1
|
Seufert L, Elmahmoudy M, Theunis C, Lienemann S, Li Y, Mohammadi M, Boda U, Carnicer-Lombarte A, Kroon R, Persson POÅ, Rahmanudin A, Donahue MJ, Farnebo S, Tybrandt K. Stretchable Tissue-Like Gold Nanowire Composites with Long-Term Stability for Neural Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402214. [PMID: 38944890 DOI: 10.1002/smll.202402214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Soft and stretchable nanocomposites can match the mechanical properties of neural tissue, thereby minimizing foreign body reactions to provide optimal stimulation and recording specificity. Soft materials for neural interfaces should simultaneously fulfill a wide range of requirements, including low Young's modulus (<<1 MPa), stretchability (≥30%), high conductivity (>> 1000 S cm-1), biocompatibility, and chronic stability (>> 1 year). Current nanocomposites do not fulfill the above requirements, in particular not the combination of softness and high conductivity. Here, this challenge is addressed by developing a scalable and robust synthesis route based on polymeric reducing agents for smooth, high-aspect ratio gold nanowires (AuNWs) of controllable dimensions with excellent biocompatibility. AuNW-silicone composites show outstanding performance with nerve-like softness (250 kPa), high conductivity (16 000 S cm-1), and reversible stretchability. Soft multielectrode cuffs based on the composite achieve selective functional stimulation, recordings of sensory stimuli in rat sciatic nerves, and show an accelerated lifetime stability of >3 years. The scalable synthesis method provides a chemically stable alternative to the widely used AgNWs, thereby enabling new applications within electronics, biomedical devices, and electrochemistry.
Collapse
Affiliation(s)
- Laura Seufert
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Mohammed Elmahmoudy
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Charlotte Theunis
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Samuel Lienemann
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Yuyang Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Ulrika Boda
- RISE Research Institutes of Sweden, Digital Systems, Smart Hardware, Printed, Bio- and Organic Electronics, Södra Grytsgatan 4, Norrköping, SE-602 33, Sweden
| | | | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Per O Å Persson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, 581 83, Sweden
| | - Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Mary J Donahue
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| | - Simon Farnebo
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University Hospital, Linköping, 581 85, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, 581 85, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 602 21, Sweden
| |
Collapse
|
2
|
Carnicer-Lombarte A, Boys AJ, Güemes A, Gurke J, Velasco-Bosom S, Hilton S, Barone DG, Malliaras GG. Ultraconformable cuff implants for long-term bidirectional interfacing of peripheral nerves at sub-nerve resolutions. Nat Commun 2024; 15:7523. [PMID: 39214981 PMCID: PMC11364531 DOI: 10.1038/s41467-024-51988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Implantable devices interfacing with peripheral nerves exhibit limited longevity and resolution. Poor nerve-electrode interface quality, invasive surgical placement and development of foreign body reaction combine to limit research and clinical application of these devices. Here, we develop cuff implants with a conformable design that achieve high-quality and stable interfacing with nerves in chronic implantation scenarios. When implanted in sensorimotor nerves of the arm in awake rats for 21 days, the devices record nerve action potentials with fascicle-specific resolution and extract from these the conduction velocity and direction of propagation. The cuffs exhibit high biocompatibility, producing lower levels of fibrotic scarring than clinically equivalent PDMS silicone cuffs. In addition to recording nerve activity, the devices are able to modulate nerve activity at sub-nerve resolution to produce a wide range of paw movements. When used in a partial nerve ligation rodent model, the cuffs identify and characterise changes in nerve C fibre activity associated with the development of neuropathic pain in freely-moving animals. The developed implantable devices represent a platform enabling new forms of fine nerve signal sensing and modulation, with applications in physiology research and closed-loop therapeutics.
Collapse
Affiliation(s)
- Alejandro Carnicer-Lombarte
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, CB3 0FA, United Kingdom
| | - Alexander J Boys
- University of Cambridge, Department of Chemical Engineering and Biotechnology, Cambridge, CB2 0QQ, United Kingdom
| | - Amparo Güemes
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, CB3 0FA, United Kingdom
| | - Johannes Gurke
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, CB3 0FA, United Kingdom
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Santiago Velasco-Bosom
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, CB3 0FA, United Kingdom
| | - Sam Hilton
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, CB3 0FA, United Kingdom
| | - Damiano G Barone
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, CB3 0FA, United Kingdom.
- University of Cambridge, School of Clinical Medicine, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, United Kingdom.
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, CB3 0FA, United Kingdom.
| |
Collapse
|
3
|
Rodríguez‐Meana B, del Valle J, Viana D, Walston ST, Ria N, Masvidal‐Codina E, Garrido JA, Navarro X. Engineered Graphene Material Improves the Performance of Intraneural Peripheral Nerve Electrodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308689. [PMID: 38863325 PMCID: PMC11304253 DOI: 10.1002/advs.202308689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/09/2024] [Indexed: 06/13/2024]
Abstract
Limb neuroprostheses aim to restore motor and sensory functions in amputated or severely nerve-injured patients. These devices use neural interfaces to record and stimulate nerve action potentials, creating a bidirectional connection with the nervous system. Most neural interfaces are based on standard metal microelectrodes. In this work, a new generation of neural interfaces which replaces metals with engineered graphene, called EGNITE, is tested. In vitro and in vivo experiments are conducted to assess EGNITE biocompatibility. In vitro tests show that EGNITE does not impact cell viability. In vivo, no significant functional decrease or harmful effects are observed. Furthermore, the foreign body reaction to the intraneural implant is similar compared to other materials previously used in neural interfaces. Regarding functionality, EGNITE devices are able to stimulate nerve fascicles, during two months of implant, producing selective muscle activation with about three times less current compared to larger microelectrodes of standard materials. CNAP elicited by electrical stimuli and ENG evoked by mechanical stimuli are recorded with high resolution but are more affected by decreased functionality over time. This work constitutes further proof that graphene-derived materials, and specifically EGNITE, is a promising conductive material of neural electrodes for advanced neuroprostheses.
Collapse
Affiliation(s)
- Bruno Rodríguez‐Meana
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
| | - Jaume del Valle
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
- Department de Bioquímica i FisiologiaUniversitat de BarcelonaBarcelona08028Spain
| | - Damià Viana
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Steven T. Walston
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Nicola Ria
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Eduard Masvidal‐Codina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
| | - Jose A. Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UABBellaterra08193Spain
- ICREABarcelona08010Spain
| | - Xavier Navarro
- Institute of NeurosciencesDepartment of Cell BiologyPhysiology and ImmunologyUniversitat Autònoma de BarcelonaBellaterra08193Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadrid28031Spain
- Institut Guttmann of NeurorehabilitationBadalona08916Spain
| |
Collapse
|
4
|
Choi W, Park H, Oh S, Hong JH, Kim J, Yoon DS, Kim J. Fork-shaped neural interface with multichannel high spatial selectivity in the peripheral nerve of a rat. J Neural Eng 2024; 21:026004. [PMID: 38408386 DOI: 10.1088/1741-2552/ad2d31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Objective.This study aims to develop and validate a sophisticated fork-shaped neural interface (FNI) designed for peripheral nerves, focusing on achieving high spatial resolution, functional selectivity, and improved charge storage capacities. The objective is to create a neurointerface capable of precise neuroanatomical analysis, neural signal recording, and stimulation.Approach.Our approach involves the design and implementation of the FNI, which integrates 32 multichannel working electrodes featuring enhanced charge storage capacities and low impedance. An insertion guide holder is incorporated to refine neuronal selectivity. The study employs meticulous electrode placement, bipolar electrical stimulation, and comprehensive analysis of induced neural responses to verify the FNI's capabilities. Stability over an eight-week period is a crucial aspect, ensuring the reliability and durability of the neural interface.Main results.The FNI demonstrated remarkable efficacy in neuroanatomical analysis, exhibiting accurate positioning of motor nerves and successfully inducing various movements. Stable impedance values were maintained over the eight-week period, affirming the durability of the FNI. Additionally, the neural interface proved effective in recording sensory signals from different hind limb areas. The advanced charge storage capacities and low impedance contribute to the FNI's robust performance, establishing its potential for prolonged use.Significance.This research represents a significant advancement in neural interface technology, offering a versatile tool with broad applications in neuroscience and neuroengineering. The FNI's ability to capture both motor and sensory neural activity positions it as a comprehensive solution for neuroanatomical studies. Moreover, the precise neuromodulation potential of the FNI holds promise for applications in advanced bionic prosthetic control and therapeutic interventions. The study's findings contribute to the evolving field of neuroengineering, paving the way for enhanced understanding and manipulation of peripheral neural functions.
Collapse
Affiliation(s)
- Wonsuk Choi
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - HyungDal Park
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seonghwan Oh
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Hyun Hong
- Department of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| | - Junesun Kim
- Department of Health and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinseok Kim
- Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
5
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
6
|
Morales AW, Du J, Warren DJ, Fernández-Jover E, Martinez-Navarrete G, Bouteiller JMC, McCreery DC, Lazzi G. Machine learning enables non-Gaussian investigation of changes to peripheral nerves related to electrical stimulation. Sci Rep 2024; 14:2795. [PMID: 38307915 PMCID: PMC10837107 DOI: 10.1038/s41598-024-53284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Electrical stimulation of the peripheral nervous system (PNS) is becoming increasingly important for the therapeutic treatment of numerous disorders. Thus, as peripheral nerves are increasingly the target of electrical stimulation, it is critical to determine how, and when, electrical stimulation results in anatomical changes in neural tissue. We introduce here a convolutional neural network and support vector machines for cell segmentation and analysis of histological samples of the sciatic nerve of rats stimulated with varying current intensities. We describe the methodologies and present results that highlight the validity of the approach: machine learning enabled highly efficient nerve measurement collection, while multivariate analysis revealed notable changes to nerves' anatomy, even when subjected to levels of stimulation thought to be safe according to the Shannon current limits.
Collapse
Affiliation(s)
- Andres W Morales
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Jinze Du
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - David J Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | | - Jean-Marie C Bouteiller
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Gianluca Lazzi
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
- Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
7
|
Taghlabi KM, Cruz-Garza JG, Hassan T, Potnis O, Bhenderu LS, Guerrero JR, Whitehead RE, Wu Y, Luan L, Xie C, Robinson JT, Faraji AH. Clinical outcomes of peripheral nerve interfaces for rehabilitation in paralysis and amputation: a literature review. J Neural Eng 2024; 21:011001. [PMID: 38237175 DOI: 10.1088/1741-2552/ad200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Peripheral nerve interfaces (PNIs) are electrical systems designed to integrate with peripheral nerves in patients, such as following central nervous system (CNS) injuries to augment or replace CNS control and restore function. We review the literature for clinical trials and studies containing clinical outcome measures to explore the utility of human applications of PNIs. We discuss the various types of electrodes currently used for PNI systems and their functionalities and limitations. We discuss important design characteristics of PNI systems, including biocompatibility, resolution and specificity, efficacy, and longevity, to highlight their importance in the current and future development of PNIs. The clinical outcomes of PNI systems are also discussed. Finally, we review relevant PNI clinical trials that were conducted, up to the present date, to restore the sensory and motor function of upper or lower limbs in amputees, spinal cord injury patients, or intact individuals and describe their significant findings. This review highlights the current progress in the field of PNIs and serves as a foundation for future development and application of PNI systems.
Collapse
Affiliation(s)
- Khaled M Taghlabi
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Jesus G Cruz-Garza
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Taimur Hassan
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Medicine, Texas A&M University, Bryan, TX 77807, United States of America
| | - Ojas Potnis
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, United States of America
| | - Lokeshwar S Bhenderu
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- School of Medicine, Texas A&M University, Bryan, TX 77807, United States of America
| | - Jaime R Guerrero
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Rachael E Whitehead
- Department of Academic Affairs, Houston Methodist Academic Institute, Houston, TX 77030, United States of America
| | - Yu Wu
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Lan Luan
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Chong Xie
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Jacob T Robinson
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| | - Amir H Faraji
- Department of Neurological Surgery, Houston Methodist Hospital, Houston, TX 77030, United States of America
- Center for Neural Systems Restoration, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Clinical Innovations Laboratory, Houston Methodist Research Institute, Houston, TX 77030, United States of America
- Rice Neuroengineering Initiative, Rice University, Houston, TX 77005, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|
8
|
Donati E, Valle G. Neuromorphic hardware for somatosensory neuroprostheses. Nat Commun 2024; 15:556. [PMID: 38228580 PMCID: PMC10791662 DOI: 10.1038/s41467-024-44723-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies.
Collapse
Affiliation(s)
- Elisa Donati
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Giacomo Valle
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Chen Y, Zhou Y, Hu Z, Lu W, Li Z, Gao N, Liu N, Li Y, He J, Gao Q, Xie Z, Li J, He Y. Gelatin-Based Metamaterial Hydrogel Films with High Conformality for Ultra-Soft Tissue Monitoring. NANO-MICRO LETTERS 2023; 16:34. [PMID: 38019305 PMCID: PMC10686972 DOI: 10.1007/s40820-023-01225-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/24/2023] [Indexed: 11/30/2023]
Abstract
Implantable hydrogel-based bioelectronics (IHB) can precisely monitor human health and diagnose diseases. However, achieving biodegradability, biocompatibility, and high conformality with soft tissues poses significant challenges for IHB. Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues. This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film (GCF) with mechanical programmability. The regulation of GCF nearly covers soft tissue mechanics, an elastic modulus from 20 to 420 kPa, and a Poisson's ratio from - 0.25 to 0.52. The negative Poisson's ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces. The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability. Notably, the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration. The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues.
Collapse
Affiliation(s)
- Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zhuang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Ning Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China.
| | - Jiachun Li
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
10
|
Hu Z, Niu Q, Hsiao BS, Yao X, Zhang Y. Bioactive polymer-enabled conformal neural interface and its application strategies. MATERIALS HORIZONS 2023; 10:808-828. [PMID: 36597872 DOI: 10.1039/d2mh01125e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of in vivo connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes. In this review, we focus on the use of silk fibroin and cellulose biopolymers as well as certain synthetic polymers to offer the desired flexibility for constructing electrode substrates for a conformal neural interface. First, the development of a neural interface is reviewed, and the signal recording methods and tissue response features of the implanted electrodes are discussed in terms of biocompatibility and flexibility of corresponding neural interfaces. Following this, the material selection, structure design and integration of conformal neural interfaces accompanied by their effective applications are described. Finally, we offer our perspectives on the evolution of desired bioactive polymer-enabled neural interfaces, regarding the biocompatibility, electrical properties and mechanical softness.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
11
|
Patel PR, Welle EJ, Letner JG, Shen H, Bullard AJ, Caldwell CM, Vega-Medina A, Richie JM, Thayer HE, Patil PG, Cai D, Chestek CA. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices. J Neural Eng 2023; 20:10.1088/1741-2552/acab86. [PMID: 36595323 PMCID: PMC9954796 DOI: 10.1088/1741-2552/acab86] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Objective.The Utah array is widely used in both clinical studies and neuroscience. It has a strong track record of safety. However, it is also known that implanted electrodes promote the formation of scar tissue in the immediate vicinity of the electrodes, which may negatively impact the ability to record neural waveforms. This scarring response has been primarily studied in rodents, which may have a very different response than primate brain.Approach.Here, we present a rare nonhuman primate histological dataset (n= 1 rhesus macaque) obtained 848 and 590 d after implantation in two brain hemispheres. For 2 of 4 arrays that remained within the cortex, NeuN was used to stain for neuron somata at three different depths along the shanks. Images were filtered and denoised, with neurons then counted in the vicinity of the arrays as well as a nearby section of control tissue. Additionally, 3 of 4 arrays were imaged with a scanning electrode microscope to evaluate any materials damage that might be present.Main results.Overall, we found a 63% percent reduction in the number of neurons surrounding the electrode shanks compared to control areas. In terms of materials, the arrays remained largely intact with metal and Parylene C present, though tip breakage and cracks were observed on many electrodes.Significance.Overall, these results suggest that the tissue response in the nonhuman primate brain shows similar neuron loss to previous studies using rodents. Electrode improvements, for example using smaller or softer probes, may therefore substantially improve the tissue response and potentially improve the neuronal recording yield in primate cortex.
Collapse
Affiliation(s)
- Paras R. Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Elissa J. Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Joseph G. Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hao Shen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Autumn J. Bullard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ciara M. Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Julianna M. Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hope E. Thayer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Parag G. Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Dawen Cai
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48019, United States of America
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
- Robotics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
12
|
Yi D, Yao Y, Wang Y, Chen L. Manufacturing Processes of Implantable Microelectrode Array for In Vivo Neural Electrophysiological Recordings and Stimulation: A State-Of-the-Art Review. JOURNAL OF MICRO- AND NANO-MANUFACTURING 2022; 10:041001. [PMID: 37860671 PMCID: PMC10583290 DOI: 10.1115/1.4063179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Indexed: 10/21/2023]
Abstract
Electrophysiological recording and stimulation of neuron activities are important for us to understand the function and dysfunction of the nervous system. To record/stimulate neuron activities as voltage fluctuation extracellularly, microelectrode array (MEA) implants are a promising tool to provide high temporal and spatial resolution for neuroscience studies and medical treatments. The design configuration and recording capabilities of the MEAs have evolved dramatically since their invention and manufacturing process development has been a key driving force for such advancement. Over the past decade, since the White House Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative launched in 2013, advanced manufacturing processes have enabled advanced MEAs with increased channel count and density, access to more brain areas, more reliable chronic performance, as well as minimal invasiveness and tissue reaction. In this state-of-the-art review paper, three major types of electrophysiological recording MEAs widely used nowadays, namely, microwire-based, silicon-based, and flexible MEAs are introduced and discussed. Conventional design and manufacturing processes and materials used for each type are elaborated, followed by a review of further development and recent advances in manufacturing technologies and the enabling new designs and capabilities. The review concludes with a discussion on potential future directions of manufacturing process development to enable the long-term goal of large-scale high-density brain-wide chronic recordings in freely moving animals.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, 416 South 6th Street, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, E3437C Thomas & Nell Lafferre Hall, 416 South 6th Street, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854
| |
Collapse
|
13
|
Lee C, Vaskov AK, Gonzalez MA, Vu PP, Davis AJ, Cederna PS, Chestek CA, Gates DH. Use of regenerative peripheral nerve interfaces and intramuscular electrodes to improve prosthetic grasp selection: a case study. J Neural Eng 2022; 19:10.1088/1741-2552/ac9e1c. [PMID: 36317254 PMCID: PMC9942093 DOI: 10.1088/1741-2552/ac9e1c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022]
Abstract
Objective.Advanced myoelectric hands enable users to select from multiple functional grasps. Current methods for controlling these hands are unintuitive and require frequent recalibration. This case study assessed the performance of tasks involving grasp selection, object interaction, and dynamic postural changes using intramuscular electrodes with regenerative peripheral nerve interfaces (RPNIs) and residual muscles.Approach.One female with unilateral transradial amputation participated in a series of experiments to compare the performance of grasp selection controllers with RPNIs and intramuscular control signals with controllers using surface electrodes. These experiments included a virtual grasp-matching task with and without a concurrent cognitive task and physical tasks with a prosthesis including standardized functional assessments and a functional assessment where the individual made a cup of coffee ('Coffee Task') that required grasp transitions.Main results.In the virtual environment, the participant was able to select between four functional grasps with higher accuracy using the RPNI controller (92.5%) compared to surface controllers (81.9%). With the concurrent cognitive task, performance of the virtual task was more consistent with RPNI controllers (reduced accuracy by 1.1%) compared to with surface controllers (4.8%). When RPNI signals were excluded from the controller with intramuscular electromyography (i.e. residual muscles only), grasp selection accuracy decreased by up to 24%. The participant completed the Coffee Task with 11.7% longer completion time with the surface controller than with the RPNI controller. She also completed the Coffee Task with 11 fewer transition errors out of a maximum of 25 total errors when using the RPNI controller compared to surface controller.Significance.The use of RPNI signals in concert with residual muscles and intramuscular electrodes can improve grasp selection accuracy in both virtual and physical environments. This approach yielded consistent performance without recalibration needs while reducing cognitive load associated with pattern recognition for myoelectric control (clinical trial registration number NCT03260400).
Collapse
Affiliation(s)
- Christina Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Alex K. Vaskov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Philip P. Vu
- Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Alicia J. Davis
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, USA
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Section of Plastic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Deanna H. Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Robotics Institute, University of Michigan, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Valle G. Peripheral neurostimulation for encoding artificial somatosensations. Eur J Neurosci 2022; 56:5888-5901. [PMID: 36097134 PMCID: PMC9826263 DOI: 10.1111/ejn.15822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/08/2022] [Accepted: 09/08/2022] [Indexed: 01/11/2023]
Abstract
The direct neural stimulation of peripheral or central nervous systems has been shown as an effective tool to treat neurological conditions. The electrical activation of the nervous sensory pathway can be adopted to restore the artificial sense of touch and proprioception in people suffering from sensory-motor disorders. The modulation of the neural stimulation parameters has a direct effect on the electrically induced sensations, both when targeting the somatosensory cortex and the peripheral somatic nerves. The properties of the artificial sensations perceived, as their location, quality and intensity are strongly dependent on the direct modulation of pulse width, amplitude and frequency of the neural stimulation. Different sensory encoding schemes have been tested in patients showing distinct effects and outcomes according to their impact on the neural activation. Here, I reported the most adopted neural stimulation strategies to artificially encode somatosensation into the peripheral nervous system. The real-time implementation of these strategies in bionic devices is crucial to exploit the artificial sensory feedback in prosthetics. Thus, neural stimulation becomes a tool to directly communicate with the human nervous system. Given the importance of adding artificial sensory information to neuroprosthetic devices to improve their control and functionality, the choice of an optimal neural stimulation paradigm could increase the impact of prosthetic devices on the quality of life of people with sensorimotor disabilities.
Collapse
Affiliation(s)
- Giacomo Valle
- Laboratory for Neuroengineering, Department of Health Sciences and TechnologyInstitute for Robotics and Intelligent Systems, ETH ZürichZürichSwitzerland
| |
Collapse
|
15
|
Jeong H, Cho A, Ay I, Bonmassar G. Short-pulsed micro-magnetic stimulation of the vagus nerve. Front Physiol 2022; 13:938101. [PMID: 36277182 PMCID: PMC9585240 DOI: 10.3389/fphys.2022.938101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Vagus nerve stimulation (VNS) is commonly used to treat drug-resistant epilepsy and depression. The therapeutic effect of VNS depends on stimulating the afferent vagal fibers. However, the vagus is a mixed nerve containing afferent and efferent fibers, and the stimulation of cardiac efferent fibers during VNS may produce a rare but severe risk of bradyarrhythmia. This side effect is challenging to mitigate since VNS, via electrical stimulation technology used in clinical practice, requires unique electrode design and pulse optimization for selective stimulation of only the afferent fibers. Here we describe a method of VNS using micro-magnetic stimulation (µMS), which may be an alternative technique to induce a focal stimulation, enabling a selective fiber stimulation. Micro-coils were implanted into the cervical vagus nerve in adult male Wistar rats. For comparison, the physiological responses were recorded continuously before, during, and after stimulation with arterial blood pressure (ABP), respiration rate (RR), and heart rate (HR). The electrical VNS caused a decrease in ABP, RR, and HR, whereas µM-VNS only caused a transient reduction in RR. The absence of an HR modulation indicated that µM-VNS might provide an alternative technology to VNS with fewer heart-related side effects, such as bradyarrhythmia. Numerical electromagnetic simulations helped estimate the optimal coil orientation with respect to the nerve to provide information on the electric field’s spatial distribution and strength. Furthermore, a transmission emission microscope provided very high-resolution images of the cervical vagus nerve in rats, which identified two different populations of nerve fibers categorized as large and small myelinated fibers.
Collapse
Affiliation(s)
- Hongbae Jeong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Annabel Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- Department of Bioengineering, Harvard University, Cambridge, MA, United States
| | - Ilknur Ay
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- *Correspondence: Giorgio Bonmassar,
| |
Collapse
|
16
|
Valle G, Aiello G, Ciotti F, Cvancara P, Martinovic T, Kravic T, Navarro X, Stieglitz T, Bumbasirevic M, Raspopovic S. Multifaceted understanding of human nerve implants to design optimized electrodes for bioelectronics. Biomaterials 2022; 291:121874. [DOI: 10.1016/j.biomaterials.2022.121874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022]
|
17
|
Atkinson EW, Kuliasha CA, Kasper M, Furniturewalla A, Lim AS, Jiracek-Sapieha L, Brake A, Gormaley A, Rivera-Llabres V, Singh I, Spearman B, Rinaldi-Ramos CM, Schmidt CE, Judy JW, Otto KJ. Examining the in vivo functionality of the Magnetically Aligned Regenerative Tissue-Engineered Electronic Nerve Interface (MARTEENI). J Neural Eng 2022; 19. [PMID: 35998559 DOI: 10.1088/1741-2552/ac8bfe] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Although neural-enabled prostheses have been used to restore some lost functionality in clinical trials, they have faced difficulty in achieving high degree of freedom, natural use compared to healthy limbs. This study investigated the in vivo functionality of a flexible and scalable regenerative peripheral-nerve interface suspended within a microchannel-embedded, tissue-engineered hydrogel (the Magnetically Aligned Regenerative Tissue-Engineered Electronic Nerve Interface, MARTEENI) as a potential approach to improving current issues in peripheral nerve interfaces. APPROACH Assembled MARTEENI devices were implanted in the gaps of severed sciatic nerves in Lewis rats. Both acute and chronic electrophysiology were recorded, and channel-isolated activity was examined. In terminal experiments, evoked activity during paw compression and stimulus response curves generated from proximal nerve stimulation were examined. Electrochemical impedance spectroscopy was performed to assess the complex impedance of recording sites during chronic data collection. Features of the foreign-body response in non-functional implants were examined using immunohistological methods. MAIN RESULTS Channel-isolated activity was observed in acute, chronic, and terminal experiments and showed a typically biphasic morphology with peak-to-peak amplitudes varying between 50 to 500 µV. For chronic experiments, electrophysiology was observed for 77 days post-implant. Within the templated hydrogel, regenerating axons formed minifascicles that varied in both size and axon count and were also found to surround device threads. No axons were found to penetrate the foreign-body response. Together these results suggest the MARTEENI is a promising approach for interfacing with peripheral nerves. SIGNIFICANCE Findings demonstrate a high likelihood that observed electrophysiological activity recorded from implanted MARTEENIs originated from neural tissue. The variation in minifascicle size seen histologically suggests that amplitude distributions observed in functional MARTEENIs may be due to a combination of individual axon and mini-compound action potentials. This study provided an assessment of a functional MARTEENI in an in vivo animal model for the first time.
Collapse
Affiliation(s)
- Eric W Atkinson
- College of Medicine, University of Florida, 1064 Center Dr., New Engineering Building, Gainesville, 32611-7011, UNITED STATES
| | - Cary A Kuliasha
- Electrical and Computer Engineering, University of Florida, 968 Center Dr., New Engineering Building, Gainesville, Florida, 32611-7011, UNITED STATES
| | - Mary Kasper
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, P.O. Box 116131, Gainesville, Florida, 32611-7011, UNITED STATES
| | - Abbas Furniturewalla
- Electrical and Computer Engineering, University of Florida, 968 Center Dr., New Engineering Building, Gainesville, Florida, 32611-7011, UNITED STATES
| | - Alexander S Lim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., P.O. Box 117200, Gainesville, Florida, 32611-7011, UNITED STATES
| | - Ladan Jiracek-Sapieha
- Electrical and Computer Engineering, University of Florida, 968 Center Dr., Gainesville, Florida, 32611-7011, UNITED STATES
| | - Alexis Brake
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1064 Center Dr., New Engineering Building, Gainesville, 32611-7011, UNITED STATES
| | - Anne Gormaley
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1064 Center Dr., New Engineering Building, Gainesville, 32611-7011, UNITED STATES
| | - Victor Rivera-Llabres
- Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida, 32611-7011, UNITED STATES
| | - Ishita Singh
- Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, Florida, 32611-7011, UNITED STATES
| | - Benjamin Spearman
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1064 Center Dr., New Engineering Building, Gainesville, 32611-7011, UNITED STATES
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr, Gainesville, Florida, 32610, UNITED STATES
| | - Christine E Schmidt
- Biomedical Engineering Program, University of Florida, P.O. Box 116131, Gainesville , Florida, 32611, UNITED STATES
| | - Jack W Judy
- NIMET, University of Florida Herbert Wertheim College of Engineering, 1041 Center Dr, Gainesville, Florida, 32611-6550, UNITED STATES
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1064 Center Dr., Gainesville, Florida, 32611-7011, UNITED STATES
| |
Collapse
|
18
|
Silveira C, Khushaba RN, Brunton E, Nazarpour K. Spatio-temporal feature extraction in sensory electroneurographic signals. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210268. [PMID: 35658682 PMCID: PMC9289791 DOI: 10.1098/rsta.2021.0268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 06/15/2023]
Abstract
The recording and analysis of peripheral neural signal can provide insight for various prosthetic and bioelectronics medicine applications. However, there are few studies that investigate how informative features can be extracted from population activity electroneurographic (ENG) signals. In this study, five feature extraction frameworks were implemented on sensory ENG datasets and their classification performance was compared. The datasets were collected in acute rat experiments where multi-channel nerve cuffs recorded from the sciatic nerve in response to proprioceptive stimulation of the hindlimb. A novel feature extraction framework, which incorporates spatio-temporal focus and dynamic time warping, achieved classification accuracies above 90% while keeping a low computational cost. This framework outperformed the remaining frameworks tested in this study and has improved the discrimination accuracy of the sensory signals. Thus, this study has extended the tools available to extract features from sensory population activity ENG signals. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
Collapse
Affiliation(s)
- C. Silveira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - R. N. Khushaba
- Australian Center for Field Robotics, The University of Sydney, New South Wales 2006, Australia
| | - E. Brunton
- National Vision Research Institute, Australian College of Optometry, Carlton, Victoria 3053, Australia
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - K. Nazarpour
- Edinburgh Neuroprosthetics Laboratory, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
19
|
Akouissi O, Lacour SP, Micera S, DeSimone A. A finite element model of the mechanical interactions between peripheral nerves and intrafascicular implants. J Neural Eng 2022; 19. [PMID: 35861557 DOI: 10.1088/1741-2552/ac7d0e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 06/29/2022] [Indexed: 11/11/2022]
Abstract
Objective.Intrafascicular peripheral nerve implants are key components in the development of bidirectional neuroprostheses such as touch-enabled bionic limbs for amputees. However, the durability of such interfaces is hindered by the immune response following the implantation. Among the causes linked to such reaction, the mechanical mismatch between host nerve and implant is thought to play a decisive role, especially in chronic settings.Approach.Here we focus on modeling mechanical stresses induced on the peripheral nerve by the implant's micromotion using finite element analysis. Through multiple parametric sweeps, we analyze the role of the implant's material, geometry (aspect-ratio and shape), and surface coating, deriving a set of parameters for the design of better-integrated implants.Main results.Our results indicate that peripheral nerve implants should be designed and manufactured with smooth edges, using materials at most three orders of magnitude stiffer than the nerve, and with innovative geometries to redistribute micromotion-associated loads to less delicate parts of the nerve such as the epineurium.Significance.Overall, our model is a useful tool for the peripheral nerve implant designer that is mindful of the importance of implant mechanics for long term applications.
Collapse
Affiliation(s)
- Outman Akouissi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland.,Bertarelli Foundation Chair in Translational Neuroengineering, Translational Neural Engineering Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Translational Neural Engineering Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, 1202, Switzerland.,The Biorobotics Institute and Department of Excellence in Robotics & AI, Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Antonio DeSimone
- The Biorobotics Institute and Department of Excellence in Robotics & AI, Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy.,SISSA-International School for Advanced Studies, 34136 Trieste, Italy
| |
Collapse
|
20
|
Koh RGL, Zariffa J, Jabban L, Yen SC, Donaldson N, Metcalfe BW. Tutorial: A guide to techniques for analysing recordings from the peripheral nervous system. J Neural Eng 2022; 19. [PMID: 35772397 DOI: 10.1088/1741-2552/ac7d74] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
The nervous system, through a combination of conscious and automatic processes, enables the regulation of the body and its interactions with the environment. The peripheral nervous system is an excellent target for technologies that seek to modulate, restore or enhance these abilities as it carries sensory and motor information that most directly relates to a target organ or function. However, many applications require a combination of both an effective peripheral nerve interface and effective signal processing techniques to provide selective and stable recordings. While there are many reviews on the design of peripheral nerve interfaces, reviews of data analysis techniques and translational considerations are limited. Thus, this tutorial aims to support new and existing researchers in the understanding of the general guiding principles, and introduces a taxonomy for electrode configurations, techniques and translational models to consider.
Collapse
Affiliation(s)
- Ryan G L Koh
- IBBME, University of Toronto, Rosebrugh Bldg, 164 College St Room 407, Toronto, Ontario, M5S 3G9, CANADA
| | - Jose Zariffa
- Research, Toronto Rehabilitation Institute - University Health Network, 550 University Ave, #12-102, Toronto, Ontario, M5G 2A2, CANADA
| | - Leen Jabban
- Electronic and Electrical Engineering, University of Bath, Electronic and Electrical Engineering, Claverton Down, Bath, Bath, BA2 7AY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Shih-Cheng Yen
- Engineering Design and Innovation Centre, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, SINGAPORE
| | - Nick Donaldson
- Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Benjamin W Metcalfe
- Electronics & Electrical Engineering, University of Bath, Claverton Down, Bath, Somerset, BA2 7JY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
21
|
Park H, Choi W, Oh S, Kim YJ, Seok S, Kim J. A Study on Biocompatible Polymer-Based Packaging of Neural Interface for Chronic Implantation. MICROMACHINES 2022; 13:mi13040516. [PMID: 35457821 PMCID: PMC9027597 DOI: 10.3390/mi13040516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023]
Abstract
This paper proposed and verified the use of polymer-based packaging to implement the chronic implantation of neural interfaces using a combination of a commercial thermal epoxy and a thin parylene film. The packaging’s characteristics and the performance of the vulnerable interface between the thermal epoxy layer and polyimide layer, which is mainly used for neural electrodes and an FPCB, were evaluated through in vitro, in vivo, and acceleration experiments. The performance of neural interfaces—composed of the combination of the thermal epoxy and thin parylene film deposition as encapsulation packaging—was evaluated by using signal acquisition experiments based on artificial stimulation signal transmissions through in vitro and in vivo experiments. It has been found that, when commercial thermal epoxy normally cured at room temperature was cured at higher temperatures of 45 °C and 65 °C, not only is its lifetime increased with about twice the room-temperature-based curing conditions but also an interfacial adhesion is higher with more than twice the room-temperature-based curing conditions. In addition, through in vivo experiments using rats, it was confirmed that bodily fluids did not flow into the interface between the thermal epoxy and FPCB for up to 18 months, and it was verified that the rats maintained healthy conditions without occurring an immune response in the body to the thin parylene film deposition on the packaging’s surface.
Collapse
Affiliation(s)
- HyungDal Park
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.P.); (W.C.); (S.O.)
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Wonsuk Choi
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.P.); (W.C.); (S.O.)
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea
| | - Seonghwan Oh
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.P.); (W.C.); (S.O.)
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea
| | - Yong-Jun Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
- Correspondence: (Y.-J.K.); (S.S.); (J.K.)
| | - Seonho Seok
- Center for Nanoscience and Nanotechnology (C2N), University-Paris-Saclay, 91400 Orsay, France
- Correspondence: (Y.-J.K.); (S.S.); (J.K.)
| | - Jinseok Kim
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.P.); (W.C.); (S.O.)
- Correspondence: (Y.-J.K.); (S.S.); (J.K.)
| |
Collapse
|
22
|
Kim Y, Alimperti S, Choi P, Noh M. An Inkjet Printed Flexible Electrocorticography (ECoG) Microelectrode Array on a Thin Parylene-C Film. SENSORS (BASEL, SWITZERLAND) 2022; 22:1277. [PMID: 35162023 PMCID: PMC8838719 DOI: 10.3390/s22031277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
Abstract
Electrocorticography (ECoG) is a conventional, invasive technique for recording brain signals from the cortical surface using an array of electrodes. In this study, we developed a highly flexible 22-channel ECoG microelectrode array on a thin Parylene film using novel fabrication techniques. Narrow (<40 µm) and thin (<500 nm) microelectrode patterns were first printed on PDMS, then the patterns were transferred onto Parylene films via vapor deposition and peeling. A custom-designed, 3D-printed connector was built and assembled with the Parylene-based flexible ECoG microelectrode array without soldering. The impedance of the assembled ECoG electrode array was measured in vitro by electrochemical impedance spectroscopy, and the result was consistent. In addition, we conducted in vivo studies by implanting the flexible ECoG sensor in a rat and successfully recording brain signals.
Collapse
Affiliation(s)
- Yoontae Kim
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (S.A.)
| | - Stella Alimperti
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA; (Y.K.); (S.A.)
| | - Paul Choi
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Moses Noh
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Lee MW, Jang N, Choi N, Yang S, Jeong J, Nam HS, Oh S, Kim K, Hwang D. In Vivo Cellular-Level 3D Imaging of Peripheral Nerves Using a Dual-Focusing Technique for Intra-Neural Interface Implantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102876. [PMID: 34845862 PMCID: PMC8787432 DOI: 10.1002/advs.202102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
In vivo volumetric imaging of the microstructural changes of peripheral nerves with an inserted electrode could be key for solving the chronic implantation failure of an intra-neural interface necessary to provide amputated patients with natural motion and sensation. Thus far, no imaging devices can provide a cellular-level three-dimensional (3D) structural images of a peripheral nerve in vivo. In this study, an optical coherence tomography-based peripheral nerve imaging platform that employs a newly proposed depth of focus extension technique is reported. A point spread function with the finest transverse resolution of 1.27 µm enables the cellular-level volumetric visualization of the metal wire and microstructural changes in a rat sciatic nerve with the metal wire inserted in vivo. Further, the feasibility of applying the imaging platform to large animals for a preclinical study is confirmed through in vivo rabbit sciatic nerve imaging. It is expected that new possibilities for the successful chronic implantation of an intra-neural interface will open up by providing the 3D microstructural changes of nerves around the inserted electrode.
Collapse
Affiliation(s)
- Min Woo Lee
- Center for Intelligent and Interactive RoboticsKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Namseon Jang
- Center for Intelligent and Interactive RoboticsKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Nara Choi
- Center for Intelligent and Interactive RoboticsKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Sungwook Yang
- Center for Intelligent and Interactive RoboticsKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Jinwoo Jeong
- Center for Intelligent and Interactive RoboticsKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hyeong Soo Nam
- Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Sang‐Rok Oh
- Center for Intelligent and Interactive RoboticsKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Keehoon Kim
- Department of Mechanical EngineeringPohang University of Science and TechnologyGyeongbuk37673Republic of Korea
| | - Donghyun Hwang
- Center for Intelligent and Interactive RoboticsKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
24
|
Koppaka S, Hess-Dunning A, Tyler DJ. Directed stimulation with interfascicular interfaces for peripheral nerve stimulation. J Neural Eng 2021; 18. [PMID: 34706351 DOI: 10.1088/1741-2552/ac33e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
Objective.Computational models have shown that directional electrical contacts placed within the epineurium, between the fascicles, and not penetrating the perineurium, can achieve selectivity levels similar to point source contacts placed within the fascicle. The objective of this study is to test, in a murine model, the hypothesis that directed interfascicular contacts are selective.Approach.Multiple interfascicular electrodes with directional contacts, exposed on a single face, were implanted in the sciatic nerves of 32 rabbits. Fine-wire intramuscular wire electrodes were implanted to measure electromyographic (EMG) activity from medial and lateral gastrocnemius, soleus, and tibialis anterior muscles.Main results.The recruitment data demonstrated that directed interfascicular interfaces, which do not penetrate the perineurium, selectively activate different axon populations.Significance.Interfascicular interfaces that are inside the nerve, but do not penetrate the perineurium are an alternative to intrafascicular interfaces and may offer additional selectivity compared to extraneural approaches.
Collapse
Affiliation(s)
- Smruta Koppaka
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.,Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, United States of America.,Advanced Platform Technology (APT) Center, Cleveland, OH, United States of America
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.,Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, United States of America.,Advanced Platform Technology (APT) Center, Cleveland, OH, United States of America
| | - Dustin J Tyler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.,Louis Stokes Cleveland VA Medical Center, Rehabilitation R&D, Cleveland, OH, United States of America.,Advanced Platform Technology (APT) Center, Cleveland, OH, United States of America
| |
Collapse
|
25
|
Kubiak CA, Svientek SR, Dehdashtian A, Lawera NG, Nadarajan V, Bratley JV, Kung TA, Cederna PS, Kemp SWP. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves. J Neural Eng 2021; 18. [PMID: 34359056 DOI: 10.1088/1741-2552/ac1b6b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/06/2021] [Indexed: 11/11/2022]
Abstract
Background. Robotic exoskeleton devices have become a promising modality for restoration of extremity function in individuals with limb loss or functional weakness. However, there exists no consistent or reliable way to record efferent motor action potentials from intact peripheral nerves to control device movement. Peripheral nerve motor action potentials are similar in amplitude to that of background noise, producing an unfavorable signal-to-noise ratio (SNR) that makes these signals difficult to detect and interpret. To address this issue, we have developed the muscle cuff regenerative peripheral nerve interface (MC-RPNI), a construct consisting of a free skeletal muscle graft wrapped circumferentially around an intact peripheral nerve. Over time, the muscle graft regenerates, and the intact nerve undergoes collateral axonal sprouting to reinnervate the muscle. The MC-RPNI amplifies efferent motor action potentials by several magnitudes, thereby increasing the SNR, allowing for higher fidelity signaling and detection of motor intention. The goal of this study was to characterize the signaling capabilities and viability of the MC-RPNI over time.Methods. Thirty-seven rats were randomly assigned to one of five experimental groups (Groups A-E). For MC-RPNI animals, their contralateral extensor digitorum longus (EDL) muscle was harvested and trimmed to either 8 mm (Group A) or 13 mm (Group B) in length, wrapped circumferentially around the intact ipsilateral common peroneal (CP) nerve, secured, and allowed to heal for 3 months. Additionally, one 8 mm (Group C) and one 13 mm (Group D) length group had an epineurial window created in the CP nerve immediately preceding MC-RPNI creation. Group E consisted of sham surgery animals. At 3 months, electrophysiologic analyses were conducted to determine the signaling capabilities of the MC-RPNI. Additionally, electromyography and isometric force analyses were performed on the CP-innervated EDL to determine the effects of the MC-RPNI on end organ function. Following evaluation, the CP nerve, MC-RPNI, and ipsilateral EDL muscle were harvested for histomorphometric analysis.Results. Study endpoint analysis was performed at 3 months post-surgery. All rats displayed visible muscle contractions in both the MC-RPNI and EDL following proximal CP nerve stimulation. Compound muscle action potentials were recorded from the MC-RPNI following proximal CP nerve stimulation and ranged from 3.67 ± 0.58 mV to 6.04 ± 1.01 mV, providing efferent motor action potential amplification of 10-20 times that of a normal physiologic nerve action potential. Maximum tetanic isometric force (Fo) testing of the distally-innervated EDL muscle in MC-RPNI groups producedFo(2341 ± 114 mN-2832 ± 102 mN) similar to controls (2497 ± 122 mN), thus demonstrating that creation of MC-RPNIs did not adversely impact the function of the distally-innervated EDL muscle. Overall, comparison between all MC-RPNI sub-groups did not reveal any statistically significant differences in signaling capabilities or negative effects on distal-innervated muscle function as compared to the control group.Conclusions. MC-RPNIs have the capability to provide efferent motor action potential amplification from intact nerves without adversely impacting distal muscle function. Neither the size of the muscle graft nor the presence of an epineurial window in the nerve had any significant impact on the ability of the MC-RPNI to amplify efferent motor action potentials from intact nerves. These results support the potential for the MC-RPNI to serve as a biologic nerve interface to control advanced exoskeleton devices.
Collapse
Affiliation(s)
- Carrie A Kubiak
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Shelby R Svientek
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Amir Dehdashtian
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Nathan G Lawera
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Vidhya Nadarajan
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Jarred V Bratley
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Theodore A Kung
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America
| | - Paul S Cederna
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America.,Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States of America
| | - Stephen W P Kemp
- Department of Surgery, Section of Plastic Surgery, The University of Michigan Health System, 1150 W Medical Center Drive, Medical Sciences Research Building II, Rm.A570A, Ann Arbor, MI 48109-5456, United States of America.,Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
26
|
Veith A, Li X, Modi H, Abbaspour A, Luan L, Xie C, Baker AB. Optimized design of a hyperflexible sieve electrode to enhance neurovascular regeneration for a peripheral neural interface. Biomaterials 2021; 275:120924. [PMID: 34147716 PMCID: PMC9939235 DOI: 10.1016/j.biomaterials.2021.120924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 11/24/2022]
Abstract
One in 190 Americans is currently living with the loss of a limb resulted from injury, amputation, or neurodegenerative disease. Advanced neuroprosthetic devices combine peripheral neural interfaces with sophisticated prosthetics and hold great potential for the rehabilitation of impaired motor and sensory functions. While robotic prosthetics have advanced very rapidly, peripheral neural interfaces have long been limited by the capability of interfacing with the peripheral nervous system. In this work, we developed a hyperflexible regenerative sieve electrode to serve as a peripheral neural interface. We examined tissue neurovascular integration through this novel device. We demonstrated that we could enhance the neurovascular invasion through the device with directional growth factor delivery. Furthermore, we demonstrated that we could reduce the tissue reaction to the device often seen in peripheral neural interfaces. Finally, we show that we can create a stable tissue device interface in a long-term implantation that does not impede the normal regenerative processes of the nerve. Our study developed an optimal platform for the continued development of hyperflexible sieve electrode peripheral neural interfaces.
Collapse
Affiliation(s)
- Austin Veith
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - Xue Li
- Rice University, Department of Electrical and Computer Engineering, Houston, TX, USA
| | - Hailey Modi
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - Ali Abbaspour
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | - Lan Luan
- Rice University, Department of Electrical and Computer Engineering, Houston, TX, USA
| | - Chong Xie
- Rice University, Department of Electrical and Computer Engineering, Houston, TX, USA
| | - Aaron B Baker
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
27
|
Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004393. [PMID: 34166584 PMCID: PMC8373130 DOI: 10.1002/advs.202004393] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Indexed: 05/06/2023]
Abstract
Transmembrane charge (ion/electron) transfer is essential for maintaining cellular homeostasis and is involved in many biological processes, from protein synthesis to embryonic development in organisms. Designing implant devices that can detect or regulate cellular transmembrane charge transfer is expected to sense and modulate the behaviors of host cells and tissues. Thus, charge transfer can be regarded as a bridge connecting living systems and human-made implantable devices. This review describes the mode and mechanism of charge transfer between organisms and nonliving materials, and summarizes the strategies to endow implants with charge-transfer regulating or monitoring abilities. Furthermore, three major charge-transfer controlling systems, including wired, self-activated, and stimuli-responsive biomedical implants, as well as the design principles and pivotal materials are systematically elaborated. The clinical challenges and the prospects for future development of these implant devices are also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Yongfeng Mei
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
28
|
Ravagli E, Mastitskaya S, Thompson N, Welle EJ, Chestek CA, Aristovich K, Holder D. Fascicle localisation within peripheral nerves through evoked activity recordings: A comparison between electrical impedance tomography and multi-electrode arrays. J Neurosci Methods 2021; 358:109140. [PMID: 33774053 PMCID: PMC8249910 DOI: 10.1016/j.jneumeth.2021.109140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND The lack of understanding of fascicular organisation in peripheral nerves limits the potential of vagus nerve stimulation therapy. Two promising methods may be employed to identify the functional anatomy of fascicles within the nerve: fast neural electrical impedance tomography (EIT), and penetrating multi-electrode arrays (MEA). These could provide a means to image the compound action potential within fascicles in the nerve. NEW METHOD We compared the ability to localise fascicle activity between silicon shanks (SS) and carbon fibre (CF) multi-electrode arrays and fast neural EIT, with micro-computed tomography (MicroCT) as an independent reference. Fast neural EIT in peripheral nerves was only recently developed and MEA technology has been used only sparingly in nerves and not for source localisation. Assessment was performed in rat sciatic nerves while evoking neural activity in the tibial and peroneal fascicles. RESULTS Recorded compound action potentials were larger with CF compared to SS (∼700 μV vs ∼300 μV); however, background noise was greater (6.3 μV vs 1.7 μV) leading to lower SNR. Maximum spatial discrimination between Centres-of-Mass of fascicular activity was achieved by fast neural EIT (402 ± 30 μm) and CF MEA (414 ± 123 μm), with no statistical difference between MicroCT (625 ± 17 μm) and CF (p > 0.05) and between CF and EIT (p > 0.05). Compared to CF MEAs, SS MEAs had a lower discrimination power (103 ± 51 μm, p < 0.05). COMPARISON WITH EXISTING METHODS EIT and CF MEAs showed localisation power closest to MicroCT. Silicon MEAs adopted in this study failed to discriminate fascicle location. Re-design of probe geometry may improve results. CONCLUSIONS Nerve EIT is an accurate tool for assessment of fascicular position within nerves. Accuracy of EIT and CF MEA is similar to the reference method. We give technical recommendations for performing multi-electrode recordings in nerves.
Collapse
Affiliation(s)
- Enrico Ravagli
- Medical Physics and Biomedical Engineering, University College London, UK.
| | | | - Nicole Thompson
- Medical Physics and Biomedical Engineering, University College London, UK
| | - Elissa J Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kirill Aristovich
- Medical Physics and Biomedical Engineering, University College London, UK
| | - David Holder
- Medical Physics and Biomedical Engineering, University College London, UK
| |
Collapse
|
29
|
Welle EJ, Woods JE, Jiman AA, Richie JM, Bottorff EC, Ouyang Z, Seymour JP, Patel PR, Bruns TM, Chestek CA. Sharpened and Mechanically Durable Carbon Fiber Electrode Arrays for Neural Recording. IEEE Trans Neural Syst Rehabil Eng 2021; 29:993-1003. [PMID: 34014825 PMCID: PMC8459724 DOI: 10.1109/tnsre.2021.3082056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bioelectric medicine treatments target disorders of the nervous system unresponsive to pharmacological methods. While current stimulation paradigms effectively treat many disorders, the underlying mechanisms are relatively unknown, and current neuroscience recording electrodes are often limited in their specificity to gross averages across many neurons or axons. Here, we develop a novel, durable carbon fiber electrode array adaptable to many neural structures for precise neural recording. Carbon fibers ( [Formula: see text] diameter) were sharpened using a reproducible blowtorchmethod that uses the reflection of fibers against the surface of a water bath. The arrays were developed by partially embedding carbon fibers in medical-grade silicone to improve durability. We recorded acute spontaneous electrophysiology from the rat cervical vagus nerve (CVN), feline dorsal root ganglia (DRG), and rat brain. Blowtorching resulted in fibers of 72.3 ± 33.5-degree tip angle with [Formula: see text] exposed carbon. Observable neural clusters were recorded using sharpened carbon fiber electrodes fromrat CVN ( [Formula: see text]), feline DRG ( [Formula: see text]), and rat brain ( [Formula: see text]). Recordings from the feline DRG included physiologically relevant signals from increased bladder pressure and cutaneous brushing. These results suggest that this carbon fiber array is a uniquely durable and adaptable neural recordingdevice. In the future, this device may be useful as a bioelectric medicine tool for diagnosis and closed-loop neural control of therapeutic treatments and monitoring systems.
Collapse
|
30
|
Carnicer-Lombarte A, Chen ST, Malliaras GG, Barone DG. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front Bioeng Biotechnol 2021; 9:622524. [PMID: 33937212 PMCID: PMC8081831 DOI: 10.3389/fbioe.2021.622524] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
The implantation of any foreign material into the body leads to the development of an inflammatory and fibrotic process-the foreign body reaction (FBR). Upon implantation into a tissue, cells of the immune system become attracted to the foreign material and attempt to degrade it. If this degradation fails, fibroblasts envelop the material and form a physical barrier to isolate it from the rest of the body. Long-term implantation of medical devices faces a great challenge presented by FBR, as the cellular response disrupts the interface between implant and its target tissue. This is particularly true for nerve neuroprosthetic implants-devices implanted into nerves to address conditions such as sensory loss, muscle paralysis, chronic pain, and epilepsy. Nerve neuroprosthetics rely on tight interfacing between nerve tissue and electrodes to detect the tiny electrical signals carried by axons, and/or electrically stimulate small subsets of axons within a nerve. Moreover, as advances in microfabrication drive the field to increasingly miniaturized nerve implants, the need for a stable, intimate implant-tissue interface is likely to quickly become a limiting factor for the development of new neuroprosthetic implant technologies. Here, we provide an overview of the material-cell interactions leading to the development of FBR. We review current nerve neuroprosthetic technologies (cuff, penetrating, and regenerative interfaces) and how long-term function of these is limited by FBR. Finally, we discuss how material properties (such as stiffness and size), pharmacological therapies, or use of biodegradable materials may be exploited to minimize FBR to nerve neuroprosthetic implants and improve their long-term stability.
Collapse
Affiliation(s)
- Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Shao-Tuan Chen
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Sperry ZJ, Na K, Jun J, Madden LR, Socha A, Yoon E, Seymour JP, Bruns TM. High-density neural recordings from feline sacral dorsal root ganglia with thin-film array. J Neural Eng 2021; 18. [PMID: 33545709 DOI: 10.1088/1741-2552/abe398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
Objective. Dorsal root ganglia (DRG) are promising sites for recording sensory activity. Current technologies for DRG recording are stiff and typically do not have sufficient site density for high-fidelity neural data techniques.Approach. In acute experiments, we demonstrate single-unit neural recordings in sacral DRG of anesthetized felines using a 4.5µm thick, high-density flexible polyimide microelectrode array with 60 sites and 30-40µm site spacing. We delivered arrays into DRG with ultrananocrystalline diamond shuttles designed for high stiffness affording a smaller footprint. We recorded neural activity during sensory activation, including cutaneous brushing and bladder filling, as well as during electrical stimulation of the pudendal nerve and anal sphincter. We used specialized neural signal analysis software to sort densely packed neural signals.Main results. We successfully delivered arrays in five of six experiments and recorded single-unit sensory activity in four experiments. The median neural signal amplitude was 55μV peak-to-peak and the maximum unique units recorded at one array position was 260, with 157 driven by sensory or electrical stimulation. In one experiment, we used the neural analysis software to track eight sorted single units as the array was retracted ∼500μm.Significance. This study is the first demonstration of ultrathin, flexible, high-density electronics delivered into DRG, with capabilities for recording and tracking sensory information that are a significant improvement over conventional DRG interfaces.
Collapse
Affiliation(s)
- Zachariah J Sperry
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Kyounghwan Na
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
| | - James Jun
- Flatiron Institute, Simons Foundation, New York City, NY, United States of America
| | - Lauren R Madden
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| | - Alec Socha
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America
| | - Eusik Yoon
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America.,Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - John P Seymour
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States of America.,University of Texas Health Science Center, Department of Neurosurgery, Houston, TX, United States of America.,Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States of America
| | - Tim M Bruns
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
32
|
Abstract
Peripheral nerve interfaces (PNIs) record and/or modulate neural activity of nerves, which are responsible for conducting sensory-motor information to and from the central nervous system, and for regulating the activity of inner organs. PNIs are used both in neuroscience research and in therapeutical applications such as precise closed-loop control of neuroprosthetic limbs, treatment of neuropathic pain and restoration of vital functions (e.g. breathing and bladder management). Implantable interfaces represent an attractive solution to directly access peripheral nerves and provide enhanced selectivity both in recording and in stimulation, compared to their non-invasive counterparts. Nevertheless, the long-term functionality of implantable PNIs is limited by tissue damage, which occurs at the implant-tissue interface, and is thus highly dependent on material properties, biocompatibility and implant design. Current research focuses on the development of mechanically compliant PNIs, which adapt to the anatomy and dynamic movements of nerves in the body thereby limiting foreign body response. In this paper, we review recent progress in the development of flexible and implantable PNIs, highlighting promising solutions related to materials selection and their associated fabrication methods, and integrated functions. We report on the variety of available interface designs (intraneural, extraneural and regenerative) and different modulation techniques (electrical, optical, chemical) emphasizing the main challenges associated with integrating such systems on compliant substrates.
Collapse
Affiliation(s)
- Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland. Equally contributing authors
| | | | | | | |
Collapse
|
33
|
Abstract
The lifetime of neural implants is strongly dependent on packaging due to the aqueous and biochemically aggressive nature of the body. Over the last decade, there has been a drive towards neuromodulatory implants which are wireless and approaching millimeter-scales with increasing electrode count. A so-far unrealized goal for these new types of devices is an in-vivo lifetime comparable to a sizable fraction of a healthy patient's lifetime (>10-20 years). Existing, approved medical implants commonly encapsulate components in metal enclosures (e.g. titanium) with brazed ceramic inserts for electrode feedthrough. It is unclear how amenable the traditional approach is to the simultaneous goals of miniaturization, increased channel count, and wireless communication. Ceramic materials have also played a significant role in traditional medical implants due to their dielectric properties, corrosion resistance, biocompatibility, and high strength, but are not as commonly used for housing materials due to their brittleness and the difficulty they present in creating complex housing geometries. However, thin-film technology has opened new opportunities for ceramics processing. Thin films derived largely from the semiconductor industry can be deposited and patterned in new ways, have conductivities which can be altered during manufacturing to provide conductors as well as insulators, and can be used to fabricate flexible substrates. In this review, we give an overview of packaging for neural implants, with an emphasis on how ceramic materials have been utilized in medical device packaging, as well as how ceramic thin-film micromachining and processing may be further developed to create truly reliable, miniaturized, neural implants.
Collapse
Affiliation(s)
- Konlin Shen
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, United States of America
| | | |
Collapse
|
34
|
Yang W, Gong Y, Li W. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants. Front Bioeng Biotechnol 2021; 8:622923. [PMID: 33585422 PMCID: PMC7873964 DOI: 10.3389/fbioe.2020.622923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 01/28/2023] Open
Abstract
To date, a wide variety of neural tissue implants have been developed for neurophysiology recording from living tissues. An ideal neural implant should minimize the damage to the tissue and perform reliably and accurately for long periods of time. Therefore, the materials utilized to fabricate the neural recording implants become a critical factor. The materials of these devices could be classified into two broad categories: electrode materials as well as packaging and substrate materials. In this review, inorganic (metals and semiconductors), organic (conducting polymers), and carbon-based (graphene and carbon nanostructures) electrode materials are reviewed individually in terms of various neural recording devices that are reported in recent years. Properties of these materials, including electrical properties, mechanical properties, stability, biodegradability/bioresorbability, biocompatibility, and optical properties, and their critical importance to neural recording quality and device capabilities, are discussed. For the packaging and substrate materials, different material properties are desired for the chronic implantation of devices in the complex environment of the body, such as biocompatibility and moisture and gas hermeticity. This review summarizes common solid and soft packaging materials used in a variety of neural interface electrode designs, as well as their packaging performances. Besides, several biopolymers typically applied over the electrode package to reinforce the mechanical rigidity of devices during insertion, or to reduce the immune response and inflammation at the device-tissue interfaces are highlighted. Finally, a benchmark analysis of the discussed materials and an outlook of the future research trends are concluded.
Collapse
Affiliation(s)
| | | | - Wen Li
- Microtechnology Lab, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
35
|
Gupta S, Ghatak S, Hery T, Khanna S, El Masry M, Sundaresan VB, Sen CK. Ad hoc hybrid synaptic junctions to detect nerve stimulation and its application to detect onset of diabetic polyneuropathy. Biosens Bioelectron 2020; 169:112618. [PMID: 33007616 DOI: 10.1016/j.bios.2020.112618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 01/05/2023]
Abstract
We report a minimally invasive, synaptic transistor-based construct to monitor in vivo neuronal activity via a longitudinal study in mice and use depolarization time from measured data to predict the onset of polyneuropathy. The synaptic transistor is a three-terminal device in which ionic coupling between pre- and post-synaptic electrodes provides a framework for sensing low-power (sub μW) and high-bandwidth (0.1-0.5 kHz) ionic currents. A validated first principles-based approach is discussed to demonstrate the significance of this sensing framework and we introduce a metric, referred to as synaptic efficiency to quantify structural and functional properties of the electrodes in sensing. The application of this framework for in vivo neuronal sensing requires a post-synaptic electrode and its reference electrode and the tissue becomes the pre-synaptic signal. The ionic coupling resembles axo-axonic junction and hence we refer to this framework as an ad hoc synaptic junction. We demonstrate that this arrangement can be applied to measure excitability of sciatic nerves due to a stimulation of the footpad in cohorts of m+/db and db/db mice for detecting loss in sensitivity and onset of polyneuropathy. The signal attributes were subsequently integrated with machine learning-based framework to identify the probability of polyneuropathy and to detect the onset of diabetic polyneuropathy.
Collapse
Affiliation(s)
- Sujasha Gupta
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43220, USA
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Travis Hery
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43220, USA
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mohamed El Masry
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Plastic and Reconstructive Surgery Department, Zagazig University, 44519, Egypt
| | - Vishnu Baba Sundaresan
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43220, USA.
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
36
|
Kolarcik CL, Castro CA, Lesniak A, Demetris AJ, Fisher LE, Gaunt RA, Weber DJ, Cui XT. Host tissue response to floating microelectrode arrays chronically implanted in the feline spinal nerve. J Neural Eng 2020; 17:046012. [PMID: 32434161 DOI: 10.1088/1741-2552/ab94d7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Neural interfacing technologies could significantly improve quality of life for people living with the loss of a limb. Both motor commands and sensory feedback must be considered; these complementary systems are segregated from one another in the spinal nerve. APPROACH The dorsal root ganglion-ventral root (DRG-VR) complex was targeted chronically with floating microelectrode arrays designed to record from motor neuron axons in the VR or stimulate sensory neurons in the DRG. Hematoxylin and eosin and Nissl/Luxol fast blue staining were performed. Characterization of the tissue response in regions of interest and pixel-based image analyses were used to quantify MAC387 (monocytes/macrophages), NF200 (axons), S100 (Schwann cells), vimentin (fibroblasts, endothelial cells, astrocytes), and GLUT1 (glucose transport proteins) reactivity. Implanted roots were compared to non-implanted roots and differences between the VR and DRG examined. MAIN RESULTS The tissue response associated with chronic array implantation in this peripheral location is similar to that observed in central nervous system locations. Markers of inflammation were increased in implanted roots relative to control roots with MAC387 positive cells distributed throughout the region corresponding to the device footprint. Significant decreases in neuronal density and myelination were observed in both the VR, which contains only neuronal axons, and the DRG, which contains both neuronal axons and cell bodies. Notably, decreases in NF200 in the VR were observed only at implant times less than ten weeks. Observations related to the blood-nerve barrier and tissue integrity suggest that tissue remodeling occurs, particularly in the VR. SIGNIFICANCE This study was designed to assess the viability of the DRG-VR complex as a site for neural interfacing applications and suggests that continued efforts to mitigate the tissue response will be critical to achieve the overall goal of a long-term, reliable neural interface.
Collapse
Affiliation(s)
- Christi L Kolarcik
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America. Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegic Mellon University, Pittsburgh, PA, United States of America. McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America. Systems Neuroscience Center, Pittsburgh, PA, United States of America. Live Like Lou Center for ALS Research, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sergi PN, Valle JD, Oliva NDL, Micera S, Navarro X. A data-driven polynomial approach to reproduce the scar tissue outgrowth around neural implants. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:59. [PMID: 32632521 DOI: 10.1007/s10856-020-06396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Despite the huge complexity of the foreign body reaction, a quantitative assessment over time of the scar tissue thickness around implanted materials is needed to figure out the evolution of neural implants for long times. A data-driven approach, based on phenomenological polynomial functions, is able to reproduce experimental data. Nevertheless, a misuse of this strategy may lead to unsatisfactory results, even if standard indexes are optimized. In this work, an effective in silico procedure was presented to reproduce the scar tissue dynamics around implanted synthetic devices and to predict the capsule thickness for times before and after experimental detections.
Collapse
Affiliation(s)
- Pier Nicola Sergi
- Translational Neural Engineering Area, The BioRobotics Institute, Sant'Anna School of Advanced Studies, PSV, 56025, Pontedera, Pisa, Italy.
| | - Jaume Del Valle
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autónoma de Barcellona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Natalia de la Oliva
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autónoma de Barcellona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Silvestro Micera
- Translational Neural Engineering Area, The BioRobotics Institute, Sant'Anna School of Advanced Studies, PSV, 56025, Pontedera, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autónoma de Barcellona, and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
38
|
Na K, Sperry ZJ, Lu J, Vöröslakos M, Parizi SS, Bruns TM, Yoon E, Seymour JP. Novel diamond shuttle to deliver flexible neural probe with reduced tissue compression. MICROSYSTEMS & NANOENGINEERING 2020; 6:37. [PMID: 32528723 PMCID: PMC7261651 DOI: 10.1038/s41378-020-0149-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 05/05/2023]
Abstract
The ability to deliver flexible biosensors through the toughest membranes of the central and peripheral nervous system is an important challenge in neuroscience and neural engineering. Bioelectronic devices implanted through dura mater and thick epineurium would ideally create minimal compression and acute damage as they reach the neurons of interest. We demonstrate that a three-dimensional diamond shuttle can be easily made with a vertical support to deliver ultra-compliant polymer microelectrodes (4.5-µm thick) through dura mater and thick epineurium. The diamond shuttle has 54% less cross-sectional area than an equivalently stiff silicon shuttle, which we simulated will result in a 37% reduction in blood vessel damage. We also discovered that higher frequency oscillation of the shuttle (200 Hz) significantly reduced tissue compression regardless of the insertion speed, while slow speeds also independently reduced tissue compression. Insertion and recording performance are demonstrated in rat and feline models, but the large design space of these tools are suitable for research in a variety of animal models and nervous system targets.
Collapse
Affiliation(s)
- Kyounghwan Na
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
| | - Zachariah J. Sperry
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48105 USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105 USA
| | - Jiaao Lu
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
| | - Mihaly Vöröslakos
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
- The Neuroscience Institute, New York University, New York, NY 10016 USA
| | - Saman S. Parizi
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
| | - Tim M. Bruns
- Biomedical Engineering Department, University of Michigan, Ann Arbor, MI 48105 USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48105 USA
| | - Euisik Yoon
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722 Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei-IBS Institute, Yonsei University, Seoul, 03722 Korea
| | - John P. Seymour
- Electrical Engineering & Computer Science Department, University of Michigan, Ann Arbor, MI 48105 USA
- Vivian L Smith Department of Neurosurgery, University of Texas Health Science Center, Houston, TX 77030 USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 USA
| |
Collapse
|
39
|
Yildiz KA, Shin AY, Kaufman KR. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J Neuroeng Rehabil 2020; 17:43. [PMID: 32151268 PMCID: PMC7063740 DOI: 10.1186/s12984-020-00667-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
The field of prosthetics has been evolving and advancing over the past decade, as patients with missing extremities are expecting to control their prostheses in as normal a way as possible. Scientists have attempted to satisfy this expectation by designing a connection between the nervous system of the patient and the prosthetic limb, creating the field of neuroprosthetics. In this paper, we broadly review the techniques used to bridge the patient's peripheral nervous system to a prosthetic limb. First, we describe the electrical methods including myoelectric systems, surgical innovations and the role of nerve electrodes. We then describe non-electrical methods used alone or in combination with electrical methods. Design concerns from an engineering point of view are explored, and novel improvements to obtain a more stable interface are described. Finally, a critique of the methods with respect to their long-term impacts is provided. In this review, nerve electrodes are found to be one of the most promising interfaces in the future for intuitive user control. Clinical trials with larger patient populations, and for longer periods of time for certain interfaces, will help to evaluate the clinical application of nerve electrodes.
Collapse
Affiliation(s)
- Kadir A Yildiz
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kenton R Kaufman
- Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
- Motion Analysis Laboratory, W. Hall Wendel, Jr., Musculoskeletal Research, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
40
|
Characterization of Parylene-C degradation mechanisms: In vitro reactive accelerated aging model compared to multiyear in vivo implantation. Biomaterials 2020; 232:119731. [DOI: 10.1016/j.biomaterials.2019.119731] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 12/19/2019] [Accepted: 12/25/2019] [Indexed: 11/23/2022]
|
41
|
Nanivadekar AC, Ayers CA, Gaunt RA, Weber DJ, Fisher LE. Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays. J Neural Eng 2019; 17:016011. [PMID: 31577993 PMCID: PMC9131467 DOI: 10.1088/1741-2552/ab4a24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We have shown previously that microstimulation of the lumbar dorsal root ganglia (L5-L7 DRG) using penetrating microelectrodes, selectively recruits distal branches of the sciatic and femoral nerves in an acute preparation. However, a variety of challenges limit the clinical translatability of DRG microstimulation via penetrating electrodes. For clinical translation of a DRG somatosensory neural interface, electrodes placed on the epineural surface of the DRG may be a viable path forward. The goal of this study was to evaluate the recruitment properties of epineural electrodes and compare their performance with that of penetrating electrodes. Here, we compare the number of selectively recruited distal nerve branches and the threshold stimulus intensities between penetrating and epineural electrode arrays. APPROACH Antidromically propagating action potentials were recorded from multiple distal branches of the femoral and sciatic nerves in response to epineural stimulation on 11 ganglia in four cats to quantify the selectivity of DRG stimulation. Compound action potentials (CAPs) were recorded using nerve cuff electrodes implanted around up to nine distal branches of the femoral and sciatic nerve trunks. We also tested stimulation selectivity with penetrating microelectrode arrays implanted into ten ganglia in four cats. A binary search was carried out to identify the minimum stimulus intensity that evoked a response at any of the distal cuffs, as well as whether the threshold response selectively occurred in only a single distal nerve branch. MAIN RESULTS Stimulation evoked activity in just a single peripheral nerve through 67% of epineural electrodes (35/52) and through 79% of the penetrating microelectrodes (240/308). The recruitment threshold (median = 9.67 nC/phase) and dynamic range of epineural stimulation (median = 1.01 nC/phase) were significantly higher than penetrating stimulation (0.90 nC/phase and 0.36 nC/phase, respectively). However, the pattern of peripheral nerves recruited for each DRG were similar for stimulation through epineural and penetrating electrodes. SIGNIFICANCE Despite higher recruitment thresholds, epineural stimulation provides comparable selectivity and superior dynamic range to penetrating electrodes. These results suggest that it may be possible to achieve a highly selective neural interface with the DRG without penetrating the epineurium.
Collapse
Affiliation(s)
- Ameya C Nanivadekar
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America. Rehabilitation Neural Engineering Laboratories, 3520 Fifth Avenue, Suite 300, Pittsburgh, PA 15213, United States of America. Center for Neural Basis of Cognition, Pittsburgh, PA 15213, United States of America
| | | | | | | | | |
Collapse
|
42
|
A review for the peripheral nerve interface designer. J Neurosci Methods 2019; 332:108523. [PMID: 31743684 DOI: 10.1016/j.jneumeth.2019.108523] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022]
Abstract
Informational density and relative accessibility of the peripheral nervous system make it an attractive site for therapeutic intervention. Electrode-based electrophysiological interfaces with peripheral nerves have been under development since the 1960s and, for several applications, have seen widespread clinical implementation. However, many applications require a combination of neural target resolution and stability which has thus far eluded existing peripheral nerve interfaces (PNIs). With the goal of aiding PNI designers in development of devices that meet the demands of next-generation applications, this review seeks to collect and present practical considerations and best practices which emerge from the literature, including both lessons learned during early PNI development and recent ideas. Fundamental and practical principles guiding PNI design are reviewed, followed by an updated and critical account of existing PNI designs and strategies. Finally, a brief survey of in vitro and in vivo PNI characterization methods is presented.
Collapse
|
43
|
Gao L, Wang J, Guan S, Du M, Wu K, Xu K, Zou L, Tian H, Fang Y. Magnetic Actuation of Flexible Microelectrode Arrays for Neural Activity Recordings. NANO LETTERS 2019; 19:8032-8039. [PMID: 31580687 DOI: 10.1021/acs.nanolett.9b03232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Implantable microelectrodes that can be remotely actuated via external fields are promising tools to interface with biological systems at a high degree of precision. Here, we report the development of flexible magnetic microelectrodes (FMμEs) that can be remotely actuated by magnetic fields. The FMμEs consist of flexible microelectrodes integrated with dielectrically encapsulated FeNi (iron-nickel) alloy microactuators. Both magnetic torque- and force-driven actuation of the FMμEs have been demonstrated. Nanoplatinum-coated FMμEs have been applied for in vivo recordings of neural activities from peripheral nerves and cerebral cortex of mice. Moreover, owing to their ultrasmall sizes and mechanical compliance with neural tissues, chronically implanted FMμEs elicited greatly reduced neuronal cell loss in mouse brain compared to conventional stiff probes. The FMμEs open up a variety of new opportunities for electrically interfacing with biological systems in a controlled and minimally invasive manner.
Collapse
Affiliation(s)
- Lei Gao
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jinfen Wang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- State Key Laboratories of Transducer Technology , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Shouliang Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Mingde Du
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- Department of Electronics and Nanoengineering , Aalto University , Espoo FI-00076 , Finland
| | - Kun Wu
- State Key Laboratory of High Temperature Gas Dynamics , Institute of Mechanics, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Ke Xu
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Liang Zou
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Huihui Tian
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Ying Fang
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
- CAS Center for Excellence in Brain Science and Intelligence Technology , Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| |
Collapse
|
44
|
Shafer B, Welle C, Vasudevan S. A rat model for assessing the long-term safety and performance of peripheral nerve electrode arrays. J Neurosci Methods 2019; 328:108437. [PMID: 31526764 DOI: 10.1016/j.jneumeth.2019.108437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/05/2019] [Accepted: 09/13/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND High-resolution peripheral nerve interfaces (PNIs) can provide amputees with intuitive motor control and sensory feedback. Current PNIs are limited by early device failure and suboptimal long-term stability. The present study aims to incorporate functional assessment into an in vivo test platform to assess the long-term safety and performance of PNIs for recording and stimulation. NEW METHODS Utah electrode arrays (EA) were implanted in the rat sciatic nerve along with electromyography wires in the gastrocnemius and tibialis anterior. Cranial EEG screws were implanted in the somatosensory cortex for 12 weeks. Spontaneous neural activity was recorded using the implanted EA and stimulation-induced activity was monitored throughout the experiment. The impedance of each electrode was measured, and nerve function tests were conducted throughout the EA lifetime. Post-hoc safety assessments included scanning electron microscopy (SEM) of the EA and nerve histomorphometric analysis. RESULTS EA recordings were stable, and stimulation with EA elicited somatosensory evoked potentials and muscle contractions. Motor and sensory function tests indicated minimal deficits. Histomorphometric analysis indicated changes in nerve microstructure. SEM indicated EA-tip fracture, while lead wire breakage primarily caused device failure. COMPARISON WITH EXISTING METHODS We improved our prior platform with the addition of functional assessments of sensory pathways, a robust EMG array design to increase device longevity, and quantitative analysis of nerve microstructure. CONCLUSION We present a test platform for long-term assessment of peripheral nerve interfaces for stimulation and recording. Using this platform, we demonstrate recording and stimulation with minimal impact on nerve function, while EA lead wire breakage and tip fracture could limit long-term device use.
Collapse
Affiliation(s)
- Benjamin Shafer
- U. S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, USA
| | - Cristin Welle
- University of Colorado, Anschutz Medical Campus, Departments of Neurosurgery and Bioengineering, Aurora, CO, 80045, USA
| | - Srikanth Vasudevan
- U. S. Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratory (OSEL), Division of Biomedical Physics (DBP), Silver Spring, MD, USA.
| |
Collapse
|
45
|
Ngan CGY, Kapsa RMI, Choong PFM. Strategies for neural control of prosthetic limbs: from electrode interfacing to 3D printing. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1927. [PMID: 31207952 PMCID: PMC6631966 DOI: 10.3390/ma12121927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 01/28/2023]
Abstract
Limb amputation is a major cause of disability in our community, for which motorised prosthetic devices offer a return to function and independence. With the commercialisation and increasing availability of advanced motorised prosthetic technologies, there is a consumer need and clinical drive for intuitive user control. In this context, rapid additive fabrication/prototyping capacities and biofabrication protocols embrace a highly-personalised medicine doctrine that marries specific patient biology and anatomy to high-end prosthetic design, manufacture and functionality. Commercially-available prosthetic models utilise surface electrodes that are limited by their disconnect between mind and device. As such, alternative strategies of mind-prosthetic interfacing have been explored to purposefully drive the prosthetic limb. This review investigates mind to machine interfacing strategies, with a focus on the biological challenges of long-term harnessing of the user's cerebral commands to drive actuation/movement in electronic prostheses. It covers the limitations of skin, peripheral nerve and brain interfacing electrodes, and in particular the challenges of minimising the foreign-body response, as well as a new strategy of grafting muscle onto residual peripheral nerves. In conjunction, this review also investigates the applicability of additive tissue engineering at the nerve-electrode boundary, which has led to pioneering work in neural regeneration and bioelectrode development for applications at the neuroprosthetic interface.
Collapse
Affiliation(s)
- Catherine G Y Ngan
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne 3065, VIC, Australia.
- Biofab3D@ACMD, St Vincent's Hospital Melbourne, Melbourne 3065, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Wollongong 2500, NSW, Australia.
| | - Rob M I Kapsa
- Biofab3D@ACMD, St Vincent's Hospital Melbourne, Melbourne 3065, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Wollongong 2500, NSW, Australia.
- Department of Medicine, The University of Melbourne, Melbourne 3065, VIC, Australia.
- Department of Clinical Neurosciences, St Vincent's Hospital, Melbourne 3065, VIC, Australia.
| | - Peter F M Choong
- Department of Surgery, The University of Melbourne, St Vincent's Hospital, Melbourne 3065, VIC, Australia.
- Biofab3D@ACMD, St Vincent's Hospital Melbourne, Melbourne 3065, VIC, Australia.
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, Wollongong 2500, NSW, Australia.
- Department of Orthopaedics, St Vincent's Hospital, Melbourne 3065, VIC, Australia.
| |
Collapse
|
46
|
Zheng X, Woeppel KM, Griffith AY, Chang E, Looker MJ, Fisher LE, Clapsaddle BJ, Cui XT. Soft Conducting Elastomer for Peripheral Nerve Interface. Adv Healthc Mater 2019; 8:e1801311. [PMID: 30843365 DOI: 10.1002/adhm.201801311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/24/2019] [Indexed: 12/17/2022]
Abstract
State-of-the-art intraneural electrodes made from silicon or polyimide substrates have shown promise in selectively modulating efferent and afferent activity in the peripheral nervous system. However, when chronically implanted, these devices trigger a multiphase foreign body response ending in device encapsulation. The presence of encapsulation increases the distance between the electrode and the excitable tissue, which not only reduces the recordable signal amplitude but also requires increased current to activate nearby axons. Herein, this study reports a novel conducting polymer based intraneural electrode which has Young's moduli similar to that of nerve tissue. The study first describes material optimization of the soft wire conductive matrix and evaluates their mechanical and electrochemical properties. Second, the study demonstrates 3T3 cell survival when cultured with media eluted from the soft wires. Third, the study presents acute in vivo functionality for stimulation of peripheral nerves to evoke force and compound muscle action potential in a rat model. Furthermore, comprehensive histological analyses show that soft wires elicit significantly less scar tissue encapsulation, less changes to axon size, density and morphology, and reduced macrophage activation compared to polyimide implants in the sciatic nerves at 1 month postimplantation.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Kevin M Woeppel
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Azante Y Griffith
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| | - Emily Chang
- TDA Research Inc., 12345 W. 52nd Street, Wheat Ridge, CO, 80033, USA
| | - Michael J Looker
- TDA Research Inc., 12345 W. 52nd Street, Wheat Ridge, CO, 80033, USA
| | - Lee E Fisher
- Department of Physical Medicine and Rehabilitation, Department of Bioengineering, University of Pittsburgh, 3250 Fifth Ave., Pittsburgh, PA, 15213, USA
| | | | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, PA, 15213, USA
| |
Collapse
|
47
|
Hope J, Aristovich K, Chapman CAR, Volschenk A, Vanholsbeeck F, McDaid A. Extracting impedance changes from a frequency multiplexed signal during neural activity in sciatic nerve of rat: preliminary study in vitro. Physiol Meas 2019; 40:034006. [DOI: 10.1088/1361-6579/ab0c24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
de la Oliva N, Del Valle J, Delgado-Martinez I, Mueller M, Stieglitz T, Navarro X. Long-Term Functionality of Transversal Intraneural Electrodes Is Improved By Dexamethasone Treatment. IEEE Trans Neural Syst Rehabil Eng 2019; 27:457-464. [PMID: 30716042 DOI: 10.1109/tnsre.2019.2897256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuroprostheses aimed to restore lost functions after a limb amputation are based on the interaction with the nervous system by means of neural interfaces. Among the different designs, intraneural electrodes implanted in peripheral nerves represent a good strategy to stimulate nerve fibers to send sensory feedback and to record nerve signals to control the prosthetic limb. However, intraneural electrodes, as any device implanted in the body, induce a foreign body reaction (FBR) that results in the tissue encapsulation of the device. The FBR causes a progressive decline of the electrode functionality over time due to the physical separation between the electrode active sites and the axons to interface. Modulation of the inflammatory response has arisen as a good strategy to reduce the FBR and maintain electrode functionality. In this study transversal intraneural multi-channel electrodes (TIMEs) were implanted in the rat sciatic nerve and tested for 3 months to evaluate stimulation and recording capabilities under chronic administration of dexamethasone. Dexamethasone treatment significantly reduced the threshold for evoking muscle responses during the follow-up compared to saline-treated animals, without affecting the selectivity of stimulation. However, dexamethasone treatment did not improve the signal-to-noise ratio of the recorded neural signals. Dexamethasone treatment allowed to maintain more working active sites along time than saline treatment. Thus, systemic administration of dexamethasone appears as a useful treatment in chronically implanted animals with neural electrodes as it increases the number of functioning contacts of the implanted TIME and reduces the intensity needed to stimulate the nerve.
Collapse
|
49
|
Vargas L, Whitehouse G, Huang H, Zhu Y, Hu X. Evoked Haptic Sensation in the Hand With Concurrent Non-Invasive Nerve Stimulation. IEEE Trans Biomed Eng 2019; 66:2761-2767. [PMID: 30703003 DOI: 10.1109/tbme.2019.2895575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Haptic perception is critical for prosthetic users to control their prosthetic hand intuitively. In this study, we seek to evaluate the haptic perception evoked from concurrent stimulation trains through multiple channels using transcutaneous nerve stimulation. METHODS A 2 × 8 electrode grid was used to deliver current to the median and ulnar nerves in the upper arm. Different electrodes were first selected to activate the sensory axons, which can elicit sensations at different locations of the hand. Charge-balanced bipolar stimulation was then delivered to two sets of electrodes concurrently with a phase delay (dual stimulation) to determine whether the evoked sensation can be constructed from sensations of single stimulation delivered separately at different locations (single stimulation) along the electrode grid. The temporal delay between the two stimulation trains was altered to evaluate potential interference. The short-term stability of the haptic sensation within a testing session was also evaluated. RESULTS The evoked sensation during dual stimulation was largely a direct summation of the sensation from single stimulations. The delay between the two stimulation locations had minimal effect on the evoked sensations, which was also stable over repeated testing within a session. CONCLUSION Our results indicated that the haptic sensations at different regions of the hand can be constructed by combining the response from multiple stimulation trains directly. The interference between stimulations were minimal. SIGNIFICANCE The outcomes will allow us to construct specific haptic sensation patterns when the prosthesis interacts with different objects, which may help improve user embodiment of the prosthesis.
Collapse
|
50
|
Günter C, Delbeke J, Ortiz-Catalan M. Safety of long-term electrical peripheral nerve stimulation: review of the state of the art. J Neuroeng Rehabil 2019; 16:13. [PMID: 30658656 PMCID: PMC6339286 DOI: 10.1186/s12984-018-0474-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Electrical stimulation of peripheral nerves is used in a variety of applications such as restoring motor function in paralyzed limbs, and more recently, as means to provide intuitive sensory feedback in limb prostheses. However, literature on the safety requirements for stimulation is scarce, particularly for chronic applications. Some aspects of nerve interfacing such as the effect of stimulation parameters on electrochemical processes and charge limitations have been reviewed, but often only for applications in the central nervous system. This review focuses on the safety of electrical stimulation of peripheral nerve in humans. METHODS We analyzed early animal studies evaluating damage thresholds, as well as more recent investigations in humans. Safety requirements were divided into two main categories: passive and active safety. We made the distinction between short-term (< 30 days) and chronic (> 30 days) applications, as well as between electrode preservation (biostability) and body tissue healthy survival (harmlessness). In addition, transferability of experimental results between different tissues and species was considered. RESULTS At present, extraneural electrodes have shown superior long-term stability in comparison to intraneural electrodes. Safety limitations on pulse amplitude (and consequently, charge injection) are dependent on geometrical factors such as electrode placement, size, and proximity to the stimulated fiber. In contrast, other parameters such as stimulation frequency and percentage of effective stimulation time are more generally applicable. Currently, chronic stimulation at frequencies below 30 Hz and percentages of effective stimulation time below 50% is considered safe, but more precise data drawn from large databases are necessary. Unfortunately, stimulation protocols are not systematically documented in the literature, which limits the feasibility of meta-analysis and impedes the generalization of conclusions. We therefore propose a standardized list of parameters necessary to define electrical stimulation and allow future studies to contribute to meta-analyses. CONCLUSION The safety of chronic continuous peripheral nerve stimulation at frequencies higher than 30 Hz has yet to be documented. Precise parameter values leading to stimulation-induced depression of neuronal excitability (SIDNE) and neuronal damage, as well as the transition between the two, are still lacking. At present, neural damage mechanisms through electrical stimulation remain obscure.
Collapse
Affiliation(s)
- Clara Günter
- Biomechatronics and Neurorehabilitation Laboratory, Department of Electrical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jean Delbeke
- LCEN3, Department of Neurology, Institute of Neuroscience, Ghent University, C. Heymanslaan, 10, 9000, Ghent, Belgium
| | - Max Ortiz-Catalan
- Biomechatronics and Neurorehabilitation Laboratory, Department of Electrical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden. .,Integrum AB, Krokslätts Fabriker 50, 43137, Mölndal, Sweden.
| |
Collapse
|