1
|
Wan H, Deng K, Huang Z, Yang Y, Jing B, Feng Y, Li Y, Liu Y, Lu M, Zhao X. Pathogen-Mimicking Nanoparticles Based on Rigid Nanomaterials as an Efficient Subunit Vaccine Delivery System for Intranasal Immunization. Adv Healthc Mater 2024; 13:e2401120. [PMID: 38888501 DOI: 10.1002/adhm.202401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Despite the safety profile of subunit vaccines, the inferior immunogenicity hinders their application in the nasal cavity. This study introduces a novel antigen delivery and adjuvant system utilizing mucoadhesive chitosan-catechol (Chic) on silica spiky nanoparticles (Ssp) to enhance immunity through multiple mechanisms. The Chic functionalizes the Ssp surface and incorporates with SARS-CoV-2 spike protein receptor-binding domain (RBD) and toll-like receptor (TLR)9 agonist unmethylated cytosine-guanine (CpG) motif, forming uniform virus-like nanoparticles (Ssp-Chic-RBD-CpG) via electrostatic and covalent interactions. Ssp-Chic-RBD-CpG, mimicking the morphology and function of inactive virions, effectively prolongs the retention time of RBD in the nasal mucosa by 3.92-fold compared to RBD alone, enhances the maturation of dendritic cells (DCs), and facilitates the antigen trafficking to the draining lymph nodes, which subsequently induces a stronger mucosal immunity. Mechanistically, the enhanced chemokine chemokine (C-C motif) ligand 20 (CCL20)-driven DCs recruitment and maturation by Ssp-Chic-RBD-CpG are evidenced by a cell co-culture model. In addition, the overexpression of TLR4/9 and activation of MYD88/NF-κB signaling pathway in activation of DCs are observed. Proof of principle is obtained for RBD, but similar delivery mechanisms can be applied in other protein-based subunit vaccines as well when intranasal administration is needed.
Collapse
Affiliation(s)
- Hongping Wan
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Deng
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengqun Huang
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunhan Yang
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yumei Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Yuanfeng Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinghong Zhao
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
2
|
Zhao J, He J, Ding X, Zhou Y, Liu M, Chen X, Quan W, Hua D, Tong J, Li J. DENV Peptides Delivered as Spherical Nucleic Acid Constructs Enhance Antigen Presentation and Immunogenicity in vitro and in vivo. Int J Nanomedicine 2024; 19:9757-9770. [PMID: 39318604 PMCID: PMC11421446 DOI: 10.2147/ijn.s467427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Background The global prevalence of Dengue virus (DENV) infection poses a significant health risk, urging the need for effective vaccinations. Peptide vaccines, known for their capacity to induce comprehensive immunity against multiple virus serotypes, offer promise due to their stability, safety, and design flexibility. Spherical nucleic acid (SNA), particularly those with gold nanoparticle cores, present an attractive avenue for enhancing peptide vaccine efficacy due to their modularity and immunomodulatory properties. Methods The spherical nucleic acid-TBB (SNA-TBB), a novel nanovaccine construct, was fabricated through the co-functionalization process of SNA with epitope peptide, targeting all four serotypes of the DENV. This innovative approach aims to enhance immunogenicity and provide broad-spectrum protection against DENV infections. The physicochemical properties of SNA-TBB were characterized using dynamic light scattering, zeta potential measurement, and transmission electron microscopy. In vitro assessments included endocytosis studies, cytotoxicity evaluation, bone marrow-dendritic cells (BMDCs) maturation and activation analysis, cytokine detection, RNA sequencing, and transcript level analysis in BMDCs. In vivo immunization studies in mice involved evaluating IgG antibody titers, serum protection against DENV infection and safety assessment of nanovaccines. Results SNA-TBB demonstrated successful synthesis, enhanced endocytosis, and favorable physicochemical properties. In vitro assessments revealed no cytotoxicity and promoted BMDCs maturation. Cytokine analyses exhibited heightened IL-12p70, TNF-α, and IL-1β levels. Transcriptomic analysis highlighted genes linked to BMDCs maturation and immune responses. In vivo studies immunization with SNA-TBB resulted in elevated antigen-specific IgG antibody levels and conferred protection against DENV infection in neonatal mice. Evaluation of in vivo safety showed no signs of adverse effects in vital organs. Conclusion The study demonstrates the successful development of SNA-TBB as a promising nanovaccine platform against DENV infection and highlights the potential of SNA-based peptide vaccines as a strategy for developing safe and effective antiviral immunotherapy.
Collapse
Affiliation(s)
- Jing Zhao
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jiuxiang He
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaoyan Ding
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yuxin Zhou
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Minchi Liu
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaozhong Chen
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Wenxuan Quan
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Dong Hua
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jun Tong
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jintao Li
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
3
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
4
|
Deng K, Huang Z, Jing B, Zhu L, Feng Y, Jiang Q, Xu Z, Wan H, Zhao X. Mucoadhesive chitosan-catechol as an efficient vaccine delivery system for intranasal immunization. Int J Biol Macromol 2024; 273:133008. [PMID: 38852736 DOI: 10.1016/j.ijbiomac.2024.133008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The mucosal barrier and scavenging effect of the mucosal layer are two main obstacles in inducing mucosal immunization. To overcome these obstacles, we synthesized a bio-inspired mucoadhesive material, chitosan-catechol (ChiC), for surface modification of inactive porcine epidemic diarrhea virus (PEDV). Studies have revealed that PEDV particles can be facilely and mildly modified by Chi-C forming Chi-C-PEDV nanoparticles (Chic-Ps) through the covalent and electrostatic bond, which effectively prolongs the retention time of PEDV in the nasal mucosa. The cell co-culture model demonstrated that Chic-Ps exhibit enhanced recruitment of dendritic cells via the secretion of stimulating chemokine CCL20 and improving antigen permeability by disruption the distribution of ZO-1 protein in epithelial cells. Additionally, the flow cytometry (FCM) analysis revealed that Chic-Ps facilitate trafficking to lymph nodes and induce stronger cellular and humoral immune responses compared to unmodified PEDV. Notably, Chic-Ps induced a higher level of PEDV neutralizing antibody was induced by Chic-Ps in the nasal washes, as confirmed by a plaque reduction neutralization test. These results demonstrate that Chi-C is a promising nasal delivery system for vaccines. Proof of principle was obtained for inactivated PEDV, but similar delivery mechanisms could be applied in other vaccines when intranasal administration is needed.
Collapse
Affiliation(s)
- Kai Deng
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengqun Huang
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yumei Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University at Wenjiang, Chengdu 611130, China
| | - Qin Jiang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Wan
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinghong Zhao
- Center for Infectious Diseases Control (CIDC), Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Center for Sustainable Antimicrobials, Department of Pharmacy, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Zhang X, Ning F, Chen Y, Dong CM. All-in-one polysaccharide hydrogel with resistant vascular burst pressure and cooperative wound microenvironment regulation for fatal arterial hemorrhage and diabetic wound healing. Int J Biol Macromol 2024; 272:132736. [PMID: 38830494 DOI: 10.1016/j.ijbiomac.2024.132736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Fatal massive hemorrhage and diabetic wound healing are world widely challenging in surgical managements, and uncontrolled bleeding, chronic inflammation and damaged remodeling heavily hinder the whole healing processes. Considering hemostasis, inflammation and wound microenvironment cooperatively affect the healing progression, we design all-in-one beta-glucan (BG) hybrid hydrogels reinforced with laponite nanoclay that demonstrate tunable tissue adhesion, resistant vascular burst pressure and cooperative wound microenvironment regulation for arterial hemostasis and diabetic wound prohealing. Those hydrogels had honeycomb-like porous microstructure with average pore size of 7-19 μm, tissue adhesion strength of 18-46 kPa, and vascular burst pressure of 58-174 mmHg to achieve superior hemostasis in rat liver and femoral artery models. They could effectively scavenge reactive oxygen species, transform macrophages from proinflammatory M1 into prohealing M2, and shorten the inflammation duration via synergistic actions of BG and nitric oxide (NO). Single treatment of NO-releasing BG hybrid hydrogels attained complete closure of diabetic wounds within 14 days, orchestrated to accelerate the epithelization and dermis growth, and restored normal vascularization, achieving high performance healing with optimal collagen deposition and hair follicle regeneration. Consequently, this work opens up a new avenue to design all-in-one polysaccharide hydrogels for applications in massive bleeding hemostats and diabetic wound dressings.
Collapse
Affiliation(s)
- Xueliang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fangrui Ning
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
6
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
7
|
Zhang H, Lai L, Wang Z, Zhang J, Zhou J, Nie Y, Chen J. Glycogen for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Int J Biol Macromol 2024; 257:128536. [PMID: 38061522 DOI: 10.1016/j.ijbiomac.2023.128536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
CpG oligodeoxynucleotides (ODNs) strongly activate the immune system after binding to toll-like receptor 9 (TLR9) in lysosome, which demonstrated significant potential in cancer immunotherapy. However, their therapeutic efficacy is limited by drawbacks such as rapid degradation and poor cellular uptake. Although encouraging progress have been made on developing various delivery systems for CpG ODNs, safety risks of the synthetic nanocarriers as well as the deficient CpG ODNs release within lysosome remain big obstacles. Herein, we developed a novel nanovector for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Natural glycogen was simply aminated (NH2-Gly) through grafting with diethylenetriamine (DETA), which was spherical in shape with diameter of approximately 40 nm. NH2-Gly possessed good biocompatibility. Cationic NH2-Gly complexed CpG ODNs well and protected them from nuclease digestion. NH2-Gly significantly enhanced the cellular uptake of CpG ODNs. Efficient CpG ODNs release was observed in the presence of α-glucosidase that mimicking the environment of lysosome. Consequently, NH2-Gly/CpG complexes triggered potent antitumor immunity and effectively inhibit the tumor growth without causing any toxic effect or tissue damages. This work highlights the promise of glycogen for lysosome-targeted on-command delivery of CpG ODNs, which brings new hope for precision cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Li Lai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianzhu Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Chen Z, Yong T, Wei Z, Zhang X, Li X, Qin J, Li J, Hu J, Yang X, Gan L. Engineered Probiotic-Based Personalized Cancer Vaccine Potentiates Antitumor Immunity through Initiating Trained Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305081. [PMID: 38009498 PMCID: PMC10797439 DOI: 10.1002/advs.202305081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Cancer vaccines hold great potential for clinical cancer treatment by eliciting T cell-mediated immunity. However, the limited numbers of antigen-presenting cells (APCs) at the injection sites, the insufficient tumor antigen phagocytosis by APCs, and the presence of a strong tumor immunosuppressive microenvironment severely compromise the efficacy of cancer vaccines. Trained innate immunity may promote tumor antigen-specific adaptive immunity. Here, a personalized cancer vaccine is developed by engineering the inactivated probiotic Escherichia coli Nissle 1917 to load tumor antigens and β-glucan, a trained immunity inducer. After subcutaneous injection, the cancer vaccine delivering model antigen OVA (BG/OVA@EcN) is highly accumulated and phagocytosed by macrophages at the injection sites to induce trained immunity. The trained macrophages may recruit dendritic cells (DCs) to facilitate BG/OVA@EcN phagocytosis and the subsequent DC maturation and T cell activation. In addition, BG/OVA@EcN remarkably enhances the circulating trained monocytes/macrophages, promoting differentiation into M1-like macrophages in tumor tissues. BG/OVA@EcN generates strong prophylactic and therapeutic efficacy to inhibit tumor growth by inducing potent adaptive antitumor immunity and long-term immune memory. Importantly, the cancer vaccine delivering autologous tumor antigens efficiently prevents postoperative tumor recurrence. This platform offers a facile translatable strategy to efficiently integrate trained immunity and adaptive immunity for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaoxia Chen
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Tuying Yong
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhan430074China
| | - Zhaohan Wei
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaoqiong Zhang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xin Li
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jiaqi Qin
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jianye Li
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jun Hu
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhan430074China
| | - Xiangliang Yang
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhan430074China
| | - Lu Gan
- National Engineering Research Center for NanomedicineCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
9
|
Zhang H, Wang Z, Wang S, Zhang J, Qiu L, Chen J. Aminated yeast β-D-glucan for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced cancer immunotherapy. Int J Biol Macromol 2023; 253:126998. [PMID: 37729981 DOI: 10.1016/j.ijbiomac.2023.126998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
CpG oligodeoxynucleotides (CpG ODNs) activate immune system and show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hampered due to rapid nuclease degradation and insufficient cellular uptake. Delivery of CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy. Herein, we developed a super-convenient yet efficient strategy for macrophage-targeted delivery of CpG ODNs and synergistically enhanced cancer immunotherapy. Aminated yeast β-D-glucan (NH2-Glu) was simply synthesized through functionalization of β-D-glucan with DETA, which exhibited a dendrimer-like shape with size of about 80 nm. NH2-Glu complexed negatively-charged CpG ODNs. The as-prepared NH2-Glu/CpG complexes were positively charged, uniformly dispersed and exhibited good stability against nuclease degradation. Due to the specific recognition with dectin-1 expressed on macrophages, NH2-Glu/CpG complexes targeted macrophage and exhibited significantly enhanced cellular uptake due to dectin-1-mediated endocytosis. NH2-Glu/CpG complexes showed potent immunostimulatory activity. Contributed by the inherent immunostimulatory and antitumor activity, yeast β-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. NH2-Glu/CpG complexes remarkably inhibited tumor growth without causing toxic effect. In summary, this work provides a facile yet efficient macrophage-targeted CpG ODNs delivery system for cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Clemente B, Denis M, Silveira CP, Schiavetti F, Brazzoli M, Stranges D. Straight to the point: targeted mRNA-delivery to immune cells for improved vaccine design. Front Immunol 2023; 14:1294929. [PMID: 38090568 PMCID: PMC10711611 DOI: 10.3389/fimmu.2023.1294929] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
With the deepening of our understanding of adaptive immunity at the cellular and molecular level, targeting antigens directly to immune cells has proven to be a successful strategy to develop innovative and potent vaccines. Indeed, it offers the potential to increase vaccine potency and/or modulate immune response quality while reducing off-target effects. With mRNA-vaccines establishing themselves as a versatile technology for future applications, in the last years several approaches have been explored to target nanoparticles-enabled mRNA-delivery systems to immune cells, with a focus on dendritic cells. Dendritic cells (DCs) are the most potent antigen presenting cells and key mediators of B- and T-cell immunity, and therefore considered as an ideal target for cell-specific antigen delivery. Indeed, improved potency of DC-targeted vaccines has been proved in vitro and in vivo. This review discusses the potential specific targets for immune system-directed mRNA delivery, as well as the different targeting ligand classes and delivery systems used for this purpose.
Collapse
|
11
|
Wijfjes Z, van Dalen FJ, Le Gall CM, Verdoes M. Controlling Antigen Fate in Therapeutic Cancer Vaccines by Targeting Dendritic Cell Receptors. Mol Pharm 2023; 20:4826-4847. [PMID: 37721387 PMCID: PMC10548474 DOI: 10.1021/acs.molpharmaceut.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Antigen-presenting cells (APCs) orchestrate immune responses and are therefore of interest for the targeted delivery of therapeutic vaccines. Dendritic cells (DCs) are professional APCs that excel in presentation of exogenous antigens toward CD4+ T helper cells, as well as cytotoxic CD8+ T cells. DCs are highly heterogeneous and can be divided into subpopulations that differ in abundance, function, and phenotype, such as differential expression of endocytic receptor molecules. It is firmly established that targeting antigens to DC receptors enhances the efficacy of therapeutic vaccines. While most studies emphasize the importance of targeting a specific DC subset, we argue that the differential intracellular routing downstream of the targeted receptors within the DC subset should also be considered. Here, we review the mouse and human receptors studied as target for therapeutic vaccines, focusing on antibody and ligand conjugates and how their targeting affects antigen presentation. We aim to delineate how targeting distinct receptors affects antigen presentation and vaccine efficacy, which will guide target selection for future therapeutic vaccine development.
Collapse
Affiliation(s)
- Zacharias Wijfjes
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Floris J. van Dalen
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Camille M. Le Gall
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn Verdoes
- Chemical
Immunology group, Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
12
|
Luo X, Song Z, Zeng X, Ye Y, Zheng H, Cai D, Yuan Q, Li H, Tong Y, Lu D, Liu Y, Zeng H, Yang Y, Sun H, Zou Q. A promising self-nanoemulsifying adjuvant with plant-derived saponin D boosts immune response and exerts an anti-tumor effect. Front Immunol 2023; 14:1154836. [PMID: 37415983 PMCID: PMC10319991 DOI: 10.3389/fimmu.2023.1154836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Objectives The low immunogenicity of tumor antigens and unacceptable toxicity of adjuvants has hindered the application and development of tumor vaccines. Hence, we designed a novel anti-tumor vaccine composed of a plant-derived immunostimulant molecular nanoadjuvant (a self-nanoemulsifying system, SND) and the antigen OVA, to reinvigorate the immune response and inhibit tumor progression. Methods In this study, this novel nanoadjuvant with Saponin D (SND) was designed and prepared by low-energy emulsification methods. Several important characteristics of the SND, including morphology, size, polymer dispersity index (PDI), zeta potential, and stability, were estimated, and the cytotoxicity of the SND was evaluated by MTT assay. Additionally, the immune response in terms of antibody titer levels and cellular immunity were evaluated in vivo after immunization with the vaccine, and the preventative and therapeutic effects of this novel vaccine against tumors were estimated. Finally, the antigen release profile was determined by IVIS imaging and by in vivo assay. Results This SND nanoadjuvant had good characteristics including the average particle size of 26.35 ± 0.225 nm, narrow distribution of 0.221 ± 1.76, and stability zeta potential of -12.9 ± 0.83 mV. And also, it had good stability (size, PDI, zeta potential, antigen stability) and low toxicity in vitro and in vivo, and delayed antigen release in vivo. The humoral immune response (IgG, IgG1, IgG2a, and IgG2b) and cellular immune level (cytokines of splenocytes including IFN-γ, IL-4, IL-1β andIL-17A) were both improved greatly after injected immunization at 0, 14, 28 days with the novel nanoadjuvant and antigen OVA. Importantly, this novel nanoadjuvant combined with OVA might lead to the induction of the prevent and treatment efficacy in the E.G7-OVA tumor-bearing mice. Conclusions These results suggested that this novel nanoadjuvant encapsulated natural plant immunostimulant molecular OPD could be a good candidate of tumor vaccine adjuvant for reinvigorating the immune response and powerfully inhibiting tumor growth effect.
Collapse
Affiliation(s)
- Xing Luo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Clinical Laboratory, The 954 Army Hospital, Shannan, Tibet, China
| | - Xiaogqiang Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yan Ye
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hailin Zheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Dingyi Cai
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qingpeng Yuan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Haibo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yanan Tong
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Dongshui Lu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hongwu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
13
|
Yang F, Cheung PCK. Fungal β-Glucan-Based Nanotherapeutics: From Fabrication to Application. J Fungi (Basel) 2023; 9:jof9040475. [PMID: 37108930 PMCID: PMC10143420 DOI: 10.3390/jof9040475] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Fungal β-glucans are naturally occurring active macromolecules used in food and medicine due to their wide range of biological activities and positive health benefits. Significant research efforts have been devoted over the past decade to producing fungal β-glucan-based nanomaterials and promoting their uses in numerous fields, including biomedicine. Herein, this review offers an up-to-date report on the synthetic strategies of common fungal β-glucan-based nanomaterials and preparation methods such as nanoprecipitation and emulsification. In addition, we highlight current examples of fungal β-glucan-based theranostic nanosystems and their prospective use for drug delivery and treatment in anti-cancer, vaccination, as well as anti-inflammatory treatments. It is anticipated that future advances in polysaccharide chemistry and nanotechnology will aid in the clinical translation of fungal β-glucan-based nanomaterials for the delivery of drugs and the treatment of illnesses.
Collapse
Affiliation(s)
- Fan Yang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| |
Collapse
|
14
|
Zhang Y, Wu J, Dong E, Wang Z, Xiao H. Toll-like receptors in cardiac hypertrophy. Front Cardiovasc Med 2023; 10:1143583. [PMID: 37113698 PMCID: PMC10126280 DOI: 10.3389/fcvm.2023.1143583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that can identify pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLRs play an important role in the innate immune response, leading to acute and chronic inflammation. Cardiac hypertrophy, an important cardiac remodeling phenotype during cardiovascular disease, contributes to the development of heart failure. In previous decades, many studies have reported that TLR-mediated inflammation was involved in the induction of myocardium hypertrophic remodeling, suggesting that targeting TLR signaling might be an effective strategy against pathological cardiac hypertrophy. Thus, it is necessary to study the mechanisms underlying TLR functions in cardiac hypertrophy. In this review, we summarized key findings of TLR signaling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanan Zhang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jimin Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- Department of Clinical Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Correspondence: Zhanli Wang Han Xiao
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University Third Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, China
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Correspondence: Zhanli Wang Han Xiao
| |
Collapse
|
15
|
Xu Y, Liang M, Huang J, Fan Y, Long H, Chen Q, Ren Z, Wu C, Wang Y. Single-helical formyl β-glucan effectively deliver CpG DNA with poly(dA) to macrophages for enhanced vaccine effects. Int J Biol Macromol 2022; 223:67-76. [PMID: 36336158 DOI: 10.1016/j.ijbiomac.2022.10.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Single helical β-glucan is a one-dimensional host that can form a hybrid helix with DNAs/RNAs as delivery systems. However, unmodified β-glucan has a gelling tendency and a single helical conformation is challenging to obtain. Therefore, in this study, we developed a β-glucan formyl derivative with stable single helical conformation and no gelling tendency. Circular dichroism studies found that the formyl-β-glucan could form a hybrid helix with DNA CpG-poly(dA). The hybrid helix delivery system showed improved activation on antigen-presenting cells, thereby upregulating the mRNA and protein levels of inflammatory factors, and had an immune-enhancing effect on ovalbumin (OVA) immunized mice. These results indicate that formyl-β-glucan can be developed as a non-cationic supramolecular DNA delivery platform with low toxicity and high efficiency.
Collapse
Affiliation(s)
- Yuying Xu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Minting Liang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jintao Huang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yapei Fan
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haiyue Long
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qunjie Chen
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chaoxi Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Comparing the Immunogenicity and Protective Effects of Three MERS-CoV Inactivation Methods in Mice. Vaccines (Basel) 2022; 10:vaccines10111843. [DOI: 10.3390/vaccines10111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The Middle East respiratory syndrome (MERS) is a fatal acute viral respiratory disease caused by MERS-coronavirus (MERS-CoV) infection. To date, no vaccine has been approved for MERS-CoV despite continuing outbreaks. Inactivated vaccines are a viable option when developed using the appropriate inactivation methods and adjuvants. In this study, we evaluated the immunogenicity and protective effects of MERS-CoV vaccine candidates inactivated by three different chemical agents. MERS-CoV was effectively inactivated by formaldehyde, hydrogen peroxide, and binary ethylene imine and induced humoral and cellular immunity in mice. Although inflammatory cell infiltration was observed in the lungs four days after the challenge, the immunized hDPP4-transgenic mouse group showed 100% protection against a challenge with MERS-CoV (100 LD50). In particular, the immune response was highly stimulated by MERS-CoV inactivated with formaldehyde, and all mice survived a challenge with the minimum dose. In the adjuvant comparison test, the group immunized with inactivated MERS-CoV and AddaVax had a higher immune response than the group immunized with aluminum potassium sulfate (alum). In conclusion, our study indicates that the three methods of MERS-CoV inactivation are highly immunogenic and protective in mice and show strong potential as vaccine candidates when used with an appropriate adjuvant.
Collapse
|
17
|
Qiu M, Li B, Geng D, Xiang Q, Xin Y, Ding Q, Tang S. Aminated β-Glucan with immunostimulating activities and collagen composite sponge for wound repair. Int J Biol Macromol 2022; 221:193-203. [PMID: 36063897 DOI: 10.1016/j.ijbiomac.2022.08.202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
Immunostimulating activities of yeast β(1 → 3)-D-Glucan (β-Glucan) mainly depended on its structures. However, due to the tight triple helix structure of β-Glucan, its immunostimulating activity is greatly weakened. Therefore, in order to partially unwind the tight triple helix structure of β-glucan and improve its solubility in the medium, we modified it by amination in this study (A-Glu). The results showed that A-Glu could stimulate Raw264.7 macrophages and significantly enhance its TNF-α, IL-6, and IL-10 cytokine expression levels in vitro. A-Glu could also induce a shift of M0 Raw264.7 toward M1, and M2 toward M1. To expand the application of A-Glu in wound repair, the composite sponge consisting of A-Glu and type I collagen via the formation of a stable polyion complex (PIC) was developed. Moreover, the composite sponge could accelerate wound repair significantly. These results reveal that soluble A-Glu as an immunostimulating agent has potential applications in biomedicine.
Collapse
Affiliation(s)
- Minqi Qiu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Bing Li
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dezhi Geng
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Biopharmaceutical R&D Center, Jinan University, Guangzhou 510632, China
| | - Yanjiao Xin
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Qiang Ding
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
18
|
Weiss AM, Hossainy S, Rowan SJ, Hubbell JA, Esser-Kahn AP. Immunostimulatory Polymers as Adjuvants, Immunotherapies, and Delivery Systems. Macromolecules 2022; 55:6913-6937. [PMID: 36034324 PMCID: PMC9404695 DOI: 10.1021/acs.macromol.2c00854] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/16/2022] [Indexed: 12/14/2022]
Abstract
![]()
Activating innate immunity in a controlled manner is
necessary
for the development of next-generation therapeutics. Adjuvants, or
molecules that modulate the immune response, are critical components
of vaccines and immunotherapies. While small molecules and biologics
dominate the adjuvant market, emerging evidence supports the use of
immunostimulatory polymers in therapeutics. Such polymers can stabilize
and deliver cargo while stimulating the immune system by functioning
as pattern recognition receptor (PRR) agonists. At the same time,
in designing polymers that engage the immune system, it is important
to consider any unintended initiation of an immune response that results
in adverse immune-related events. Here, we highlight biologically
derived and synthetic polymer scaffolds, as well as polymer–adjuvant
systems and stimuli-responsive polymers loaded with adjuvants, that
can invoke an immune response. We present synthetic considerations
for the design of such immunostimulatory polymers, outline methods
to target their delivery, and discuss their application in therapeutics.
Finally, we conclude with our opinions on the design of next-generation
immunostimulatory polymers, new applications of immunostimulatory
polymers, and the development of improved preclinical immunocompatibility
tests for new polymers.
Collapse
Affiliation(s)
- Adam M. Weiss
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Samir Hossainy
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
- Department of Chemistry, University of Chicago 5735 S Ellis Ave., Chicago, Illinois 60637, United States
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Alarcon NO, Jaramillo M, Mansour HM, Sun B. Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms. Pharmaceutics 2022; 14:pharmaceutics14071448. [PMID: 35890342 PMCID: PMC9325128 DOI: 10.3390/pharmaceutics14071448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
For decades, vaccines have played a significant role in protecting public and personal health against infectious diseases and proved their great potential in battling cancers as well. This review focused on the current progress of therapeutic subunit vaccines for cancer immunotherapy. Antigens and adjuvants are key components of vaccine formulations. We summarized several classes of tumor antigens and bioinformatic approaches of identification of tumor neoantigens. Pattern recognition receptor (PRR)-targeting adjuvants and their targeted delivery platforms have been extensively discussed. In addition, we emphasized the interplay between multiple adjuvants and their combined delivery for cancer immunotherapy.
Collapse
Affiliation(s)
- Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Maddy Jaramillo
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Correspondence: ; Tel.: +1-520-621-6420
| |
Collapse
|
20
|
Huang L, Liao Y, Li C, Ma Z, Liu Z. Multifunctional manganese-containing vaccine delivery system Ca@MnCO 3/LLO for tumor immunotherapy. BIOMATERIALS ADVANCES 2022; 136:212752. [PMID: 35929287 DOI: 10.1016/j.bioadv.2022.212752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/15/2023]
Abstract
The ideal vaccine delivery systems can not only deliver antigens in intelligent manners but also act as adjuvants. Recently found that Mn2+ can effectively stimulate anti-tumor immune responses, and Ca2+ can regulate autophagy to promote the cross-presentation of antigens. Thus, we constructed such a manganese-containing multimode vaccine delivery system by using calcium-doped manganese carbonate microspheres (Ca@MnCO3) and perforin-listeria hemolysin (LLO), as termed as Ca@MnCO3/LLO. The two components Ca@MnCO3 and LLO, not only act as vaccine adjuvants by themselves, but also contribute to achieve cellular immunity. Among them, Ca@MnCO3 microspheres as an excellent Mn2+ and Ca2+ reservoir, can continuously release adjuvants Mn2+ and Ca2+ to enhance immune response in dendritic cells, while LLO can contribute to induce lysosomal escape. Particularly, Ca2+ was added firstly to MnCO3 microspheres to improve the stability and load capacity of the microspheres. Along with the degradation of intracellular Ca@MnCO3 microspheres, and the lysosomal membrane-lytic effects of perforin LLO, the Mn2+, Ca2+ and OVA were released to the cytoplasm. These outcomes cooperatively promote antigen cross-presentation, elicit CD8+ T cell proliferation, and finally achieve prominent anti-tumor effects. The results indicate that the manganese-containing vaccine delivery system Ca@MnCO3/LLO provides a promising platform for the construction of tumor vaccines.
Collapse
Affiliation(s)
- Linghong Huang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yang Liao
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Chenghua Li
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhiguo Ma
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Dong C, Wang Y, Zhu W, Ma Y, Kim J, Wei L, Gonzalez GX, Wang BZ. Polycationic HA/CpG Nanoparticles Induce Cross-Protective Influenza Immunity in Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6331-6342. [PMID: 35084819 PMCID: PMC8832387 DOI: 10.1021/acsami.1c19192] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 05/28/2023]
Abstract
The intranasal (i.n.) route is an ideal vaccination approach for infectious respiratory diseases like influenza. Polycationic polyethylenimine (PEI) could form nanoscale complexes with negatively charged viral glycoproteins. Here we fabricated PEI-hemagglutinin (HA) and PEI-HA/CpG nanoparticles and investigated their immune responses and protective efficacies with an i.n. vaccination regimen in mice. Our results revealed that the nanoparticles significantly enhanced HA immunogenicity, providing heterologous cross-protection. The conserved HA stalk region induced substantial antibodies in the nanoparticle immunization groups. In contrast to the Th2-biased, IgG1-dominant antibody response generated by PEI-HA nanoparticles, PEI-HA/CpG nanoparticles generated more robust and balanced IgG1/IgG2a antibody responses with augmented neutralization activity and Fc-mediated antibody-dependent cellular cytotoxicity (ADCC). PEI-HA/CpG nanoparticles also induced enhanced local and systemic cellular immune responses. These immune responses did not decay over six months of observation postimmunization. PEI and CpG synergized these comprehensive immune responses. Thus, the PEI-HA/CpG nanoparticle is a potential cross-protective influenza vaccine candidate. Polycationic PEI nanoplatforms merit future development into mucosal vaccine systems.
Collapse
|
22
|
Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022; 180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which is made of various immune cells, activated fibroblasts, basement membrane, capillaries, and extracellular matrix. Tumor associated macrophages (TAMs) and microbes are important components in TME. Tumor cells can recruit and educate TAMs and microbes, and the hijacked TAMs and microbes can promote the progression of tumor reciprocally. Tumor vaccine delivery remodeling TME by targeting TAM and microbes can not only enhance the specificity and immunogenicity of antigens, but also contribute to the regulation of TME. Tumor vaccine design benefits from nanotechnology which is a suitable platform for antigen and adjuvant delivery to catalyze new candidate vaccines applying to clinical therapy at unparalleled speed. In view of the characteristics and mechanisms of TME development, vaccine delivery targeting and breaking the malignant interactions among tumor cells, TAMs, and microbes may serve as a novel strategy for tumor therapy.
Collapse
|
23
|
Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-Glucans from Fungi: Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 2021; 13:3960. [PMID: 34836215 PMCID: PMC8623785 DOI: 10.3390/nu13113960] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-glucans comprise a group of polysaccharides of natural origin found in bacteria, algae, and plants, e.g., cereal seeds, as well as microfungi and macrofungi (mushrooms), which are characterized by diverse structures and functions. They are known for their metabolic and immunomodulatory properties, including anticancer, antibacterial, and antiviral. Recent reports suggest a potential of beta-glucans in the prevention and treatment of COVID-19. In contrast to β-glucans from other sources, β-glucans from mushrooms are characterized by β-1,3-glucans with short β-1,6-side chains. This structure is recognized by receptors located on the surface of immune cells; thus, mushroom β-glucans have specific immunomodulatory properties and gained BRM (biological response modifier) status. Moreover, mushroom beta-glucans also owe their properties to the formation of triple helix conformation, which is one of the key factors influencing the bioactivity of mushroom beta-glucans. This review summarizes the latest findings on biological and health-promoting potential of mushroom beta-glucans for the treatment of civilization and viral diseases, with particular emphasis on COVID-19.
Collapse
Affiliation(s)
- Iwona Mirończuk-Chodakowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (K.K.); (A.M.W.)
| | | | | |
Collapse
|
24
|
Alum Pickering Emulsion as Effective Adjuvant to Improve Malaria Vaccine Efficacy. Vaccines (Basel) 2021; 9:vaccines9111244. [PMID: 34835175 PMCID: PMC8624716 DOI: 10.3390/vaccines9111244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is a life-threatening global epidemic disease and has caused more than 400,000 deaths in 2019. To control and prevent malaria, the development of a vaccine is a potential method. An effective malaria vaccine should either combine antigens from all stages of the malaria parasite’s life cycle, or epitopes of multiple key antigens due to the complexity of the Plasmodium parasite. Malaria’s random constructed antigen-1 (M.RCAg-1) is one of the recombinant vaccines, which was selected from a DNA library containing thousands of diverse multi-epitope chimeric antigen genes. Moreover, besides selecting an antigen, using an adjuvant is another important procedure for most vaccine development procedures. Freund’s adjuvant is considered an effective vaccine adjuvant for malaria vaccine, but it cannot be used in clinical settings because of its serious side effects. Traditional adjuvants, such as alum adjuvant, are limited by their unsatisfactory immune effects in malaria vaccines, hence there is an urgent need to develop a novel, safe and efficient adjuvant. In recent years, Pickering emulsions have attracted increasing attention as novel adjuvant. In contrast to classical emulsions, Pickering emulsions are stabilized by solid particles instead of surfactant, having pliability and lateral mobility. In this study, we selected aluminum hydroxide gel (termed as “alum”) as a stabilizer to prepare alum-stabilized Pickering emulsions (ALPE) as a malaria vaccine adjuvant. In addition, monophosphoryl lipid A (MPLA) as an immunostimulant was incorporated into the Pickering emulsion (ALMPE) to further enhance the immune response. In vitro tests showed that, compared with alum, ALPE and ALMPE showed higher antigen load rates and could be effectively endocytosed by J774a.1 cells. In vivo studies indicated that ALMPE could induce as high antibody titers as Freund’s adjuvant. The biocompatibility study also proved ALMPE with excellent biocompatibility. These results suggest that ALMPE is a potential adjuvant for a malaria vaccine.
Collapse
|
25
|
Al-Mansoori L, Elsinga P, Goda SK. Bio-vehicles of cytotoxic drugs for delivery to tumor specific targets for cancer precision therapy. Biomed Pharmacother 2021; 144:112260. [PMID: 34607105 DOI: 10.1016/j.biopha.2021.112260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/09/2023] Open
Abstract
Abnormal structural and molecular changes in malignant tissues were thoroughly investigated and utilized to target tumor cells, hence rescuing normal healthy tissues and lowering the unwanted side effects as non-specific cytotoxicity. Various ligands for cancer cell specific markers have been uncovered and inspected for directional delivery of the anti-cancer drug to the tumor site, in addition to diagnostic applications. Over the past few decades research related to the ligand targeted therapy (LTT) increased tremendously aiming to treat various pathologies, mainly cancers with well exclusive markers. Malignant tumors are known to induce elevated levels of a variety of proteins and peptides known as cancer "markers" as certain antigens (e.g., Prostate specific membrane antigen "PSMA", carcinoembryonic antigen "CEA"), receptors (folate receptor, somatostatin receptor), integrins (Integrin αvβ3) and cluster of differentiation molecules (CD13). The choice of an appropriate marker to be targeted and the design of effective ligand-drug conjugate all has to be carefully selected to generate the required therapeutic effect. Moreover, since some tumors express aberrantly high levels of more than one marker, some approaches investigated targeting cancer cells with more than one ligand (dual or multi targeting). We aim in this review to report an update on the cancer-specific receptors and the vehicles to deliver cytotoxic drugs, including recent advancements on nano delivery systems and their implementation in targeted cancer therapy. We will discuss the advantages and limitations facing this approach and possible solutions to mitigate these obstacles. To achieve the said aim a literature search in electronic data bases (PubMed and others) using keywords "Cancer specific receptors, cancer specific antibody, tumor specific peptide carriers, cancer overexpressed proteins, gold nanotechnology and gold nanoparticles in cancer treatment" was carried out.
Collapse
Affiliation(s)
- Layla Al-Mansoori
- Qatar University, Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Philip Elsinga
- University of Groningen, University Medical Center Groningen (UMCG), Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sayed K Goda
- Cairo University, Faculty of Science, Giza, Egypt; University of Derby, College of Science and Engineering, Derby, UK.
| |
Collapse
|
26
|
Sun H, Hu W, Yan Y, Zhang Z, Chen Y, Yao X, Teng L, Wang X, Chai D, Zheng J, Wang G. Using PAMPs and DAMPs as adjuvants in cancer vaccines. Hum Vaccin Immunother 2021; 17:5546-5557. [PMID: 34520322 DOI: 10.1080/21645515.2021.1964316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy for cancer has attracted considerable attention. As one of the immunotherapeutics, tumor vaccines exert great potential for cancer immunotherapy. The most important components in tumor vaccines are antigens and adjuvants, which determine the therapeutic safety and efficacy, respectively. After decades of research, many types of adjuvants have been developed. Although these adjuvants can induce strong and long-lasting immune responses in tumor immunity, they also cause more severe toxic side effects and are therefore not suitable for use in humans. With the development of innate immunity research, pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are receiving more attention in vaccine design. However, whether they have the potential to become new adjuvants remains to be elucidated. The purpose of this review is to provide newideas for the research and development of new adjuvants by discussing the mechanisms and related functions of PAMPs and DAMPs.
Collapse
Affiliation(s)
- Huanyou Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Wenwen Hu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yinan Yan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Yuxin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xuefan Yao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Ling Teng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Xinyuan Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Junnian Zheng
- Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Center Of Clinical Oncology, Affiliated Hospital Of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Jiangsu Center For The Collaboration And Innovation Of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
27
|
Zhang X, Zhang Z, Xia N, Zhao Q. Carbohydrate-containing nanoparticles as vaccine adjuvants. Expert Rev Vaccines 2021; 20:797-810. [PMID: 34101528 DOI: 10.1080/14760584.2021.1939688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Adjuvants are essential to vaccines for immunopotentiation in the elicitation of protective immunity. However, classical and widely used aluminum-based adjuvants have limited capacity to induce cellular response. There are increasing needs for appropriate adjuvants with improved profiles for vaccine development toward emerging pathogens. Carbohydrate-containing nanoparticles (NPs) with immunomodulatory activity and particulate nanocarriers for effective antigen presentation are capable of eliciting a more balanced humoral and cellular immune response.Areas covered: We reviewed several carbohydrates with immunomodulatory properties. They include chitosan, β-glucan, mannan, and saponins, which have been used in vaccine formulations. The mode of action, the preparation methods, characterization of these carbohydrate-containing NPs and the corresponding vaccines are presented.Expert opinion: Several carbohydrate-containing NPs have entered the clinical stage or have been used in licensed vaccines for human use. Saponin-containing NPs are being evaluated in a vaccine against SARS-CoV-2, the pathogen causing the on-going worldwide pandemic. Vaccines with carbohydrate-containing NPs are in different stages of development, from preclinical studies to late-stage clinical trials. A better understanding of the mode of action for carbohydrate-containing NPs as vaccine carriers and as immunostimulators will likely contribute to the design and development of new generation vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Xinyuan Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China.,School of Life Sciences, Xiamen University, Xiamen, Fujian, PR China.,The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, Fujian, PR China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, PR China
| |
Collapse
|
28
|
Jin JW, Rong MZ, Zhang MQ, Wong WL. Preparation of a water soluble aminated β-1,3-D-glucan for gene carrier: The in vitro study of the anti-inflammatory activity and transfection efficiency. J Biomed Mater Res A 2021; 109:2506-2515. [PMID: 34110080 DOI: 10.1002/jbm.a.37244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 11/06/2022]
Abstract
β-1,3-D-glucan has been reported to have a series of bioactivities including antitumor, antimicrobial, anti-inflammatory and antioxidative effects; however, its insolubility in neutral aqueous solution significantly restricts the potential application in biological and medicine fields. Herein, a water-soluble aminated β-1,3-D-glucan (AG) was synthesized and the anti-inflammatory effect, cytotoxicity and plasmid DNA (pDNA) binding capacity of AG, serum stability, the particle sizes and zeta potentials of AG/pDNA nanocomposites, and the transfection efficiency and mechanism of action were studied. AG shows no obvious cytotoxicity within the range of working concentration (1-64 μg/ml) and it exerts potent anti-inflammatory effect independent on Dectin-1 and TLR2. AG/pDNA nanocomposites prepared by electrostatic interaction possess an appropriate particle size ranged from 192.8 to 118.4 nm and zeta potentials ranged from 20.880 to 27.16 mV with the N/P ratios from 5 to 100. AG/pDNA nanocomposites at the N/P ratios of 10 and 20 were able to show superior transfection efficiencies in RAW 264.7 cells as a result of their suitable particle size, zeta potential, anti-inflammatory effect, and the specific interaction with pattern recognition receptors (Dectin-1 and TLR2). These results indicate that AG is a potential candidate for DNA delivery system due to its potent anti-inflammatory effect and high transfection efficiency.
Collapse
Affiliation(s)
- Jing Wei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Laboratory, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Laboratory, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| |
Collapse
|
29
|
Yan Y, Yao D, Li X. Immunological Mechanism and Clinical Application of PAMP Adjuvants. Recent Pat Anticancer Drug Discov 2021; 16:30-43. [PMID: 33563182 DOI: 10.2174/1574892816666210201114712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The host innate immune system can recognize Pathogen-Associated Molecular Patterns (PAMPs) through Pattern Recognition Receptors (PRRs), thereby initiating innate immune responses and subsequent adaptive immune responses. PAMPs can be developed as a vaccine adjuvant for modulating and optimizing antigen-specific immune responses, especially in combating viral infections and tumor therapy. Although several PAMP adjuvants have been successfully developed they are still lacking in general, and many of them are in the preclinical exploration stage. OBJECTIVE This review summarizes the research progress and development direction of PAMP adjuvants, focusing on their immune mechanisms and clinical applications. METHODS PubMed, Scopus, and Google Scholar were screened for this information. We highlight the immune mechanisms and clinical applications of PAMP adjuvants. RESULTS Because of the differences in receptor positions, specific immune cells targets, and signaling pathways, the detailed molecular mechanism and pharmacokinetic properties of one agonist cannot be fully generalized to another agonist, and each PAMP should be studied separately. In addition, combination therapy and effective integration of different adjuvants can increase the additional efficacy of innate and adaptive immune responses. CONCLUSION The mechanisms by which PAMPs exert adjuvant functions are diverse. With continuous discovery in the future, constant adjustments should be made to build new understandings. At present, the goal of therapeutic vaccination is to induce T cells that can specifically recognize and eliminate tumor cells and establish long-term immune memory. Following immune checkpoint modulation therapy, cancer treatment vaccines may be an option worthy of clinical testing.
Collapse
Affiliation(s)
- Yu Yan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Dan Yao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| | - Xiaoyu Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266071, China
| |
Collapse
|
30
|
Mallakpour S, Azadi E, Hussain CM. Chitosan, alginate, hyaluronic acid, gums, and β-glucan as potent adjuvants and vaccine delivery systems for viral threats including SARS-CoV-2: A review. Int J Biol Macromol 2021; 182:1931-1940. [PMID: 34048834 PMCID: PMC8146404 DOI: 10.1016/j.ijbiomac.2021.05.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 02/09/2023]
Abstract
Pathogen transmission is a widespread threat to global human health. Vaccines are very important during the outbreak of a pandemic. Destructive fractures caused by a sudden outbreak of COVID-19 have spurred vaccine production at an unprecedented rate. The strategy of an effective vaccine delivery system is opening up novel probabilities to make more immunization. Indeed, vaccination is the most successful way to prevent deaths from infectious diseases. In order to optimal immune response production or improvement in the effectiveness of vaccines, delivery systems or adjuvants are required. Natural polymers such as chitosan, alginate, hyaluronic acid, gums, and β-glucan with antiviral activity have good potential as adjuvant or delivery systems for vaccine formulation development and design vaccine delivery devices. According to the antiviral performance and immunomodulation of these biopolymers, they will play significant characters in the anti-COVID-19 field. In this mini-review, the recent progress in vaccine development by using biopolymers is presented which, provides a reference for their research on anti-COVID-19 drugs and vaccines.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Elham Azadi
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
31
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
32
|
Carboxymethyl-β-glucan/chitosan nanoparticles: new thermostable and efficient carriers for antigen delivery. Drug Deliv Transl Res 2021; 11:1689-1702. [PMID: 33797035 PMCID: PMC8015750 DOI: 10.1007/s13346-021-00968-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
In the last few decades, nanotechnology has emerged as an important tool aimed at enhancing the immune response against modern antigens. Nanocarriers designed specifically for this purpose have been shown to provide protection, stability, and controlled release properties to proteins, peptides, and polynucleotide-based antigens. Polysaccharides are particularly interesting biomaterials for the construction of these nanocarriers given their wide distribution among pathogens, which facilitates their recognition by antigen-presenting cells (APCs). In this work, we focused on an immunostimulant beta-glucan derivative, carboxymethyl-β-glucan, to prepare a novel nanocarrier in combination with chitosan. The resulting carboxymethyl-β-glucan/chitosan nanoparticles exhibited adequate physicochemical properties and an important protein association efficiency, with ovalbumin as a model compound. Moreover, thermostability was achieved through the optimization of a lyophilized form of the antigen-loaded nanoparticles, which remained stable for up to 1 month at 40 ºC. Biodistribution studies in mice showed an efficient drainage of the nanoparticles to the nearest lymph node following subcutaneous injection, and a significant co-localization with dendritic cells. Additionally, subcutaneous immunization of mice with a single dose of the ovalbumin-loaded nanoparticles led to induced T cell proliferation and antibody responses, comparable to those achieved with alum-adsorbed ovalbumin. These results illustrate the potential of these novel nanocarriers in vaccination.
Collapse
|
33
|
Xu J, Wang C. Cell-derived vesicles for delivery of cancer immunotherapy. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2020.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In recent years, cancer immunotherapy has received unprecedented attention due to the clinical achievements. The applications of biomedical engineering and materials science to cancer immunotherapy have solved the challenges caused by immunotherapy to a certain extent. Among them, cell-derived vesicles are natural biomaterials chosen as carriers or immune-engineering in view of their many unique advantages. This review will briefly introduce the recent applications of cell-derived vesicles for cancer immunotherapy.
Collapse
Affiliation(s)
- Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
34
|
Abstract
In recent years, cancer immunotherapy has received unprecedented attention due to the clinical achievements. The applications of biomedical engineering and materials science to cancer immunotherapy have solved the challenges caused by immunotherapy to a certain extent. Among them, cell-derived vesicles are natural biomaterials chosen as carriers or immune-engineering in view of their many unique advantages. This review will briefly introduce the recent applications of cell-derived vesicles for cancer immunotherapy.
Collapse
Affiliation(s)
- Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
35
|
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2021; 11:622614. [PMID: 33679711 PMCID: PMC7930332 DOI: 10.3389/fimmu.2020.622614] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Collapse
Affiliation(s)
- Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
36
|
Kim H, Lee S, Ki CS. Modular formation of hyaluronic acid/β-glucan hybrid nanogels for topical dermal delivery targeting skin dendritic cells. Carbohydr Polym 2021; 252:117132. [DOI: 10.1016/j.carbpol.2020.117132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 01/13/2023]
|
37
|
Zhong H, Gao X, Cheng C, Liu C, Wang Q, Han X. The Structural Characteristics of Seaweed Polysaccharides and Their Application in Gel Drug Delivery Systems. Mar Drugs 2020; 18:658. [PMID: 33371266 PMCID: PMC7765921 DOI: 10.3390/md18120658] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, researchers across various fields have shown a keen interest in the exploitation of biocompatible natural polymer materials, especially the development and application of seaweed polysaccharides. Seaweed polysaccharides are a multi-component mixture composed of one or more monosaccharides, which have the functions of being anti-virus, anti-tumor, anti-mutation, anti-radiation and enhancing immunity. These biological activities allow them to be applied in various controllable and sustained anti-inflammatory and anticancer drug delivery systems, such as seaweed polysaccharide-based nanoparticles, microspheres and gels, etc. This review summarizes the advantages of alginic acid, carrageenan and other seaweed polysaccharides, and focuses on their application in gel drug delivery systems (such as nanogels, microgels and hydrogels). In addition, recent literature reports and applications of seaweed polysaccharides are also discussed.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.Z.); (X.G.); (C.L.); (Q.W.)
| | | | | | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (H.Z.); (X.G.); (C.L.); (Q.W.)
| |
Collapse
|
38
|
Garcia-Vello P, Speciale I, Chiodo F, Molinaro A, De Castro C. Carbohydrate-based adjuvants. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:57-68. [PMID: 33388128 DOI: 10.1016/j.ddtec.2020.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Carbohydrate adjuvants are safe and biocompatible compounds usable as sustained delivery systems and stimulants of ongoing humoral and cellular immune responses, being especially suitable for the development of vaccines against intracellular pathogens where alum is useless. The development of new adjuvants is difficult and expensive, however, in the last two years, seven new carbohydrate-based adjuvants have been patented, also there are twelve ongoing clinical trials of vaccines that contain carbohydrate-based adjuvants, as well as numerous publications on their mechanism of action and safety. More research is necessary to improve the existent adjuvants and develop innovative ones.
Collapse
Affiliation(s)
- Pilar Garcia-Vello
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy.
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy
| | - Fabrizio Chiodo
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Naples (NA), Italy
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici (NA), Italy.
| |
Collapse
|
39
|
Abstract
Vaccines are powerful tools that can activate the immune system for protection against various diseases. As carbohydrates can play important roles in immune recognition, they have been widely applied in vaccine development. Carbohydrate antigens have been investigated in vaccines against various pathogenic microbes and cancer. Polysaccharides such as dextran and β-glucan can serve as smart vaccine carriers for efficient antigen delivery to immune cells. Some glycolipids, such as galactosylceramide and monophosphoryl lipid A, are strong immune stimulators, which have been studied as vaccine adjuvants. In this review, we focus on the current advances in applying carbohydrates as vaccine delivery carriers and adjuvants. We will discuss the examples that involve chemical modifications of the carbohydrates for effective antigen delivery, as well as covalent antigen-carbohydrate conjugates for enhanced immune responses.
Collapse
Affiliation(s)
- Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
40
|
Yenkoidiok-Douti L, Jewell CM. Integrating Biomaterials and Immunology to Improve Vaccines Against Infectious Diseases. ACS Biomater Sci Eng 2020; 6:759-778. [PMID: 33313391 PMCID: PMC7725244 DOI: 10.1021/acsbiomaterials.9b01255] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the success of vaccines in preventing many infectious diseases, effective vaccines against pathogens with ongoing challenges - such as HIV, malaria, and tuberculosis - remain unavailable. The emergence of new pathogen variants, the continued prevalence of existing pathogens, and the resurgence of yet other infectious agents motivate the need for new, interdisciplinary approaches to direct immune responses. Many current and candidate vaccines, for example, are poorly immunogenic, provide only transient protection, or create risks of regaining pathogenicity in certain immune-compromised conditions. Recent advances in biomaterials research are creating new potential to overcome these challenges through improved formulation, delivery, and control of immune signaling. At the same time, many of these materials systems - such as polymers, lipids, and self-assembly technologies - may achieve this goal while maintaining favorable safety profiles. This review highlights ways in which biomaterials can advance existing vaccines to safer, more efficacious technologies, and support new vaccines for pathogens that do not yet have vaccines. Biomaterials that have not yet been applied to vaccines for infectious disease are also discussed, and their potential in this area is highlighted.
Collapse
Affiliation(s)
- Lampouguin Yenkoidiok-Douti
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, United States
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, MD, 20852, United States
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD, 20742, United States
- Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, United States
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, United States
- Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD 21201, United States
| |
Collapse
|
41
|
Wu J, Ma G. Biomimic strategies for modulating the interaction between particle adjuvants and antigen-presenting cells. Biomater Sci 2020; 8:2366-2375. [DOI: 10.1039/c9bm02098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The design strategies of particle adjuvants by mimicking natural pathogens to strengthen their interaction with antigen-presenting cells.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| |
Collapse
|
42
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
43
|
Zhang H, Lai L, Wang Y, Ye B, Deng S, Ding A, Teng L, Qiu L, Chen J. Silk Fibroin for CpG Oligodeoxynucleotide Delivery. ACS Biomater Sci Eng 2019; 5:6082-6088. [PMID: 33405662 DOI: 10.1021/acsbiomaterials.9b01413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) have attracted increasing attention as immunotherapeutic agents. However, efficient transfection of CpG ODNs into the immune cells remains a big challenge. In this study, for the first time, we reported that silk fibroin (SF) could function as an efficient carrier for CpG ODNs. A novel strategy was developed to prepare SF-CpG ODNs nanoparticles (NPs) based on self-assembly of SF. The as-prepared SF-CpG NPs were spherical in shape and were uniformly dispersed. SF-CpG NPs exhibited good stability and biocompatibility. SF-CpG NPs possessed significantly enhanced (7 folds) cellular uptake compared with CpG ODNs. Release of CpG ODNs from SF-CpG NPs was accelerated in environment-mimicking TLR9-localized endo/lysosome. SF-CpG NPs stimulated about four folds higher levels of immune cytokines and nitric oxide compared with CpG ODNs. Our results suggested that SF notably improved the CpG ODNs delivery. SF-CpG NPs have strong potential in immunotherapy.
Collapse
|
44
|
Zhang L, Wu S, Qin Y, Fan F, Zhang Z, Huang C, Ji W, Lu L, Wang C, Sun H, Leng X, Kong D, Zhu D. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. NANO LETTERS 2019; 19:4237-4249. [PMID: 30868883 DOI: 10.1021/acs.nanolett.9b00030] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Among approaches of current cancer immunotherapy, a dendritic cell (DC)-targeted vaccine based on nanotechnology could be a promising way to efficiently induce potent immune responses. To enhance DC targeting and vaccine efficiency, we included imiquimod (IMQ), a toll-like receptor 7/8 (TLR 7/8) agonist, and monophosphoryl lipid A (MPLA), a TLR4 agonist, to synthesize lipid-polymer hybrid nanoparticles using PCL-PEG-PCL and DOTAP (IMNPs) as well as DSPE-PEG-mannose (MAN-IMNPS). The spatiotemporal delivery of MPLA (within the outer lipid layer) to extracellular TLR4 and IMQ (in the hydrophobic core of NPs) to intracellular TLR7/8 can activate DCs synergistically to improve vaccine efficacy. Ovalbumin (OVA) as a model antigen was readily absorbed by positively charged DOTAP and showed a quick release in vitro. Our results demonstrated that this novel nanovaccine enhanced cellular uptake, cytokine production, and maturation of DCs. Compared with the quick metabolism of free OVA-agonists, the depot effect of OVA-IMNPs was observed, whereas MAN-OVA-IMNPs promoted trafficking to secondary lymphoid organs. After immunization with a subcutaneous injection, the nanovaccine, especially MAN-OVA-IMNPs, induced more antigen-specific CD8+ T cells, greater lymphocyte activation, stronger cross-presentation, and more generation of memory T cells, antibody, IFN-γ, and granzyme B. Prophylactic vaccination of MAN-OVA-IMNPs significantly delayed tumor development and prolonged the survival in mice. The therapeutic tumor challenge indicated that MAN-OVA-IMNPs prohibited tumor progression more efficiently than other formulations, and the combination with an immune checkpoint blockade further enhanced antitumor effects. Hence, the DC-targeted vaccine codelivery with IMQ and MPLA adjuvants by hybrid cationic nanoparticles in a spatiotemporal manner is a promising multifunctional antigen delivery system in cancer immunotherapy.
Collapse
Affiliation(s)
- Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Shengjie Wu
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Yu Qin
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Fan Fan
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Zhiming Zhang
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Chenlu Huang
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Weihang Ji
- Department of Biomedical Engineering , University of Minnesota , 7-116 Hasselmo Hall, 312 Church Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lu Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine , Tianjin 300192 , China
| | - Chun Wang
- Department of Biomedical Engineering , University of Minnesota , 7-116 Hasselmo Hall, 312 Church Street SE , Minneapolis , Minnesota 55455 , United States
| | - Hongfan Sun
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Xigang Leng
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences , Nankai University , Tianjin 300071 , China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute , Xuzhou Medical University , Xuzhou 221004 , Jiangsu , China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials , Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College , Tianjin 300192 , China
| |
Collapse
|
45
|
Barley β-glucan accelerates wound healing by favoring migration versus proliferation of human dermal fibroblasts. Carbohydr Polym 2019; 210:389-398. [DOI: 10.1016/j.carbpol.2019.01.090] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/05/2023]
|
46
|
Huang P, Wang X, Liang X, Yang J, Zhang C, Kong D, Wang W. Nano-, micro-, and macroscale drug delivery systems for cancer immunotherapy. Acta Biomater 2019; 85:1-26. [PMID: 30579043 DOI: 10.1016/j.actbio.2018.12.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/05/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022]
Abstract
Immunotherapy is moving to the frontier of cancer treatment. Drug delivery systems (DDSs) have greatly advanced the development of cancer immunotherapeutic regimen and combination treatment. DDSs can spatiotemporally present tumor antigens, drugs, immunostimulatory molecules, or adjuvants, thus enabling the modulation of immune cells including dendritic cells (DCs) or T-cells directly in vivo and thereby provoking robust antitumor immune responses. Cancer vaccines, immune checkpoint blockade, and adoptive cell transfer have shown promising therapeutic efficiency in clinic, and the incorporation of DDSs may further increase antitumor efficiency while decreasing adverse side effects. This review focuses on the use of nano-, micro-, and macroscale DDSs for co-delivery of different immunostimulatory factors to reprogram the immune system to combat cancer. Regarding to nanoparticle-based DDSs, we emphasize the nanoparticle-based tumor immune environment modulation or as an addition to gene therapy, photodynamic therapy, or photothermal therapy. For microparticle or capsule-based DDSs, an overview of the carrier type, fabrication approach, and co-delivery of tumor vaccines and adjuvants is introduced. Finally, macroscale DDSs including hydrogels and scaffolds are also included and their role in personalized vaccine delivery and adoptive cell transfer therapy are described. Perspective and clinical translation of DDS-based cancer immunotherapy is also discussed. We believe that DDSs hold great potential in advancing the fundamental research and clinical translation of cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Immunotherapy is moving to the frontier of cancer treatment. Drug delivery systems (DDSs) have greatly advanced the development of cancer immunotherapeutic regimen and combination treatment. In this comprehensive review, we focus on the use of nano-, micro-, and macroscale DDSs for the co-delivery of different immunostimulatory factors to reprogram the immune system to combat cancer. We also propose the perspective on the development of next-generation DDS-based cancer immunotherapy. This review indicates that DDSs can augment the antitumor T-cell immunity and hold great potential in advancing the fundamental research and clinical translation of cancer immunotherapy by simultaneously delivering dual or multiple immunostimulatory drugs.
Collapse
|