1
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
2
|
Colli C, Bali N, Scrocciolani C, Colosimo BM, Sponchioni M, Mauri E, Moscatelli D, Bandyopadhyay S. Zwitterionic thermoresponsive nanocomposites as functional systems for magnetic hyperthermia-activated drug delivery. Eur Polym J 2025; 224:113650. [DOI: 10.1016/j.eurpolymj.2024.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Solak K, Yildiz Arslan S, Acar M, Turhan F, Unver Y, Mavi A. Combination of magnetic hyperthermia and gene therapy for breast cancer. Apoptosis 2025; 30:99-116. [PMID: 39427089 DOI: 10.1007/s10495-024-02026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
This study presented a novel breast cancer therapy model that uses magnetic field-controlled heating to trigger gene expression in cancer cells. We created silica- and amine-modified superparamagnetic nanoparticles (MSNP-NH2) to carry genes and release heat under an alternating current (AC) magnetic field. The heat-inducible expression plasmid (pHSP-Azu) was designed to encode anti-cancer azurin and was delivered by magnetofection. MCF-7 cells demonstrated over 93% cell viability and 12% transfection efficiency when exposed to 75 µg/ml of MSNP-NH2, 3 µg of DNA, and PEI at a 0.75 PEI/DNA ratio (w: w), unlike non-tumorigenic cells (MCF-10 A). Magnetic hyperthermia (MHT) increased azurin expression by heat induction, leading to cell death in dual ways. The combination of MHT and heat-regulated azurin expression induced cell death, specifically in cancer cells, while having negligible effects on MCF-10 A cells. The proposed strategy clearly shows that simultaneous use of MHT and MHT-induced azurin gene expression may selectively target and kill cancer cells, offering a promising direction for cancer therapy.
Collapse
Affiliation(s)
- Kubra Solak
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Türkiye
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Melek Acar
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Fatma Turhan
- Department of Molecular Biology and Genetics, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye.
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Institute of Science and Technology, Atatürk University, Erzurum, Türkiye.
- Department of Mathematics and Science Education, Education Faculty of Kazim Karabekir, Atatürk University, Erzurum, Türkiye.
| |
Collapse
|
4
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Zhu J, Lee H, Huang R, Zhou J, Zhang J, Yang X, Zhou W, Jiang W, Chen S. Harnessing nanotechnology for cancer treatment. Front Bioeng Biotechnol 2025; 12:1514890. [PMID: 39902172 PMCID: PMC11788409 DOI: 10.3389/fbioe.2024.1514890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Nanotechnology has become a groundbreaking innovation force in cancer therapy, offering innovative solutions to the limitations of conventional treatments such as chemotherapy and radiation. By manipulating materials at the nanoscale, researchers have developed nanocarriers capable of targeted drug delivery, improving therapeutic efficacy while reducing systemic toxicity. Nanoparticles like liposomes, dendrimers, and polymeric nanomaterials have shown significant promise in delivering chemotherapeutic agents directly to tumor sites, enhancing drug bioavailability and minimizing damage to healthy tissues. In addition to drug delivery, with the utilization of tools such as quantum dots and nanosensors that enables more precise identification of cancer biomarkers, nanotechnology is also playing a pivotal role in early cancer detection and diagnosis. Furthermore, nanotechnology-based therapeutic strategies, including photothermal therapy, gene therapy and immunotherapy are offering novel ways to combat cancer by selectively targeting tumor cells and enhancing the immune response. Nevertheless, despite these progressions, obstacles still persist, particularly in the clinical translation of these technologies. Issues such as nanoparticle toxicity, biocompatibility, and the complexity of regulatory approval hinder the widespread adoption of nanomedicine in oncology. This review discusses different applications of nanotechnology in cancer therapy, highlighting its potential and the hurdles to its clinical implementation. Future research needs to concentrate on addressing these obstacles to unlock the full potential of nanotechnology in providing personalized, effective, and minimally invasive cancer treatments.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - HaeJu Lee
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruotong Huang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianming Zhou
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Yang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhan Zhou
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangqing Jiang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Yu C, Dong L, Lv Y, Shi X, Zhang R, Zhou W, Wu H, Li H, Li Y, Li Z, Luo D, Wei WB. Nanotherapy for Neural Retinal Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409854. [PMID: 39807033 DOI: 10.1002/advs.202409854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Retinal diseases can severely impair vision and even lead to blindness, posing significant threats to both physical and mental health. Physical retinal regenerative therapies are poised to revolutionize the treatment of various disorders associated with blindness. However, these therapies must overcome the challenges posed by the protective inner and outer blood‒retinal barriers. Nanotechnology applications in ophthalmology have shown great potential in addressing the issue of drug delivery to the eye. Moreover, nanotechnology-based therapeutics can have profound clinical impacts on retinopathy, particularly retinal regeneration, thereby improving patient outcomes. Continuous advancements in nanotechnology are being applied to regenerate lost or damaged eye tissues and to treat vision loss and blindness caused by various retinal degenerative diseases. These approaches can be categorized into three main strategies: i) nanoparticles for delivering drugs, genes, and other essential substances; ii) nanoscaffolds for providing biocompatible support; and iii) nanocomposites for enhancing the functionality of primary or stem cells. The aim of this comprehensive review is to present the current understanding of nanotechnology-based therapeutics for retinal regeneration, with a focus on the perspective functions of nanomaterials.
Collapse
Affiliation(s)
- Chuyao Yu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xuhan Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ruiheng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wenda Zhou
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Haotian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Heyan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yitong Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology&Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Key Laboratory of Intelligent Diagnosis, Treatment and Prevention of Blinding Eye Diseases, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
7
|
Truong-Phuoc L, Duong-Viet C, Nhut JM, Pappa A, Zafeiratos S, Pham-Huu C. Induction Heating for the Electrification of Catalytic Processes. CHEMSUSCHEM 2024:e202402335. [PMID: 39714867 DOI: 10.1002/cssc.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
The increasing availability of electrical energy generated from clean, low-carbon, renewable sources like solar and wind power is paving the way for a more sustainable future. This has resulted in a growing trend in the chemical industry to increase the share of electricity use in chemical processes, particularly catalytic ones. This shift towards electrifying catalytic processes offers significant environmental benefits. Current practices rely heavily on fossil fuel-based burners, primarily using natural gas, which contribute significantly to greenhouse gas emissions. Therefore, replacing fossil fuels with electricity can significantly reduce the carbon footprint associated with chemical production. Additionally, the energy-intensive production of metal catalysts used in these processes further exacerbates the environmental impact. This review focuses on the electrification of chemical processes, particularly using induction heating (IH), as a method to reduce the environmental impact of both catalyst production and operation. IH shows promise compared to conventional heating methods, since it offers a cleaner, more efficient, and precise way to heat catalysts in chemical processes by directly generating heat within the catalyst itself. It can potentially even enhance the reaction performance through its influence on the reaction mechanism. By exploring recent advancements in IH-driven catalytic processes, the review delves into how this method is revolutionizing catalysis by enhancing performance, selectivity, and sustainability. It highlights recent breakthroughs and discusses perspectives for further exploration in this rapidly developing field.
Collapse
Affiliation(s)
- Lai Truong-Phuoc
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Cuong Duong-Viet
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
- BlackLeaf SAS, 210 rue Geiler de Kayserberg, 67400, Illkirch, France
| | - Jean-Mario Nhut
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Anastasia Pappa
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Spyridon Zafeiratos
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| | - Cuong Pham-Huu
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), ECPM, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, 67087, Strasbourg, Cedex 02, France
| |
Collapse
|
8
|
Kumar R, Igwegbe CA, Khandel SK. Nanotherapeutic and Nano-Bio Interface for Regeneration and Healing. Biomedicines 2024; 12:2927. [PMID: 39767834 PMCID: PMC11673698 DOI: 10.3390/biomedicines12122927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/13/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Wound and injury healing processes are intricate and multifaceted, involving a sequence of events from coagulation to scar tissue formation. Effective wound management is crucial for achieving favorable clinical outcomes. Understanding the cellular and molecular mechanisms underlying wound healing, inflammation, and regeneration is essential for developing innovative therapeutics. This review explored the interplay of cellular and molecular processes contributing to wound healing, focusing on inflammation, innervation, angiogenesis, and the role of cell surface adhesion molecules. Additionally, it delved into the significance of calcium signaling in skeletal muscle regeneration and its implications for regenerative medicine. Furthermore, the therapeutic targeting of cellular senescence for long-term wound healing was discussed. The integration of cutting-edge technologies, such as quantitative imaging and computational modeling, has revolutionized the current approach of wound healing dynamics. The review also highlighted the role of nanotechnology in tissue engineering and regenerative medicine, particularly in the development of nanomaterials and nano-bio tools for promoting wound regeneration. Moreover, emerging nano-bio interfaces facilitate the efficient transport of biomolecules crucial for regeneration. Overall, this review provided insights into the cellular and molecular mechanisms of wound healing and regeneration, emphasizing the significance of interdisciplinary approaches and innovative technologies in advancing regenerative therapies. Through harnessing the potential of nanoparticles, bio-mimetic matrices, and scaffolds, regenerative medicine offers promising avenues for restoring damaged tissues with unparalleled precision and efficacy. This pursuit marks a significant departure from traditional approaches, offering promising avenues for addressing longstanding challenges in cellular and tissue repair, thereby significantly contributing to the advancement of regenerative medicine.
Collapse
Affiliation(s)
- Rajiv Kumar
- Faculty of Science, University of Delhi, Delhi 110007, India
| | - Chinenye Adaobi Igwegbe
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka 420218, Nigeria;
- Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| | - Shri Krishna Khandel
- Clinical Diagnosis and Investigation (Rognidan), National Institute of Ayurveda, Jaipur 302002, India;
| |
Collapse
|
9
|
Vo Y, Raveendran R, Cao C, Tian L, Lai RY, Stenzel MH. Tadpole-like cationic single-chain nanoparticles display high cellular uptake. J Mater Chem B 2024; 12:12627-12640. [PMID: 39498571 DOI: 10.1039/d4tb01970a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The successful delivery of nanoparticles (NPs) to cancer cells is dependent on various factors, including particle size, shape, surface properties such as hydrophobicity/hydrophilicity, charges, and functional moieties. Tailoring these properties has been explored extensively to enhance the efficacy of NPs for drug delivery. Single-chain polymer nanoparticles (SCNPs), notable for their small size (sub-20 nm) and tunable properties, are emerging as a promising platform for drug delivery. However, the impact of surface charge on the biological performance of SCNPs in cancer cells remains underexplored. In this study, we prepared a library of SCNPs with varying charge types (neutral, anionic, cationic, and zwitterionic), charge densities, charge positions, and crosslinking densities to evaluate their effects on cellular uptake in MCF-7 breast cancer cells. Key findings include that cationic SCNPs are more likely to translocate into cells than neutral, anionic, or zwitterionic counterparts. Furthermore, cellular uptake was enhanced with increased charge density (from 10 to 15 mol%) before reaching a critical point (20 mol%) where excessive positive charge led to NP adhesion to the cell membrane, resulting in cell death. We also found that the position of the charge on the polymer chain also impacted the delivery of NPs to cancer cells, with tadpole-shaped SCNPs achieving the highest uptake. Furthermore, crosslinking density significantly influenced cellular uptake, with SCNPs at 50% crosslinking conversion showing the highest cytosolic localization, while other densities resulted in retention primarily at the cell membrane. This study offers valuable insights into how charge type, density, position, and crosslinking density affect the biological performance of SCNPs, guiding the rational design of more effective and safer drug delivery systems.
Collapse
Affiliation(s)
- Yen Vo
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Radhika Raveendran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Linqing Tian
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Rebecca Y Lai
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
10
|
Sayed ZS, Hieba EM, Batakoushy HA, Rashdan HRM, Ismail E, Elkatlawy SM, Elzwawy A. Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials. RSC Adv 2024; 14:39297-39324. [PMID: 39670162 PMCID: PMC11635600 DOI: 10.1039/d4ra06992g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024] Open
Abstract
This work presents a review of the therapeutic modalities and approaches for cancer treatment. A brief overview of the traditional treatment routes is presented in the introduction together with their reported side effects. A combination of the traditional approaches was reported to demonstrate an effective therapy until a few decades ago. With the improvement in the fabrication of nanomaterials, targeted therapy represents a novel therapeutic approach. This improvement established on nanoparticles is categorized into hyperthermia, drug delivery systems, and biosensors. Hyperthermia presents a personalized medicine-based approach in which targeted zones are heated up until the diseased tissue is destroyed by the thermal effect. The use of magnetic nanoparticles further improved the effectiveness of hyperthermia owing to the enhanced heating action, further increasing the accuracy of the targeting process. Nanoparticle-based biosensors present a smart nanodevice that can detect, monitor, and target tumor tissues by following the biomarkers in the body fluids. Magnetic nanoparticles offer a controlled thermo-responsive device that can be manipulated by changing the magnetic field, offering a more personalized and controlled hyperthermia therapeutic modality. Similarly, gold nanoparticles offer an effective aid in the hyperthermia treatment approach. Furthermore, carbon nanotubes and metal-organic frameworks present a cutting-edge approach to cancer treatment. A combination of functionalized nanoparticles offers a unique route for drug delivery systems, in which therapeutic agents carried by nanoparticles are guided into the human body and then released in the target spot.
Collapse
Affiliation(s)
- Zeinab S Sayed
- Faculty of Applied Medical Science, Misr University for Science and Technology (MUST) Giza Egypt
| | - Eman M Hieba
- Chemistry and Entomology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Hany A Batakoushy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Menoufia University Shebin Elkom 32511 Egypt
| | - Huda R M Rashdan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El Buhouth St., Dokki Giza 12622 Egypt
| | - Enas Ismail
- Department of Prosthodontics, Faculty of Dentistry, University of the Western Cape Cape Town 7505 South Africa
- Physics Department, Faculty of Science (Girl's Branch), Al Azhar University Nasr City 11884 Cairo Egypt
| | - Saeid M Elkatlawy
- Department of Physics, Faculty of Science, University of Sadat City Fifth Zone Sadat Egypt
| | - Amir Elzwawy
- Ceramics Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre (NRC) 33 El Bohouth St., Dokki Giza 12622 Egypt
| |
Collapse
|
11
|
Pant A, Laliwala A, Holstein SA, Mohs AM. Recent advances in targeted drug delivery systems for multiple myeloma. J Control Release 2024; 376:215-230. [PMID: 39384153 PMCID: PMC11611669 DOI: 10.1016/j.jconrel.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Despite significant therapeutic advances, multiple myeloma (MM) remains a challenging, incurable, hematological malignancy. The efficacy of traditional chemotherapy and currently available anti-MM agents is in part limited by their adverse effects, which restrict their therapeutic potential. Nanotherapeutics is an emerging field of cancer therapy that can overcome the biological and chemical barriers of existing anticancer drugs. This review presents an overview of recent advancements in nanoparticle- and immunotherapy-based drug delivery systems for MM treatment. It further delves into the targeting strategies, mechanism of controlled drug release, and challenges associated with the development of drug delivery systems for the treatment of MM.
Collapse
Affiliation(s)
- Ashruti Pant
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aayushi Laliwala
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Sarah A Holstein
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA.
| |
Collapse
|
12
|
Pathania H, Chauhan P, Chaudhary V, Khosla A, Neetika, Kumar S, Gaurav, Sharma M. Engineering core-shell mesoporous silica and Fe 3O 4@Au nanosystems for targeted cancer therapeutics: a review. Biotechnol Genet Eng Rev 2024; 40:3653-3681. [PMID: 36444150 DOI: 10.1080/02648725.2022.2147685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022]
Abstract
The extensive utilization of nanoparticles in cancer therapies has inspired a new field of study called cancer nanomedicine. In contrast to traditional anticancer medications, nanomedicines offer a targeted strategy that eliminates side effects and has high efficacy. With its vast surface area, variable pore size, high pore volume, abundant surface chemistry and specific binding affinity, mesoporous silica nanoparticles (MPSNPs) are a potential candidate for cancer diagnosis and treatment. However, there are several bottlenecks associated with nanoparticles, including specific toxicity or affinity towards particular body fluid, which can cater by architecting core-shell nanosystems. The core-shell chemistries, synergistic effects, and interfacial heterojunctions in core-shell nanosystems enhance their stability, catalytic and physicochemical attributes, which possess high performance in cancer therapeutics. This review article summarizes research and development dedicated to engineering mesoporous core-shell nanosystems, especially silica nanoparticles and Fe3O4@Au nanoparticles, owing to their unique physicochemical characteristics. Moreover, it highlights state-of-the-art magnetic and optical attributes of Fe3O4@Au and MPSNP-based cancer therapy strategies. It details the designing of Fe3O4@Au and MPSN to bind with drugs, receptors, ligands, and destroy tumour cells and targeted drug delivery. This review serves as a fundamental comprehensive structure to guide future research towards prospects of core-shell nanosystems based on Fe3O4@Au and MPSNP for cancer theranostics.
Collapse
Affiliation(s)
- Himani Pathania
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Priyanka Chauhan
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Vishal Chaudhary
- Research Cell and Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, PR China
| | - Neetika
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Shahpur, India
| | - Gaurav
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Mamta Sharma
- Department of Botany, Shoolini University of Biotechnology and Management Sciences, Solan, India
- Department of Botany, Vivekananda Bhawan, Sardar Patel University, Mandi, India
| |
Collapse
|
13
|
Zhuo Y, Zhao YG, Zhang Y. Enhancing Drug Solubility, Bioavailability, and Targeted Therapeutic Applications through Magnetic Nanoparticles. Molecules 2024; 29:4854. [PMID: 39459222 PMCID: PMC11510236 DOI: 10.3390/molecules29204854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Biological variability poses significant challenges in the development of effective therapeutics, particularly when it comes to drug solubility and bioavailability. Poor solubility across varying physiological conditions often leads to reduced absorption and inconsistent therapeutic outcomes. This review examines how nanotechnology, especially through the use of nanomaterials and magnetic nanoparticles, offers innovative solutions to enhance drug solubility and bioavailability. This comprehensive review focuses on recent advancements and approaches in nanotechnology. We highlight both the successes and remaining challenges in this field, emphasizing the role of continued innovation. Future research should prioritize developing universal therapeutic solutions, conducting interdisciplinary research, and leveraging personalized nanomedicine to address biological variability.
Collapse
Affiliation(s)
- Yue Zhuo
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou 511442, China;
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yun Zhang
- School of Materials Science and Engineering, NingboTech University, Ningbo 315100, China
| |
Collapse
|
14
|
Tota M, Jonderko L, Witek J, Novickij V, Kulbacka J. Cellular and Molecular Effects of Magnetic Fields. Int J Mol Sci 2024; 25:8973. [PMID: 39201657 PMCID: PMC11354277 DOI: 10.3390/ijms25168973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Recently, magnetic fields (MFs) have received major attention due to their potential therapeutic applications and biological effects. This review provides a comprehensive analysis of the cellular and molecular impacts of MFs, with a focus on both in vitro and in vivo studies. We investigate the mechanisms by which MFs influence cell behavior, including modifications in gene expression, protein synthesis, and cellular signaling pathways. The interaction of MFs with cellular components such as ion channels, membranes, and the cytoskeleton is analyzed, along with their effects on cellular processes like proliferation, differentiation, and apoptosis. Molecular insights are offered into how MFs modulate oxidative stress and inflammatory responses, which are pivotal in various pathological conditions. Furthermore, we explore the therapeutic potential of MFs in regenerative medicine, cancer treatment, and neurodegenerative diseases. By synthesizing current findings, this article aims to elucidate the complex bioeffects of MFs, thereby facilitating their optimized application in medical and biotechnological fields.
Collapse
Affiliation(s)
- Maciej Tota
- Student Research Group № K148, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Laura Jonderko
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Julia Witek
- Student Research Group № K148, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (L.J.); (J.W.)
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania;
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, LT-08410 Vilnius, Lithuania
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
15
|
Kolay S, Das M, Mondal A, Sengupta A, Bag S, De P, Molla MR. Enzyme-Triggered Degradation of Supramolecularly Cross-Linked Polymersomes of Azobenzene-Based Polyurethane: Cell-Selective Anticancer Drug Release. Biomacromolecules 2024; 25:5068-5080. [PMID: 39041235 DOI: 10.1021/acs.biomac.4c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Enzyme-responsive self-assembled nanostructures for drug delivery applications have gained a lot of attention, as enzymes exhibit dysregulation in many disease-associated microenvironments. Azoreductase enzyme levels are strongly elevated in many tumor tissues; hence, here, we exploited the altered enzyme activity of the azoreductase enzyme and designed a main-chain azobenzene-based amphiphilic polyurethane, which self-assembles into a vesicular nanostructure and is programmed to disassemble in response to a specific enzyme, azoreductase, with the help of the nicotinamide adenine dinucleotide phosphate (NADPH) coenzyme in the hypoxic environment of solid tumors. The vesicular nanostructure sequesters, stabilizes the hydrophobic anticancer drug, and releases the drug in a controlled fashion in response to enzyme-triggered degradation of azo-bonds and disruption of vesicular assembly. The biological evaluation revealed tumor extracellular matrix pH-induced surface charge modulation, selective activated cellular uptake to azoreductase overexpressed lung cancer cells (A549), and the release of the anticancer drug followed by cell death. In contrast, the benign nature of the drug-loaded vesicular nanostructure toward normal cells (H9c2) suggested excellent cell specificity. We envision that the main-chain azobenzene-based polyurethane discussed in this manuscript could be considered as a possible selective chemotherapeutic cargo against the azoreductase overexpressed cancer cells while shielding the normal cells from off-target toxicity.
Collapse
Affiliation(s)
- Soumya Kolay
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Madhuchhanda Das
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja S. C. M Road, Kolkata 700032, India
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Arunima Sengupta
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja S. C. M Road, Kolkata 700032, India
| | - Sagar Bag
- Department of Chemical Science, Indian Institute of Science Education and Research, Mohanpur, Nadia, Kolkata, West Bengal 741246, India
| | - Priyadarsi De
- Department of Chemical Science, Indian Institute of Science Education and Research, Mohanpur, Nadia, Kolkata, West Bengal 741246, India
| | - Mijanur Rahaman Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
16
|
Singh A, Kumar N. Estimation of the injection criteria for magnetic hyperthermia therapy based on tumor morphology. Biomed Phys Eng Express 2024; 10:055017. [PMID: 39025085 DOI: 10.1088/2057-1976/ad64d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Intratumoral multi-injection strategy enhances the efficacy of magnetic nanoparticle hyperthermia therapy (MNPH). In this study, criteria for the selection of injections and their location depending on the tumor shape/geometry are developed. The developed strategy is based on the thermal dosimetry results of different invasive 3D tumor models during MNPH simulation. MNPH simulations are conducted on physical tumor tissue models encased within healthy tissue. The tumor shapes are geometrically divided into a central tumor region containing maximum tumor volume and a peripheral tumor portion protruding in any random direction. The concepts of core and invasive radius are used to geometrically divide the tumor volume. Primary & secondary injections are used to inject MNP fluid into these respective tumor regions based on the invasiveness of the tumor. The optimization strategy is devised based on the zone of influence of primary & secondary injection. Results indicate that the zone of influence of secondary injection lies between 0.7 and 0.8 times the radial distance between the center of the tumor core and branch node point (extreme far endpoint on the invasive tumor surface). Additionally, the multi-injection strategy is more effective when the protrusion volume exceeds10%of the total volume. The proposed algorithm is used to devise multi-injection strategies for arbitrarily shaped tumors and will assist in pre-planning magnetic nanoparticle hyperthermia therapy.
Collapse
Affiliation(s)
- Amritpal Singh
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neeraj Kumar
- Department of Mechanical Engineering, Thapar Institute of Engineering and Technology, Patiala, India
- Virginia Tech-TIET Center of Excellence in Emerging Materials, T I E T, Patiala, India
| |
Collapse
|
17
|
Molaei MJ. Magnetic hyperthermia in cancer therapy, mechanisms, and recent advances: A review. J Biomater Appl 2024; 39:3-23. [PMID: 38606627 DOI: 10.1177/08853282241244707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hyperthermia therapy refers to the elevating of a region in the body for therapeutic purposes. Different techniques have been applied for hyperthermia therapy including laser, microwave, radiofrequency, ultrasonic, and magnetic nanoparticles and the latter have received great attention in recent years. Magnetic hyperthermia in cancer therapy aims to increase the temperature of the body tissue by locally delivering heat from the magnetic nanoparticles to cancer cells with the aid of an external alternating magnetic field to kill the cancerous cells or prevent their further growth. This review introduces magnetic hyperthermia with magnetic nanoparticles. It includes the mechanism of the operation and magnetism behind the magnetic hyperthermia phenomenon. Different synthesis methods and surface modification to enhance the biocompatibility, water solubility, and stability of the nanoparticles in physiological environments have been discussed. Recent research on versatile types of magnetic nanoparticles with their ability to increase the local temperature has been addressed.
Collapse
Affiliation(s)
- Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
18
|
Hossein Karami M, Abdouss M. Cutting-edge tumor nanotherapy: Advancements in 5-fluorouracil Drug-loaded chitosan nanoparticles. INORG CHEM COMMUN 2024; 164:112430. [DOI: 10.1016/j.inoche.2024.112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Shen X, Sheng H, Zhang Y, Dong X, Kou L, Yao Q, Zhao X. Nanomedicine-based disulfiram and metal ion co-delivery strategies for cancer treatment. Int J Pharm X 2024; 7:100248. [PMID: 38689600 PMCID: PMC11059435 DOI: 10.1016/j.ijpx.2024.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.
Collapse
Affiliation(s)
- Xinyue Shen
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Huixiang Sheng
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuan Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qing Yao
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Xinyu Zhao
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
20
|
Wu S, Gai T, Chen J, Chen X, Chen W. Smart responsive in situ hydrogel systems applied in bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1389733. [PMID: 38863497 PMCID: PMC11165218 DOI: 10.3389/fbioe.2024.1389733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
The repair of irregular bone tissue suffers severe clinical problems due to the scarcity of an appropriate therapeutic carrier that can match dynamic and complex bone damage. Fortunately, stimuli-responsive in situ hydrogel systems that are triggered by a special microenvironment could be an ideal method of regenerating bone tissue because of the injectability, in situ gelatin, and spatiotemporally tunable drug release. Herein, we introduce the two main stimulus-response approaches, exogenous and endogenous, to forming in situ hydrogels in bone tissue engineering. First, we summarize specific and distinct responses to an extensive range of external stimuli (e.g., ultraviolet, near-infrared, ultrasound, etc.) to form in situ hydrogels created from biocompatible materials modified by various functional groups or hybrid functional nanoparticles. Furthermore, "smart" hydrogels, which respond to endogenous physiological or environmental stimuli (e.g., temperature, pH, enzyme, etc.), can achieve in situ gelation by one injection in vivo without additional intervention. Moreover, the mild chemistry response-mediated in situ hydrogel systems also offer fascinating prospects in bone tissue engineering, such as a Diels-Alder, Michael addition, thiol-Michael addition, and Schiff reactions, etc. The recent developments and challenges of various smart in situ hydrogels and their application to drug administration and bone tissue engineering are discussed in this review. It is anticipated that advanced strategies and innovative ideas of in situ hydrogels will be exploited in the clinical field and increase the quality of life for patients with bone damage.
Collapse
Affiliation(s)
- Shunli Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Hangzhou Singclean Medical Products Co., Ltd, Hangzhou, China
| | - Tingting Gai
- School of Medicine, Shanghai University, Shanghai, China
| | - Jie Chen
- Jiaxing Vocational Technical College, Department of Student Affairs, Jiaxing, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Weikai Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Liu X, Bai Y, Zhou B, Yao W, Song S, Liu J, Zheng C. Recent advances in hepatocellular carcinoma-targeted nanoparticles. Biomed Mater 2024; 19:042004. [PMID: 38697209 DOI: 10.1088/1748-605x/ad46d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the field of medicine, we often brave the unknown like interstellar explorers, especially when confronting the formidable opponent of hepatocellular carcinoma (HCC). The global burden of HCC remains significant, with suboptimal treatment outcomes necessitating the urgent development of novel drugs and treatments. While various treatments for liver cancer, such as immunotherapy and targeted therapy, have emerged in recent years, improving their transport and therapeutic efficiency, controlling their targeting and release, and mitigating their adverse effects remains challenging. However, just as we grope through the darkness, a glimmer of light emerges-nanotechnology. Recently, nanotechnology has attracted attention because it can increase the local drug concentration in tumors, reduce systemic toxicity, and has the potential to enhance the effectiveness of precision therapy for HCC. However, there are also some challenges hindering the clinical translation of drug-loaded nanoparticles (NPs). Just as interstellar explorers must overcome interstellar dust, we too must overcome various obstacles. In future researches, the design and development of nanodelivery systems for novel drugs treating HCC should be the first attention. Moreover, researchers should focus on the active targeting design of various NPs. The combination of the interventional therapies and drug-loaded NPs will greatly advance the process of precision HCC therapy.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Binqian Zhou
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, People's Republic of China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Songlin Song
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, People's Republic of China
| |
Collapse
|
22
|
Thirumurugan S, Muthiah KS, Lin YC, Dhawan U, Liu WC, Wang AN, Liu X, Hsiao M, Tseng CL, Chung RJ. NIR-Responsive Methotrexate-Modified Iron Selenide Nanorods for Synergistic Magnetic Hyperthermic, Photothermal, and Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25622-25636. [PMID: 38739745 PMCID: PMC11129116 DOI: 10.1021/acsami.3c18450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Breast cancer is a malignant tumor with a high mortality rate among women. Therefore, it is necessary to develop novel therapies to effectively treat this disease. In this study, iron selenide nanorods (FeSe2 NRs) were designed for use in magnetic hyperthermic, photothermal, and chemodynamic therapy (MHT/PTT/CDT) for breast cancer. To illustrate their efficacy, FeSe2 NRs were modified with the chemotherapeutic agent methotrexate (MTX). MTX-modified FeSe2 (FeSe2-MTX) exhibited excellent controlled drug release properties. Fe2+ released from FeSe2 NRs induced the release of •OH from H2O2 via a Fenton/Fenton-like reaction, enhancing the efficacy of CDT. Under alternating magnetic field (AMF) stimulation and 808 nm laser irradiation, FeSe2-MTX exerted potent hyperthermic and photothermal effects by suppressing tumor growth in a breast cancer nude mouse model. In addition, FeSe2 NRs can be used for magnetic resonance imaging in vivo by incorporating their superparamagnetic characteristics into a single nanomaterial. Overall, we presented a novel technique for the precise delivery of functional nanosystems to tumors that can enhance the efficacy of breast cancer treatment.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Kayalvizhi Samuvel Muthiah
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
| | - Udesh Dhawan
- Centre
for the Cellular Microenvironment, Division of Biomedical Engineering,
James Watt School of Engineering, Mazumdar-Shaw Advanced Research
Centre, University of Glasgow, Glasgow G116EW, U.K.
| | - Wai-Ching Liu
- Faculty
of Science and Technology, Technological
and Higher Education Institute of Hong Kong, New Territories, Hong Kong 999077, China
| | - An-Ni Wang
- Scrona
AG, Grubenstrasse 9, 8045 Zürich, Switzerland
| | - Xinke Liu
- College
of Materials Science and Engineering, Chinese Engineering and Research
Institute of Microelectronics, Shenzhen
University, Shenzhen 518060, China
- Department
of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael Hsiao
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
- Department
and Graduate Institute of Veterinary Medicine, School of Veterinary
Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Li Tseng
- Graduate
Institute of Biomedical Materials and Tissue Engineering, College
of Biomedical Engineering, Taipei Medical
University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Cell Therapy and Regenerative Medicine, College of
Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ren-Jei Chung
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Section 3, Zhongxiao East
Road, Taipei 10608, Taiwan
- High-Value
Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
23
|
Ghane N, Khalili S, Khorasani SN, Das O, Ramakrishna S, Neisiany RE. Antiepileptic drug-loaded and multifunctional iron oxide@silica@gelatin nanoparticles for acid-triggered drug delivery. Sci Rep 2024; 14:11400. [PMID: 38762571 PMCID: PMC11102556 DOI: 10.1038/s41598-024-62248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Shahla Khalili
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Oisik Das
- Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, National University of Singapore, Singapore, 117574, Singapore
| | - Rasoul Esmaeely Neisiany
- Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar, 9617976487, Iran.
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
24
|
Garshad J, Salarvand A, Tavakoli M, Mansourian M. Potential of [99mTc] Tc-IONPs in SPECT: a systematic review on efficiency and accumulation rates. J Radioanal Nucl Chem 2024; 333:2231-2250. [DOI: 10.1007/s10967-024-09480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/28/2024] [Indexed: 10/14/2024]
|
25
|
Picchi D, Biglione C, Horcajada P. Nanocomposites Based on Magnetic Nanoparticles and Metal-Organic Frameworks for Therapy, Diagnosis, and Theragnostics. ACS NANOSCIENCE AU 2024; 4:85-114. [PMID: 38644966 PMCID: PMC11027209 DOI: 10.1021/acsnanoscienceau.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 04/23/2024]
Abstract
In the last two decades, metal-organic frameworks (MOFs) with highly tunable structure and porosity, have emerged as drug nanocarriers in the biomedical field. In particular, nanoscaled MOFs (nanoMOFs) have been widely investigated because of their potential biocompatibility, high drug loadings, and progressive release. To enhance their properties, MOFs have been combined with magnetic nanoparticles (MNPs) to form magnetic nanocomposites (MNP@MOF) with additional functionalities. Due to the magnetic properties of the MNPs, their presence in the nanosystems enables potential combinatorial magnetic targeted therapy and diagnosis. In this Review, we analyze the four main synthetic strategies currently employed for the fabrication of MNP@MOF nanocomposites, namely, mixing, in situ formation of MNPs in presynthesized MOF, in situ formation of MOFs in the presence of MNPs, and layer-by-layer methods. Additionally, we discuss the current progress in bioapplications, focusing on drug delivery systems (DDSs), magnetic resonance imaging (MRI), magnetic hyperthermia (MHT), and theragnostic systems. Overall, we provide a comprehensive overview of the recent advances in the development and bioapplications of MNP@MOF nanocomposites, highlighting their potential for future biomedical applications with a critical analysis of the challenges and limitations of these nanocomposites in terms of their synthesis, characterization, biocompatibility, and applicability.
Collapse
Affiliation(s)
| | - Catalina Biglione
- Advanced Porous Materials
Unit, IMDEA Energy Institute, Móstoles, 28935 Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials
Unit, IMDEA Energy Institute, Móstoles, 28935 Madrid, Spain
| |
Collapse
|
26
|
Yan H, Xu P, Cong H, Yu B, Shen Y. Research progress in construction of organic carrier drug delivery platform using tumor microenvironment. MATERIALS TODAY CHEMISTRY 2024; 37:101997. [DOI: 10.1016/j.mtchem.2024.101997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Ge X, Mohapatra J, Silva E, He G, Gong L, Lyu T, Madhogaria RP, Zhao X, Cheng Y, Al-Enizi AM, Nafady A, Tian J, Liu JP, Phan MH, Taraballi F, Pettigrew RI, Ma S. Metal-Organic Framework as a New Type of Magnetothermally-Triggered On-Demand Release Carrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306940. [PMID: 38127968 DOI: 10.1002/smll.202306940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The development of external stimuli-controlled payload systems has been sought after with increasing interest toward magnetothermally-triggered drug release (MTDR) carriers due to their non-invasive features. However, current MTDR carriers present several limitations, such as poor heating efficiency caused by the aggregation of iron oxide nanoparticles (IONPs) or the presence of antiferromagnetic phases which affect their efficiency. Herein, a novel MTDR carrier is developed using a controlled encapsulation method that fully fixes and confines IONPs of various sizes within the metal-organic frameworks (MOFs). This novel carrier preserves the MOF's morphology, porosity, and IONP segregation, while enhances heating efficiency through the oxidation of antiferromagnetic phases in IONPs during encapsulation. It also features a magnetothermally-responsive nanobrush that is stimulated by an alternating magnetic field to enable on-demand drug release. The novel carrier shows improved heating, which has potential applications as contrast agents and for combined chemo and magnetic hyperthermia therapy. It holds a great promise for magneto-thermally modulated drug dosing at tumor sites, making it an exciting avenue for cancer treatment.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
- Engineering Medicine (EnMed), Texas A&M University and Houston Methodist Hospital, Houston, Texas, 77030, USA
| | - Jeotikanta Mohapatra
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Enya Silva
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Guihua He
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Lingshan Gong
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| | - Tengteng Lyu
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| | - Richa P Madhogaria
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Xin Zhao
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Yuchuan Cheng
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jian Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - J Ping Liu
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston Methodist Academic Institute, Houston, Texas, 77030, USA
| | - Roderic I Pettigrew
- Engineering Medicine (EnMed), Texas A&M University and Houston Methodist Hospital, Houston, Texas, 77030, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| |
Collapse
|
28
|
Xie G, Li B, Zhang X, Yu J, Sun S. One-Minute Preparation of Iron Foam-Drug Implant for Ultralow-Power Magnetic Hyperthermia-Based Combination Therapy of Tumors in Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307823. [PMID: 38164827 PMCID: PMC10953590 DOI: 10.1002/advs.202307823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Indexed: 01/03/2024]
Abstract
The magnetic hyperthermia-based combination therapy (MHCT) is a powerful tumor treatment approach due to its unlimited tissue penetration depth and synergistic therapeutic effect. However, strong magnetic hyperthermia and facile drug loading are incompatible with current MHCT platforms. Herein, an iron foam (IF)-drug implant is established in an ultra-facile and universal way for ultralow-power MHCT of tumors in vivo for the first time. The IF-drug implant is fabricated by simply immersing IF in a drug solution at an adjustable concentration for 1 min. Continuous metal structure of IF enables ultra-high efficient magnetic hyperthermia based on eddy current thermal effect, and its porous feature provides great space for loading various hydrophilic and hydrophobic drugs via "capillary action". In addition, the IF has the merits of low cost, customizable size and shape, and good biocompatibility and biodegradability, benefiting reproducible and large-scale preparation of IF-drug implants for biological application. As a proof of concept, IF-doxorubicin (IF-DOX) is used for combined tumor treatment in vivo and achieves excellent therapeutic efficacy at a magnetic field intensity an order of magnitude lower than the threshold for biosafety application. The proposed IF-drug implant provides a handy and universal method for the fabrication of MHCT platforms for ultralow-power combination therapy.
Collapse
Affiliation(s)
- Guangchao Xie
- Department of Diagnostic and Therapeutic UltrasonographyTianjin Medical University Cancer Institute and HospitalNational Clinical Research Center of CancerKey Laboratory of Cancer Prevention and TherapyTianjin300060China
- School of Medical ImagingTianjin Medical UniversityTianjin300203China
| | - Bingjie Li
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjin300052China
| | - Xuejun Zhang
- School of Medical ImagingTianjin Medical UniversityTianjin300203China
| | - Jiaojiao Yu
- School of Medical ImagingTianjin Medical UniversityTianjin300203China
| | - Shao‐Kai Sun
- School of Medical ImagingTianjin Medical UniversityTianjin300203China
| |
Collapse
|
29
|
Xing F, Xu J, Zhou Y, Yu P, Zhe M, Xiang Z, Duan X, Ritz U. Recent advances in metal-organic frameworks for stimuli-responsive drug delivery. NANOSCALE 2024; 16:4434-4483. [PMID: 38305732 DOI: 10.1039/d3nr05776c] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
After entering the human body, drugs for treating diseases, which are prone to delivery and release in an uncontrolled manner, are affected by various factors. Based on this, many researchers utilize various microenvironmental changes encountered during drug delivery to trigger drug release and have proposed stimuli-responsive drug delivery systems. In recent years, metal-organic frameworks (MOFs) have become promising stimuli-responsive agents to release the loaded therapeutic agents at the target site to achieve more precise drug delivery due to their high drug loading, excellent biocompatibility, and high stimuli-responsiveness. The MOF-based stimuli-responsive systems can respond to various stimuli under pathological conditions at the site of the lesion, releasing the loaded therapeutic agent in a controlled manner, and improving the accuracy and safety of drug delivery. Due to the changes in different physical and chemical factors in the pathological process of diseases, the construction of stimuli-responsive systems based on MOFs has become a new direction in drug delivery and controlled release. Based on the background of the rapidly increasing attention to MOFs applied in drug delivery, we aim to review various MOF-based stimuli-responsive drug delivery systems and their response mechanisms to various stimuli. In addition, the current challenges and future perspectives of MOF-based stimuli-responsive drug delivery systems are also discussed in this review.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Xin Duan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
30
|
Zhang L, Li Q, Liu J, Deng Z, Zhang X, Alifu N, Zhang X, Yu Z, Liu Y, Lan Z, Wen T, Sun K. Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy. Colloids Surf B Biointerfaces 2024; 234:113754. [PMID: 38241891 DOI: 10.1016/j.colsurfb.2024.113754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Cancers are fatal diseases that lead to most death of human beings, which urgently require effective treatments methods. Hyperthermia therapy employs magnetic nanoparticles (MNPs) as heating medium under external alternating magnetic field. Among various MNPs, ferrite nanoparticles (FNPs) have gained significant attention for hyperthermia therapy due to their exceptional magnetic properties, high stability, favorable biological compatibility, and low toxicity. The utilization of FNPs holds immense potential for enhancing the effectiveness of hyperthermia therapy. The main hurdle for hyperthermia treatment includes optimizing the heat generation capacity of FNPs and controlling the local temperature of tumor region. This review aims to comprehensively evaluate the magnetic hyperthermia treatment (MHT) of FNPs, which is accomplished by elucidating the underlying mechanism of heat generation and identifying influential factors. Based upon fundamental understanding of hyperthermia of FNPs, valuable insights will be provided for developing efficient nanoplatforms with enhanced accuracy and magnetothermal properties. Additionally, we will also survey current research focuses on modulating FNPs' properties, external conditions for MHT, novel technical methods, and recent clinical findings. Finally, current challenges in MHT with FNPs will be discussed while prospecting future directions.
Collapse
Affiliation(s)
- Linxue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Qifan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Junxiao Liu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Zunyi Deng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xueliang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China; School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China; State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Xiaofeng Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhong Yu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhongwen Lan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Tianlong Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China.
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
31
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
32
|
Paramasivam G, Sanmugam A, Palem VV, Sevanan M, Sairam AB, Nachiappan N, Youn B, Lee JS, Nallal M, Park KH. Nanomaterials for detection of biomolecules and delivering therapeutic agents in theragnosis: A review. Int J Biol Macromol 2024; 254:127904. [PMID: 37939770 DOI: 10.1016/j.ijbiomac.2023.127904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Nanomaterials are emerging facts used to deliver therapeutic agents in living systems. Nanotechnology is used as a compliment by implementing different kinds of nanotechnological applications such as nano-porous structures, functionalized nanomaterials, quantum dots, carbon nanomaterials, and polymeric nanostructures. The applications are in the initial stage, which led to achieving several diagnoses and therapy in clinical practice. This review conveys the importance of nanomaterials in post-genomic employment, which includes the design of immunosensors, immune assays, and drug delivery. In this view, genomics is a molecular tool containing large databases that are useful in choosing an apt molecular inhibitor such as drug, ligand and antibody target in the drug delivery process. This study identifies the expression of genes and proteins in analysis and classification of diseases. Experimentally, the study analyses the design of a disease model. In particular, drug delivery is a boon area to treat cancer. The identified drugs enter different phase trails (Trails I, II, and III). The genomic information conveys more essential entities to the phase I trials and helps to move further for other trails such as trails-II and III. In such cases, the biomarkers play a crucial role by monitoring the unique pathological process. Genetic engineering with recombinant DNA techniques can be employed to develop genetically engineered disease models. Delivering drugs in a specific area is one of the challenging issues achieved using nanoparticles. Therefore, genomics is considered as a vast molecular tool to identify drugs in personalized medicine for cancer therapy.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Vishnu Vardhan Palem
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, Tamil Nadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - Nachiappan Nachiappan
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumbudur 602117, Tamil Nadu, India
| | - BuHyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 46241, Republic of Korea; School of Medicine, Pusan National University, Busan 46241, Republic of Korea
| | - Muthuchamy Nallal
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
33
|
Kumar V, Kaushik NK, Tiwari SK, Singh D, Singh B. Green synthesis of iron nanoparticles: Sources and multifarious biotechnological applications. Int J Biol Macromol 2023; 253:127017. [PMID: 37742902 DOI: 10.1016/j.ijbiomac.2023.127017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Green synthesis of iron nanoparticles is a highly fascinating research area and has gained importance due to reliable, sustainable and ecofriendly protocol for synthesizing nanoparticles, along with the easy availability of plant materials and their pharmacological significance. As an alternate to physical and chemical synthesis, the biological materials, like microorganisms and plants are considered to be less costly and environment-friendly. Iron nanoparticles with diverse morphology and size have been synthesized using biological extracts. Microbial (bacteria, fungi, algae etc.) and plant extracts have been employed in green synthesis of iron nanoparticles due to the presence of various metabolites and biomolecules. Physical and biochemical properties of biologically synthesized iron nanoparticles are superior to that are synthesized using physical and chemical agents. Iron nanoparticles have magnetic property with thermal and electrical conductivity. Iron nanoparticles below a certain size (generally 10-20 nm), can exhibit a unique form of magnetism called superparamagnetism. They are non-toxic and highly dispersible with targeted delivery, which are suitable for efficient drug delivery to the target. Green synthesized iron nanoparticles have been explored for multifarious biotechnological applications. These iron nanoparticles exhibited antimicrobial and anticancerous properties. Iron nanoparticles adversely affect the cell viability, division and metabolic activity. Iron nanoparticles have been used in the purification and immobilization of various enzymes/proteins. Iron nanoparticles have shown potential in bioremediation of various organic and inorganic pollutants. This review describes various biological sources used in the green synthesis of iron nanoparticles and their potential applications in biotechnology, diagnostics and mitigation of environmental pollutants.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh 201313, India
| | - S K Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Davender Singh
- Department of Physics, RPS Degree College, Balana, Satnali Road, Mahendragarh 123029, Haryana, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India; Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
34
|
Qu HC, Yang Y, Cui ZC, Wang D, Xue CD, Qin KR. Temperature-mediated diffusion of nanoparticles in semidilute polymer solutions. Electrophoresis 2023; 44:1899-1906. [PMID: 37736676 DOI: 10.1002/elps.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
The temperature is often a critical factor affecting the diffusion of nanoparticles in complex physiological media, but its specific effects are still to be fully understood. Here, we constructed a temperature-regulated model of semidilute polymer solution and experimentally investigated the temperature-mediated diffusion of nanoparticles using the particle tracking method. By examining the ensemble-averaged mean square displacements (MSDs), we found that the MSD grows gradually as the temperature increases while the transition time from sublinear to linear stage in MSD decreases. Meanwhile, the temperature-dependent measured diffusivity of the nanoparticles shows an exponential growth. We revealed that these temperature-mediated changes are determined by the composite effect of the macroscale property of polymer solution and the microscale dynamics of polymer chain as well as nanoparticles. Furthermore, the measured non-Gaussian displacement probability distributions were found to exhibit non-Gaussian fat tails, and the tailed distribution is enhanced as the temperature increases. The non-Gaussianity was calculated and found to vary in the same trend with the tailed distribution, suggesting the occurrence of hopping events. This temperature-mediated non-Gaussian feature validates the recent theory of thermally induced activated hopping. Our results highlight the temperature-mediated changes in diffusive transport of nanoparticles in polymer solutions and may provide the possible strategy to improve drug delivery in physiological media.
Collapse
Affiliation(s)
- Heng-Chao Qu
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Yi Yang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Zhi-Chao Cui
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
| | - Dong Wang
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
| | - Chun-Dong Xue
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, P. R. China
- Faculty of Medicine, Dalian University of Technology, Dalian, P. R. China
| | - Kai-Rong Qin
- Affiliated Central Hospital of Dalian University of Technology, Dalian, P. R. China
- Faculty of Medicine, Dalian University of Technology, Dalian, P. R. China
| |
Collapse
|
35
|
Singh S, Akhil Varri VS, Parekh K, Misra SK. Enhanced therapeutic action of Trastuzumab loaded Zn xMn 1-xFe 2O 4 nanoparticles using a pre-treatment step for hyperthermia treatment of HER2+ breast cancer. Colloids Surf B Biointerfaces 2023; 232:113579. [PMID: 37864913 DOI: 10.1016/j.colsurfb.2023.113579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
In this study, Ferrites (Fe3O4, MnFe2O4, ZnFe2O4) and different stoichiometric ratios of ZnxMn1-xFe2O4 (x = 0.2, 0.4, 0.6, and 0.8) nanoparticles (<15 nm) were synthesized by microwave-assisted method and optimised for hyperthermia studies. The selection of the optimised variant of ferrite i.e. Zn0.4Mn0.6Fe2O4 was found to be the best variant based on VSM (38.14 emu g-1) hyperthermia-based temperature rise (maximum ΔT of 38 °C), SAR and ILP values. Trastuzumab, which is known to bind with HER2 receptors of breast cancer was chemically tethered onto Zn0.4Mn0.6Fe2O4 nanoparticles through EDC/NHS coupling with a loading efficiency of 80%. The attached Trastuzumab aided during the pre-treatment step by aiding in the internalisation of Zn0.4Mn0.6Fe2O4 nanoparticles, with cellular uptake of 11% in SK-BR-3 (cancerous HER2+) cells compared to ∼5% for MDA-MB-231 (cancerous HER2-) and RPE-1 (non-cancerous) cells. In the presence of a hyperthermia trigger for 15 mins, ZnxMn1-xFe2O4 -Trastuzumab formulation had a maximum therapeutic effect by reducing the SK-BR-3 cell viability to 14% without adversely affecting the RPE-1 cells. The mechanism of ZnxMn1-xFe2O4-Trastuzumab combination was examined using an internalisation study, MTT-based viability, proliferation study, and ROS generation assay. By utilizing both Trastuzumab and hyperthermia, we achieve their synergistic anticancer properties while minimizing the drug requirement and reducing any effect on non-cancerous cells.
Collapse
Affiliation(s)
- Simranjit Singh
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India
| | | | - Kinnari Parekh
- Dr. K C Patel R & D Centre, Charotar University of Science and Technology, Changa, 388421 Gujarat, India
| | - Superb K Misra
- Materials Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
36
|
Britton D, Legocki J, Aristizabal O, Mishkit O, Liu C, Jia S, Renfrew PD, Bonneau R, Wadghiri YZ, Montclare JK. Protein-Engineered Fibers For Drug Encapsulation Traceable via 19F Magnetic Resonance. ACS APPLIED NANO MATERIALS 2023; 6:21245-21257. [PMID: 38037605 PMCID: PMC10682962 DOI: 10.1021/acsanm.3c04357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Theranostic materials research is experiencing rapid growth driven by the interest in integrating both therapeutic and diagnostic modalities. These materials offer the unique capability to not only provide treatment but also track the progression of a disease. However, to create an ideal theranostic biomaterial without compromising drug encapsulation, diagnostic imaging must be optimized for improved sensitivity and spatial localization. Herein, we create a protein-engineered fluorinated coiled-coil fiber, Q2TFL, capable of improved sensitivity to 19F magnetic resonance spectroscopy (MRS) detection. Leveraging residue-specific noncanonical amino acid incorporation of trifluoroleucine (TFL) into the coiled-coil, Q2, which self-assembles into nanofibers, we generate Q2TFL. We demonstrate that fluorination results in a greater increase in thermostability and 19F magnetic resonance detection compared to the nonfluorinated parent, Q2. Q2TFL also exhibits linear ratiometric 19F MRS thermoresponsiveness, allowing it to act as a temperature probe. Furthermore, we explore the ability of Q2TFL to encapsulate the anti-inflammatory small molecule, curcumin (CCM), and its impact on the coiled-coil structure. Q2TFL also provides hyposignal contrast in 1H MRI, echogenic signal with high-frequency ultrasound and sensitive detection by 19F MRS in vivo illustrating fluorination of coiled-coils for supramolecular assembly and their use with 1H MRI, 19F MRS and high frequency ultrasound as multimodal theranostic agents.
Collapse
Affiliation(s)
- Dustin Britton
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jakub Legocki
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Orlando Aristizabal
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Orin Mishkit
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Chengliang Liu
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Sihan Jia
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Paul Douglas Renfrew
- Center
for Computational Biology, Flatiron Institute,
Simons Foundation, New York, New York 10010, United States
| | - Richard Bonneau
- Center
for Computational Biology, Flatiron Institute,
Simons Foundation, New York, New York 10010, United States
- Center for
Genomics and Systems Biology, New York University, New York, New York 10003, United States
- Courant
Institute
of Mathematical Sciences, Computer Science Department, New York University, New York, New York 10009, United States
| | - Youssef Z. Wadghiri
- Center
for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York 10016, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
| | - Jin Kim Montclare
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard
and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department
of Chemistry, New York University, New York, New York 10012, United States
- Department
of Biomaterials, New York University College
of Dentistry, New York, New York 10010, United States
| |
Collapse
|
37
|
Xu B, Li S, Shi R, Liu H. Multifunctional mesoporous silica nanoparticles for biomedical applications. Signal Transduct Target Ther 2023; 8:435. [PMID: 37996406 PMCID: PMC10667354 DOI: 10.1038/s41392-023-01654-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 11/25/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are recognized as a prime example of nanotechnology applied in the biomedical field, due to their easily tunable structure and composition, diverse surface functionalization properties, and excellent biocompatibility. Over the past two decades, researchers have developed a wide variety of MSNs-based nanoplatforms through careful design and controlled preparation techniques, demonstrating their adaptability to various biomedical application scenarios. With the continuous breakthroughs of MSNs in the fields of biosensing, disease diagnosis and treatment, tissue engineering, etc., MSNs are gradually moving from basic research to clinical trials. In this review, we provide a detailed summary of MSNs in the biomedical field, beginning with a comprehensive overview of their development history. We then discuss the types of MSNs-based nanostructured architectures, as well as the classification of MSNs-based nanocomposites according to the elements existed in various inorganic functional components. Subsequently, we summarize the primary purposes of surface-functionalized modifications of MSNs. In the following, we discuss the biomedical applications of MSNs, and highlight the MSNs-based targeted therapeutic modalities currently developed. Given the importance of clinical translation, we also summarize the progress of MSNs in clinical trials. Finally, we take a perspective on the future direction and remaining challenges of MSNs in the biomedical field.
Collapse
Affiliation(s)
- Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Rui Shi
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, 100035, Beijing, China.
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
38
|
Neetika, Sharma M, Thakur P, Gaur P, Rani GM, Rustagi S, Talreja RK, Chaudhary V. Cancer treatment and toxicity outlook of nanoparticles. ENVIRONMENTAL RESEARCH 2023; 237:116870. [PMID: 37567383 DOI: 10.1016/j.envres.2023.116870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Diversified nanosystems with tunable physicochemical attributes have emerged as potential solution to globally devastating cancer by offering novel possibilities for improving the techniques of cancer detection, imaging, therapies, diagnosis, drug delivery and treatment. Drug delivery systems based on nanoparticles (NPs) with ability of crossing different biological barriers are becoming increasingly popular. Besides, NPs are utilized in pharmaceutical sciences to mitigate the toxicity of conventional cancer therapeutics. However, significant NPs-associated toxicity, off-targeted activities, and low biocompatibility limit their utilization for cancer theranostics and can be hazardous to cancer patients up to life-threatening conditions. NPs interact with the biomolecules and disturb their regular function by aggregating inside cells and forming a protein corona, and the formulation turns ineffective in controlling cancer cell growth. The adverse interactions between NPs and biological entities can lead to life-threatening toxicities. This review focuses on the widespread use of various NPs including zinc oxide, titanium oxide, silver, and gold, which serve as efficient nano-vehicles and demonstrate notable pharmacokinetic and pharmacodynamic advantages in cancer therapy. Subsequently, the mechanism of nanotoxicity attached with these NPs, alternate solutions and their prospect to revolutionize cancer theranostics are highlighted. This review will serve as guide for future developments associated with high-performance NPs with controlled toxicity for establishing them as modern-age nanotools to manage cancer in tailored manner.
Collapse
Affiliation(s)
- Neetika
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173212, India
| | - Mamta Sharma
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173212, India.
| | - Pankaj Thakur
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paras Gaur
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa, 52242, United States
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC.
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttranchal University, Dehradun, Uttrakhand, India
| | - Rishi Kumar Talreja
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, 110029, India
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
39
|
Lin J, Wang X, Ni D, Chen Y, Chen C, Liu Y. Combinational Gene Therapy toward Cancer with Nanoplatform: Strategies and Principles. ACS MATERIALS AU 2023; 3:584-599. [PMID: 38089659 PMCID: PMC10636764 DOI: 10.1021/acsmaterialsau.3c00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 12/18/2024]
Abstract
Cancer remains a significant threat to human health. While numerous therapies have been developed to combat the disease, traditional treatments such as chemotherapy and radiotherapy are suboptimal and associated with significant side effects. Gene therapy is an emerging therapeutic approach that offers improved targeting and reduced side effects compared with traditional treatments. Using siRNA and other nucleic acid-based drugs in cancer treatment has generated significant interest among researchers. Nanocarriers, such as liposomes, can effectively deliver these agents to tumor sites. However, gene therapy alone is often insufficient to eradicate tumors, and there is a risk of recurrence. Therefore, combining gene therapy with other therapies using nanocarriers, such as phototherapy and magnetic hyperthermia therapy, can lead to synergistic therapeutic effects through different mechanisms. In this review, we summarize various ways in which gene therapy can be combined with other therapies and highlight the role of nanoplatforms in mediating these combined therapies, which would inspire novel design ideas toward combination therapies. Additionally, bottlenecks and barriers to gene therapy should be addressed in the near future to achieve better clinical efficacy.
Collapse
Affiliation(s)
- Jinhui Lin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dongqi Ni
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yandong Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ying Liu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
40
|
Parsaei M, Akhbari K. Magnetic UiO-66-NH 2 Core-Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells. ACS OMEGA 2023; 8:41321-41338. [PMID: 37969997 PMCID: PMC10633860 DOI: 10.1021/acsomega.3c04863] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
In this study, a magnetic core-shell metal-organic framework (MOF) nanocomposite, Fe3O4-COOH@UiO-66-NH2, was synthesized for tumor-targeting drug delivery by incorporating carboxylate groups as functional groups onto ferrite nanoparticle surfaces, followed by fabrication of the UiO-66-NH2 shell using a facile self-assembly approach. The anticancer drug quercetin (QU) was loaded into the magnetic core-shell nanoparticles. The synthesized magnetic nanoparticles were comprehensively evaluated through multiple techniques, including FT-IR, PXRD, FE-SEM, TEM, EDX, BET, UV-vis, ZP, and VSM. Drug release investigations were conducted to investigate the release behavior of QU from the nanocomposite at two different pH values (7.4 and 5.4). The results revealed that QU@Fe3O4-COOH@UiO-66-NH2 exhibited a high loading capacity of 43.1% and pH-dependent release behavior, maintaining sustained release characteristics over a prolonged duration of 11 days. Furthermore, cytotoxicity assays using the human breast cancer cell line MDA-MB-231 and the normal cell line HEK-293 were performed to evaluate the cytotoxic effects of QU, UiO-66-NH2, Fe3O4-COOH, Fe3O4-COOH@UiO-66-NH2, and QU@Fe3O4-COOH@UiO-66-NH2. Treatment with QU@Fe3O4-COOH@UiO-66-NH2 substantially reduced the cell viability in cancerous MDA-MB-231 cells. Cellular uptake and cell death mechanisms were further investigated, demonstrating the internalization of QU@Fe3O4-COOH@UiO-66-NH2 by cancer cells and the induction of cancer cell death through the apoptosis pathway. These findings highlight the considerable potential of Fe3O4-COOH@UiO-66-NH2 as a targeted nanocarrier for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
41
|
Pan S, Sun Z, Zhao B, Miao L, Zhou Q, Chen T, Zhu X. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials 2023; 302:122321. [PMID: 37722183 DOI: 10.1016/j.biomaterials.2023.122321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.
Collapse
Affiliation(s)
- Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Miao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
42
|
Kim P, Serov N, Falchevskaya A, Shabalkin I, Dmitrenko A, Kladko D, Vinogradov V. Quantifying the Efficacy of Magnetic Nanoparticles for MRI and Hyperthermia Applications via Machine Learning Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303522. [PMID: 37563807 DOI: 10.1002/smll.202303522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/16/2023] [Indexed: 08/12/2023]
Abstract
Magnetic nanoparticles are a prospective class of materials for use in biomedicine as agents for magnetic resonance imagining (MRI) and hyperthermia treatment. However, synthesis of nanoparticles with high efficacy is resource-intensive experimental work. In turn, the use of machine learning (ML) methods is becoming useful in materials design and serves as a great approach to designing nanomagnets for biomedicine. In this work, for the first time, an ML-based approach is developed for the prediction of main parameters of material efficacy, i.e., specific absorption rate (SAR) for hyperthermia and r1 /r2 relaxivities in MRI, with parameters of nanoparticles as well as experimental conditions as descriptors. For that, a unique database with more than 980 magnetic nanoparticles collected from scientific articles is assembled. Using this data, several tree-based ensemble models are trained to predict SAR, r1 and r2 relaxivity. After hyperparameter optimization, models reach performances of R2 = 0.86, R2 = 0.78, and R2 = 0.75, respectively. Testing the models on samples unseen during the training shows no performance drops. Finally, DiMag, an open access resource created to guide synthesis of novel nanosized magnets for MRI and hyperthermia treatment with machine learning and boost development of new biomedical agents, is developed.
Collapse
Affiliation(s)
- Pavel Kim
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 191002, Russian Federation
| | - Nikita Serov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 191002, Russian Federation
| | - Aleksandra Falchevskaya
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 191002, Russian Federation
| | - Ilia Shabalkin
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 191002, Russian Federation
| | - Andrei Dmitrenko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 191002, Russian Federation
| | - Daniil Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 191002, Russian Federation
| | - Vladimir Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 191002, Russian Federation
| |
Collapse
|
43
|
Tewari AB, Saini A, Sharma D. Extirpating the cancer stem cell hydra: Differentiation therapy and Hyperthermia therapy for targeting the cancer stem cell hierarchy. Clin Exp Med 2023; 23:3125-3145. [PMID: 37093450 DOI: 10.1007/s10238-023-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.
Collapse
Affiliation(s)
- Amit B Tewari
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
44
|
Rethi L, Rethi L, Liu CH, Hyun TV, Chen CH, Chuang EY. Fortification of Iron Oxide as Sustainable Nanoparticles: An Amalgamation with Magnetic/Photo Responsive Cancer Therapies. Int J Nanomedicine 2023; 18:5607-5623. [PMID: 37814664 PMCID: PMC10560484 DOI: 10.2147/ijn.s404394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 10/11/2023] Open
Abstract
Due to their non-toxic function in biological systems, Iron oxide NPs (IO-NPs) are very attractive in biomedical applications. The magnetic properties of IO-NPs enable a variety of biomedical applications. We evaluated the usage of IO-NPs for anticancer effects. This paper lists the applications of IO-NPs in general and the clinical targeting of IO-NPs. The application of IONPs along with photothermal therapy (PTT), photodynamic therapy (PDT), and magnetic hyperthermia therapy (MHT) is highlighted in this review's explanation for cancer treatment strategies. The review's study shows that IO-NPs play a beneficial role in biological activity because of their biocompatibility, biodegradability, simplicity of production, and hybrid NPs forms with IO-NPs. In this review, we have briefly discussed cancer therapy and hyperthermia and NPs used in PTT, PDT, and MHT. IO-NPs have a particular effect on cancer therapy when combined with PTT, PDT, and MHT were the key topics of the review and were covered in depth. The IO-NPs formulations may be uniquely specialized in cancer treatments with PTT, PDT, and MHT, according to this review investigation.
Collapse
Affiliation(s)
- Lekha Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lekshmi Rethi
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tin Van Hyun
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City, 700000, Vietnam
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University – Shuang Ho Hospital, New Taipei City, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
45
|
Khalili Najafabad B, Attaran N, Barati M, Mohammadi Z, Mahmoudi M, Sazgarnia A. Cobalt ferrite nanoparticle for the elimination of CD133+CD44 + and CD44 +CD24 -, in breast and skin cancer stem cells, using non-ionizing treatments. Heliyon 2023; 9:e19893. [PMID: 37810832 PMCID: PMC10556613 DOI: 10.1016/j.heliyon.2023.e19893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Cancer stem cells (CSCs) are the most challenging issue in cancer treatment, because of their high resistance mechanisms, that can cause tumor recurrence after common cancer treatments such as drug and radiation based therapies, and the insufficient efficiency of common treatments in CSCs removal and the recurrence of tumors after these treatments, it is essential to consider other methods, including non-ionizing treatments likes light-based treatments and magnetic hyperthermia (MHT). Method and material After synthesis, characterization and investigation, the toxicity of novel on A375 and MAD-MB-231 cell lines, magnetic hyperthermia and light-based treatments were applied. MTT assay and flow cytometry was employed to determine cell survival. the influence of combination therapy on CD44 + CD24-and CD133 + CD44+ cell population, Comparison and evaluation of combination treatments was done respectively using Combination Indices (CIs). Result The final nanoparticle has a high efficiency in producing hydroxyl radicals and generating heat in MHT. According to CIs, we can conclude that combined using of light-based treatment and MHT in the presence of final synthesized nanoparticle have synergistic effect and a high ability to reduce the population of stem cells in both cell lines compared to single treatments. Conclusion In this study a novel multi-functional nanoplatform acted well in dual and triple combined treatments, and showed a good performance in the eradication of CSCs, in A375 and MAD-MB-231 cell lines.
Collapse
Affiliation(s)
- Bahareh Khalili Najafabad
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Attaran
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan, University of Medical Science, Bojnurd, Iran
| | - Zahra Mohammadi
- Radiological Technology Department of Actually Paramedical Sciences, Babol University of Medical Science, Babol, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Bu-Ali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ameneh Sazgarnia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
46
|
Meena BS, Kumar S. Thermal damage analysis in tissue caused by electromagnetic radiation using space-time collocation method. J Therm Biol 2023; 117:103715. [PMID: 37757680 DOI: 10.1016/j.jtherbio.2023.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Over the past half-century, the usage of external heat sources in medical applications has increased substantially. Controlling heat damage is essential for ensuring the efficacy of the treatment. Living tissues are highly non-homogeneous; hence, it is important to take into account the effects of local non-equilibrium on their thermal behavior. In the present study, two- and three- space dimensional time-space fractional single-phase-lag (SPL) and dual-phase-lag (DPL) models for bio-heat transfer in tissue are considered to study the thermal damage and temperature in tissue caused by electromagnetic radiation as an external heat source. The considered mathematical models are more general and consider non-Fourier as well as non-local effects. We obtain the numerical solution for the models by combining Gaussian RBFs and shifted Chebyshev polynomials in the space and time directions, respectively. The RBFs depend on Euclidean distance, so they can easily be used in multidimensional space domain, and the use of Chebyshev polynomials gives spectral accuracy in time direction. It is also explored how different parameters, such as blood perfusion rate Wb, phase lags τq, τt, and fractional derivatives α, β, affect the temperature distribution and thermal damage in the tissue.
Collapse
Affiliation(s)
- Bhagya Shree Meena
- Department of Mathematics, S. V. National Institute of Technology Surat, Gujarat 395007, India.
| | - Sushil Kumar
- Department of Mathematics, S. V. National Institute of Technology Surat, Gujarat 395007, India.
| |
Collapse
|
47
|
Choi J, Kim DI, Kim JY, Pané S, Nelson BJ, Chang YT, Choi H. Magnetically Enhanced Intracellular Uptake of Superparamagnetic Iron Oxide Nanoparticles for Antitumor Therapy. ACS NANO 2023; 17:15857-15870. [PMID: 37477428 DOI: 10.1021/acsnano.3c03780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely employed in biomedical fields, including targeted delivery of antitumor therapy. Conventional magnetic tumor targeting has used simple static magnetic fields (SMFs), which cause SPIONs to linearly aggregate into a long chain-like shape. Such agglomeration greatly hinders the intracellular targeting of SPIONs into tumors, thus reducing the therapeutic efficacy. In this study, we investigated the enhancement of the intracellular uptake of SPIONs through the application of rotating magnetic fields (RMFs). Based on the physical principles of SPION chain disassembly, we investigated physical parameters to predict the chain length favorable for intracellular uptake. Our prediction was validated by clear visualization of the intracellular distributions of SPIONs in tumor cells at both cellular and three-dimensional microtissue levels. To identify the potential therapeutic effects of enhanced intracellular uptake, magnetic hyperthermia as antitumor therapy was investigated under varying conditions of magnetic hyperthermia and RMFs. The results showed that enhanced intracellular uptake reduced magnetic hyperthermia time and strength as well as particle concentration. The proposed method will be useful in the development of techniques to determine the optimized physical conditions for the enhanced intracellular uptake of SPIONs in antitumor therapy.
Collapse
Affiliation(s)
- Junhee Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-In Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jin-Young Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Robotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Division of Biotechnology, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- IMsystem Co., Ltd., Daegu 42988, Republic of Korea
| | - Salvador Pané
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Bradley J Nelson
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Gyeongbuk 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Robotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
48
|
Tsopoe SP, Borgohain C, Kar M, Kumar Panda S, Borah JP. An exhaustive scrutiny to amplify the heating prospects by devising a core@shell nanostructure for constructive magnetic hyperthermia applications. Sci Rep 2023; 13:13669. [PMID: 37608046 PMCID: PMC10444858 DOI: 10.1038/s41598-023-39766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023] Open
Abstract
An interfacial integration at the nanoscale domain through a core@shell (CS) nanostructure has constructively unbarred a wide dimension to researchers on biomedical applications, especially for magnetic fluid hyperthermia. Lately, the interconnection of the exchange bias effect (EBE) through the interface coupling to the magnetic heating efficiency has uttered its utmost prominence for researchers. Here, we delineate the ascendency of the heating ability through a coalescing assembly of mixed ferrite Co0.5Zn0.5 Fe2O4 (CZ) and soft magnetic material Fe3O4 (F), by devising a network of CoZnFe2O4@Fe3O4 (CZF) CS nanostructure. A hefty interface activity with validation of the EBE phenomenon is divulged through magnetic scrutiny for the CS sample. The magnetic nanoparticles heating response to applied magnetic field and frequency is discerned at three distinct fields, where the outcome prevailed to inflated specific loss power for CS CZF in distinction to bare F and CZ samples for all the assessments. Remarkably; a lofty intrinsic loss parameter is also perceived for the CS sample recorded to about 5.36 nHm2 g-1; which is another eccentric outcome that significantly labels the CS CZF sample as a potentially high heating competence agent. This comprehension accords to a finer perspective to meliorate the theranostic environment for hyperthermia applications.
Collapse
Affiliation(s)
- S P Tsopoe
- Department of Physics, National Institute of Technology Nagaland, Dimapur, Nagaland, 797103, India
| | - C Borgohain
- Central Instrumentation Facility (CIF), Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Manoranjan Kar
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - Shantanu Kumar Panda
- Department of Physics, Indian Institute of Technology Patna, Patna, Bihar, 801106, India
| | - J P Borah
- Department of Physics, National Institute of Technology Nagaland, Dimapur, Nagaland, 797103, India.
| |
Collapse
|
49
|
Georgas E, Yuan M, Chen J, Wang Y, Qin YX. Bioactive superparamagnetic iron oxide-gold nanoparticles regulated by a dynamic magnetic field induce neuronal Ca2+ influx and differentiation. Bioact Mater 2023; 26:478-489. [PMID: 37090028 PMCID: PMC10113789 DOI: 10.1016/j.bioactmat.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 04/08/2023] Open
Abstract
Treating neurodegenerative diseases, e.g., Alzheimer's Disease, remains a significant challenge due to the limited neuroregeneration rate in the brain. The objective of this study is to evaluate the hypothesis that external magnetic field (MF) stimulation of nerve growth factor functionalized superparamagnetic iron oxide-gold (NGF-SPIO-Au) nanoparticles (NPs) can induce Ca2+ influx, membrane depolarization, and enhance neuron differentiation with dynamic MF (DMF) outperforming static MF (SMF) regulation. We showed the that total intracellular Ca2+ influx of PC-12 cells was improved by 300% and 535% by the stimulation of DMF (1 Hz, 0.5 T, 30min) with NGF-SPIO-Au NPs compared to DMF alone and SMF with NGF-SPIO-Au NPs, respectively, which was attributed to successive membrane depolarization. Cellular uptake performed with the application of sodium azide proved that DMF enhanced cellular uptake of NGF-SPIO-Au NPs via endocytosis. In addition, DMF upregulated both the neural differentiation marker (β3-tubulin) and the cell adhesive molecule (integrin-β1) with the existence of NGF-SPIO-Au NPs, while SMF did not show these effects. The results imply that noninvasive DMF-stimulated NPs can regulate intracellular Ca2+ influx and enhance neuron differentiation and neuroregeneration rate.
Collapse
Affiliation(s)
- Elias Georgas
- Department of Biomedical Engineering, The State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Muzhaozi Yuan
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Jingfan Chen
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Ya Wang
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
| | - Yi-Xian Qin
- Department of Biomedical Engineering, The State University of New York at Stony Brook, Stony Brook, NY, United States
- Corresponding author. Department of Biomedical Engineering, The State University of New York at Stony Brook, Stony Brook, NY, United States.
| |
Collapse
|
50
|
Qi W, Jin L, Wu C, Liao H, Zhang M, Zhu Z, Han W, Chen Q, Ding C. Treatment with FAP-targeted zinc ferrite nanoparticles for rheumatoid arthritis by inducing endoplasmic reticulum stress and mitochondrial damage. Mater Today Bio 2023; 21:100702. [PMID: 37408696 PMCID: PMC10319325 DOI: 10.1016/j.mtbio.2023.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common chronic inflammatory disease characterized by the proliferation of fibroblast-like synoviocytes (FLS), pannus development, cartilage, and bone degradation, and, eventually, loss of joint function. Fibroblast activating protein (FAP) is a particular product of activated FLS and is highly prevalent in RA-derived fibroblast-like synoviocytes (RA-FLS). In this study, zinc ferrite nanoparticles (ZF-NPs) were engineered to target FAP+ (FAP positive) FLS. ZF-NPswere discovered to better target FAP+ FLS due to the surface alteration of FAP peptide and to enhance RA-FLS apoptosis by activating the endoplasmic reticulum stress (ERS) system via the PERK-ATF4-CHOP, IRE1-XBP1 pathway, and mitochondrial damage of RA-FLS. Treatment with ZF-NPs under the influence of an alternating magnetic field (AMF) can significantly amplify ERS and mitochondrial damage via the magnetocaloric effect. It was also observed in adjuvant-induced arthritis (AIA) mice that FAP-targeted ZF-NPs (FAP-ZF-NPs) could significantly suppress synovitis in vivo, inhibit synovial tissue angiogenesis, protect articular cartilage, and reduce M1 macrophage infiltration in synovium in AIA mice. Furthermore, treatment of AIA mice with FAP-ZF-NPs was found to be more promising in the presence of an AMF. These findings demonstrate the potential utility of FAP-ZF-NPs in the treatment of RA.
Collapse
Affiliation(s)
- Weizhong Qi
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Li Jin
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Cuixi Wu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hao Liao
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Mengdi Zhang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiyu Han
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiyue Chen
- Stomatological Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Menzies Institute for Medical Research, University of Tasmania, 7000, Hobart, Tasmania, Australia
| |
Collapse
|