1
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Zhang T, Yan HF, Xu BX, Sun HW, Yang JW, Si SY, Zhou JL, Cui Y. Moxifloxacin plus Cordyceps polysaccharide ameliorate intestinal barrier damage due to abdominal infection via anti-inflammation and immune regulation under simulated microgravity. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:23-37. [DOI: 10.1016/j.lssr.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Ponomarchuk O, Boudreault F, Gryczynski I, Lee B, Dzyuba SV, Fudala R, Gryczynski Z, Hanrahan JW, Grygorczyk R. Nanoscale Viscometry Reveals an Inherent Mucus Defect in Cystic Fibrosis. ACS NANO 2025. [PMID: 39825840 DOI: 10.1021/acsnano.4c14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release. Current understanding of mucin/mucus structure before and after secretion remains limited, and contradictory models exist. Here, we used a molecular viscometer and fluorescence lifetime imaging of human bronchoepithelial cells (Normal and CF) to measure nanometer-scale viscosity. We found significantly elevated intraluminal nanoviscosity in a population of CF mucin granules, indicating an intrinsic, presecretory mucin defect. Nanoviscosity influences protein conformational dynamics and function. Its elevation along the protein secretory pathway could arise from molecular overcrowding, impacting mucin's post-translational processing, hydration, and mucus rheology after release. The nanoviscosity of secreted CF mucus was elevated compared to that of non-CF. Interestingly, it was higher after release than in granules. Validation experiments indicate that reduced mobility of water hydrating mucin macromolecules may contribute to the high nanoviscosity in mucus and mucin granules. This suggests that mucins have a weakly ordered state in granules but adopt a highly ordered, nematic crystalline structure when secreted. This challenges the traditional view of mucus as a porous agarose-like gel and suggests an alternative model for mucin organization before and after secretion. Our study also indicates that endoplasmic reticulum stress due to molecular overcrowding could contribute to mucus pathogenesis in CF cells. It encourages the development of therapeutics that target presecretory mechanisms in CF and other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Olga Ponomarchuk
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Francis Boudreault
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
| | - Ignacy Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Bong Lee
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Sergei V Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Rafal Fudala
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Zygmunt Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, Texas 76129, United States
| | - John W Hanrahan
- Department of Physiology, McGill University, Montreal, Quebec H3A 0G4, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Ryszard Grygorczyk
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada
- Département de Médecine, Université de Montréal, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
3
|
Pan J, Duggal NK, Lakdawala SS, Rockey NC, Marr LC. Mucin Colocalizes with Influenza Virus and Preserves Infectivity in Deposited Model Respiratory Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39823314 DOI: 10.1021/acs.est.4c10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The stability of influenza virus in respiratory particles varies with relative humidity (RH) and protein content. This study investigated the decay, or loss of infectivity, of influenza A virus (IAV) in 1-μL respiratory droplets deposited on a surface with varying concentrations of mucin, one of the most abundant proteins in respiratory mucus, and examined the localization of virions within droplets. IAV remained stable at 0.1% and 0.5% mucin in phosphate-buffered saline (PBS) over 4 h at 20%, 50%, and 80% RH, with a maximum decay of 1.2 log10/mL. In contrast, in pure PBS droplets, the virus decayed by at least 2.6 log10/mL after 4 h at 50% and 80% RH. Mucin's protective effect was independent of its concentration, except at 80% RH after 4 h. Confocal microscopy of the particles revealed that at 20% and 50% RH, mucin led to thicker coffee rings and dendritic patterns where virions colocalized with mucin. At 80% RH, no morphological difference was observed between PBS-only and mucin-containing droplets, but virions still colocalized with mucin in the center of droplets with 0.5% mucin. Analysis by digital droplet PCR showed that mucin helped maintain virus integrity. To our knowledge, this is the first study to localize influenza virus in model respiratory droplets. The results suggest that mucin's colocalization with virions in droplets may protect the virus from environmental stressors, enhancing its stability.
Collapse
Affiliation(s)
- Jin Pan
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia 24061, United States
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Nicole C Rockey
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, United States
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Linsey C Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Valei ZK, Wamsler K, Parker AJ, Obara TA, Klotz AR, Shendruk TN. Dynamics of polymers in coarse-grained nematic solvents. SOFT MATTER 2025; 21:361-375. [PMID: 39545826 PMCID: PMC11612746 DOI: 10.1039/d4sm00968a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Polymers are a primary building block in many biomaterials, often interacting with anisotropic backgrounds. While previous studies have considered polymer dynamics within nematic solvents, rarely are the effects of anisotropic viscosity and polymer elongation differentiated. Here, we study polymers embedded in nematic liquid crystals with isotropic viscosity via numerical simulations to explicitly investigate the effect of nematicity on macromolecular conformation and how conformation alone can produce anisotropic dynamics. We employ a hybrid multi-particle collision dynamics and molecular dynamics technique that captures nematic orientation, thermal fluctuations and hydrodynamic interactions. The coupling of the polymer segments to the director field of the surrounding nematic elongates the polymer, producing anisotropic diffusion even in nematic solvents with isotropic viscosity. For intermediate coupling, the competition between background anisotropy and macromolecular entropy leads to hairpins - sudden kinks along the backbone of the polymer. Experiments of DNA embedded in a solution of rod-like fd viruses qualitatively support the role of hairpins in establishing characteristic conformational features that govern polymer dynamics. Hairpin diffusion along the backbone exponentially slows as coupling increases. Better understanding two-way coupling between polymers and their surroundings could allow the creation of more biomimetic composite materials.
Collapse
Affiliation(s)
- Zahra K Valei
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Karolina Wamsler
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| | - Alex J Parker
- School of Mathematics, Loughborough University, Leicestershire LE11 3TU, UK
| | - Therese A Obara
- Department of Physics and Astronomy, California State University, Long Beach, Long Beach, California 90840, USA
| | - Alexander R Klotz
- Department of Physics and Astronomy, California State University, Long Beach, Long Beach, California 90840, USA
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.
| |
Collapse
|
5
|
Mao M, Wu Y, He Q. Breaking Through Physiological Barriers: Nanorobotic Strategies for Active Drug Delivery. Bioconjug Chem 2025; 36:1-14. [PMID: 39729406 DOI: 10.1021/acs.bioconjchem.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane. This review provides a comprehensive overview of the latest strategies developed to address these obstacles while also analyzing the broader challenges and opportunities associated with clinical translation. Our objective is to establish a solid foundation for future research in medical MNMs by focusing on enhancing drug delivery efficiency and advancing precision medicine, ultimately paving the way for practical theragnostic applications and wider clinical adoption.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
6
|
Yu Q, Zhang Q, Wu Z, Yang Y. Inhalable Metal-Organic Frameworks: A Promising Delivery Platform for Pulmonary Diseases Treatment. ACS NANO 2025. [PMID: 39808505 DOI: 10.1021/acsnano.4c16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Inhalation delivery, offering a direct pathway for administering drugs to the lungs in the form of dry powders or aerosols, stands out as an optimal approach for the localized treatment of pulmonary diseases. However, the intricate anatomical architecture of the lung often poses challenges in maintaining effective drug concentrations within the lungs over extended periods. This highlights the pressing need to develop rational inhalable drug delivery systems that can improve treatment outcomes for respiratory diseases. Metal-organic frameworks (MOFs) assembled from inorganic metal ions and organic ligands, characterized by customizable porous architecture and chemical composition, modifiable porosity, vast surface area, straightforward surface modification, and adjustable biocompatibility, have garnered extensive attention in the biomedical sphere. The introduction of MOFs into inhalation therapy represents a promising avenue to navigate past the hurdles associated with traditional inhalation methods. Therefore, this review summarizes the characteristics of inhalation delivery together with the latest advances, challenges, and opportunities in utilizing inhalable MOFs for treating lung diseases and discusses prospects in this field alongside the potential pathways for translating this strategy into clinic.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Zhiqiang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
7
|
Xu J, Abe K, Kodama T, Sultana M, Chac D, Markiewicz SM, Matsunami H, Kuba E, Tsunoda S, Alam M, Weil AA, Nakamura S, Yamashiro T. The role of morphological adaptability in Vibrio cholerae's motility. mBio 2025; 16:e0246924. [PMID: 39611848 PMCID: PMC11708025 DOI: 10.1128/mbio.02469-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Vibrio cholerae, the causative agent of cholera, displays remarkable adaptability to diverse environmental conditions through morphological changes that enhance its pathogenicity and influence the global epidemiology of the disease. This study examines the motility differences between filamentous and comma-shaped forms of the V. cholerae O1 strain under various viscosity conditions. Utilizing the El Tor strain, we induced filamentous transformation and conducted a comparative analysis with the canonical comma-shaped morphology. Our methodology involved assessing motility patterns, swimming speeds, rotation rates, kinematics, and reversal frequencies using dark-field microscopy and high-speed imaging techniques. The results show that filamentous V. cholerae cells retain enhanced motility in viscous environments, indicating an evolutionary adaptation for survival in varied habitats, particularly the human gastrointestinal tract. Filamentous forms exhibited increased reversal behavior at mucin interfaces, suggesting an advantage in penetrating the mucus layer. Furthermore, the presence of filamentous cells in bile-supplemented medium underscores their relevance in natural infection scenarios. IMPORTANCE This study highlights the enhanced motility of filamentous Vibrio cholerae in viscous environments, an adaptation that may provide a survival advantage in the human gastrointestinal tract. By demonstrating increased reversal behavior at mucin interfaces, filamentous V. cholerae cells exhibit a superior ability to penetrate the mucus layer, which is crucial for effective colonization and infection. Filamentous cells in bile-supplemented media further underscores their potential role in disease pathogenesis. These findings offer critical insights into the morphological flexibility of V. cholerae and its potential implications for infection dynamics, paving the way for more effective strategies in managing and preventing cholera outbreaks.
Collapse
Affiliation(s)
- Jun Xu
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Keigo Abe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Toshio Kodama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Marzia Sultana
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Bangladesh, Dhaka
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Hideyuki Matsunami
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Erika Kuba
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Shiyu Tsunoda
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Munirul Alam
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Bangladesh, Dhaka
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
8
|
Wang K, Chi C, Huang S, Yu M, Li X. Effect of starch molecular weight on the colon-targeting delivery and promoting GLP-1 secretion of starch-lecithin complex nanoparticles. Food Hydrocoll 2025; 158:110589. [DOI: 10.1016/j.foodhyd.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Yue L, Ye P, Zhang Y, Guo R, Xu W, Huang S, Xiu Y, Huang Y, Wang B. An enhanced bioactive chitosan-modified microemulsion for mucosal healing of ulcerative colitis. Int J Biol Macromol 2025; 284:137847. [PMID: 39581424 DOI: 10.1016/j.ijbiomac.2024.137847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The intestinal mucus layer plays a crucial role in the systemic absorption of drugs. While penetration through this layer traditionally constitutes a pivotal phase in drug absorption, the approach for treating ulcerative colitis (UC) shifts towards facilitating the direct delivery of drugs to the colon. In this study, we engineered a chitosan-modified microemulsion encapsulated nobiletin (NOB-CS-ME) characterized by small particle dimensions and positive charge specifically, designed to enable targeted delivery. In vitro experiments demonstrated that this NOB-CS-ME effectively became less into the intestinal mucus layer, thus achieving successful escape of the intestinal mucus barrier absorption. After circumventing this barrier, NOB-CS-ME exhibited heightened cellular uptake by colonic epithelial cells, displaying an approximately 1.3-fold increase compared to the unmodified microemulsion. Collectively, these observations imply enhanced drug bioavailability, potentially resulting in more efficacious mucosal healing, providing a promising avenue for natural small-molecule drug delivery in UC treatment.
Collapse
Affiliation(s)
- Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Ye
- Shanghai Institute for Minimally Invasive Therapy, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ru Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihua Xu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shaogang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 501405, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.
| |
Collapse
|
10
|
Chen N, Yao P, Farid MS, Zhang T, Luo Y, Zhao C. Effect of bioactive compounds in processed Camellia sinensis tea on the intestinal barrier. Food Res Int 2025; 199:115383. [PMID: 39658174 DOI: 10.1016/j.foodres.2024.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The human intestinal tract plays a pivotal role in safeguarding the body against noxious substances and microbial pathogens by functioning as a barrier. This barrier function is achieved through the combined action of physical, chemical, microbial, and immune components. Tea (Camellia sinensis) is the most widely consumed beverage in the world, and it is consumed and appreciated in a multitude of regions across the globe. Tea can be classified into various categories, including green, white, yellow, oolong, black, and dark teas, based on the specific processing methods employed. In recent times, there has been a notable surge in scientific investigation into the various types of tea. The recent surge in research on tea can be attributed to the plethora of bioactive compounds it contains, including polyphenols, polysaccharides, pigments, and theanine. The processing of different teas affects the active ingredients to varying degrees, resulting in a range of chemical reactions and the formation of different types and quantities of ingredients. The bioactive compounds present in tea are of great importance for the maintenance of the integrity of the intestinal barrier, operating through a variety of mechanisms. This literature review synthesizes scientific studies on the impact of the primary bioactive compounds and different processing methods of tea on the intestinal barrier function. This review places particular emphasis on the exploration of the barrier repair and regulatory effects of these compounds, including the mitigation of damage to different barriers following intestinal diseases. Specifically, the active ingredients in tea can alleviate damage to physical barriers and chemical barriers by regulating barrier protein expression. At the same time, they can also maintain the stability of immune and biological barriers by regulating the expression of inflammatory factors and the metabolism of intestinal flora. This investigation can establish a strong theoretical foundation for the future development of innovative tea products.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | | | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Prašnikar M, Bjelošević Žiberna M, Gosenca Matjaž M, Ahlin Grabnar P. Novel strategies in systemic and local administration of therapeutic monoclonal antibodies. Int J Pharm 2024; 667:124877. [PMID: 39490550 DOI: 10.1016/j.ijpharm.2024.124877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Monoclonal antibodies (mAbs) are an evolving class of biopharmaceuticals, with advancements evident across various stages of their development. While discovery, mAb chemical optimization, production and purification processes have been thoroughly reviewed, this paper aims to offer a summary of novel strategies in administration of mAbs. At present, systemic delivery of mAbs is available through parenteral administration routes with focus on subcutaneous administration. In addition, oriented toward patient-friendly therapy, other less invasive administration routes of mAbs, such as inhalation, nasal, transdermal, and oral administration, are explored. Literature data reveals the potential for local delivery of mAbs via inhalation, nasal, transdermal, intratumoral, intravitreal and vaginal administration, offering high efficacy with fewer systemic adverse effects. However, to date, only mAb medicines are available for intravitreal administration, mainly due to higher bioavailability, and an intranasal spray is authorised as a medical device. The review highlights the promising data in approval of novel administration routes, likely through inhalation, but further intensive research considering the current obstacles, is essential.
Collapse
Affiliation(s)
- Monika Prašnikar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | | | - Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Pegi Ahlin Grabnar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
Wang Z, Ye R, Zhang S, Liu C, Chen K, Zhu K, Wang P, Wang F, Huang J. Amelioration of LPS-Induced Jejunum Injury and Mucus Barrier Damage in Mice by IgY Embedded in W/O/W Emulsion. Foods 2024; 13:4138. [PMID: 39767078 PMCID: PMC11675984 DOI: 10.3390/foods13244138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Chicken yolk immunoglobulin (IgY) is a natural immunologically active antibody extracted from egg yolk and can be used as a natural dietary supplement for the treatment of inflammation and damage to the intestines. In our study, IgY was embedded in a double emulsion (W/O/W; DE) to explore the therapeutic effect of the embedded IgY on Lipopolysaccharide (LPS)-induced jejunal injury in mice. The results showed that W/O/W-embedded IgY as a dietary supplement (IgY + DE) attenuated LPS-induced damage to mouse small intestinal structures and protected the integrity of the jejunal mucosal barrier. IgY + DE increased the amount of related transcription factors (Math1, Spdef, Elf3, and Klf4) and promoted thrush cell differentiation. IgY + DE ameliorated LPS-induced reduction in mucin quantity and markers. It promoted the expression of Muc1 and Muc2 and increased the mRNA expression levels of Muc1, Muc2, Muc3, Muc4, Muc13, and Agr2 (p < 0.05). IgY + DE increased the expression of several glycosyltransferases involved in mucin glycosylation. IgY + DE also neutralized the LPS attack on the expression of jejunal inflammatory factors IL-1β, IL-6, IL-4, and TNF-α. In conclusion, the IgY-embedded double emulsion can be used as a dietary supplement for immunotherapy to prevent LPS-induced jejunal injury in mice.
Collapse
Affiliation(s)
- Zhaohui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China;
| | - Shidi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Chuanming Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Ke Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Lasha 851414, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| |
Collapse
|
13
|
Fernández-García R, Fraguas-Sánchez AI. Nanomedicines for Pulmonary Drug Delivery: Overcoming Barriers in the Treatment of Respiratory Infections and Lung Cancer. Pharmaceutics 2024; 16:1584. [PMID: 39771562 PMCID: PMC11677881 DOI: 10.3390/pharmaceutics16121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a reduction in systemic adverse effects compared to other routes, such as oral or intravenous. Nevertheless, the pulmonary administration of drugs is challenging, as the respiratory system tries to eliminate inhaled particles, being the main responsible mucociliary escalator. Nanomedicines represent a primary strategy to overcome the limitations of this route as they can be engineered to prolong pulmonary retention and avoid their clearance while reducing drug systemic distribution and, consequently, systemic adverse effects. This review analyses the use of pulmonary-administered nanomedicines to treat infectious diseases affecting the respiratory system and lung carcinoma, two pathologies that represent major health threats.
Collapse
Affiliation(s)
| | - Ana I. Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University, 28040 Madrid, Spain
- Institute of Industrial Pharmacy, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
14
|
Mach N. The forecasting power of the mucin-microbiome interplay in livestock respiratory diseases. Vet Q 2024; 44:1-18. [PMID: 38606662 PMCID: PMC11018052 DOI: 10.1080/01652176.2024.2340003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. These diseases considerably impact animal health and welfare and cause severe economic losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial ecosystem. The microbiome-mucin interplay protects from unwanted substances and organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the structure and function of the microbiome-mucin relationship. This opinion paper unearths the current understanding of the triangular relationship between mucins, the microbiome, and noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There is a need to look at these molecular underpinnings that dictate distinct health and disease outcomes to implement effective prevention, surveillance, and timely intervention strategies tailored to the different epidemiological contexts.
Collapse
Affiliation(s)
- Núria Mach
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
15
|
Sun R, Lv Z, Wang Y, Li M, Qi J, Wang K, Yang H, Yue T, Yuan Y. Different polysaccharide-enhanced probiotic and polyphenol dual-functional factor co-encapsulated microcapsules demonstrate acute colitis alleviation efficacy and food fortification. Carbohydr Polym 2024; 345:122572. [PMID: 39227107 DOI: 10.1016/j.carbpol.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024]
Abstract
Probiotics and polyphenols have multiple bioactivities, and developing co-encapsulated microcapsules (CM) is a novel strategy to enhance their nutritional diversity. However, the development of CMs is challenged by complicated processing, single types, and unclear in vivo effects and applications. In this study, the co-microencapsulations of polyphenol and probiotic were constructed using pectin, alginate (WGCA@LK), and Fu brick tea polysaccharides (WGCF@LK), respectively, with chitosan-whey isolate proteins by layer-by-layer coacervation reaction, and their protective effects, in vivo effectiveness, and application potential were evaluated. WGCA@LK improved the encapsulation rate of polyphenols (42.41 %), and remained high viability of probiotics after passing through gastric acidic environment (8.79 ± 0.04 log CFU/g) and storage for 4 weeks (4.59 ± 0.06 log CFU/g). WGCF@LK exhibited the highest total antioxidant activity (19.40 ± 0.25 μmol/mL) and its prebiotic activity removed the restriction on probiotic growth. WGCA@LK showed strong in vitro colonic adhesion, but WGCF@LK promoted in vivo retention of probiotics at 48 h. WGCF@LK showed excellent anti-inflammatory effects and alleviated symptoms of acute colitis in mice. These findings provide unique insights into the fortification of probiotic-polyphenol CMs by different polysaccharides and the development of novel health foods with rich functional hierarchies and superior therapeutic effects.
Collapse
Affiliation(s)
- Rui Sun
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Zhongyi Lv
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Haihua Yang
- College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China; Selenium-rich Tea Research and Development Center, Northwest University, Xi'an, 710069, China.
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China; College of Food Science and Engineering, Northwest A&F University, YangLing 712100, Shaanxi, China; Selenium-rich Tea Research and Development Center, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
16
|
Navarro-Guillén C, Jerez-Cepa I, Lopes A, Mancera JM, Engrola S. Effects of early-life amino acids supplementation on fish responses to a thermal challenge. J Comp Physiol B 2024; 194:827-842. [PMID: 39269478 PMCID: PMC11511724 DOI: 10.1007/s00360-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Nutritional programming is a promising concept for promoting metabolic adaptation of fish to challenging conditions, such as the increase in water temperature. The present work evaluates in ovo arginine or glutamine supplementation as enhancers of zebrafish metabolic or absorptive capacity, respectively, at optimum (28 ºC) and challenging temperatures (32 ºC) in the long-term. Growth performance, free amino acids profile, methylation index and the activity levels of digestive and intermediary metabolism enzymes were analysed to assess the metabolic plasticity induced by an early nutritional intervention. Temperature affected fish larvae growth performance. At the end of the experimental period 28 ºC-fish showed higher dry weight than 32 ºC-fish. The effects of the early supplementation were reflected in the larval free amino acids profile at the end of the experiment. Higher methylation potential was observed in the ARG-fish. In ovo amino acid supplementation modulated the metabolic response in zebrafish larvae, however, the magnitude of this effect differed according to the amino acid and the temperature. Overall, arginine supplementation enhanced carbohydrates metabolism at 32 ºC. In conclusion, the present work suggests that in ovo arginine supplementation may promote a better adaptive response to higher temperatures.
Collapse
Affiliation(s)
- Carmen Navarro-Guillén
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
- Departmento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, Cádiz, Spain
| | - Ismael Jerez-Cepa
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), Universidad de Cádiz, CEI·MAR, Puerto Real, Cádiz, Spain
| | - André Lopes
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), Universidad de Cádiz, CEI·MAR, Puerto Real, Cádiz, Spain
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
17
|
Luo H, Gong WY, Zhang YY, Liu YY, Chen Z, Feng XL, Jiao QB, Zhang XW. IRE1β evolves to be a guardian of respiratory and gastrointestinal mucosa. Heliyon 2024; 10:e39011. [PMID: 39524875 PMCID: PMC11550042 DOI: 10.1016/j.heliyon.2024.e39011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/31/2024] Open
Abstract
Inositol-requiring enzyme 1 (IRE1), a mediator of the unfolded protein response, shows the highest degree of evolutionary conservation. Vertebrates express two IRE1 paralogs: IRE1α, which is universally expressed and IRE1β, which shows specific expression within mucus secreted cells in respiratory and gastrointestinal tracts. The biological properties and regulation of the two IRE1 duplicates show evolutionary differences. As recently suggested, IRE1β-deficient mice display impairment in secreted protein expression and mucosal homeostasis. Abnormal changes in IRE1β caused by external and internal factors can disrupt mucosal homeostasis and further lead to respiratory and gastrointestinal diseases. Here, we highlight the physiological functions of IRE1β in the respiratory and gastrointestinal tracts in response to environmental microbes, viruses, toxins, and food components.
Collapse
Affiliation(s)
- Hui Luo
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Wen-Yan Gong
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuan-Yuan Zhang
- Department of Cardiovascular Ultrasonic Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying-Ying Liu
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhen Chen
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Lin Feng
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi-Bin Jiao
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xing-Wei Zhang
- School of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
18
|
Younas A, Asad M, Wan X, Zhang Y, Ma X, Wang L, Gu H, Shang H, Zhang N. Oregano essential oil-infused mucin microneedle patch for the treatment of hypertrophic scar. Int J Pharm 2024; 665:124748. [PMID: 39317245 DOI: 10.1016/j.ijpharm.2024.124748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Hypertrophic scar (HS) manifests as abnormal dermal myofibroblast proliferation and excessive collagen deposition, leading to raised scars and significant physical, psychological, and financial burdens for patients. HS is difficult to cure in the clinic and current therapies lead to recurrence, pain, and side effects. In this study, a natural amphiphilic polymer mucin is used to prepare a dissolving microneedle (muMN) that is loaded with oregano essential oil (OEO) for HS therapy. muMN exhibits sufficient skin/scar tissue penetration, quick skin recovery time after removal, good loading of natural essential oil, fast dissolution and detachment from the base layer, and good biocompatibility to applied skin. In the rabbit HS model, OEO@muMN shows a significant reduction in scar thickness, epidermal thickness index, and scar elevation index. OEO@muMN also attenuates the mean collagen area fraction and decreases the number of capillaries in scar tissues. Biochemical Assay reveals that OEO@muMN significantly inhibits the expression of transforming growth factor-β1 (TGF-β1) and hydroxyproline (HYP). In summary, this study demonstrates the feasibility and good efficacy of using the anti-proliferative and anti-oxidative OEO for HS treatment. OEO@muMN is an efficient formulation that holds the potential for clinical anti-HS application. muMN is an efficient platform to load and apply essential oils transdermally.
Collapse
Affiliation(s)
- Ayesha Younas
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Central Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People's Hospital, The First Affiliated Hospital of Lishui University, Lishui, Zhejiang 323000, PR China
| | - Muhammad Asad
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiangling Wan
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yuzhen Zhang
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xuejing Ma
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Lei Wang
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Huan Gu
- Department of Chemistry and Chemical Engineering & Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT 06516, USA
| | - Hongtao Shang
- School of Sport Sciences (main campus), Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Nan Zhang
- Department of Pharmaceutics and Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| |
Collapse
|
19
|
Wang X, Yang Z, Zhang W, Xing L, Luo R, Cao S. Obstacles, research progress, and prospects of oral delivery of bioactive peptides: a comprehensive review. Front Nutr 2024; 11:1496706. [PMID: 39610876 PMCID: PMC11602335 DOI: 10.3389/fnut.2024.1496706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Bioactive peptides hold significant potential for enhancing human health, however, their limited oral bioavailability poses a substantial barrier to their widespread use in the food and pharmaceutical industries. This article reviews the key factors influencing the absorption efficiency of oral bioactive peptides, including issues related to bitter taste perception, challenges in gastrointestinal environmental stability, and limitations in transmembrane transport. Furthermore, it highlights the latest technologies, such as osmotic technology, chemical modification, and advanced delivery systems, and discusses their advantages in enhancing the stability of bioactive peptides and facilitating intestinal absorption. In addition, the application and challenges of common delivery systems such as liposomes, emulsions, polymer nanoparticles, and hydrogels in oral bioactive peptide delivery are also discussed. This paper aims to provide a theoretical foundation for scientific research and practical applications of oral delivery of bioactive peptides, thereby promoting the further development of bioactive peptides in the context of human health.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Zeyao Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control, MOE, School of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lujuan Xing
- Key Lab of Meat Processing and Quality Control, MOE, School of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ruiming Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| | - Songmin Cao
- School of Food Science and Engineering, Ningxia University, Yinchuan, China
| |
Collapse
|
20
|
Balbuena E, Milhem F, Kiremitci BZ, Williams TI, Collins L, Shu Q, Eroglu A. The biochemical effects of carotenoids in orange carrots on the colonic proteome in a mouse model of diet-induced obesity. Front Nutr 2024; 11:1492380. [PMID: 39588046 PMCID: PMC11587903 DOI: 10.3389/fnut.2024.1492380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Introduction Carotenoids are naturally occurring pigments in plants and are responsible for the orange, yellow, and red color of fruits and vegetables. Carrots are one of the primary dietary sources of carotenoids. The biological activities of carotenoids in higher organisms, including their immunomodulatory activities, are well documented in most tissues but not the large intestine. The gastrointestinal barrier acts as a line of defense against the systemic invasion of pathogenic bacteria, especially at the colonic level. Methods To test whether carotenoids in orange carrots can alleviate obesity-associated gut inflammation and strengthen the intestinal barrier function, male C57BL/6J mice were randomized to one of four experimental diets for 20 weeks (n = 20 animals/group): Low-fat diet (LFD, 10% calories from fat), high-fat diet (HFD, 45% calories from fat), HFD with white carrot powder (HFD+WC), or HFD with orange carrot powder (HFD + OC). Colon tissues were harvested to analyze the biochemical effects of carotenoids in carrots. The distal sections were subjected to isobaric labeling-based quantitative proteomics in which tryptic peptides were labeled with tandem mass tags, followed by fractionation and LC-MS/MS analysis in an Orbitrap Eclipse Tribrid instrument. Results High-performance liquid chromatography results revealed that the HFD+WC pellets were carotenoid-deficient, and the HFD+OC pellets contained high concentrations of provitamin A carotenoids, specifically α-carotene and β-carotene. As a result of the quantitative proteomics, a total of 4410 differentially expressed proteins were identified. Intestinal barrier-associated proteins were highly upregulated in the HFD+OC group, particularly mucin-2 (MUC-2). Upon closer investigation into mucosal activity, other proteins related to MUC-2 functionality and tight junction management were upregulated by the HFD+OC dietary intervention. Discussion Collectively, our findings suggest that carotenoid-rich foods can prevent high-fat diet-induced intestinal barrier disruption by promoting colonic mucus synthesis and secretion in mammalian organisms. Data are available via ProteomeXchange with identifier PXD054150.
Collapse
Affiliation(s)
- Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Fadia Milhem
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Buse Zeren Kiremitci
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Taufika Islam Williams
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Leonard Collins
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Qingbo Shu
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
21
|
Ng T, Kou D. Evaluation of the impact of mucin on supersaturation and permeation of BCS class 2 basic drugs. J Pharm Sci 2024; 113:3272-3278. [PMID: 39179030 DOI: 10.1016/j.xphs.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
This study evaluated the impact of mucin on supersaturation and permeation of BCS Class 2 basic drugs in a pH-shift, 2-stage model using three model compounds, dipyridamole, ricobendazole, and Compound A. The three compounds showed various degrees of supersaturation (DoS) in Stage 2 and modest to no increases in flux with the presence of mucin in the dissolution media. Mucin's impact on DoS and flux, if any, appeared to be compound specific and possibly related to its pKa and ionization state. Overall, the increases in supersaturation and permeation due to mucin ranged from modest to minimal for the three model compounds under the conditions tested. The pH-shift model using MacroFLUX was able to monitor gastric and intestinal dissolution and simultaneously assess the effect of intestinal mucin on supersaturation and flux.
Collapse
Affiliation(s)
- Tania Ng
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dawen Kou
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
22
|
Wang X, Wang P, Li Y, Guo H, Wang R, Liu S, Qiu J, Wang X, Hao Y, Zhao Y, Liao H, Zou Z, Thinwa J, Liu R. Procyanidin C1 Modulates the Microbiome to Increase FOXO1 Signaling and Valeric Acid Levels to Protect the Mucosal Barrier in Inflammatory Bowel Disease. ENGINEERING 2024; 42:108-120. [DOI: 10.1016/j.eng.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
23
|
de Lima JS, Leão AD, de Jesus Oliveira AC, Chaves LL, Ramos RKLG, Rodrigues CFC, Soares-Sobrinho JL, Soares MFDLR. Potential of plant-based polysaccharides as therapeutic agents in ulcerogenic diseases of the gastrointestinal tract: A review. Int J Biol Macromol 2024; 281:136399. [PMID: 39395521 DOI: 10.1016/j.ijbiomac.2024.136399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
In recent years, natural polysaccharides (PSs) have attracted increasing interest because of their remarkable biological properties and potential in various areas, such as medicine, and food. This study aimed to present a detailed review of the evidence on the therapeutic potential of PSs for the treatment of gastrointestinal diseases. The main evidence was correlated with their chemical composition, mechanism of action and therapeutic effect. The main results showed that the action can be attributed to their ability to suppress excessive inflammatory responses, regulating the expression of cytokines and interleukins, reducing intestinal inflammation and promoting wound healing. Furthermore, we discussed how PSs help in the repair of the intestinal mucosa and related these effects with the composition of monosaccharides. A detailed analysis was performed on the ability of PSs to modulate the intestinal microbiota, promoting the growth of beneficial bacteria and suppressing inflammatory bacteria, in addition to its probiotic action with production of short-chain fatty acids. All this evidence was also taken into a broader context, in which the main challenges in processing PSs were considered and strategies to circumvent them were pointed out. Therefore, this review sought to demonstrate the great potential and viability of PSs as innovative and effective therapeutic agents.
Collapse
Affiliation(s)
- Jucielma Silva de Lima
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Amanda Damaceno Leão
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Renata Kelly Luna Gomes Ramos
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Carla Fernanda Couto Rodrigues
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
24
|
Raza A, Wu W. Metal-organic frameworks in oral drug delivery. Asian J Pharm Sci 2024; 19:100951. [PMID: 39493807 PMCID: PMC11530798 DOI: 10.1016/j.ajps.2024.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/23/2024] [Indexed: 11/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) offer innovative solutions to the limitations of traditional oral drug delivery systems through their unique combination of metal ions and organic ligands. This review systematically examines the structural properties and principles of MOFs, setting the stage for their application in drug delivery. It discusses various classes of MOFs, including those based on zirconium, iron, zinc, copper, titanium, aluminum, potassium, and magnesium, assessing their drug-loading capacities, biocompatibility, and controlled release mechanisms. The effectiveness of MOFs is illustrated through case studies that highlight their capabilities in enhancing drug solubility, providing protection against the harsh gastrointestinal environment, and enabling precise drug release. The review addresses potential challenges, particularly the toxicity concerns associated with MOFs, and calls for further research into their biocompatibility and interactions with biological systems. It concludes by emphasizing the potential of MOFs in revolutionizing oral drug delivery, highlighting the critical need for comprehensive research to harness their full potential in clinical applications.
Collapse
Affiliation(s)
- Aun Raza
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
25
|
Ahmad M, Bushra R, Ritzoulis C. Pectin-mucin interactions: Insights from fluorimetry, thermodynamics and dual (static and dynamic) quenching mechanisms. Int J Biol Macromol 2024; 277:134564. [PMID: 39116979 DOI: 10.1016/j.ijbiomac.2024.134564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Binary systems of citrus peel pectin (a major food carbohydrate) and mucin (a principal oral-gastrointestinal glycoprotein) are studied, as to understand the interactions and thermodynamics between food and biofluids during oral processing and digestion. The fluorimetry emission spectra of mucin were quenched by pectin addition at 293, 301, 310 and 318 K, indicating direct contact between the two macromolecular populations. A red shift, suggesting pectin-induced alterations on mucin conformation, has been observed at 318 K. Intensity-based Stern - Volmer plots fitted second-order polynomial equations, suggesting the coexistence of both static and dynamic quenching, while the increase of the slopes with temperature points to the predominance of dynamic phenomena. Time-resolved fluorescence measurements also point to dynamic quenching related to transient interactions, rather than to specific bonding. Thermodynamic analysis yields negative free energy changes in all cases, with positive changes for enthalpy and large positive values for TΔS. These are in agreement with the Stern - Volmer analysis, suggesting the predominance of transient, dynamic (here entropic) interactions. These provide an image of mucin interacting with pectin macromolecules during the oral processing and digestion of foods, and can relate to the texture, flavor (e.g. astringency) and bioavailability of polysaccharide-based foods.
Collapse
Affiliation(s)
- Mehraj Ahmad
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci. & Tech., Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Rani Bushra
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci. & Tech., Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, 57400 Thessaloniki, Greece.
| |
Collapse
|
26
|
Zhang LZ, Du RJ, Wang D, Qin J, Yu C, Zhang L, Zhu HD. Enteral Route Nanomedicine for Cancer Therapy. Int J Nanomedicine 2024; 19:9889-9919. [PMID: 39351000 PMCID: PMC11439897 DOI: 10.2147/ijn.s482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier-portal vein/intestinal lymphatic vessels-systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanomedicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation of oral anticancer nanomedicines.
Collapse
Affiliation(s)
- Lin-Zhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Rui-Jie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Juan Qin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
27
|
Ziebert F, Dokonon KG, Kulić IM. Reshaping and enzymatic activity may allow viruses to move through the mucus. SOFT MATTER 2024; 20:7185-7198. [PMID: 39221536 DOI: 10.1039/d4sm00592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Filamentous viruses like influenza and torovirus often display systematic bends and arcs of mysterious physical origin. We propose that such viruses undergo an instability from a cylindrically symmetric to a toroidally curved state. This "toro-elastic" state emerges via spontaneous symmetry breaking under prestress due to short range spike protein interactions magnified by surface topography. Once surface stresses are sufficiently large, the filament buckles and the curved state constitutes a soft mode that can potentially propagate through the filament's material frame around a Mexican-hat-type potential. In the mucus of our airways, which constitutes a soft, porous 3D network, glycan chains are omnipresent and influenza's spike proteins are known to efficiently bind and cut them. We next show that such a non-equilibrium enzymatic reaction can induce spontaneous rotation of the curved state, leading to a whole body reshaping propulsion similar to - but different from - eukaryotic flagella and spirochetes.
Collapse
Affiliation(s)
- Falko Ziebert
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany.
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Kenan G Dokonon
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France
- Institute Theory of Polymers, Leibniz-Institute of Polymer Research, D-01069 Dresden, Germany.
| |
Collapse
|
28
|
Stie MB, Cunha C, Huang Z, Kirkensgaard JJK, Tuelung PS, Wan F, Nielsen HM, Foderà V, Rønholt S. A head-to-head comparison of polymer interaction with mucin from porcine stomach and bovine submaxillary glands. Sci Rep 2024; 14:21350. [PMID: 39266622 PMCID: PMC11393313 DOI: 10.1038/s41598-024-72233-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024] Open
Abstract
Native mucus is heterogeneous, displays high inter-individual variation and is prone to changes during harvesting and storage. To overcome the lack of reproducibility and availability of native mucus, commercially available purified mucins, porcine gastric mucin (PGM) and mucin from bovine submaxillary gland (BSM), have been widely used. However, the question is to which extent the choice of mucin matters in studies of their interaction with polymers as their composition, structure and hence physicochemical properties differ. Accordingly, the interactions between PGM or BSM with two widely used polymers in drug delivery, polyethylene oxide and chitosan, was studied with orthogonal methods: turbidity, dynamic light scattering, and quartz crystal microbalance with dissipation monitoring. Polymer binding and adsorption to the two commercially available and purified mucins, PGM and BSM, is different depending on the mucin type. PEO, known to interact weakly with mucin, only displayed limited interaction with both mucins as confirmed by all employed methods. In contrast, chitosan was able to bind to both PGM and BSM. Interestingly, the results suggest that chitosan interacts with BSM to a greater extent than with PGM indicating that the choice of mucin, PGM or BSM, can affect the outcome of studies of mucin interactions with polymers.
Collapse
Affiliation(s)
- Mai Bay Stie
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Cristiana Cunha
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Zheng Huang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Jacob Judas Kain Kirkensgaard
- Department of Food Science, Rolighedsvej 26, 1958, Frederiksberg, Denmark
- Niels Bohr Institute, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Pernille Sønderby Tuelung
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Feng Wan
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Stine Rønholt
- LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
29
|
Feng G, Wang G, Li T, Han C, Han K, Guo J, Wan Z, Yang X. Phosphatidylcholine Surface Hydration-Dependent Adsorption to Mucin Enhances Intestinal Mucus Barrier Function. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18977-18987. [PMID: 39169607 DOI: 10.1021/acs.langmuir.4c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The crucial role of zwitterionic phosphatidylcholines (PC) within mucus gel is essential for maintaining intestinal homeostasis, while the underlying mechanism remains incompletely understood. Herein, we compared the dynamic interfacial adsorption behavior of saturated dipalmitoylphosphatidylcholine (DPPC) and unsaturated dioleoylphosphatidylcholine (DOPC) to intestinal mucin and their impact on the intestinal mucus barrier function. Results of quartz crystal microbalance with dissipation showed that the highly surface-hydrated DPPC vesicles exhibited significantly faster and more extensive adsorption to purified intestinal mucin than the slightly surface-hydrated DOPC vesicles. Utilizing an intestinal Caco-2/HT29-MTX coculture model, we observed that DPPC vesicles adsorbed much more to the mucus gel compared to DOPC vesicles. Additionally, DPPC vesicle adsorption displayed increased wetting, and converse for DOPC vesicles. Interestingly, both of them exhibited nearly the same protective effects against cell injury induced by peptic-tryptic digests of gliadin (PTG). The partial mechanism involved the binding of PTG to DPPC and DOPC within the mucus gel, thereby restricting PTG contact with the underlying epithelial cells. These findings shed light on the intricate interfacial dynamics of PC adsorption to mucin and their implications for maintaining the integrity of the intestinal mucus barrier.
Collapse
Affiliation(s)
- Guangxin Feng
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Huangdao District, Qingdao 266003, Shandong Province, China
| | - Gaoshang Wang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Tanghao Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chuanwu Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Kaining Han
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Giedraitis E, Neve RL, Phelan VV. Iron content of commercial mucin contributes to compositional stability of a cystic fibrosis airway synthetic microbiota community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611695. [PMID: 39282275 PMCID: PMC11398496 DOI: 10.1101/2024.09.06.611695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
In vitro culture models of mucosal environments are used to elucidate the mechanistic roles of the microbiota in human health. These models often include commercial mucins to reflect the in-situ role of mucins as an attachment site and nutrient source for the microbiota. Two types of mucins are commercially available: porcine gastric mucin (PGM) and bovine submaxillary mucin (BSM). These commercial mucins have been shown to contain iron, an essential element required by the microbiota as a co-factor for a variety of metabolic functions. In these mucin preparations, the concentration of available iron can exceed physiological concentrations present in the native environment. This unexpected source of iron influences experimental outcomes, including shaping the interactions between co-existing microbes in synthetic microbial communities used to elucidate the multispecies interactions within native microbiota. In this work, we leveraged the well-characterized iron-dependent production of secondary metabolites by the opportunistic pathogen Pseudomonas aeruginosa to aid in the development of a simple, low-cost, reproducible workflow to remove iron from commercial mucins. Using the mucosal environment of the cystic fibrosis (CF) airway as a model system, we show that P. aeruginosa is canonically responsive to iron concentration in the chemically defined synthetic CF medium complemented with semi-purified PGM, and community composition of a clinically relevant, synthetic CF airway microbial community is modulated, in part, by iron concentration in PGM.
Collapse
Affiliation(s)
- Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado - Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
31
|
Varricchio A, Presutti L, La Mantia I, Ciprandi G. Inter-societal Delphi Consensus on the topical nasal treatments in Italy. Multidiscip Respir Med 2024; 19. [PMID: 39229922 DOI: 10.5826/mrm.2024.991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Topical nasal therapy is widely used in clinical practice by different specialists. However, it is multifaceted and still controversial. Namely, there is no consensus about the many aspects, and there needs to be specific guidelines. Four independent experts involved 14 Italian scientific societies (concerning ENT, allergy, and pediatrics areas) to participate in generating an Intersocietal Delphi Consensus on this matter. Three iterative rounds collected experts (4 in the first round, 20 in the second round, and 45 in the third round) designed by the scientific societies based on their clinical expertise and documented scientific value. Thirty-four statements were discussed and voted on. At the second round, all statements accomplished a very high consensus grade (>95%). At the third round, many statements reached a high or very high grade of consensus (>70%). However, some statements did not obtain sufficient agreement. Consequently, there is a need to implement knowledge about this issue through educational initiatives and new studies conducted with a robust methodology. In conclusion, topical nasal therapy deserves adequate knowledge as it is widespread and fruitful in managing upper respiratory diseases.
Collapse
|
32
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
33
|
Wu XQ, Chen XM, Pan YY, Sun C, Tian JX, Qian AD, Niu XT, Kong YD, Li M, Wang GQ. Changes of intestinal barrier in the process of intestinal inflammation induced by Aeromonas hydrophila in snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109775. [PMID: 39019126 DOI: 10.1016/j.fsi.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Bacterial intestinal inflammation frequently occurs in cultured fish. Nevertheless, research on intestinal barrier dysfunction in the process of intestinal inflammation is deficient. In this study, we explored the changes of intestinal inflammation induced by Aeromonas hydrophila (A. hydrophila) in snakehead and the relationship between intestinal barrier and inflammation. Snakehead [(13.05 ± 2.39) g] were infected via anus with A. hydrophila. Specimens were collected for analysis at 0, 1, 3, 7 and 21 d post-injection. The results showed that with the increase of exposure time, the hindgut underwent stages of normal function, damage, damage deterioration, repair and recovery. Relative to 0 d, the levels of IL-1β and TNF-α in serum, and the expression of nod1, tlr1, tlr5, nf-κb, tnf-α and il-1β in intestine were significantly increased, and showed an upward then downward pattern over time. However, the expression of tlr2 and il-10 were markedly decreased, and showed the opposite trend. In addition, with the development of intestinal inflammation, the diversity and richness of species, and the levels of phylum and genus in intestine were obviously altered. The levels of trypsin, LPS, AMS, T-SOD, CAT, GPx, AKP, LZM and C3 in intestine were markedly reduced, and displayed a trend of first decreasing and then rebounding. The ultrastructure observation showed that the microvilli and tight junction structure of intestinal epithelial cells experienced normal function initially, then damage, and finally recovery over time. The expression of claudin-3 and zo-1 in intestine were significantly decreased, and showed a trend of first decreasing and then rebounding. Conversely, the expression of mhc-i, igm, igt and pigr in intestine were markedly increased, and displayed a trend of increasing first and then decreasing. The above results revealed the changes in intestinal barrier during the occurrence and development of intestinal inflammation, which provided a theoretical basis for explaining the relationship between the two.
Collapse
Affiliation(s)
- Xue-Qin Wu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yi-Yu Pan
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chuang Sun
- Fisheries Technology Extension Station of Baicheng, Jilin Province, Baicheng, 137000, China
| | - Jia-Xin Tian
- College of Life Sciences, Tonghua Normal University, Tonghua, 134002, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-di Kong
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
34
|
Zhu J, Tao P, Chopra AK, Rao VB. Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. Annu Rev Virol 2024; 11:395-420. [PMID: 38768614 PMCID: PMC11690488 DOI: 10.1146/annurev-virology-111821-111145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.
Collapse
Affiliation(s)
- Jingen Zhu
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Sealy Institute for Vaccine Sciences, Institute for Human Infections and Immunity, and Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA; ,
| |
Collapse
|
35
|
Phùng TTT, Dupont S, Beney L, Moundanga S, Denimal E, Hồ PH, Karbowiak T. Ex-vivo investigation of probiotic bacterial adhesion to the intestinal mucus. Heliyon 2024; 10:e36339. [PMID: 39253206 PMCID: PMC11382035 DOI: 10.1016/j.heliyon.2024.e36339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Recent research has promoted considerable interest in the potential health benefits of the new generation of probiotics. Despite the abundance of probiotic supplements, their adhesion and thereby colonization in the intestinal tract of the host, a determining factor of probiotic efficacy, remains questionable. Indeed, the gastrointestinal tract, a multi-component and complex system, obscures the comprehensive understanding of the probiotic adhesion mechanism. This study aimed to investigate the adhesion capacity of probiotic bacteria using two ex-vivo approaches that were specifically developed to investigate the bacteria-mucus agglomeration and the viable adhesion to intestinal mucus. Five probiotic bacterial strains including Escherichia coli, Lactiplantibacillus plantarum, Faecalibacterium duncaniae, Bifidobacterium longum, and Bifidobacterium longum str. infantis were selected for the investigation. In that context, higher adhesion to mucus was demonstrated by E. coli, L. plantarum, and B. infantis, emphasizing strain-specific differences. While total agglomeration capacity ranged from 8 % to 82 %, actual viable adhesion to mucus remained rather low (0.6 %-2.9 %). SEM images revealed that morphological characteristics, chain and/or cluster forming ability, as well as the presence of surface exopolysaccharides, might have an impact on bacterial adhesion. This study contributes knowledge on probiotic adhesion as well as simple and effective ex-vivo approaches to investigate the bacterial adhesion to the intestinal mucus, which is prerequisite for further colonization in the gut of the host.
Collapse
Affiliation(s)
- Thị-Thanh-Trúc Phùng
- Université Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAe, UMR PAM 1517, 1 Esplanade Erasme, 21000, Dijon, France
| | - Sébastien Dupont
- Université Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAe, UMR PAM 1517, 1 Esplanade Erasme, 21000, Dijon, France
| | - Laurent Beney
- Université Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAe, UMR PAM 1517, 1 Esplanade Erasme, 21000, Dijon, France
| | - Sylvie Moundanga
- Université Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAe, UMR PAM 1517, 1 Esplanade Erasme, 21000, Dijon, France
| | - Emmanuel Denimal
- Université Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAe, UMR PAM 1517, 1 Esplanade Erasme, 21000, Dijon, France
| | - Phú-Hà Hồ
- Hanoi University of Science and Technology, School of Chemistry and Life Science, 1 Dai Co Viet Road, Hanoi, Viet Nam
| | - Thomas Karbowiak
- Université Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAe, UMR PAM 1517, 1 Esplanade Erasme, 21000, Dijon, France
| |
Collapse
|
36
|
Kramer C, Rulff H, Ziegler JF, Mönch PW, Alzain N, Addante A, Kuppe A, Timm S, Schrade P, Bischoff P, Glauben R, Dürr J, Ochs M, Mall MA, Gradzielski M, Siegmund B. Ileal mucus viscoelastic properties differ in Crohn's disease. Mucosal Immunol 2024; 17:713-722. [PMID: 38750968 DOI: 10.1016/j.mucimm.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease that can affect any part of the gastrointestinal tract, frequently involving the terminal ileum. While colonic mucus alterations in CD patients have been described, terminal ileal mucus and its mechanobiological properties have been neglected. Our study is the first of its kind to decipher the viscoelastic and network properties of ileal mucus. With that aim, oscillatory rheological shear measurements based on an airway mucus protocol that was thoroughly validated for ileal mucus were performed. Our pilot study analyzed terminal ileum mucus from controls (n = 14) and CD patients (n = 14). Mucus network structure was visualized by scanning electron microscopy. Interestingly, a statistically significant increase in viscoelasticity as well as a decrease in mesh size was observed in ileal mucus from CD patients compared to controls. Furthermore, rheological data were analyzed in relation to study participants' clinical characteristics, revealing a noteworthy trend between non-smokers and smokers. In conclusion, this study provides the first data on the viscoelastic properties and structure of human ileal mucus in the healthy state and Crohn's disease, demonstrating significant alterations between groups and highlighting the need for further research on mucus and its effect on the underlying epithelial barrier.
Collapse
Affiliation(s)
- Catharina Kramer
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna Rulff
- Institute of Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Jörn Felix Ziegler
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paul Wilhelm Mönch
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nadra Alzain
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Sara Timm
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Schrade
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philip Bischoff
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Glauben
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Dürr
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute of Functional Anatomy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus A Mall
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | | | - Britta Siegmund
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
37
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
38
|
Al-Mansori A, Al-Sbiei A, Bashir GH, Qureshi MM, Tariq S, Altahrawi A, al-Ramadi BK, Fernandez-Cabezudo MJ. Effect of acetylcholinesterase inhibition on immune cells in the murine intestinal mucosa. Heliyon 2024; 10:e33849. [PMID: 39071679 PMCID: PMC11283160 DOI: 10.1016/j.heliyon.2024.e33849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The gastrointestinal tract (GI) is the largest immune organ whose function is controlled by a complex network of neurons from the enteric nervous system (ENS) as well as the sympathetic and parasympathetic system. Evolving evidence indicates that cross-communication between gut-innervating neurons and immune cells regulates many essential physiological functions including protection against mucosal infections. We previously demonstrated that following paraoxon treatment, 70 % of the mice were able to survive an oral infection with S. typhimurium, a virulent strain of Salmonella enterica serovar Typhimurium. The present study aims to investigate the effect that rivastigmine, a reversible AChE inhibitor used for the treatment of neurodegenerative diseases, has on the murine immune defenses of the intestinal mucosa. Our findings show that, similar to what is observed with paraoxon, administration of rivastigmine promoted the release of secretory granules from goblet and Paneth cells, resulting in increased mucin layer. Surprisingly, however, and unlike paraoxon, rivastigmine treatment did not affect overall mortality of infected mice. In order to investigate the mechanistic basis for the differential effects observed between paraoxon and rivastigmine, we used multi-color flowcytometric analysis to characterize the immune cell landscape in the intraepithelial (IE) and lamina propria (LP) compartments of intestinal mucosa. Our data indicate that treatment with paraoxon, but not rivastigmine, led to an increase of resident CD3+CD8+ T lymphocytes in the ileal mucosa (epithelium and lamina propria) and CD11b- CD11c+ dendritic cells in the LP. Our findings indicate the requirement for persistent cholinergic pathway engagement to effect a change in the cellular landscape of the mucosal tissue that is necessary for protection against lethal bacterial infections. Moreover, optimal protection requires a collaboration between innate and adaptive mucosal immune responses in the intestine.
Collapse
Affiliation(s)
- Alreem Al-Mansori
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ghada H. Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Mohammed M. Qureshi
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
39
|
Zhang J, Huang Y, Li H, Xu P, Liu Q, Sun Y, Zhang Z, Wu T, Tang Q, Jia Q, Xia Y, Xu Y, Jing X, Li J, Mo L, Xie W, Qu A, He J, Li Y. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat Commun 2024; 15:5919. [PMID: 39004626 PMCID: PMC11247088 DOI: 10.1038/s41467-024-50198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Pregnane X receptor (PXR) has been reported to regulate glycolipid metabolism. The dysfunction of intestinal barrier contributes to metabolic disorders. However, the role of intestinal PXR in metabolic diseases remains largely unknown. Here, we show that activation of PXR by tributyl citrate (TBC), an intestinal-selective PXR agonist, improves high fat diet (HFD)-induced obesity. The metabolic benefit of intestinal PXR activation is associated with upregulation of β-1,3 galactosyltransferase 5 (B3galt5). Our results reveal that B3galt5 mainly expresses in the intestine and is a direct PXR transcriptional target. B3galt5 knockout exacerbates HFD-induced obesity, insulin resistance and inflammation. Mechanistically, B3galt5 is essential to maintain the integrity of intestinal mucus barrier. B3galt5 ablation impairs the O-glycosylation of mucin2, destabilizes the mucus layer, and increases intestinal permeability. Furthermore, B3galt5 deficiency abolishes the beneficial effect of intestinal PXR activation on metabolic disorders. Our results suggest the intestinal-selective PXR activation regulates B3galt5 expression and maintains metabolic homeostasis, making it a potential therapeutic strategy in obesity.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Huang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Pharmacy, GuiQian International General Hospital, Guiyang, China
| | - Hong Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
40
|
de Ram C, van der Lugt B, Elzinga J, Geerlings S, Steegenga WT, Belzer C, Schols HA. Revealing Glycosylation Patterns in In Vitro-Produced Mucus Exposed to Pasteurized Mucus-Associated Intestinal Microbes by MALDI-TOF-MS and PGC-LC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15345-15356. [PMID: 38932522 PMCID: PMC11247495 DOI: 10.1021/acs.jafc.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The human intestinal mucus layer protects against pathogenic microorganisms and harmful substances, whereas it also provides an important colonization niche for mutualistic microbes. The main functional components of mucus are heavily glycosylated proteins, called mucins. Mucins can be cleaved and utilized by intestinal microbes. The mechanisms between intestinal microbes and the regulation of mucin glycosylation are still poorly understood. In this study, in vitro mucus was produced by HT29-MTX-E12 cells under Semi-Wet interface with Mechanical Stimulation. Cells were exposed to pasteurized nonpathogenic bacteria Akkermansia muciniphila, Ruminococcus gnavus, and Bacteroides fragilis to evaluate influence on glycosylation patterns. Following an optimized protocol, O- and N-glycans were efficiently and reproducibly released, identified, and semiquantified using MALDI-TOF-MS and PGC-LC-MS/MS. Exposure of cells to bacteria demonstrated increased diversity of sialylated O-glycans and increased abundance of high mannose N-glycans in in vitro produced mucus. Furthermore, changes in glycan ratios were observed. It is speculated that bacterial components interact with the enzymatic processes in glycan production and that pasteurized bacteria influence glycosyltransferases or genes involved. These results highlight the influence of pasteurized bacteria on glycosylation patterns, stress the intrinsic relationship between glycosylation and microbiota, and show the potential of using in vitro produced mucus to study glycosylation behavior.
Collapse
Affiliation(s)
- Carol de Ram
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Benthe van der Lugt
- Human
Nutrition and Health, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Janneke Elzinga
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Sharon Geerlings
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Wilma T. Steegenga
- Human
Nutrition and Health, Wageningen University
& Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Clara Belzer
- Laboratory
of Microbiology, Wageningen University &
Research, Stippeneng
4, 6708 WE Wageningen, The Netherlands
| | - Henk A. Schols
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
41
|
Rulff H, Schmidt RF, Wei LF, Fentker K, Kerkhoff Y, Mertins P, Mall MA, Lauster D, Gradzielski M. Comprehensive Characterization of the Viscoelastic Properties of Bovine Submaxillary Mucin (BSM) Hydrogels and the Effect of Additives. Biomacromolecules 2024; 25:4014-4029. [PMID: 38832927 PMCID: PMC11238336 DOI: 10.1021/acs.biomac.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
This study presents a comprehensive characterization of the viscoelastic and structural properties of bovine submaxillary mucin (BSM), which is widely used as a commercial source to conduct mucus-related research. We conducted concentration studies of BSM and examined the effects of various additives, NaCl, CaCl2, MgCl2, lysozyme, and DNA, on its rheological behavior. A notable connection between BSM concentration and viscoelastic properties was observed, particularly under varying ionic conditions. The rheological spectra could be well described by a fractional Kelvin-Voigt model with a minimum of model parameters. A detailed proteomics analysis provided insight into the protein, especially mucin composition within BSM, showing MUC19 as the main component. Cryo-scanning electron microscopy enabled the visualization of the porous BSM network structure. These investigations give us a more profound comprehension of the BSM properties, especially those pertaining to viscoelasticity, and how they are influenced by concentration and environmental conditions, aspects relevant to the field of mucus research.
Collapse
Affiliation(s)
- Hanna Rulff
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Robert F. Schmidt
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Ling-Fang Wei
- Institute
of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kerstin Fentker
- Proteomics
Platform, Max-Delbrück-Center for
Molecular Medicine, 13125 Berlin, Germany
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, 14195 Berlin, Germany
| | - Yannic Kerkhoff
- Research
Center of Electron Microscopy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Philipp Mertins
- Proteomics
Platform, Max-Delbrück-Center for
Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute
of Health at Charite, Universitätsmedizin
Berlin, 10178 Berlin, Germany
| | - Marcus A. Mall
- Berlin Institute
of Health at Charite, Universitätsmedizin
Berlin, 10178 Berlin, Germany
- Department
of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine,
Charite, Universitätsmedizin Berlin, 13353 Berlin, Germany
- German
Centre for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Daniel Lauster
- Institute
of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Gradzielski
- Institute
of Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| |
Collapse
|
42
|
Gai J, Liu L, Zhang X, Guan J, Mao S. Impact of the diseased lung microenvironment on the in vivo fate of inhaled particles. Drug Discov Today 2024; 29:104019. [PMID: 38729235 DOI: 10.1016/j.drudis.2024.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.
Collapse
Affiliation(s)
- Jiayi Gai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Liu Liu
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
43
|
Arima M, Ito K, Abe T, Oguma T, Asano K, Mukherjee M, Ueki S. Eosinophilic mucus diseases. Allergol Int 2024; 73:362-374. [PMID: 38594175 DOI: 10.1016/j.alit.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Eosinophilic inflammation is primarily characterized by type 2 immune responses against parasitic organisms. In the contemporary human being especially in developed countries, eosinophilic inflammation is strongly associated with allergic/sterile inflammation, and constitutes an undesired immune reaction. This situation is in stark contrast to neutrophilic inflammation, which is indispensable for the host defense against bacterial infections. Among eosinophilic inflammatory disorders, massive accumulation of eosinophils within mucus is observed in certain cases, and is often linked to the distinctive clinical finding of mucus with high viscosity. Eosinophilic mucus is found in a variety of diseases, including chronic allergic keratoconjunctivitis, chronic rhinosinusitis encompassing allergic fungal sinusitis, eosinophilic otitis media, eosinophilic sialodochitis, allergic bronchopulmonary aspergillosis/mycosis, eosinophilic plastic bronchitis, and eosinophilic asthma. In these pathological conditions, chronic inflammation and tissue remodeling coupled with irreversible organ damage due to persistent adhesion of toxic substances and luminal obstruction may impose a significant burden on the body. Eosinophils aggregate in the hyperconcentrated mucus together with cell-derived crystals, macromolecules, and polymers, thereby affecting the biophysical properties of the mucus. This review focuses on the clinically significant challenges of mucus and discusses the consequences of activated eosinophils on the mucosal surface that impact mucus and persistent inflammation.
Collapse
Affiliation(s)
- Misaki Arima
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Keisuke Ito
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomoe Abe
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Tsuyoshi Oguma
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Manali Mukherjee
- Department of Medicine, McMaster University & St Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine, Akita University Graduate School of Medicine, Akita, Japan.
| |
Collapse
|
44
|
Sha A, Chen H, Zhang Y. Expression profile and immunomodulatory roles of methionine-enkephalin and delta opioid receptor in Octopus ocellatus. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109637. [PMID: 38754647 DOI: 10.1016/j.fsi.2024.109637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
In this study, the expressions and distributions of methionine-enkephalin (Met-enk) and δ opioid receptor in the nervous system of Octopus ocellatus, and the immune regulatory mechanisms of Met-enk on O. ocellatus were explored. The distributions and expressions of Met-enk and δ opioid receptor were assessed by immunohistochemistry and enzyme-linked immunosorbent assay. UV-spectrophotometer, microplate reader, and flow cytometer were used to examine the effects of different concentrations of Met-enk on phagocytosis, antioxidant effects, and body surface mucus immunity of O. ocellatus hemocytes. The data were used to study the mechanisms of Met-enk immunity regulation in O. ocellatus. According to the results, the expression levels of Met-enk and δ opioid receptor in O. ocellatus lymphocytes were higher than those in hemocytes. The expression levels of Met-enk in the ganglia of O. ocellatus decreased in the following order: pedal ganglia > cerebral ganglia > visceral ganglia > optic ganglia > stellate ganglia. Moreover, the phagocytic activity of O. ocellatus hemocytes was enhanced with increasing Met-enk concentration. With increasing Met-enk concentration, the expressions of nitric oxide, total nitric oxide synthase, inducible nitric oxide synthase, catalase, hydrogen peroxide, myeloperoxidase, reduced glutathione, α-naphthy acetate esterase, and methionine aminopeptidases decreased in serums of O. ocellatus in the experimental group compared to the blank group. Similarly, the content of reduced glutathione in the hemocytes of O. ocellatus was also lower in the experimental group than in the blank group; however, the expressions of other substances were higher compared to the blank group. Furthermore, α-naphthy acetate esterase, myeloperoxidase, and hydrogen peroxide expressions in mucus immunity trials of the body surface were lower in the experimental group compared to the blank group. These results indicate that the distributions and expressions of Met-enk and δ opioid receptor in the nervous system of O. ocellatus were related to axoplasmic transport and immune regulation mechanisms. Met-enk participates in cellular immunity, humoral immunity, and mucus immunity in the form of neurotransmitters, thereby regulating the immune response of O. ocellatus.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, 404120, China; School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China.
| | - Hongrun Chen
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Yaling Zhang
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| |
Collapse
|
45
|
Einhorn V, Haase H, Maares M. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol 2024; 84:127459. [PMID: 38640745 DOI: 10.1016/j.jtemb.2024.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.
Collapse
Affiliation(s)
- Vincent Einhorn
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Maria Maares
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
46
|
Wu X, Yang SA, Kan Y, Li M, Dong J, Qiu T, Gu Y, Zhao Y, Liang D. Revealing Metabolic Dysregulation Induced by Polypropylene Nano- and Microplastics in Nile Tilapia via Noninvasive Probing Epidermal Mucus. Anal Chem 2024; 96:9416-9423. [PMID: 38809415 DOI: 10.1021/acs.analchem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A noninvasive sampling technology was conceived, employing a disposable acupuncture needle in conjunction with high-resolution mass spectrometry (termed as noninvasive direct sampling extractive electrospray ionization mass spectrometry, NIDS-EESI-MS) to scrutinize the epidermal mucus of Nile tilapia for insights into the metabolic dysregulation induced by polypropylene nano- and microplastics. This analytical method initiates with the dispensing of an extraction solvent onto the needles coated with the mucus sample, almost simultaneously applying a high voltage to generate analyte ions. This innovative strategy obliterates the necessitation for laborious sample preparation, thereby simplifying the sampling process. Employing this technique facilitated the delineation of a plethora of metabolites, encompassing, but not confined to, amino acids, peptides, carbohydrates, ketones, fatty acids, and their derivatives. Follow-up pathway enrichment analysis exposed notable alterations within key metabolic pathways, including the biosynthesis of phenylalanine, tyrosine, and tryptophan, lysine degradation, as well as the biosynthesis and metabolism of valine, leucine, and isoleucine pathways in Nile tilapia, consequent to increased concentrations of polypropylene nanoplastics. These metabolic alterations portend potential implications such as immune suppression, among other deleterious outcomes. This trailblazing application of this methodology not only spares aquatic life from sacrifice but also inaugurates an ethical paradigm for conducting longitudinal studies on the same organisms, facilitating detailed investigations into the long-term effects of environmental pollutants. This technique enhances the ability to observe and understand the subtle yet significant impacts of such contaminants over time.
Collapse
Affiliation(s)
- Xiaokang Wu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Sheng-Ao Yang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Ying Kan
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, PR China
| | - Jiaxin Dong
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Tao Qiu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Yu Gu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Yuanxin Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| | - Dapeng Liang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China
| |
Collapse
|
47
|
Zhao Z, Yang Y, Wu S, Yao D. Role of Secretory Mucins in the Occurrence and Development of Cholelithiasis. Biomolecules 2024; 14:676. [PMID: 38927079 PMCID: PMC11201413 DOI: 10.3390/biom14060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Cholelithiasis is a common biliary tract disease. However, the exact mechanism underlying gallstone formation remains unclear. Mucin plays a vital role in the nuclear formation and growth of cholesterol and pigment stones. Excessive mucin secretion can result in cholestasis and decreased gallbladder activity, further facilitating stone formation and growth. Moreover, gallstones may result in inflammation and the secretion of inflammatory factors, which can further increase mucin expression and secretion to promote the growth of gallstones. This review systematically summarises and analyses the role of mucins in gallstone occurrence and development and its related mechanisms to explore new ideas for interventions in stone formation or recurrence.
Collapse
Affiliation(s)
| | | | | | - Dianbo Yao
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang 110004, China; (Z.Z.); (Y.Y.); (S.W.)
| |
Collapse
|
48
|
Xiao X, Zhang L, Ni M, Liu X, Xing L, Wu L, Zhou Z, Li L, Wen J, Huang Y. Enhanced oral and pulmonary delivery of biomacromolecules via amplified transporter targeting. J Control Release 2024; 370:152-167. [PMID: 38641020 DOI: 10.1016/j.jconrel.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Ligand-modified nanocarriers can promote oral or inhalative administration of macromolecular drugs across the intestinal or pulmonary mucosa. However, enhancing the unidirectional transport of the nanocarriers through "apical uptake→intracellular transport→basolateral exocytosis" route remains a hot topic and challenge in current research. Forskolin is a naturally occurring diterpenoid compound extracted from the roots of C. forskohlii. In our studies, we found that forskolin could increase the transcellular transport of butyrate-modified nanoparticles by 1.67-fold and 1.20-fold in Caco-2 intestinal epithelial cell models and Calu-3 lung epithelial cell models, respectively. Further mechanistic studies revealed that forskolin, on the one hand, promoted the cellular uptake of butyrate-modified nanoparticles by upregulating the expression of monocarboxylic acid transporter-1 (MCT-1) on the apical membrane. On the other hand, forskolin facilitated the binding of MCT-1 to caveolae, thereby mediating butyrate-modified nanoparticles hijacking caveolae to promote the basolateral exocytosis of butyrate-modified nanoparticles. Studies in normal mice model showed that forskolin could promote the transmucosal absorption of butyrate-modified nanoparticles by >2-fold, regardless of oral or inhalative administration. Using semaglutide as the model drug, both oral and inhalation delivery approaches demonstrated significant hypoglycemic effects in type 2 diabetes mice model, in which inhalative administration was more effective than oral administration. This study optimized the strategies aimed at enhancing the transmucosal absorption of ligand-modified nanocarriers in the intestinal or pulmonary mucosa.
Collapse
Affiliation(s)
- Xin Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lie Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Mingjie Ni
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Xi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liyun Xing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Licheng Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
49
|
Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials 2024; 307:122530. [PMID: 38493672 DOI: 10.1016/j.biomaterials.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.
Collapse
Affiliation(s)
- Baoyi Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Aodi Jiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxue Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
50
|
He YJ, Chen YR, Song JR, Jiang JX, Liu TT, Li JY, Li L, Jia J. Ubiquitin-specific protease-7 promotes expression of airway mucin MUC5AC via the NF-κB signaling pathway. Heliyon 2024; 10:e30967. [PMID: 38778971 PMCID: PMC11109812 DOI: 10.1016/j.heliyon.2024.e30967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and other respiratory diseases frequently present with airway mucus hypersecretion, which not only affects the patient's quality of life but also poses a constant threat to their life expectancy. Ubiquitin-specific protease 7 (USP7), a deubiquitinating enzyme, affects cell differentiation, tissue growth, and disease development. However, its role in airway mucus hypersecretion induced by COPD remains elusive. In this study, USP7 expression was significantly upregulated in airway epithelial samples from patients with COPD, and USP7 was also overexpressed in mouse lung and human airway epithelial cells in models of airway mucus hypersecretion. Inhibition of USP7 reduced the expression of nuclear factor kappa B (NF-κB), phosphorylated-NF-κB (p-NF-κB), and phosphonated inhibitor of nuclear factor kappa B (p-IκBα), and alleviated the airway mucus hypersecretion in vivo and in vitro. Further research revealed that USP7 stimulated airway mucus hypersecretion through the activation of NF-κB nuclear translocation. In addition, the expression of mucin 5AC (MUC5AC) was suppressed by the NF-κB inhibitor erdosteine. These findings suggest that USP7 stimulates the NF-κB signaling pathway, which promotes airway mucus hypersecretion. This study identifies one of the mechanisms regulating airway mucus secretion and provides a new potential target for its prevention and treatment.
Collapse
Affiliation(s)
- Yi-Jing He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yi-Rong Chen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Rui Song
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jin-Xiu Jiang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ting-Ting Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jia-Yao Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Liu Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|