiliç G, Teixeira JP, Pásaro E, Laffon B, Valdiglesias V. Neurotoxicity assessment of oleic acid-coated iron oxide nanoparticles in SH-SY5Y cells. Toxicology 2018; 406-407:81-91. [DOI: 10.1016/j.tox.2018.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/24/2022]
|
24
|
Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 2018; 118:13-23. [PMID: 29709612 DOI: 10.1016/j.fct.2018.04.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022]
Abstract
Iron oxide nanoparticles (ION) have great potential for an increasing number of medical and biological applications, particularly those focused on nervous system. Although ION seem to be biocompatible and present low toxicity, it is imperative to unveil the potential risk for the nervous system associated to their exposure, especially because current data on ION effects on human nervous cells are scarce. Thus, in the present study potential toxicity associated with silica-coated ION (S-ION) exposure was evaluated on human A172 glioblastoma cells. To this aim, a complete toxicological screening testing several exposure times (3 and 24 h), nanoparticle concentrations (5-100 μg/ml), and culture media (complete and serum-free) was performed to firstly assess S-ION effects at different levels, including cytotoxicity - lactate dehydrogenase assay, analysis of cell cycle and cell death production - and genotoxicity - H2AX phosphorylation assessment, comet assay, micronucleus test and DNA repair competence assay. Results obtained showed that S-ION exhibit certain cytotoxicity, especially in serum-free medium, related to cell cycle disruption and cell death induction. However, scarce genotoxic effects and no alteration of the DNA repair process were observed. Results obtained in this work contribute to increase the knowledge on the impact of ION on the human nervous system cells.
Collapse
|
25
|
Cellular and Molecular Toxicity of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:199-213. [DOI: 10.1007/978-3-319-72041-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Marín-Barba M, Gavilán H, Gutiérrez L, Lozano-Velasco E, Rodríguez-Ramiro I, Wheeler GN, Morris CJ, Morales MP, Ruiz A. Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a Xenopus laevis model. NANOSCALE 2018; 10:690-704. [PMID: 29242877 DOI: 10.1039/c7nr06020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multicore superparamagnetic nanoparticles have been proposed as ideal tools for some biomedical applications because of their high magnetic moment per particle, high specific surface area and long term colloidal stability. Through controlled aggregation and packing of magnetic cores it is possible to obtain not only single-core but also multicore and hollow spheres with internal voids. In this work, we compare toxicological properties of single and multicore nanoparticles. Both types of particles showed moderate in vitro toxicity (MTT assay) tested in Hep G2 (human hepatocellular carcinoma) and Caco-2 (human colorectal adenocarcinoma) cells. The influence of surface chemistry in their biological behavior was also studied after functionalization with O,O'-bis(2-aminoethyl) PEG (2000 Da). For the first time, these nanoparticles were evaluated in a Xenopus laevis model studying their whole organism toxicity and their impact upon iron metabolism. The degree of activation of the metabolic pathway depends on the size and surface charge of the nanoparticles which determine their uptake. The results also highlight the potential of Xenopus laevis model bridging the gap between in vitro cell-based assays and rodent models for toxicity assessment to develop effective nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- M Marín-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rojas JM, Gavilán H, Del Dedo V, Lorente-Sorolla E, Sanz-Ortega L, da Silva GB, Costo R, Perez-Yagüe S, Talelli M, Marciello M, Morales MP, Barber DF, Gutiérrez L. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles. Acta Biomater 2017; 58:181-195. [PMID: 28536061 DOI: 10.1016/j.actbio.2017.05.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
To successfully develop biomedical applications for magnetic nanoparticles, it is imperative that these nanoreagents maintain their magnetic properties in vivo and that their by-products are safely metabolized. When placed in biological milieu or internalized into cells, nanoparticle aggregation degree can increase which could affect magnetic properties and metabolization. To evaluate these aggregation effects, we synthesized citric acid-coated iron oxide nanoparticles whose magnetic susceptibility can be modified by aggregation in agar dilutions and dextran-layered counterparts that maintain their magnetic properties unchanged. Macrophage models were used for in vitro uptake and metabolization studies, as these cells control iron homeostasis in the organism. Electron microscopy and magnetic susceptibility studies revealed a cellular mechanism of nanoparticle degradation, in which a small fraction of the particles is rapidly degraded while the remaining ones maintain their size. Both nanoparticle types produced similar iron metabolic profiles but these profiles differed in each macrophage model. Thus, nanoparticles induced iron responses that depended on macrophage programming. In vivo studies showed that nanoparticles susceptible to changes in magnetic properties through aggregation effects had different behavior in lungs, liver and spleen. Liver ferritin levels increased in these animals showing that nanoparticles are degraded and their by-products incorporated into normal metabolic routes. These data show that nanoparticle iron metabolization depends on cell type and highlight the necessity to assess nanoparticle aggregation in complex biological systems to develop effective in vivo biomedical applications. STATEMENT OF SIGNIFICANCE Magnetic iron oxide nanoparticles have great potential for biomedical applications. It is however imperative that these nanoreagents preserve their magnetic properties once inoculated, and that their degradation products can be eliminated. When placed in a biological milieu nanoparticles can aggregate and this can affect their magnetic properties and their degradation. In this work, we showed that iron oxide nanoparticles trigger the iron metabolism in macrophages, the main cell type involved in iron homeostasis in the organism. We also show that aggregation can affect nanoparticle magnetic properties when inoculated in animal models. This work confirms iron oxide nanoparticle biocompatibility and highlights the necessity to assess in vivo nanoparticle aggregation to successfully develop biomedical applications.
Collapse
Affiliation(s)
- José M Rojas
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación en Sanidad Animal (CISA-INIA), Ctra. de Algete a El Casar s/n, Valdeolmos, 28130 Madrid, Spain
| | - Helena Gavilán
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Vanesa Del Dedo
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Eduardo Lorente-Sorolla
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Laura Sanz-Ortega
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Gustavo B da Silva
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; Department of Chemistry, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, Seropédica, 23897-000 RJ, Brazil
| | - Rocío Costo
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Perez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Marina Talelli
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Marzia Marciello
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucía Gutiérrez
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; Department of Analytical Chemistry, Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza and CIBER-BBN, C/ Mariano Esquillor, s/n, 50018 Zaragoza, Spain.
| |
Collapse
|
28
|
Gonzalez-Moragas L, Yu SM, Benseny-Cases N, Stürzenbaum S, Roig A, Laromaine A. Toxicogenomics of iron oxide nanoparticles in the nematode C. elegans. Nanotoxicology 2017; 11:647-657. [PMID: 28673184 DOI: 10.1080/17435390.2017.1342011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a mechanistic study of the effect of iron oxide nanoparticles (SPIONs) in Caenorhabditis elegans combining a genome-wide analysis with the investigation of specific molecular markers frequently linked to nanotoxicity. The effects of two different coatings were explored: citrate, an anionic stabilizer, and bovine serum albumin, as a pre-formed protein corona. The transcriptomic study identified differentially expressed genes following an exposure to SPIONs. The expression of genes involved in oxidative stress, metal detoxification response, endocytosis, intestinal integrity and iron homeostasis was quantitatively evaluated. The role of oxidative stress was confirmed by gene expression analysis and by synchrotron Fourier Transform infrared microscopy based on the higher tissue oxidation of NP-treated animals. The observed transcriptional modulation of key signaling pathways such as MAPK and Wnt suggests that SPIONs might be endocytosed by clathrin-mediated processes, a putative mechanism of nanotoxicity which deserves further mechanistic investigations.
Collapse
Affiliation(s)
- Laura Gonzalez-Moragas
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| | - Si-Ming Yu
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain.,b Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou , China
| | | | - Stephen Stürzenbaum
- d Faculty of Life Sciences & Medicine, Analytical and Environmental Sciences Division , King's College London , London , UK
| | - Anna Roig
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| | - Anna Laromaine
- a Group of Nanoparticles and Nanocomposites, Crystallography Department , Institut de Ciència de Materials de Barcelona, ICMAB-CSIC , Barcelona , Campus UAB , Spain
| |
Collapse
|
29
|
Gaharwar US, Meena R, Rajamani P. Iron oxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in lymphocytes. J Appl Toxicol 2017; 37:1232-1244. [PMID: 28585739 DOI: 10.1002/jat.3485] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/26/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022]
Abstract
Over the past few decades nanotechnology and material science has progressed extremely rapidly. Iron oxide nanoparticles (IONPs) owing to their unique magnetic properties have a great potential for their biomedical and bioengineering applications. However, there is an inevitable need to address the issue of safety and health effects of these nanoparticles. Hence, the present study was aimed to assess the cytotoxic effects of IONPs on rats' lymphocytes. Using different assays, we studied diverse parameters including mitochondrial membrane potential, intracellular accumulation of reactive oxygen species (ROS), lactate dehydrogenase activity, antioxidant enzymes activity and DNA damage measurements. Intracellular metal uptake and ultrastructure analysis were also carried out through inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy respectively. The results show that the IONP-induced oxidative stress was concentration-dependent in nature, with significant (P < 0.05) increase in ROS levels, lipid peroxidation level as well as depletion of antioxidant enzymes and glutathione. Moreover, we observed morphological changes in the cell after intracellular uptake and localization of nanoparticles in cells. From the findings of the study, it may be concluded that IONPs induce ROS-mediated cytotoxicity in lymphocytes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Usha Singh Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramovatar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
30
|
Rastedt W, Thiel K, Dringen R. Uptake of fluorescent iron oxide nanoparticles in C6 glioma cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6c4d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Stueckle TA, Davidson DC, Derk R, Kornberg TG, Schwegler-Berry D, Pirela SV, Deloid G, Demokritou P, Luanpitpong S, Rojanasakul Y, Wang L. Evaluation of tumorigenic potential of CeO 2 and Fe 2O 3 engineered nanoparticles by a human cell in vitro screening model. NANOIMPACT 2017; 6:39-54. [PMID: 28367517 PMCID: PMC5372702 DOI: 10.1016/j.impact.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
With rapid development of novel nanotechnologies that incorporate engineered nanomaterials (ENMs) into manufactured products, long-term, low dose ENM exposures in occupational settings is forecasted to occur with potential adverse outcomes to human health. Few ENM human health risk assessment efforts have evaluated tumorigenic potential of ENMs. Two widely used nano-scaled metal oxides (NMOs), cerium oxide (nCeO2) and ferric oxide (nFe2O3) were screened in the current study using a sub-chronic exposure to human primary small airway epithelial cells (pSAECs). Multi-walled carbon nanotubes (MWCNT), a known ENM tumor promoter, was used as a positive control. Advanced dosimetry modeling was employed to ascertain delivered vs. administered dose in all experimental conditions. Cells were continuously exposed in vitro to deposited doses of 0.18 μg/cm2 or 0.06 μg/cm2 of each NMO or MWCNT, respectively, over 6 and 10 weeks, while saline- and dispersant-only exposed cells served as passage controls. Cells were evaluated for changes in several cancer hallmarks, as evidence for neoplastic transformation. At 10 weeks, nFe2O3- and MWCNT-exposed cells displayed a neoplastic-like transformation phenotype with significant increased proliferation, invasion and soft agar colony formation ability compared to controls. nCeO2-exposed cells showed increased proliferative capacity only. Isolated nFe2O3 and MWCNT clones from soft agar colonies retained their respective neoplastic-like phenotypes. Interestingly, nFe2O3-exposed cells, but not MWCNT cells, exhibited immortalization and retention of the neoplastic phenotype after repeated passaging (12 - 30 passages) and after cryofreeze and thawing. High content screening and protein expression analyses in acute exposure ENM studies vs. immortalized nFe2O3 cells, and isolated ENM clones, suggested that long-term exposure to the tested ENMs resulted in iron homeostasis disruption, an increased labile ferrous iron pool, and subsequent reactive oxygen species generation, a well-established tumorigenesis promotor. In conclusion, sub-chronic exposure to human pSAECs with a cancer hallmark screening battery identified nFe2O3 as possessing neoplastic-like transformation ability, thus suggesting that further tumorigenic assessment is needed.
Collapse
Affiliation(s)
- Todd A. Stueckle
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
- Corresponding Author: Todd A. Stueckle, , Phone: 304 285-6098
| | - Donna C. Davidson
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| | - Raymond Derk
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| | - Tiffany G. Kornberg
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
| | | | - Sandra V. Pirela
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Glen Deloid
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Boston MA
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown WV, 26506
| | - Liying Wang
- HELD, National Institute for Occupational Safety and Health, Morgantown WV, 26505
| |
Collapse
|
32
|
Chen S, Zhang J, Jiang S, Lin G, Luo B, Yao H, Lin Y, He C, Liu G, Lin Z. Self-Assembled Superparamagnetic Iron Oxide Nanoclusters for Universal Cell Labeling and MRI. NANOSCALE RESEARCH LETTERS 2016; 11:263. [PMID: 27216601 PMCID: PMC4877342 DOI: 10.1186/s11671-016-1479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/12/2016] [Indexed: 05/14/2023]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles have been widely used in a variety of biomedical applications, especially as contrast agents for magnetic resonance imaging (MRI) and cell labeling. In this study, SPIO nanoparticles were stabilized with amphiphilic low molecular weight polyethylenimine (PEI) in an aqueous phase to form monodispersed nanocomposites with a controlled clustering structure. The iron-based nanoclusters with a size of 115.3 ± 40.23 nm showed excellent performance on cellular uptake and cell labeling in different types of cells, moreover, which could be tracked by MRI with high sensitivity. The SPIO nanoclusters presented negligible cytotoxicity in various types of cells as detected using MTS, LDH, and flow cytometry assays. Significantly, we found that ferritin protein played an essential role in protecting stress from SPIO nanoclusters. Taken together, the self-assembly of SPIO nanoclusters with good magnetic properties provides a safe and efficient method for universal cell labeling with noninvasive MRI monitoring capability.
Collapse
Affiliation(s)
- Shuzhen Chen
- Department of Microbiology and Immunology, Xiamen Medical College, Xiamen, 361008, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, 637007, China
| | - Shengwei Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Bing Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huan Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuchun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengyong He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Zhongning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
33
|
Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 2016; 38:53-63. [PMID: 27056797 DOI: 10.1016/j.jtemb.2016.03.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - Natalia Fernández-Bertólez
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain; Department of Cell and Molecular Biology, Universidade da Coruña, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain
| | - Gözde Kiliç
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Solange Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Sonia Fraga
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Maria Joao Bessa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Eduardo Pásaro
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - João Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain.
| |
Collapse
|
34
|
Mou Y, Lv S, Xiong F, Han Y, Zhao Y, Li J, Gu N, Zhou J. Effects of different doses of 2,3-dimercaptosuccinic acid-modified Fe 2 O 3 nanoparticles on intercalated discs in engineered cardiac tissues. J Biomed Mater Res B Appl Biomater 2016; 106:121-130. [PMID: 27889952 DOI: 10.1002/jbm.b.33757] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/11/2022]
Abstract
Although iron oxide nanoparticles (IRONs) were applied in clinical magnetic resonance imaging in vivo and magnetic tissue engineering in vitro widely, the underlying effects of IRONs on the development of cardiomyocytes especially the intercellular junctions, intercalated discs (IDs), remain an unknown issue. Given the critical role of three-dimensional (3D) engineered cardiac tissues (ECTs) in evaluation of nanoparticles toxicology, it remained necessary to understand the effects of IRONs on IDs assembly of cardiomyocytes in 3D environment. In this study, we first reconstituted collagen/Matrigel based ECTs in vitro and prepared IRONs with 2,3-dimercaptosuccinic acid (DMSA-IRONs). We found that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner was not associated with the cell distribution in 3D environment by determination of Prussian blue staining and transmission electronic microscopy. Significantly, through determination of western blotting and immunofluorescence of connexin 43, N-cadherin, desmoplakin, and plakoglobin, DMSA-IRONs enhanced the assembly of gap junctions, decreased mechanical junctions (adherens junctions and desmosomes) of cardiac cells but not in dose-dependent manner in ECTs at seventh day. In addition, DMSA-IRONs increased the vesicles secretion of cardiac cells in ECTs apparently compared to control groups. Overall, we conclude that the internalization of DMSA-IRONs by cardiac cells in dose-dependent manner enhanced the assembly of electrochemical junctions and decreased the mechanical related microstructures. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 121-130, 2018.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Shuanghong Lv
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 People's Republic of China
| | - Yao Han
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Yuwei Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Junjie Li
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ning Gu
- Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
35
|
Scharfenberg D, Luthringer B, Lamszus K, Willumeit-Römer R. Glioblastoma Cell Type-Specific Loading with Iron Oxide Magnetic Nanoparticles. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0363-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Mazuel F, Espinosa A, Luciani N, Reffay M, Le Borgne R, Motte L, Desboeufs K, Michel A, Pellegrino T, Lalatonne Y, Wilhelm C. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS NANO 2016; 10:7627-38. [PMID: 27419260 DOI: 10.1021/acsnano.6b02876] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Quantitative studies of the long-term fate of iron oxide nanoparticles inside cells, a prerequisite for regenerative medicine applications, are hampered by the lack of suitable biological tissue models and analytical methods. Here, we propose stem-cell spheroids as a tissue model to track intracellular magnetic nanoparticle transformations during long-term tissue maturation. We show that global spheroid magnetism can serve as a fingerprint of the degradation process, and we evidence a near-complete nanoparticle degradation over a month of tissue maturation, as confirmed by electron microscopy. Remarkably, the same massive degradation was measured at the endosome level by single-endosome nanomagnetophoretic tracking in cell-free endosomal extract. Interestingly, this spectacular nanoparticle breakdown barely affected iron homeostasis: only the genes coding for ferritin light chain (iron loading) and ferroportin (iron export) were up-regulated 2-fold by the degradation process. Besides, the magnetic and tissular tools developed here allow screening of the biostability of magnetic nanomaterials, as demonstrated with iron oxide nanocubes and nanodimers. Hence, stem-cell spheroids and purified endosomes are suitable models needed to monitor nanoparticle degradation in conjunction with magnetic, chemical, and biological characterizations at the cellular scale, quantitatively, in the long term, in situ, and in real time.
Collapse
Affiliation(s)
- François Mazuel
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Ana Espinosa
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Rémi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot , Sorbonne Paris Cité, 75205 Cedex 13 Paris, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Karine Desboeufs
- LISA, CNRS UMR 7583, Université Paris-Diderot and Université Paris-Est Créteil, 94400 Créteil, France
| | - Aude Michel
- Sorbonne Universités, Physicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), UMR 8234, Université Pierre et Marie Curie UPMC-CNRS, 75252 Cedex 05 Paris, France
| | | | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| |
Collapse
|
37
|
Coccini T, Caloni F, Ramírez Cando LJ, De Simone U. Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol 2016; 37:361-373. [DOI: 10.1002/jat.3367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Teresa Coccini
- Laboratory of Experimental and Clinical Toxicology, Poison Control Centre and National Toxicology Information Centre, Toxicology Division, IRCCS Maugeri Foundation; Scientific Institute of Pavia; Pavia Italy
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET); Università degli Studi di Milano; Milano Italy
| | - Lenin Javier Ramírez Cando
- Centro de Investigación y Valoración de la Biodiversidad (CIVABI); Universidad Politécnica Salesiana; Quito Ecuador
| | - Uliana De Simone
- Laboratory of Experimental and Clinical Toxicology, Poison Control Centre and National Toxicology Information Centre, Toxicology Division, IRCCS Maugeri Foundation; Scientific Institute of Pavia; Pavia Italy
| |
Collapse
|
38
|
Li K, Reichmann H. Role of iron in neurodegenerative diseases. J Neural Transm (Vienna) 2016; 123:389-99. [PMID: 26794939 DOI: 10.1007/s00702-016-1508-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
Abstract
Currently, we still lack effective measures to modify disease progression in neurodegenerative diseases. Iron-containing proteins play an essential role in many fundamental biological processes in the central nervous system. In addition, iron is a redox-active ion and can induce oxidative stress in the cell. Although the causes and pathology hallmarks of different neurodegenerative diseases vary, iron dyshomeostasis, oxidative stress and mitochondrial injury constitute a common pathway to cell death in several neurodegenerative diseases. MRI is capable of depicting iron content in the brain, and serves as a potential biomarker for early and differential diagnosis, tracking disease progression and evaluating the effectiveness of neuroprotective therapy. Iron chelators have shown their efficacy against neurodegeneration in a series of animal models, and been applied in several clinical trials. In this review, we summarize recent developments on iron dyshomeostasis in Parkinson's disease, Alzheimer's disease, Friedreich ataxia, and Huntington's disease.
Collapse
Affiliation(s)
- Kai Li
- Center of Clinical Neuroscience, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Heinz Reichmann
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
39
|
Krawczyńska A, Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Herman AP, Oczkowski M, Królikowski T, Wilczak J, Wojewódzka M, Kruszewski M. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin–angiotensin system in brain. Food Chem Toxicol 2015; 85:96-105. [DOI: 10.1016/j.fct.2015.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
|
40
|
Petters C, Thiel K, Dringen R. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes. Nanotoxicology 2015; 10:332-42. [DOI: 10.3109/17435390.2015.1071445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Charlotte Petters
- Center for Biomedical Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany,
- Center for Environmental Research and Sustainable Technology, Bremen, Germany, and
| | - Karsten Thiel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Bremen, Germany
| | - Ralf Dringen
- Center for Biomedical Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany,
- Center for Environmental Research and Sustainable Technology, Bremen, Germany, and
| |
Collapse
|
41
|
Migliore L, Uboldi C, Di Bucchianico S, Coppedè F. Nanomaterials and neurodegeneration. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:149-170. [PMID: 25627719 DOI: 10.1002/em.21931] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
The increasing application of nanotechnology in various industrial, environmental, and human settings raises questions surrounding the potential adverse effects induced by nanosized materials to human health, including the possible neurotoxic and neuroinflammatory properties of those substances and their capability to induce neurodegeneration. In this review, a panel of metal oxide nanoparticles (NPs), namely titanium dioxide, silicon dioxide, zinc oxide, copper oxide, iron NPs, and carbon nanotubes have been focused. An overview has been provided of the in vitro and in vivo evidence of adverse effects to the central nervous system. Research indicated that these nanomaterials (NMs) not only reach the brain, but also can cause a certain degree of brain tissue damage, including cytotoxicity, genotoxicity, induction of oxidative stress, and inflammation, all potentially involved in the onset and progression of neurodegeneration. Surface chemistry of the NMs may play an important role in their localization and subsequent effects on the brain of rodents. In addition, NM shape differences may induce varying degrees of neurotoxicity. However, one of the potential biomedical applications of NMs is nanodevices for early diagnostic and novel therapeutic approaches to counteract age related diseases. In this context, engineered NMs were promising vehicles to carry diagnostic and therapeutic compounds across the blood-brain barrier, thereby representing very timely and attractive theranostic tools in neurodegenerative diseases. Therefore, a careful assessment of the risk-benefit ratio must be taken into consideration in using nanosized materials.
Collapse
Affiliation(s)
- Lucia Migliore
- Medical Genetics Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55 - 56126, Pisa, Italy
| | | | | | | |
Collapse
|
42
|
Valdiglesias V, Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, Teixeira JP, Laffon B. Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:125-48. [PMID: 25209650 DOI: 10.1002/em.21909] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/06/2014] [Indexed: 05/03/2023]
Abstract
Iron oxide nanoparticles (ION) with superparamagnetic properties hold great promise for use in various biomedical applications; specific examples include use as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Increasing potential applications raise concerns over their potential effects on human health. Nevertheless, very little is currently known about the toxicity associated with exposure to these nanoparticles at different levels of biological organization. This article provides an overview of recent studies evaluating ION cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity. Although the results of these studies are sometimes controversial, they generally indicate that surface coatings and particle size seem to be crucial for the observed ION-induced effects, as they are critical determinants of cellular responses and intensity of effects, and influence potential mechanisms of toxicity. The studies also suggest that some ION are safe for certain biomedical applications, while other uses need to be considered more carefully. Overall, the available studies provide insufficient evidence to fully assess the potential risks for human health related to ION exposure. Additional research in this area is required including studies on potential long-term effects.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 2015; 115:2109-35. [PMID: 25757742 DOI: 10.1021/cr400714j] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven , B3000 Leuven, Belgium
| | | | | | | |
Collapse
|
44
|
Petters C, Dringen R. Accumulation of iron oxide nanoparticles by cultured primary neurons. Neurochem Int 2015; 81:1-9. [DOI: 10.1016/j.neuint.2014.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 01/13/2023]
|
45
|
Sadhasivam S, Savitha S, Wu CJ, Lin FH, Stobiński L. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells. Int J Pharm 2015; 480:8-14. [PMID: 25601197 DOI: 10.1016/j.ijpharm.2015.01.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 11/29/2022]
Abstract
Carbon encapsulated iron oxide nanoparticles (CEIO-NPs) prepared by carbon arc method were successfully applied for in vitro magnetic hyperthermia. The CEIO-NPs were chemically oxidized and surface modified with PEG-FA for selective tumor localization in cancer cells that over expresses the folate receptors (FR(+)). The size, morphology, heating efficiency, biocompatibility and in vitro cell uptake of CEIO-PEG-FA NPs are extensively characterized. The as-prepared nanoparticles have generated quick heating (43-45°C) upon exposure to an alternating magnetic field (AMF) with the saturation magnetization of 25emu/g. The LDH cytotoxic assay demonstrated that the nanoparticle did not affect the viability of normal human fibroblast. The quantitative and cellular uptake studies by TEM confirmed the selective and increased uptake of CEIO-PEG-FA NPs when compared to the CEIO-nanoparticles. In conclusion, CEIO-PEG-FA NPs have the potential to induce magnetic hyperthermia in FR(+) cells via the receptor mediated endocytosis uptake mechanism.
Collapse
Affiliation(s)
- S Sadhasivam
- Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Taiwan
| | - S Savitha
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chennai, India
| | - Chun-Jen Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Feng-Huei Lin
- Biomedical Engineering and Nanomedicine Research, National Health Research Institutes, Taiwan; Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Leszek Stobiński
- Institute of Physical Chemistry, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
46
|
Zou J, Wang X, Zhang L, Wang J. Iron Nanoparticles Significantly Affect the In Vitro and In Vivo Expression of Id Genes. Chem Res Toxicol 2015; 28:373-83. [DOI: 10.1021/tx500333q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinglu Zou
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Xin Wang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Ling Zhang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key
Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
47
|
Schaub NJ, Rende D, Yuan Y, Gilbert RJ, Borca-Tasciuc DA. Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Chem Res Toxicol 2014; 27:2023-35. [PMID: 25347722 DOI: 10.1021/tx500231f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) can generate heat when subjected to an alternating magnetic field (AMF). In the European Union, SPIONs actuated by AMF are used in hyperthermia treatment of glioblastoma multiforme, an aggressive form of brain cancer. Current data from clinical trials suggest that this therapy improves patient life expectancy, but their effect on healthy brain cells is virtually unknown. Thus, a viability study involving SPIONs subjected to an AMF was carried out on healthy cortical rat astrocytes, the most abundant cell type in the mammalian brain. The cells were cultured with aminosilane- or starch-coated SPIONs with or without application of an AMF. Significant cell death (p < 0.05) was observed only when SPIONs were added to astrocyte cultures and subjected to an AMF. Unexpectedly, the decrease in astrocyte viability was observed at physiological temperatures (34-40 °C) with AMF. A further decrease in astrocyte viability was found only when bulk temperatures exceeded 45 °C. To discern differences in the astrocyte structure when astrocytes were cultured with particles with or without AMF, scanning electron microscopy (SEM) was performed. SEM images revealed a change in the structure of the astrocyte cell membrane only when astrocytes were cultured with SPIONs and actuated with an AMF. This study is the first to report that astrocyte death occurs at physiological temperatures in the presence of magnetic particles and AMF, suggesting that other mechanisms are responsible for inducing astrocyte death in addition to heat.
Collapse
Affiliation(s)
- Nicholas J Schaub
- Center for Biotechnology and Interdisciplinary Studies, ‡Department of Biomedical Engineering, §Rensselaer Nanotechnology Center, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute , 110 8th Street, Troy, New York 12180-3590, United States
| | | | | | | | | |
Collapse
|
48
|
Copper Oxide Nanoparticles Stimulate Glycolytic Flux and Increase the Cellular Contents of Glutathione and Metallothioneins in Cultured Astrocytes. Neurochem Res 2014; 40:15-26. [DOI: 10.1007/s11064-014-1458-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
|
49
|
da Costa GM, Blanco-Andujar C, De Grave E, Pankhurst QA. Magnetic Nanoparticles for in Vivo Use: A Critical Assessment of Their Composition. J Phys Chem B 2014; 118:11738-46. [DOI: 10.1021/jp5055765] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Cristina Blanco-Andujar
- Healthcare
Biomagnetics Laboratory, University College London, 21 Albemarle
Street, London, W1S 4BS, U.K
| | - Eddy De Grave
- Department
of Physics and Astronomy, University of Ghent, Ghent, Belgium
| | - Quentin A. Pankhurst
- Healthcare
Biomagnetics Laboratory, University College London, 21 Albemarle
Street, London, W1S 4BS, U.K
| |
Collapse
|
50
|
Uptake and metabolism of iron and iron oxide nanoparticles in brain astrocytes. Biochem Soc Trans 2014; 41:1588-92. [PMID: 24256259 DOI: 10.1042/bst20130114] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Astrocytes are considered key regulators of the iron metabolism of the brain. These cells are able to rapidly accumulate iron ions and various iron-containing compounds, store iron efficiently in ferritin and also export iron. The present short review summarizes our current knowledge of the molecular mechanisms involved in the handling of iron by astrocytes. Cultured astrocytes efficiently take up iron as ferrous or ferric iron ions or as haem by specific iron transport proteins in their cell membrane. In addition, astrocytes accumulate large amounts of iron oxide nanoparticles by endocytotic mechanisms. Despite the rapid accumulation of high amounts of iron from various iron-containing sources, the viability of astrocytes is hardly affected. A rather slow liberation of iron from accumulated haem or iron oxide nanoparticles as well as the strong up-regulation of the synthesis of the iron storage protein ferritin are likely to contribute to the high resistance of astrocytes to iron toxicity. The efficient uptake of extracellular iron by cultured astrocytes as well as their strong up-regulation of ferritin after iron exposure also suggests that brain astrocytes deal well with an excess of iron and protect the brain against iron-mediated toxicity.
Collapse
|