1
|
Montaño-González PA, Bravo-Lozano LM, Chevance S, Dole F, Rosselgong J, Loyer P, Tranchimand S, Chapel JP, Gauffre F, Schatz C, Bravo-Anaya LM. Interactions between PEI and biological polyanions and the ability of glycosaminoglycans in destabilizing PEI/peGFP-C3 polyplexes for genetic material release. Int J Biol Macromol 2025; 301:140351. [PMID: 39880239 DOI: 10.1016/j.ijbiomac.2025.140351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The lack of understanding of polyplexes stability and their dissociation mechanisms, allowing the release of DNA, is currently a major limitation in non-viral gene delivery. One proposed mechanism for DNA-based polyplexes dissociation is based on the electrostatic interactions between polycations and biological polyanions, such as glycosaminoglycans (GAGs). This work aimed at investigating whether GAGs such as heparin, chondroitin sulphate and hyaluronic acid promote the dissociation of PEI/DNA polyplexes. We studied the electrostatic complexation between branched poly(ethyleneimine) (b-PEI25) and polyanions (model DNA and GAGs) through conductivity and ζ-potential measurements. The formation of b-PEI25/polyanion polyplexes through electrostatic interactions was analyzed in depth, providing key insights into charge stoichiometry, morphology, thermodynamics and physicochemical characteristics. The stability of polyplexes was tested in the presence of the different GAGs. Heparin was found to be the only polyanion capable of releasing peGFP-C3 plasmid from polyplexes, complexing stoichiometrically with the free b-PEI25 in excess, before releasing the plasmid. The ability of GAGs to disrupt polyplexes and release DNA was correlated with the thermodynamic characteristics of b-PEI25/polyanions complexation. Our findings indicate that heparin's strong interaction with PEI and its high charge density, compared to other GAGs and polyanions, are pivotal in determining complex stability and promoting DNA release.
Collapse
Affiliation(s)
| | | | - Soizic Chevance
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - François Dole
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Université de Bordeaux, 33600 Pessac, France
| | - Julien Rosselgong
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Pascal Loyer
- Univ Rennes, Inserm, INRAE, Institut NUMECAN, UMR-A 1341, UMR-S 1317, Plateforme SynNanoVect, F-35000 Rennes, France
| | - Sylvain Tranchimand
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR 6226, F-35000 Rennes, France
| | - Jean-Paul Chapel
- Centre de Recherche Paul Pascal (CRPP), UMR CNRS 5031, Université de Bordeaux, 33600 Pessac, France
| | - Fabienne Gauffre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France
| | - Christophe Schatz
- Univ Bordeaux, Bordeaux INP, LCPO, CNRS, UMR 5629, F-33000 Pessac, France
| | | |
Collapse
|
2
|
John S, Devi P, Sharma K, Sankar R, Gupta S. Calcifying odontogenic cysts: A novel outlook on classification, diagnosis and management. Semin Diagn Pathol 2025; 42:1-4. [PMID: 39217025 DOI: 10.1053/j.semdp.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The Calcifying Odontogenic Cysts (COC) displays a wide range of clinical and histopathological variations as well as diverse biological behaviors. This diversity has led to confusion and disagreement regarding the terminology and classification of this lesion. The previous classification attempts to categorize COC into two concepts. The first concept, termed "monistic," suggests that all COCs are neoplastic despite the majority being cystic in structure and seemingly non-neoplastic. The second concept, known as "dualistic," posits that COC comprises two distinct entities: a cyst and a neoplasm. This research discusses various previous classifications of COC found in the literature and proposes a new, straightforward universal classification based solely on histopathology, aiming to facilitate understanding for surgeons. MATERIAL AND METHODS Fifteen cases of COC have been collected with clinicopathological parameters including detailed information regarding patient demographics, symptoms, anatomical site, radiological characteristics, duration of evolution, recurrence, and types of histopathology according to the proposed classification. RESULT A total of fifteen cases of COC were analyzed. According to the histological analysis of the proposed classification Type 1: 5 (33.3), Type II: 4 (26.6), Type III: 3(20), and Type IV:3(20) and recurrence in 3 (20 %) of cases. CONCLUSION It simplifies the complexities arising from variations in the cystic linings of type IV of COC, which can be overlooked and have caused recurrence in the current research. Therefore, the key requirement for arriving at a validated and practical conclusion lies in the accurate histological classification of calcifying odontogenic cysts and their impact on treatment.
Collapse
Affiliation(s)
- Sharon John
- Department of Oral Pathology, King George's Medical University, Lucknow, 226003, UP, India.
| | - Priya Devi
- Department of Oral Pathology, King George's Medical University, Lucknow, 226003, UP, India.
| | - Kriti Sharma
- Department of Oral Pathology, King George's Medical University, Lucknow, 226003, UP, India.
| | - Roshna Sankar
- Department of Oral Pathology, King George's Medical University, Lucknow, 226003, UP, India.
| | - Shalini Gupta
- Department of Oral Pathology, King George's Medical University, Lucknow, 226003, UP, India.
| |
Collapse
|
3
|
John S, Khan E, Jain A, Devi P, Gupta S. Correlation of Immunohistochemical Biomarkers and Differential Staining Techniques to Investigate the Role of Subepithelial Hyalinization in the Aggressiveness of Odontogenic Keratocyst. Indian J Otolaryngol Head Neck Surg 2024; 76:5610-5617. [PMID: 39559161 PMCID: PMC11569315 DOI: 10.1007/s12070-024-05044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/04/2024] [Indexed: 11/20/2024] Open
Abstract
Odontogenic Keratocysts (OKCs) are known for their aggressive behavior along with rapid expansion. Subepithelial hyalinization (SEH) is one of the causes of recurrence. The ability to predict this biological behavior histologically may help medical experts choose the best course of action. To investigate the aggressiveness of odontogenic keratocyst caused by SEH and its recurrence tendency in the north Indian population, this study will link differential staining methods with immunohistochemistry biomarkers that can be used in routine investigative procedures. Consequently, the evaluation and grading of SEH were established by measuring from the basement membrane to the extent of connective tissue. The levels were correlated to Ki67, Alcian blue, and O -safranine for validation. Forty OKCs were examined for the histological investigation of SEH using the immunohistochemical marker Ki67 and differential staining with O-safranine and Alcian Blue. The histological trait of separation of epithelium from the connective tissue interface due to SEH was noted. SEH-positive cases that were evaluated with Ki67, had increased proliferative activity. The differential staining techniques were validated with Ki67, cross-tabulations in SPSS, and kappa statistic value was given to analyze the results. Spearman's rank correlation was done between Ki67 vs Alcian blue and O-Safranine. A p value of less than < 0.05 was considered statistically significant. In SEH-positive cases, a higher proliferative index was observed. Additionally, histological metrics were statistically significantly higher in SEH-positive cases. Consequently, SEH is a reliable histopathological indicator in OKC for predicting recurrence. The presence of SEH indicates that OKCs are more likely to recur.
Collapse
Affiliation(s)
- Sharon John
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
- Department of Oral & Maxillofacial Pathology and Oral Microbiology, King George’s Medical University, Lucknow, India
| | - Eram Khan
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
| | - Ayushi Jain
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
| | - Priya Devi
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
| | - Shalini Gupta
- Department of Oral Pathology, King George’s Medical University, Lucknow, UP 226003 India
| |
Collapse
|
4
|
Chopra N, Melrose J, Gu Z, Diwan AD. Biomimetic Proteoglycans for Intervertebral Disc (IVD) Regeneration. Biomimetics (Basel) 2024; 9:722. [PMID: 39727726 DOI: 10.3390/biomimetics9120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Intervertebral disc degeneration, which leads to low back pain, is the most prevalent musculoskeletal condition worldwide, significantly impairing quality of life and imposing substantial socioeconomic burdens on affected individuals. A major impediment to the development of any prospective cell-driven recovery of functional properties in degenerate IVDs is the diminishing IVD cell numbers and viability with ageing which cannot sustain such a recovery process. However, if IVD proteoglycan levels, a major functional component, can be replenished through an orthobiological process which does not rely on cellular or nutritional input, then this may be an effective strategy for the re-attainment of IVD mechanical properties. Furthermore, biomimetic proteoglycans (PGs) represent an established polymer that strengthens osteoarthritis cartilage and improves its biomechanical properties, actively promoting biological repair processes. Biomimetic PGs have superior water imbibing properties compared to native aggrecan and are more resistant to proteolytic degradation, increasing their biological half-life in cartilaginous tissues. Methods have also now been developed to chemically edit the structure of biomimetic proteoglycans, allowing for the incorporation of bioactive peptide modules and equipping biomimetic proteoglycans as delivery vehicles for drugs and growth factors, further improving their biotherapeutic credentials. This article aims to provide a comprehensive overview of prospective orthobiological strategies that leverage engineered proteoglycans, paving the way for novel therapeutic interventions in IVD degeneration and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Zi Gu
- NanoBiotechnology Research Group, School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ashish D Diwan
- Spine Service & Spine Labs, St George & Sutherland School of Clinical Medicine, Faculty of Health and Medicine, University of New South Wales, Kogarah, NSW 2217, Australia
- Discipline of Orthopaedic Surgery, Royal Adelaide Hospital and University of Adelaide, Adelaide, ADL 5005, Australia
| |
Collapse
|
5
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. Tissue Eng Part A 2024. [PMID: 39556321 DOI: 10.1089/ten.tea.2024.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo, thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization and that release from Hep would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells were analyzed by flow cytometry 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (day 7 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by day 7, particularly in the MTJ region of the muscle. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear.
Collapse
Affiliation(s)
- Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Jiahui Mao
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, Atlanta, Georgia, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Pearson JJ, Mao J, Temenoff JS. Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608812. [PMID: 39229126 PMCID: PMC11370378 DOI: 10.1101/2024.08.20.608812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated (Hep) and fully desulfated (Hep-)) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of Tumor Necrosis Factor Stimulated Gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo , thus facilitating comparisons between delivery from heparin derivatives on level of tissue repair in two different areas of muscle (near the myotendious junction (MTJ) and in the muscle belly (MB)) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization, and that release from a fully sulfated heparin derivative (Hep) would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells, were analyzed by flow cytometery 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to Day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (Day 14 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by Day 7, particularly in the MTJ region of the muscle, compared to release from desulfated heparin hydrogels. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear. IMPACT STATEMENT Rotator cuff tear is a significant problem that can cause muscle degeneration. In this study, a hydrogel particle system was developed for sustained release of an anti-inflammatory protein, Tumor Necrosis Factor Stimulated Gene 6 (TSG-6), to injured muscle. Release of the protein from a fully sulfated heparin hydrogel-based carrier demonstrated greater changes in amount inflammatory cells and more early regenerative effects than a less-sulfated carrier. Thus, this work provides a novel strategy for localized, controlled delivery of an anti-inflammatory protein to enhance muscle healing after rotator cuff tear.
Collapse
|
7
|
Bermudez-Lekerika P, Crump KB, Wuertz-Kozak K, Le Maitre CL, Gantenbein B. Sulfated Hydrogels as Primary Intervertebral Disc Cell Culture Systems. Gels 2024; 10:330. [PMID: 38786247 PMCID: PMC11121347 DOI: 10.3390/gels10050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
The negatively charged extracellular matrix plays a vital role in intervertebral disc tissues, providing specific cues for cell maintenance and tissue hydration. Unfortunately, suitable biomimetics for intervertebral disc regeneration are lacking. Here, sulfated alginate was investigated as a 3D culture material due to its similarity to the charged matrix of the intervertebral disc. Precursor solutions of standard alginate, or alginate with 0.1% or 0.2% degrees of sulfation, were mixed with primary human nucleus pulposus cells, cast, and cultured for 14 days. A 0.2% degree of sulfation resulted in significantly decreased cell density and viability after 7 days of culture. Furthermore, a sulfation-dependent decrease in DNA content and metabolic activity was evident after 14 days. Interestingly, no significant differences in cell density and viability were observed between surface and core regions for sulfated alginate, unlike in standard alginate, where the cell number was significantly higher in the core than in the surface region. Due to low cell numbers, phenotypic evaluation was not achieved in sulfated alginate biomaterial. Overall, standard alginate supported human NP cell growth and viability superior to sulfated alginate; however, future research on phenotypic properties is required to decipher the biological properties of sulfated alginate in intervertebral disc cells.
Collapse
Affiliation(s)
- Paola Bermudez-Lekerika
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, 3008 Bern, Switzerland; (P.B.-L.); (K.B.C.)
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Katherine B. Crump
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, 3008 Bern, Switzerland; (P.B.-L.); (K.B.C.)
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3012 Bern, Switzerland
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
- Spine Center, Schön Klinik München Harlaching Academic Teaching Hospital, Spine Research Institute, Paracelsus Private Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2TN, UK;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics and Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, 3008 Bern, Switzerland; (P.B.-L.); (K.B.C.)
- Inselspital, Department of Orthopedic Surgery & Traumatology, Medical Faculty, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
8
|
Palumbo FS, Fiorica C, Carreca AP, Iannolo G, Pitarresi G, Amico G, Giammona G, Conaldi PG, Chinnici CM. Modulating the release of bioactive molecules of human mesenchymal stromal cell secretome: Heparinization of hyaluronic acid-based hydrogels. Int J Pharm 2024; 653:123904. [PMID: 38355074 DOI: 10.1016/j.ijpharm.2024.123904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
An amine derivative of hyaluronic acid (HA) was crosslinked to obtain a 3D dried sponge. The sponge was subsequently rehydrated using secretome from human mesenchymal stromal cells (MSCs), resulting in the formation of a hydrogel. The release kinetics analysis demonstrated that the hydrogel effectively sustained secretome release, with 70% of the initially loaded wound-healing-associated cytokines being released over a 12-day period. Tuning the hydrogel properties through heparin crosslinking resulted in a biomaterial with a distinct mechanism of action. Specifically, the presence of heparin enhanced water uptake capacity of the hydrogel and increased its sensitivity to enzymatic degradation. Notably, the heparin crosslinking also led to a significant retention of cytokines within the hydrogel matrix. Overall, the secretome-rehydrated HA hydrogel holds promise as a versatile device for regenerative medicine applications: the non-heparinized hydrogel may function as a biomaterial with low reabsorption rates, sustaining the release of bioactive molecules contained in MSC secretome. In contrast, the heparinized hydrogel may serve as a depot of bioactive molecules with faster reabsorption rates. Given its patch-like characteristic, the HA-based hydrogel appears suitable as topical treatment for external organs, such as the skin.
Collapse
Affiliation(s)
- Fabio Salvatore Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Paola Carreca
- Regenerative Medicine and Immunotherapy Unit, Fondazione Ri.MED c/o IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy
| | - Gioacchin Iannolo
- Department of Research, IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giandomenico Amico
- Regenerative Medicine and Immunotherapy Unit, Fondazione Ri.MED c/o IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Pier Giulio Conaldi
- Department of Research, IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy
| | - Cinzia Maria Chinnici
- Cell Therapy Group, Fondazione R.MED c/o IRCCS ISMETT, via E. Tricomi 5, 90127 Palermo, Italy.
| |
Collapse
|
9
|
Le Pennec J, Picart C, Vivès RR, Migliorini E. Sweet but Challenging: Tackling the Complexity of GAGs with Engineered Tailor-Made Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312154. [PMID: 38011916 DOI: 10.1002/adma.202312154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.
Collapse
Affiliation(s)
- Jean Le Pennec
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | - Catherine Picart
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| | | | - Elisa Migliorini
- U1292 Biosanté, INSERM, CEA, Univ. Grenoble Alpes, CNRS EMR 5000 Biomimetism and Regenerative Medicine, Grenoble, F-38054, France
| |
Collapse
|
10
|
Sulewska M, Berger M, Damerow M, Schwarzer D, Buettner FFR, Bethe A, Taft MH, Bakker H, Mühlenhoff M, Gerardy-Schahn R, Priem B, Fiebig T. Extending the enzymatic toolbox for heparosan polymerization, depolymerization, and detection. Carbohydr Polym 2023; 319:121182. [PMID: 37567694 DOI: 10.1016/j.carbpol.2023.121182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Heparosan is an acidic polysaccharide expressed as a capsule polymer by pathogenic and commensal bacteria, e.g. by E. coli K5. As a precursor in the biosynthesis of heparan sulfate and heparin, heparosan has a high biocompatibility and is thus of interest for pharmaceutical applications. However, due to its low immunogenicity, developing antibodies against heparosan and detecting the polymer in biological samples has been challenging. In this study, we exploited the enzyme repertoire of E. coli K5 and the E. coli K5-specific bacteriophage ΦK5B for the controlled synthesis and depolymerization of heparosan. A fluorescently labeled heparosan nonamer was used as a priming acceptor to study the elongation mechanism of the E. coli K5 heparosan polymerases KfiA and KfiC. We could demonstrate that the enzymes act in a distributive manner, producing labeled heparosan of low dispersity. The enzymatically synthesized heparosan was a useful tool to identify the tailspike protein KflB of ΦK5B as heparosan lyase and to characterize its endolytic depolymerization mechanism. Most importantly, using site-directed mutagenesis and rational construct design, we generated an inactive version of KflB for the detection of heparosan in ELISA-based assays, on blots, and on bacterial and mammalian cells.
Collapse
Affiliation(s)
- Małgorzata Sulewska
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany; Centre de Recherche sur les Macromolécules Végétales, Groupe Chimie et Biotechnologie des Oligosaccharides, 601 rue de la Chimie, BP 53X, 38041 Grenoble, Cedex 09, France.
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Manuela Damerow
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - David Schwarzer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany.
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Bernard Priem
- Centre de Recherche sur les Macromolécules Végétales, Groupe Chimie et Biotechnologie des Oligosaccharides, 601 rue de la Chimie, BP 53X, 38041 Grenoble, Cedex 09, France.
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Schöbel L, Boccaccini AR. A review of glycosaminoglycan-modified electrically conductive polymers for biomedical applications. Acta Biomater 2023; 169:45-65. [PMID: 37532132 DOI: 10.1016/j.actbio.2023.07.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
The application areas of electrically conductive polymers have been steadily growing since their discovery in the late 1970s. Recently, electrically conductive polymers have found their way into biomedicine, allowing the realization of many relevant applications ranging from bioelectronics to scaffolds for tissue engineering. Extracellular matrix components, such as glycosaminoglycans, build an important class of biomaterials that are heavily researched for biomedical applications due to their favorable properties. Due to their highly anionic character and the presence of sulfate groups in glycosaminoglycans, these biomolecules can be employed to functionalize conductive polymers, which enables the tailorability and improvement of cell-material interactions of conductive polymers. This review paper gives an overview of recent research on glycosaminoglycan-modified conductive polymers intended for biomedical applications and discusses the effect of different biological dopants on material characteristics, such as surface roughness, stiffness, and electrochemical properties. Moreover, the key findings of the biological characterization in vitro and in vivo are summarized, and remaining challenges in the field, particularly related to the modification of electrically conductive polymers with glycosaminoglycans to achieve improved functional and biological outcomes, are discussed. STATEMENT OF SIGNIFICANCE: The development of functional biomaterials based on electrically conductive polymers (CPs) for various biomedical applications, such as neural regeneration, drug delivery, or bioelectronics, has been increasingly investigated over the last decades. Recent literature has shown that changes in the synthesis procedure or the chosen dopant could adjust the resulting material characteristics. Hence, an interesting approach lies in using natural biomolecules as dopants for CPs to tailor the biological outcome. This review comprehensively summarizes the state of the art in the field of glycosaminoglycan-modified electrically conductive polymers for the first time, particularly highlighting the effect of the chosen dopant on material characteristics, such as surface morphology or stiffness, electrochemical properties, and consequently, cell-material interactions.
Collapse
Affiliation(s)
- Lisa Schöbel
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| |
Collapse
|
12
|
Menezes R, Sherman L, Rameshwar P, Arinzeh TL. Scaffolds containing GAG-mimetic cellulose sulfate promote TGF-β interaction and MSC Chondrogenesis over native GAGs. J Biomed Mater Res A 2023; 111:1135-1150. [PMID: 36708060 PMCID: PMC10277227 DOI: 10.1002/jbm.a.37496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/29/2023]
Abstract
Cartilage tissue engineering strategies seek to repair damaged tissue using approaches that include scaffolds containing components of the native extracellular matrix (ECM). Articular cartilage consists of glycosaminoglycans (GAGs) which are known to sequester growth factors. In order to more closely mimic the native ECM, this study evaluated the chondrogenic differentiation of mesenchymal stem cells (MSCs), a promising cell source for cartilage regeneration, on fibrous scaffolds that contained the GAG-mimetic cellulose sulfate. The degree of sulfation was evaluated, examining partially sulfated cellulose (pSC) and fully sulfated cellulose (NaCS). Comparisons were made with scaffolds containing native GAGs (chondroitin sulfate A, chondroitin sulfate C and heparin). Transforming growth factor-beta3 (TGF-β3) sequestration, as measured by rate of association, was higher for sulfated cellulose-containing scaffolds as compared to native GAGs. In addition, TGF-β3 sequestration and retention over time was highest for NaCS-containing scaffolds. Sulfated cellulose-containing scaffolds loaded with TGF-β3 showed enhanced chondrogenesis as indicated by a higher Collagen Type II:I ratio over native GAGs. NaCS-containing scaffolds loaded with TGF-β3 had the highest expression of chondrogenic markers and a reduction of hypertrophic markers in dynamic loading conditions, which more closely mimic in vivo conditions. Studies also demonstrated that TGF-β3 mediated its effect through the Smad2/3 signaling pathway where the specificity of TGF-β receptor (TGF- βRI)-phosphorylated SMAD2/3 was verified with a receptor inhibitor. Therefore, studies demonstrate that scaffolds containing cellulose sulfate enhance TGF-β3-induced MSC chondrogenic differentiation and show promise for promoting cartilage tissue regeneration.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Lauren Sherman
- Department of Medicine, Rutgers University School of Medicine, Newark, New Jersey, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers University School of Medicine, Newark, New Jersey, USA
| | | |
Collapse
|
13
|
Altuntaş E, Özkan B, Güngör S, Özsoy Y. Biopolymer-Based Nanogel Approach in Drug Delivery: Basic Concept and Current Developments. Pharmaceutics 2023; 15:1644. [PMID: 37376092 DOI: 10.3390/pharmaceutics15061644] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Due to their increased surface area, extent of swelling and active substance-loading capacity and flexibility, nanogels made from natural and synthetic polymers have gained significant interest in scientific and industrial areas. In particular, the customized design and implementation of nontoxic, biocompatible, and biodegradable micro/nano carriers makes their usage very feasible for a range of biomedical applications, including drug delivery, tissue engineering, and bioimaging. The design and application methodologies of nanogels are outlined in this review. Additionally, the most recent advancements in nanogel biomedical applications are discussed, with particular emphasis on applications for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Sevgi Güngör
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
14
|
Tampieri A, Kon E, Sandri M, Campodoni E, Dapporto M, Sprio S. Marine-Inspired Approaches as a Smart Tool to Face Osteochondral Regeneration. Mar Drugs 2023; 21:md21040212. [PMID: 37103351 PMCID: PMC10145639 DOI: 10.3390/md21040212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The degeneration of osteochondral tissue represents one of the major causes of disability in modern society and it is expected to fuel the demand for new solutions to repair and regenerate the damaged articular joints. In particular, osteoarthritis (OA) is the most common complication in articular diseases and a leading cause of chronic disability affecting a steady increasing number of people. The regeneration of osteochondral (OC) defects is one of the most challenging tasks in orthopedics since this anatomical region is composed of different tissues, characterized by antithetic features and functionalities, in tight connection to work together as a joint. The altered structural and mechanical joint environment impairs the natural tissue metabolism, thus making OC regeneration even more challenging. In this scenario, marine-derived ingredients elicit ever-increased interest for biomedical applications as a result of their outstanding mechanical and multiple biologic properties. The review highlights the possibility to exploit such unique features using a combination of bio-inspired synthesis process and 3D manufacturing technologies, relevant to generate compositionally and structurally graded hybrid constructs reproducing the smart architecture and biomechanical functions of natural OC regions.
Collapse
|
15
|
Jeon EY, Choi DS, Choi S, Won JY, Jo Y, Kim HB, Jung Y, Shin SC, Min H, Choi HW, Lee MS, Park Y, Chung JJ, Jin HS. Enhancing adoptive T-cell therapy with fucoidan-based IL-2 delivery microcapsules. Bioeng Transl Med 2023; 8:e10362. [PMID: 36684086 PMCID: PMC9842027 DOI: 10.1002/btm2.10362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/20/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Adoptive cell therapy (ACT) with antigen-specific T cells is a promising treatment approach for solid cancers. Interleukin-2 (IL-2) has been utilized in boosting the efficacy of ACT. However, the clinical applications of IL-2 in combination with ACT is greatly limited by short exposure and high toxicities. Herein, a complex coacervate was designed to intratumorally deliver IL-2 in a sustained manner and protect against proteolysis. The complex coacervate consisted of fucoidan, a specific IL-2 binding glycosaminoglycan, and poly-l-lysine, a cationic counterpart (FPC2). IL-2-laden FPC2 exhibited a preferential bioactivity in ex vivo expansion of CD8+T cells over Treg cells. Additionally, FPC2 was embedded in pH modulating injectable gel (FPC2-IG) to endure the acidic tumor microenvironment. A single intratumoral administration of FPC2-IG-IL-2 increased expansion of tumor-infiltrating cytotoxic lymphocytes and reduced frequencies of myeloid populations. Notably, the activation and persistency of tumor-reactive T cells were observed only in the tumor site, not in the spleen, confirming a localized effect of FPC2-IG-IL-2. The immune-favorable tumor microenvironment induced by FPC2-IG-IL-2 enabled adoptively transferred TCR-engineered T cells to effectively eradicate tumors. FPC2-IG delivery system is a promising strategy for T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Eun Young Jeon
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Seunghyun Choi
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Ju-Young Won
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Yunju Jo
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- Department of Life Sciences Korea University Seoul South Korea
| | - Hye-Bin Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| | - Youngmee Jung
- Center for Biomaterials Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
- School of Electrical and Electronic Engineering Yonsei University Seoul South Korea
- Yonsei-KIST Convergence Research Institute Seoul South Korea
| | - Sang Chul Shin
- Technology Support Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hophil Min
- Doping Control Center Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Hae Woong Choi
- Department of Life Sciences Korea University Seoul South Korea
| | - Myeong Sup Lee
- Department of Biomedical Sciences University of Ulsan College of Medicine Seoul South Korea
| | - Yoon Park
- Theragnosis Center Biomedical Research Institute, Korea Institute of Science and Technology (KIST) Seoul South Korea
| | - Justin J Chung
- Transdisciplinary Department of Medicine and Advanced Technology Seoul National University Hospital Seoul South Korea
- Department of Medicine Seoul National University College of Medicine Seoul South Korea
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center University of Ulsan College of Medicine Seoul South Korea
| |
Collapse
|
16
|
Sahu B, Shrama DD, Jayakumar GC, Madhan B, Zameer F. A review on an imperative by-product: Glycosaminoglycans- A Holistic approach. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
18
|
Urbaniak T, García-Briones GS, Zhigunov A, Hladysh S, Adrian E, Lobaz V, Krunclová T, Janoušková O, Pop-Georgievski O, Kubies D. Quaternized Chitosan/Heparin Polyelectrolyte Multilayer Films for Protein Delivery. Biomacromolecules 2022; 23:4734-4748. [DOI: 10.1021/acs.biomac.2c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomasz Urbaniak
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Gabriela S. García-Briones
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Sviatoslav Hladysh
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Edyta Adrian
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Tereza Krunclová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
- Jan Purkyňe University in Ústí nad Labem, Faculty of Science, Pasteurova 1, 400 96 Ústí nad Labem, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| | - Dana Kubies
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague, Czech Republic
| |
Collapse
|
19
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
20
|
Tailored Polyelectrolyte Multilayer Systems by Variation of Polyelectrolyte Composition and EDC/NHS Cross-Linking: Controlled Drug Release vs. Drug Reservoir Capabilities and Cellular Response for Improved Osseointegration. Polymers (Basel) 2022; 14:polym14204315. [PMID: 36297892 PMCID: PMC9609345 DOI: 10.3390/polym14204315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Polyelectrolyte multilayers (PEM) are versatile tools used to investigate fundamental interactions between material-related parameters and the resulting performance in stem cell differentiation, respectively, in bone tissue engineering. In the present study, we investigate the suitability of PEMs with a varying collagen content for use as drug carriers for the human bone morphogenetic protein 2 (rhBMP-2). We use three different PEM systems consisting either of the positively charged poly-L-lysine or the glycoprotein collagen type I and the negatively charged glycosaminoglycan heparin. For a specific modification of the loading capacity and the release kinetics, the PEMs were stepwise cross-linked before loading with cytokine. We demonstrate the possibility of immobilizing significant amounts of rhBMP-2 in all multilayer systems and to specifically tune its release via cross-linking. Furthermore, we prove that the drug release of rhBMP-2 plays only a minor role in the differentiation of osteoprogenitor cells. We find a significantly higher influence of the immobilized rhBMP-2 within the collagen-rich coatings that obviously represent an excellent mimicry of the native extracellular matrix. The cytokine immobilized in its bioactive form was able to achieve an increase in orders of magnitude both in the early stages of differentiation and in late calcification compared to the unloaded layers.
Collapse
|
21
|
Kiyotake EA, Cheng ME, Thomas EE, Detamore MS. The Rheology and Printability of Cartilage Matrix-Only Biomaterials. Biomolecules 2022; 12:biom12060846. [PMID: 35740971 PMCID: PMC9220845 DOI: 10.3390/biom12060846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 01/19/2023] Open
Abstract
The potential chondroinductivity from cartilage matrix makes it promising for cartilage repair; however, cartilage matrix-based hydrogels developed thus far have failed to match the mechanical performance of native cartilage or be bioprinted without adding polymers for reinforcement. There is a need for cartilage matrix-based hydrogels with robust mechanical performance and paste-like precursor rheology for bioprinting/enhanced surgical placement. In the current study, our goals were to increase hydrogel stiffness and develop the paste-like precursor/printability of our methacryl-modified solubilized and devitalized cartilage (MeSDVC) hydrogels. We compared two methacryloylating reagents, methacrylic anhydride (MA) and glycidyl methacrylate (GM), and varied the molar excess (ME) of MA from 2 to 20. The MA-modified MeSDVCs had greater methacryloylation than GM-modified MeSDVC (20 ME). While GM and most of the MA hydrogel precursors exhibited paste-like rheology, the 2 ME MA and GM MeSDVCs had the best printability (i.e., shape fidelity, filament collapse). After crosslinking, the 2 ME MA MeSDVC had the highest stiffness (1.55 ± 0.23 MPa), approaching the modulus of native cartilage, and supported the viability/adhesion of seeded cells for 15 days. Overall, the MA (2 ME) improved methacryloylation, hydrogel stiffness, and printability, resulting in a stand-alone MeSDVC printable biomaterial. The MeSDVC has potential as a future bioink and has future clinical relevance for cartilage repair.
Collapse
Affiliation(s)
- Emi A. Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
| | - Michael E. Cheng
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
| | - Emily E. Thomas
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (E.A.K.); (M.E.C.)
- Correspondence:
| |
Collapse
|
22
|
Characteristics of Marine Biomaterials and Their Applications in Biomedicine. Mar Drugs 2022; 20:md20060372. [PMID: 35736175 PMCID: PMC9228671 DOI: 10.3390/md20060372] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Oceans have vast potential to develop high-value bioactive substances and biomaterials. In the past decades, many biomaterials have come from marine organisms, but due to the wide variety of organisms living in the oceans, the great diversity of marine-derived materials remains explored. The marine biomaterials that have been found and studied have excellent biological activity, unique chemical structure, good biocompatibility, low toxicity, and suitable degradation, and can be used as attractive tissue material engineering and regenerative medicine applications. In this review, we give an overview of the extraction and processing methods and chemical and biological characteristics of common marine polysaccharides and proteins. This review also briefly explains their important applications in anticancer, antiviral, drug delivery, tissue engineering, and other fields.
Collapse
|
23
|
Analysis of the aggregation mechanism of chondroitin sulfate/chitosan particles and fabrication of hydrogel cell scaffolds. Int J Biol Macromol 2022; 210:233-242. [PMID: 35537590 DOI: 10.1016/j.ijbiomac.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022]
Abstract
In this study, the aggregation mechanism of polyion complex (PIC) particles from chitosan (CHI) and chondroitin sulfate C (CS) in phosphate-buffered saline (PBS) was analyzed, and a novel method for the fabrication of hydrogels via aggregation was developed. The PBS induced a decrease in the ζ-potential of the CS/CHI PIC particles, increase in their diameter, and aggregation in a concentration-dependent manner. The hydrogels prepared by mixing CS/CHI PIC particle dispersion and PBS showed the PIC components, with porous structure, high swelling ratio (161.4 ± 13.3%), and high storage moduli (26.2 ± 1.4 kPa). By mixing PBS with suspended adhesive cells and CS/CHI PIC particle dispersion, hydrogels with high cell-loading efficiency were successfully synthesized. The loaded cells within the hydrogels exhibited high viability, uniform distribution, and formation of cell aggregates. These results indicate that CS/CHI-based hydrogels have a potential application as three-dimensional scaffolds for cell culture in tissue engineering.
Collapse
|
24
|
Gélébart P, Cuenot S, Sinquin C, Halgand B, Sourice S, Le Visage C, Guicheux J, Colliec-Jouault S, Zykwinska A. Microgels based on Infernan, a glycosaminoglycan-mimetic bacterial exopolysaccharide, as BMP-2 delivery systems. Carbohydr Polym 2022; 284:119191. [DOI: 10.1016/j.carbpol.2022.119191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
25
|
Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kannan Govindaraj
- Department of Developmental BioEngineering, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
26
|
Kubczak M, Michlewska S, Karimov M, Ewe A, Noske S, Aigner A, Bryszewska M, Ionov M. Unmodified and tyrosine-modified polyethylenimines as potential carriers for siRNA: Biophysical characterization and toxicity. Int J Pharm 2022; 614:121468. [PMID: 35031413 DOI: 10.1016/j.ijpharm.2022.121468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Polyethylenimines (PEIs) are being explored as efficient non-viral nanocarriers for nucleic acid delivery in vitro and in vivo. To address limitations regarding PEI efficacy and biocompatibility, modifications of the chemical structure of linear and branched PEIs have been introduced, including grafting with tyrosine. The aim has been to compare linear and branched polyethylenimines of a wider range of different molecular mass with their tyrosine-modified derivatives. To do so, physico-chemical and biological properties of the polymers were investigated. Even in the absence of a negatively charged nucleic acid counterpart, PEIs form particle structures with defined size and surface potential. Tyrosine modification of PEI led to significantly reduced toxicity, while simultaneously increasing interaction with cellular membranes. All the effects were also dependent on the PEI molecular weight and structure (i.e., linear vs. branched). Especially in the case of linear PEIs, the improved membrane interaction also translated into slightly enhanced hemolysis, whereas their genotoxic potential was essentially abolished. Due to the improvement of properties critical for nano-vector efficacy and biocompatibility, our data demonstrate that tyrosine-modified PEIs are very promising and safe nanocarriers for the delivery of small RNAs, like siRNAs and miRNAs.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Sandra Noske
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| |
Collapse
|
27
|
Benahmed A, Azzaoui K, El Idrissi A, Belkheir H, Said Hassane SO, Touzani R, Rhazi L. Cellulose Acetate-g-Polycaprolactone Copolymerization Using Diisocyanate Intermediates and the Effect of Polymer Chain Length on Surface, Thermal, and Antibacterial Properties. Molecules 2022; 27:molecules27041408. [PMID: 35209201 PMCID: PMC8879923 DOI: 10.3390/molecules27041408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
The need for biodegradable and biocompatible polymers is growing quickly, particularly in the biomedical and environmental industries. Cellulose acetate, a natural polysaccharide, can be taken from plants and modified with polycaprolactone to improve its characteristics for a number of uses, including biomedical applications and food packaging. Cellulose acetate-g-polycaprolactone was prepared by a three-step reaction: First, polymerization of ε-caprolactone via ring-opening polymerization (ROP) reaction using 2-hydroxyethyl methacrylate (HEMA) and functionalization of polycaprolactone(PCL) by introducing NCO on the hydroxyl end of the HEMA-PCL using hexamethyl lenediisocyanate(HDI) were carried out. Then, the NCO–HEMA-PCL was grafted onto cellulose acetate (using the “grafting to” method). The polycaprolactone grafted cellulose acetate was confirmed by FTIR, the thermal characteristics of the copolymers were investigated by DSC and TGA, and the hydrophobicity was analyzed via water CA measurement. Introducing NCO-PCL to cellulose acetate increased the thermal stability. The contact angle of the unreacted PCL was higher than that of cellulose acetate-g-PCL, and it increased when the chain length increased. The CA-g-PCL50, CA-g-PCL100, and CA-g-PCL200 showed very high inhibition zones for all three bacteria tested (E. coli, S. aureus, and P. aeruginosa).
Collapse
Affiliation(s)
- Abdessamade Benahmed
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, PB 4808, Oujda 60046, Morocco; (A.B.); (A.E.I.); (H.B.); (R.T.)
| | - Khalil Azzaoui
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, PB 4808, Oujda 60046, Morocco; (A.B.); (A.E.I.); (H.B.); (R.T.)
- Correspondence: (K.A.); (L.R.); Tel.: +212-677-042-082(K.A.); +33-344-067-552 (L.R.)
| | - Abderahmane El Idrissi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, PB 4808, Oujda 60046, Morocco; (A.B.); (A.E.I.); (H.B.); (R.T.)
| | - Hammouti Belkheir
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, PB 4808, Oujda 60046, Morocco; (A.B.); (A.E.I.); (H.B.); (R.T.)
- Centre de Recherche, Ecole des Hautes Etudes d’Ingénierie EHEIO, Oujda 60046, Morocco
| | - Said Omar Said Hassane
- Département de Physique Chimie Faculté des Sciences et Techniques, Université des Comores, BP 2585, Moroni 99999, Comoros; or
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, PB 4808, Oujda 60046, Morocco; (A.B.); (A.E.I.); (H.B.); (R.T.)
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle Transformations & Agro-ResourcesResearch Unit (ULR7519) 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France
- Correspondence: (K.A.); (L.R.); Tel.: +212-677-042-082(K.A.); +33-344-067-552 (L.R.)
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Tissue regenerative solutions for musculoskeletal disorders have become increasingly important with a growing aged population. Current growth factor treatments often require high dosages with the potential for off-target effects. Growth factor immobilization strategies offer approaches towards alleviating these concerns. This review summarizes current growth factor immobilization techniques (encapsulation, affinity interactions, and covalent binding) and the effects of immobilization on growth factor loading, release, and bioactivity. RECENT FINDINGS The breadth of immobilization techniques based on encapsulation, affinity, and covalent binding offer multiple methods to improve the therapeutic efficacy of growth factors by controlling bioactivity and release. Growth factor immobilization strategies have evolved to more complex systems with the capacity to load and release multiple growth factors with spatiotemporal control. The advancements in immobilization strategies allow for development of new, complex musculoskeletal tissue treatment strategies with improved spatiotemporal control of loading, release, and bioactivity.
Collapse
Affiliation(s)
- Joseph J Pearson
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
29
|
Zhang Y, Shen L, Cheng Y, Li G. Stable and biocompatible fibrillar hydrogels based on the self-crosslinking between collagen and oxidized chondroitin sulfate. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Bădilă AE, Rădulescu DM, Niculescu AG, Grumezescu AM, Rădulescu M, Rădulescu AR. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review. Cancers (Basel) 2021; 13:4229. [PMID: 34439383 PMCID: PMC8392383 DOI: 10.3390/cancers13164229] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decades, the treatment of primary and secondary bone tumors has faced a slow-down in its development, being mainly based on chemotherapy, radiotherapy, and surgical interventions. However, these conventional therapeutic strategies present a series of disadvantages (e.g., multidrug resistance, tumor recurrence, severe side effects, formation of large bone defects), which limit their application and efficacy. In recent years, these procedures were combined with several adjuvant therapies, with different degrees of success. To overcome the drawbacks of current therapies and improve treatment outcomes, other strategies started being investigated, like carrier-mediated drug delivery, bone substitutes for repairing bone defects, and multifunctional scaffolds with bone tissue regeneration and antitumor properties. Thus, this paper aims to present the types of bone tumors and their current treatment approaches, further focusing on the recent advances in new therapeutic alternatives.
Collapse
Affiliation(s)
- Adrian Emilian Bădilă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Dragoș Mihai Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 50044 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Adrian Radu Rădulescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.E.B.); (D.M.R.); (A.R.R.)
- Department of Orthopedics and Traumatology, Bucharest University Hospital, 050098 Bucharest, Romania
| |
Collapse
|
31
|
Park MJ, An YH, Choi YH, Kim HD, Hwang NS. Enhanced Neovascularization Using Injectable and rhVEGF-Releasing Cryogel Microparticles. Macromol Biosci 2021; 21:e2100234. [PMID: 34382323 DOI: 10.1002/mabi.202100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 11/09/2022]
Abstract
Cryogels are gel networks or scaffolds with a large porous structure; they can be tailored for injectability and for possessing a shape-memory ability. Herein, a growth factor-releasing cryogel microparticle (CMP) system is fabricated, and the therapeutic efficacy of recombinant human vascular endothelial growth factor (rhVEGF)-loaded CMP (V-CMP) for neovascularization is investigated. To prepare the cryogels, both methacrylated chitosan (Chi-MA) and methacrylated chondroitin sulfate (CS-MA) are used, and crosslinking using a radical crosslinking reaction is established. The physical, mechanical, and biological properties of the cryogels are analyzed by varying the amount of CS-MA used. The cryogels are then pulverized, and microsized CMPs are fabricated. CMPs dispersed in saline demonstrate a shear-thinning property, and can thus be extruded through a 23G needle. Additionally, V-CMP exhibit a sustained release profile of rhVEGF and enhance the in vitro proliferation of endothelial cells. Finally, neovascularization and effective tissue necrosis prevention are observed when V-CMPs are injected into a hindlimb ischemia mouse model. Thus, the injectable V-CMP system developed herein demonstrates a high potential utility in various tissue regeneration applications based on cell or growth factor delivery.
Collapse
Affiliation(s)
- Mihn Jeong Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, BioMAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
32
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
33
|
Yue L, Vuong B, Yao H, Owens BD. Doxycycline preserves chondrocyte viability and function in human and calf articular cartilage ex vivo. Physiol Rep 2021; 8:e14571. [PMID: 32918797 PMCID: PMC7507091 DOI: 10.14814/phy2.14571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023] Open
Abstract
Prolonging chondrocyte survival is essential to ensure fresh osteochondral (OC) grafts for treatment of articular cartilage lesions. Doxycycline has been shown to enhance cartilage growth, disrupt terminal differentiation of chondrocytes, and inhibit cartilage matrix degradation. It is unknown whether doxycycline prolongs chondrocyte survival in OC grafts. We hypothesized that doxycycline protects against chondrocyte death and maintains function of articular cartilage. To test this hypothesis, we employed human and calf articular cartilages, and incubated chondrocytes isolated from cartilage or cartilage plugs with doxycycline (0, 1 or 10 μg/ml) at either 37°C or 4°C. Chondrocyte viability, apoptosis, glycosaminoglycan (GAG), collagen, and mechanical test in cartilage plugs were measured. We found that reduced chondrocyte viability, increased chondrocyte apoptosis, reduced GAG contents, and impaired equilibrium modulus in cartilage plugs were observed in a time-dependent manner at both 37°C and 4°C. Chondrocyte viability was further reduced when the plugs were cultured at 4°C as compared to 37°C. Doxycycline prolonged viability and reduced apoptosis of chondrocytes during culture of cartilage plugs. Functionally, doxycycline protected against reduced production of GAG and collagen II as well as impaired mechanical properties in cartilage plugs during culture. Mechanistically, doxycycline increased mitochondrial respiration in cultured chondrocytes. In conclusion, preservation at 37°C is beneficial for maintaining chondrocyte viability in cartilage plugs compared to 4°C. Incubation of doxycycline protects against chondrocyte apoptosis, reduced extracellular matrix, and impaired mechanical properties in cartilage plugs. The findings provide a potential approach using doxycycline at 37°C to preserve chondrocyte viability in fresh OC grafts for treatment of articular cartilage lesions.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Brian Vuong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Brett D Owens
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA.,University Orthopedics, East Providence, RI, USA
| |
Collapse
|
34
|
Augustine D, Rao RS, Patil S. Hyalinization as a histomorphological risk predictor in oral pathological lesions. J Oral Biol Craniofac Res 2021; 11:415-422. [PMID: 34094841 DOI: 10.1016/j.jobcr.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/11/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022] Open
Abstract
Background Hyalinization is a process of conversion of stromal connective tissue into a homogeneous, acellular translucent material. Nevertheless, hyalinization could provide insights into the biologic behaviour and prognosis of pathological lesions. Few studies with limited sample size have intended to assess the correlation of hyalinization and biologic behaviour in oral lesions. Aim The current review aims to comprehensively appraise the mechanism of hyalinization in pathological oral hyalinizing lesions (OHL) and its clinical implications with emphasis on differential stains employed. Methods An electronic search was performed in the PubMed database (from year 2000-2020) using the keywords "special stains in oral hyalinizing lesions", "significance of hyalinization in oral lesions" and "hyalinization and biologic behaviour". Original research articles analyzing the effect of hyalinization on biologic characteristics of the lesion were evaluated in this review. Narrative review articles that provided insights into the mechanism of hyalinization and maturity of collagen fibers were also considered for analysis. Conclusion The presence of hyalinization does seem to have a significant effect on the biologic behaviour of pathological lesions. There is substantial scope to further investigate the process of hyalinization on larger samples and its correlation with the aggressive behaviour of OHLs. Special stains and advanced investigations such as immunohistochemistry for stromal markers would define the nature of hyalinized material and validate the correlation. Clinical significance The prediction of the biologic behaviour of a lesion established through assessment of hyalinization would prevent unwanted over or under treatment leading to a better prognosis.
Collapse
Affiliation(s)
- Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, 560054, Karnataka, India
| | - Roopa S Rao
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, 560054, Karnataka, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
35
|
Dorogin J, Townsend JM, Hettiaratchi MH. Biomaterials for protein delivery for complex tissue healing responses. Biomater Sci 2021; 9:2339-2361. [PMID: 33432960 DOI: 10.1039/d0bm01804j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue repair requires a complex cascade of events mediated by a variety of cells, proteins, and matrix molecules; however, the healing cascade can be easily disrupted by numerous factors, resulting in impaired tissue regeneration. Recent advances in biomaterials for tissue regeneration have increased the ability to tailor the delivery of proteins and other biomolecules to injury sites to restore normal healing cascades and stimulate robust tissue repair. In this review, we discuss the evolution of the field toward creating biomaterials that precisely control protein delivery to stimulate tissue regeneration, with a focus on addressing complex and dynamic injury environments. We highlight biomaterials that leverage different mechanisms to deliver and present proteins involved in healing cascades, tissue targeting and mimicking strategies, materials that can be triggered by environmental cues, and integrated strategies that combine multiple biomaterial properties to improve protein delivery. Improvements in biomaterial design to address complex injury environments will expand our understanding of both normal and aberrant tissue repair processes and ultimately provide a better standard of patient care.
Collapse
Affiliation(s)
- Jonathan Dorogin
- Knight Campus for Accelerating Scientific Impact, University of Oregon, 6321 University of Oregon, Eugene, OR 97401, USA.
| | | | | |
Collapse
|
36
|
Vantucci CE, Krishan L, Cheng A, Prather A, Roy K, Guldberg RE. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma. Biomater Sci 2021; 9:1668-1682. [PMID: 33409509 PMCID: PMC8256799 DOI: 10.1039/d0bm01728k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone nonunions arising from large bone defects and composite injuries remain compelling challenges for orthopedic surgeons. Biological changes associated with nonunions, such as systemic immune dysregulation, can contribute to an adverse healing environment. Bone morphogenetic protein 2 (BMP-2), an osteoinductive and potentially immunomodulatory growth factor, is a promising strategy; however, burst release from the clinical standard collagen sponge delivery vehicle can result in adverse side effects such as heterotopic ossification (HO) and irregular bone structure, especially when using supraphysiological BMP-2 doses for complex injuries at high risk for nonunion. To address this challenge, biomaterials that strongly bind BMP-2, such as heparin methacrylamide microparticles (HMPs), may be used to limit exposure and spatially constrain proteins within the injury site. Here, we investigate moderately high dose BMP-2 delivered in HMPs within an injectable hydrogel system in two challenging nonunion models exhibiting characteristics of systemic immune dysregulation. The HMP delivery system increased total bone volume and decreased peak HO compared to collagen sponge delivery of the same BMP-2 dose. Multivariate analyses of systemic immune markers showed the collagen sponge group correlated with markers that are hallmarks of systemic immune dysregulation, including immunosuppressive myeloid-derived suppressor cells, whereas the HMP groups were associated with immune effector cells, including T cells, and cytokines linked to robust bone regeneration. Overall, our results demonstrate that HMP delivery of moderately high doses of BMP-2 promotes repair of complex bone nonunion injuries and that local delivery strategies for potent growth factors like BMP-2 may positively affect the systemic immune response to traumatic injury.
Collapse
Affiliation(s)
- Casey E Vantucci
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laxminarayanan Krishan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Albert Cheng
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA and George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ayanna Prather
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
37
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
38
|
Chen X, Han W, Wang G, Zhao X. Application prospect of polysaccharides in the development of anti-novel coronavirus drugs and vaccines. Int J Biol Macromol 2020; 164:331-343. [PMID: 32679328 PMCID: PMC7358770 DOI: 10.1016/j.ijbiomac.2020.07.106] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Since the outbreak of the novel coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, it has spread rapidly worldwide and poses a great threat to public health. This is the third serious coronavirus outbreak in <20 years, following SARS in 2002-2003 and MERS in 2012. So far, there are almost no specific clinically effective drugs and vaccines available for COVID-19. Polysaccharides with good safety, immune regulation and antiviral activity have broad application prospects in anti-virus, especially in anti-coronavirus applications. Here, we reviewed the antiviral mechanisms of some polysaccharides, such as glycosaminoglycans, marine polysaccharides, traditional Chinese medicine polysaccharides, and their application progress in anti-coronavirus. In particular, the application prospects of polysaccharide-based vaccine adjuvants, nanomaterials and drug delivery systems in the fight against novel coronavirus were also analyzed and summarized. Additionally, we speculate the possible mechanisms of polysaccharides anti-SARS-CoV-2, and propose the strategy of loading S or N protein from coronavirus onto polysaccharide capped gold nanoparticles vaccine for COVID-19 treatment. This review may provide a new approach for the development of COVID-19 therapeutic agents and vaccines.
Collapse
Affiliation(s)
- Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenwei Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
39
|
A Possible Role for Arylsulfatase G in Dermatan Sulfate Metabolism. Int J Mol Sci 2020; 21:ijms21144913. [PMID: 32664626 PMCID: PMC7404199 DOI: 10.3390/ijms21144913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022] Open
Abstract
Perturbations of glycosaminoglycan metabolism lead to mucopolysaccharidoses (MPS)—lysosomal storage diseases. One type of MPS (type VI) is associated with a deficiency of arylsulfatase B (ARSB), for which we previously established a cellular model using pulmonary artery endothelial cells with a silenced ARSB gene. Here, we explored the effects of silencing the ARSB gene on the growth of human pulmonary artery smooth muscle cells in the presence of different concentrations of dermatan sulfate (DS). The viability of pulmonary artery smooth muscle cells with a silenced ARSB gene was stimulated by the dermatan sulfate. In contrast, the growth of pulmonary artery endothelial cells was not affected. As shown by microarray analysis, the expression of the arylsulfatase G (ARSG) in pulmonary artery smooth muscle cells increased after silencing the arylsulfatase B gene, but the expression of genes encoding other enzymes involved in the degradation of dermatan sulfate did not. The active site of arylsulfatase G closely resembles that of arylsulfatase B, as shown by molecular modeling. Together, these results lead us to propose that arylsulfatase G can take part in DS degradation; therefore, it can affect the functioning of the cells with a silenced arylsulfatase B gene.
Collapse
|
40
|
Shah S, Rangaraj N, Laxmikeshav K, Sampathi S. “Nanogels as drug carriers – Introduction, chemical aspects, release mechanisms and potential applications”. Int J Pharm 2020; 581:119268. [DOI: 10.1016/j.ijpharm.2020.119268] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/28/2022]
|
41
|
Tan SY, Leung Z, Wu AR. Recreating Physiological Environments In Vitro: Design Rules for Microfluidic-Based Vascularized Tissue Constructs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905055. [PMID: 31913580 DOI: 10.1002/smll.201905055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Vascularization of engineered tissue constructs remains one of the greatest unmet challenges to mimicking the native tissue microenvironment in vitro. The main obstacle is recapitulating the complexity of the physiological environment while providing simplicity in operation and manipulation of the model. Microfluidic technology has emerged as a promising tool that enables perfusion of the tissue constructs through engineered vasculatures and precise control of the vascular microenvironment cues in vitro. The tunable microenvironment includes i) biochemical cues such as coculture, supporting matrix, and growth factors and ii) engineering aspects such as vasculature engineering methods, fluid flow, and shear stress. In this systematic review, the design considerations of the microfluidic-based in vitro model are discussed, with an emphasis on microenvironment control to enhance the development of next-generation vascularized engineered tissues.
Collapse
Affiliation(s)
- Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Angela Ruohao Wu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
42
|
Listik E, Xavier EG, Silva Pinhal MAD, Toma L. Dermatan sulfate epimerase 1 expression and mislocalization may interfere with dermatan sulfate synthesis and breast cancer cell growth. Carbohydr Res 2020; 488:107906. [PMID: 31972438 DOI: 10.1016/j.carres.2020.107906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/18/2022]
Abstract
Dermatan sulfate (DS) is a glycosaminoglycan (GAG) that is produced through the epimerization of the glucuronic acid on chondroitin sulfate into iduronic acid (IduA) by dermatan sulfate epimerase (DS-epi) 1 and 2. Proteoglycans (PGs) play essential physiological and pathological roles during cellular development, proliferation, differentiation, and cancer metastasis. DS proteoglycans play vital roles during the process of tumorigenesis, due to the increased flexibility of the polysaccharide chain in the presence of IduA residues, which facilitate specific interactions with proteins, such as growth factors, cytokines, and angiogenic factors. Furthermore, DS-epi is highly expressed in many tumors, especially in esophageal squamous cell carcinoma. This study aimed to investigate the expression of DS-epi1 in multiple breast cancer cell lines, including MCF7 (luminal A), MDA-MB-231 (triple-negative) and SKBR3 (human epidermal growth factor receptor 2-positive), and its involvement in cancer progression. A SKBR3 variant, SKBR3m, presented the most erratic cell growth pattern when compared with those for MCF7 and MDA-MB-231. Moreover, SKBR3m cells demonstrated the highest level of DS-epi1 gene expression and higher 35S-DS content. However, at the protein level, MCF7 cells displayed the highest protein level for DS-epi1, whereas MDA-MB-231 cells had the lowest level. DS-epi1 was found in vesicles and in the perinuclear compartment only in SKBR3m cells, suggesting localization in the Golgi apparatus in these cells, in contrast with the cytoplasmic localization observed in MCF7 and MDA-MB-231 cells. The cytoplasm location of DS-epi1 likely compromised the formation of DS chains, but the core protein was detected using a decorin antibody. Golgi-specific labeling confirmed the localization of DS-epi1 in SKBR3m cells at the Golgi apparatus, indicating that the location of the enzyme was a determinant for the synthesis of DS in this cell line, suggesting that DS may play a decisive role in the tumor growth observed in this breast cancer cell line.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, Brazil, CEP: 04044-020.
| | - Everton Galvão Xavier
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, Brazil, CEP: 04044-020.
| | - Maria Aparecida da Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, Brazil, CEP: 04044-020.
| | - Leny Toma
- Department of Biochemistry, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, Brazil, CEP: 04044-020.
| |
Collapse
|
43
|
Nademi Y, Tang T, Uludağ H. Membrane lipids destabilize short interfering ribonucleic acid (siRNA)/polyethylenimine nanoparticles. NANOSCALE 2020; 12:1032-1045. [PMID: 31845926 DOI: 10.1039/c9nr08128c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell entry of polymeric nanoparticles (NPs) bearing polynucleotides is an important stage for successful gene delivery. In this work, we addressed the influence of cell membrane lipids on the integrity and configurational changes of NPs composed of short interfering ribonucleic acid (siRNA) and polyethylenimine. We focused on NPs derived from two different PEIs, unmodified low molecular weight PEI and linoleic acid (LA)-substituted PEI, and their interactions with two membrane lipids (zwitterionic 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)). Our experiments showed that POPS liposomes interacted strongly with both types of NPs, which caused partial dissociation of the NPs. POPC liposomes, however, did not induce any dissociation. Consistent with the experiments, steered molecular dynamics simulations showed a stronger interaction between the NPs and the POPS membrane than between the NPs and the POPC membrane. Lipid substitution on the PEIs enhanced the stability of the NPs during membrane crossing; lipid association between PEIs of the LA-bearing NPs as well as parallel orientation of the siRNAs provided protection against their dissociation (unlike NPs from native PEI). Our observations provide valuable insight into the integrity and structural changes of PEI/siRNA NPs during membrane crossing which will help in the design of more effective carriers for nucleic acid delivery.
Collapse
Affiliation(s)
- Yousef Nademi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
44
|
Mendes BB, Gómez-Florit M, Osório H, Vilaça A, Domingues RMA, Reis RL, Gomes ME. Cellulose nanocrystals of variable sulfation degrees can sequester specific platelet lysate-derived biomolecules to modulate stem cell response. Chem Commun (Camb) 2020; 56:6882-6885. [DOI: 10.1039/d0cc01850c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cellulose nanocrystals can bind different patterns of platelet lysate-derived protein in a surface sulfation dependent manner. The potential to direct stem cell fate by solid-phase presentation of defined protein coronas is demonstrated.
Collapse
Affiliation(s)
- Bárbara B. Mendes
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Manuel Gómez-Florit
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (I3S)
- Universidade do Porto
- Porto
- Portugal
| | - Adriana Vilaça
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Rui M. A. Domingues
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Rui L. Reis
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Manuela E. Gomes
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| |
Collapse
|
45
|
Spicer CD. Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym Chem 2020; 11:184-219. [DOI: 10.1039/c9py01021a] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
We explore the design and synthesis of hydrogel scaffolds for tissue engineering from the perspective of the underlying polymer chemistry. The key polymers, properties and architectures used, and their effect on tissue growth are discussed.
Collapse
|
46
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
47
|
Hachim D, Whittaker TE, Kim H, Stevens MM. Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. J Control Release 2019; 313:131-147. [PMID: 31629041 PMCID: PMC6900262 DOI: 10.1016/j.jconrel.2019.10.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Controlled, localized drug delivery is a long-standing goal of medical research, realization of which could reduce the harmful side-effects of drugs and allow more effective treatment of wounds, cancers, organ damage and other diseases. This is particularly the case for protein "drugs" and other therapeutic biological cargoes, which can be challenging to deliver effectively by conventional systemic administration. However, developing biocompatible materials that can sequester large quantities of protein and release them in a sustained and controlled manner has proven challenging. Glycosaminoglycans (GAGs) represent a promising class of bio-derived materials that possess these key properties and can additionally potentially enhance the biological effects of the delivered protein. They are a diverse group of linear polysaccharides with varied functionalities and suitabilities for different cargoes. However, most investigations so far have focused on a relatively small subset of GAGs - particularly heparin, a readily available, promiscuously-binding GAG. There is emerging evidence that for many applications other GAGs are in fact more suitable for regulated and sustained delivery. In this review, we aim to illuminate the beneficial properties of various GAGs with reference to specific protein cargoes, and to provide guidelines for informed choice of GAGs for therapeutic applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Hyemin Kim
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
48
|
Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer. Semin Cancer Biol 2019; 62:192-200. [PMID: 31518697 DOI: 10.1016/j.semcancer.2019.09.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/01/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Extracellular matrix (ECM) plays a central and dynamic role in the creation of tumor microenvironment. Herein we discuss the emerging biophysical and biochemical aspects of ECM buildup and proteolysis in cancer niche formation. Dysregulated ECM remodeling by cancer cells facilitate irreversible proteolysis and crosslinking, which in turn influence cell signaling, micro environmental cues, angiogenesis and tissue biomechanics. Further, we introduce the emerging roles of cancer microbiome in aberrant tumor ECM remodeling and membrane bound nano-sized vesicles called exosomes in creation of distant pre-metastatic niches. A detailed molecular and biophysical understanding of the ECM morphologies and its components such as key enzymes, structural and signaling molecules are critical in identifying the next generation of therapeutic and diagnostic targets in cancer.
Collapse
Affiliation(s)
- Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alakesh Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
49
|
Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, Yang L, Lai Y. Recent Progress of Polysaccharide‐Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. ADVANCED MATERIALS INTERFACES 2019; 6. [DOI: 10.1002/admi.201900761] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 01/06/2025]
Abstract
AbstractPolysaccharide is an abundant and reproducible natural material that is biocompatible and biodegradable. Polysaccharide and its derivatives also possess distinctive properties such as hydrophilicity, mechanical stability, as well as tunable functionality. Polysaccharide‐based hydrogels can be constructed via the physical and/or chemical crosslinking of polysaccharide derivatives with different functional molecules, as porous network structures or nanofibrillar structures. This review discusses the biomedical applications of polysaccharide‐based hydrogels containing native polysaccharides, polysaccharide derivatives, and polysaccharide‐composite hydrogels. Recent works on the fabrication, physical properties, advanced engineering, biomedical applications of cellulose‐, chitosan‐, alginate‐, and starch‐based hydrogels are also elaborated. Such porous swelling scaffolds exhibit great advantages at the interface of a negative pressure system such as wound dressing. In addition, the authors also discuss and summarize the exemplary research works of these hydrogels in the applications of drug release, wound dressing, and tissue engineering. Finally, challenges and future perspectives about the development of polysaccharide‐based hydrogels are discussed.
Collapse
Affiliation(s)
- Tianxue Zhu
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
| | - Jiajun Mao
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Yan Cheng
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
| | - Haoran Liu
- Department of Orthopaedics Orthopaedic Institute Soochow University Suzhou 215006 P. R. China
| | - Lu Lv
- Department of Orthopaedics Orthopaedic Institute Soochow University Suzhou 215006 P. R. China
| | - Mingzheng Ge
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
- School of Textile and Clothing Nantong University Nantong 226019 P. R. China
| | - Shuhui Li
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
| | - Jianying Huang
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Huaqiong Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| | - Lei Yang
- Center for Health Science and Engineering Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology School of Materials Science and Engineering Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk College of Textile and Clothing Engineering Soochow University Suzhou 215123 P. R. China
- College of Chemical Engineering Fuzhou University Fuzhou 350116 P. R. China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province Wenzhou Institute of Biomaterials and Engineering Wenzhou 325011 P. R. China
| |
Collapse
|
50
|
Zandonadi FS, Castañeda Santa Cruz E, Korvala J. New SDC function prediction based on protein-protein interaction using bioinformatics tools. Comput Biol Chem 2019; 83:107087. [PMID: 31351242 DOI: 10.1016/j.compbiolchem.2019.107087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
The precise roles for SDC have been complex to specify. Assigning and reanalyzing protein and peptide identification to novel protein functions is one of the most important challenges in postgenomic era. Here, we provide SDC molecular description to support, contextualize and reanalyze the corresponding protein-protein interaction (PPI). From SDC-1 data mining, we discuss the potential of bioinformatics tools to predict new biological rules of SDC. Using these methods, we have assembled new possibilities for SDC biology from PPI data, once, the understanding of biology complexity cannot be capture from one simple question.
Collapse
Affiliation(s)
- Flávia S Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil.
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil
| | - Johanna Korvala
- Cancer and Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|