1
|
Pallod S, Aguilera Olvera R, Ghosh D, Rai L, Brimo S, DeCambra W, Sant HG, Ristich E, Singh V, Abedin MR, Chang N, Yarger JL, Lee JK, Kilbourne J, Yaron JR, Haydel SE, Rege K. Skin repair and infection control in diabetic, obese mice using bioactive laser-activated sealants. Biomaterials 2024; 311:122668. [PMID: 38908232 DOI: 10.1016/j.biomaterials.2024.122668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Conventional wound approximation devices, including sutures, staples, and glues, are widely used but risk of wound dehiscence, local infection, and scarring can be exacerbated in these approaches, including in diabetic and obese individuals. This study reports the efficacy and quality of tissue repair upon photothermal sealing of full-thickness incisional skin wounds using silk fibroin-based laser-activated sealants (LASEs) containing copper chloride salt (Cu-LASE) or silver nanoprisms (AgNPr-LASE), which absorb and convert near-infrared (NIR) laser energy to heat. LASE application results in rapid and effective skin sealing in healthy, immunodeficient, as well as diabetic and obese mice. Although lower recovery of epidermal structure and function was seen with AgNPr-LASE sealing, likely because of the hyperthermia induced by laser and presence of this material in the wound space, this approach resulted in higher enhancement in recovery of skin biomechanical strength compared to sutures and Cu-LASEs in diabetic, obese mice. Histological and immunohistochemical analyses revealed that AgNPr-LASEs resulted in significantly lower neutrophil migration to the wound compared to Cu-LASEs and sutures, indicating a more muted inflammatory response. Cu-LASEs resulted in local tissue toxicity likely because of effects of copper ions as manifested in the form of a significant epidermal gap and a 'depletion zone', which was a region devoid of viable cells proximal to the wound. Compared to sutures, LASE-mediated sealing, in later stages of healing, resulted in increased angiogenesis and diminished myofibroblast activation, which can be indicative of lower scarring. AgNPr-LASE loaded with vancomycin, an antibiotic drug, significantly lowered methicillin-resistant Staphylococcus aureus (MRSA) load in a pathogen challenge model in diabetic and obese mice and also reduced post-infection inflammation of tissue compared to antibacterial sutures. Taken together, these attributes indicate that AgNPr-LASE demonstrated a more balanced quality of tissue sealing and repair in diabetic and obese mice and can be used for combating local infections, that can result in poor healing in these individuals.
Collapse
Affiliation(s)
- Shubham Pallod
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Rodrigo Aguilera Olvera
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, USA
| | - Deepanjan Ghosh
- Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Lama Rai
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; College of Health Solutions, Arizona State University, USA
| | - Souzan Brimo
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | | | - Harsh Girish Sant
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA
| | - Eron Ristich
- School of Molecular Sciences, Arizona State University, USA; School of Computing and Augmented Intelligence, Arizona State University, USA
| | - Vanshika Singh
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | - Muhammad Raisul Abedin
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA
| | - Nicolas Chang
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biomedical Engineering, School for Biological and Health Systems Engineering, Arizona State University, USA
| | | | - Jung Keun Lee
- Departments of Pathology and Population Medicine, Midwestern University, College of Veterinary Medicine, 5725 West Utopia Rd., Glendale, AZ, 85308, USA
| | | | - Jordan R Yaron
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA
| | - Shelley E Haydel
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, USA; School of Life Sciences, Arizona State University, 501 E. Tyler Mall ECG 303, Tempe, AZ, 85287-6106, USA
| | - Kaushal Rege
- Center for Biomaterials Innovation and Translation, Biodesign Institute, Arizona State University, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, USA.
| |
Collapse
|
2
|
Rampi A, Comini LV, Galli A, Howardson BO, Tettamanti A, Luparello P, Redaelli G, Di Santo D, Bondi S. Reconstructive Surgery of the Head and Neck in Organ Transplant Recipients: A Case Report and a Review of the Literature. J Clin Med 2024; 13:4790. [PMID: 39200933 PMCID: PMC11355776 DOI: 10.3390/jcm13164790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The number of solid organ transplant recipients (SOTRs) is growing as a consequence of an increase in transplantations and longer survival; these patients, thus, frequently suffer various comorbidities and are subjected to the detrimental effects of immunosuppressive agents, which expose them to a higher risk of developing malignancies. These drugs also complicate the surgical treatment of neoplasms, as they can hinder wound healing, especially when associated with other unfavorable factors (e.g., previous radiotherapy, diabetes, etc.). We herein present our experience with a 74-year-old SOTR who underwent a radical extended parotidectomy and reconstruction with a submental island flap for a persistent cutaneous squamous carcinoma after radiotherapy; his complicated clinical course was characterized by incredibly slow wound healing. The current literature was reviewed to provide a succinct overview of the main difficulties of head and neck surgery in SOTRs. In particular, the immunosuppressive regimen can be tapered considering the individual risk and other elements should be carefully assessed, possibly prior to surgery, to prevent cumulative harm. New developments, including intraoperative monitoring of flap vascularization through indocyanine green fluorescence video-angiography and the prophylactic application of negative pressure wound therapy, when feasible, may be particularly beneficial for high-risk patients.
Collapse
Affiliation(s)
- Andrea Rampi
- Otorhinolaryngology Unit, Sondrio Hospital, ASST Valtellina e Alto Lario, 23100 Sondrio, Italy
| | - Lara Valentina Comini
- Otorhinolaryngology, Head and Neck Surgery, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy (S.B.)
| | - Andrea Galli
- Otorhinolaryngology Unit, Division Head and Neck Department, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Bright Oworae Howardson
- Otorhinolaryngology Unit, Division Head and Neck Department, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alberto Tettamanti
- Otorhinolaryngology Unit, Division Head and Neck Department, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Paolo Luparello
- Otorhinolaryngology, Head and Neck Surgery, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy (S.B.)
| | - Gabriele Redaelli
- Otorhinolaryngology Unit, Sondrio Hospital, ASST Valtellina e Alto Lario, 23100 Sondrio, Italy
| | - Davide Di Santo
- Otorhinolaryngology, Head and Neck Surgery, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy (S.B.)
| | - Stefano Bondi
- Otorhinolaryngology, Head and Neck Surgery, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy (S.B.)
| |
Collapse
|
3
|
Yan B, Hua Y, Wang J, Shao T, Wang S, Gao X, Gao J. Surface Modification Progress for PLGA-Based Cell Scaffolds. Polymers (Basel) 2024; 16:165. [PMID: 38201830 PMCID: PMC10780542 DOI: 10.3390/polym16010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Poly(lactic-glycolic acid) (PLGA) is a biocompatible bio-scaffold material, but its own hydrophobic and electrically neutral surface limits its application as a cell scaffold. Polymer materials, mimics ECM materials, and organic material have often been used as coating materials for PLGA cell scaffolds to improve the poor cell adhesion of PLGA and enhance tissue adaptation. These coating materials can be modified on the PLGA surface via simple physical or chemical methods, and coating multiple materials can simultaneously confer different functions to the PLGA scaffold; not only does this ensure stronger cell adhesion but it also modulates cell behavior and function. This approach to coating could facilitate the production of more PLGA-based cell scaffolds. This review focuses on the PLGA surface-modified materials, methods, and applications, and will provide guidance for PLGA surface modification.
Collapse
Affiliation(s)
- Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Yabing Hua
- Department of Pharmacy, Xuzhou Medical University Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China;
| | - Jinyue Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Tianjiao Shao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Shan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; (B.Y.); (J.W.); (T.S.); (S.W.)
| |
Collapse
|
4
|
Monaghan MG, Borah R, Thomsen C, Browne S. Thou shall not heal: Overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment. Adv Drug Deliv Rev 2023; 203:115120. [PMID: 37884128 DOI: 10.1016/j.addr.2023.115120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating complication for diabetic patients that have debilitating effects and can ultimately lead to limb amputation. Healthy wounds progress through the phases of healing leading to tissue regeneration and restoration of the barrier function of the skin. In contrast, in diabetic patients dysregulation of these phases leads to chronic, non-healing wounds. In particular, unresolved inflammation in the DFU microenvironment has been identified as a key facet of chronic wounds in hyperglyceamic patients, as DFUs fail to progress beyond the inflammatory phase and towards resolution. Thus, control over and modulation of the inflammatory response is a promising therapeutic avenue for DFU treatment. This review discusses the current state-of-the art regarding control of the inflammatory response in the DFU microenvironment, with a specific focus on the development of biomaterials-based delivery strategies and their cargos to direct tissue regeneration in the DFU microenvironment.
Collapse
Affiliation(s)
- Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Rajiv Borah
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Charlotte Thomsen
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Shane Browne
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, H91 W2TY Galway, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
5
|
Ding R, Li Y, Yu Y, Sun Z, Duan J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol Adv 2023; 69:108277. [PMID: 37923235 DOI: 10.1016/j.biotechadv.2023.108277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the thrive of nanotechnology, silica nanoparticles (SiNPs) have been extensively adopted in the agriculture, food, cosmetic, and even biomedical industries. Due to the mass production and use, SiNPs inevitably entered the environment, resulting in ecological toxicity and even posing a threat to human health. Although considerable investigations have been conducted to assess the toxicity of SiNPs, the correlation between SiNPs exposure and consequent health risks remains ambiguous. Since the biological impacts of SiNPs can differ from their design and application, the toxicity assessment for SiNPs may be extremely difficult. This review discussed the application of SiNPs in different fields, especially their biomedical use, and documented their potential release pathways into the environment. Meanwhile, the current process of assessing SiNPs-related toxicity on various model organisms and cell lines was also detailed, thus estimating the health threats posed by SiNPs exposure. Finally, the potential toxic mechanisms of SiNPs were also elaborated based on results obtained from both in vivo and in vitro trials. This review generally summarizes the biological effects of SiNPs, which will build up a comprehensive perspective of the application and toxicity of SiNPs.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
Fratini C, Weaver E, Moroni S, Irwin R, Dallal Bashi YH, Uddin S, Casettari L, Wylie MP, Lamprou DA. Combining microfluidics and coaxial 3D-bioprinting for the manufacturing of diabetic wound healing dressings. BIOMATERIALS ADVANCES 2023; 153:213557. [PMID: 37441958 DOI: 10.1016/j.bioadv.2023.213557] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Diabetic foot ulcers (DFUs) are a crucial complication of diabetes, as in a diabetic wound, each step of the physiological healing process is affected. This entails a more easily infectable wound, and delayed tissue regeneration due to the inflammation that occurs, leading to a drastic decrease in the overall patient's quality of life. As a strategy to manage DFUs, skin alternatives and wound dressings are currently receiving a lot of attention as they keep the wound environment "under control", while providing bioactive compounds that help to manage infection and inflammation and promote tissue repair. This has been made possible thanks to the advent of emerging technologies such as 3D Bioprinting to produce skin resembling constructs or microfluidics (MFs) that allows the manufacture of nanoparticles (NPs) that act as drug carriers, in a prompt and less expensive way. In the present proof-of-concept study, the possibility of combining two novel and appealing techniques in the manufacturing of wound dressings has been demonstrated for first time. The novelty of this work consists in the combination of liposomes (LPs) encapsulating the active pharmaceutical ingredient (API) into a hydrogel that is further printed into a three-dimensional scaffold for wound dressing; to the knowledge of the authors this has never been done before. A grid-shaped scaffold has been produced through the coaxial 3D bioprinting technique which has allowed to combine, in one single filament, two different bioinks. The inner core of the filament is a nanocomposite hydrogel consisting of hydroxyethyl cellulose (HEC) and PEGylated LPs encapsulated with thyme oil (TO) manufactured via MFs for the first time. The outer shell of the filament, instead, is represented by a hybrid hydrogel composed of sodium alginate/cellulose nanocrystals (SA/CNC) and enriched with free TO. This provides a combination of two different release ratios of the API, a bulk release for the first 24 h thanks to the free TO in the shell of the filament and a sustained release for up to 10 days provided from the API inside the LPs. Confocal Microscopy verified the actual presence of the LPs inside the scaffold after printing and evaluation using the zone of inhibition test proved the antibacterial activity of the manufactured scaffolds against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Costanza Fratini
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Sofia Moroni
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Robyn Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Shahid Uddin
- Immunocore Ltd., 92 Park Dr, Milton Park, Abingdon OX14 4RY, United Kingdom
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
7
|
Esmaeili J, Barati A, Charelli LE. Discussing the final size and shape of the reconstructed tissues in tissue engineering. J Artif Organs 2022:10.1007/s10047-022-01360-1. [PMID: 36125581 DOI: 10.1007/s10047-022-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
Tissue engineering (TE) has made a revolution in repairing, replacing, or regenerating tissues or organs, but it has still a long way ahead. The mechanical properties along with suitable physicochemical and biological characteristics are the initial criteria for scaffolds in TE that should be fulfilled. This research will provide another point of view toward TE challenges concerning the morphological and geometrical aspects of the reconstructed tissue and which parameters may affect it. Based on our survey, there is a high possibility that the final reconstructed tissue may be different in size and shape compared to the original design scaffold. Thereby, the 3D-printed scaffold might not guarantee an accurate tissue reconstruction. The main justification for this is the unpredicted behavior of cells, specifically in the outer layer of the scaffold. It can also be a concern when the scaffold is implanted while cell migration cannot be controlled through the in vivo signaling pathways, which might cause cancer challenges. To sum up, it is concluded that more studies are necessary to focus on the size and geometry of the final reconstructed tissue.
Collapse
Affiliation(s)
- Javad Esmaeili
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.,Tissue Engineering Department, TISSUEHUB Co., Tehran, Iran
| | - Aboulfazl Barati
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran.
| | - Letícia Emiliano Charelli
- Nanotechnology Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Surface-Active Compounds Produced by Microorganisms: Promising Molecules for the Development of Antimicrobial, Anti-Inflammatory, and Healing Agents. Antibiotics (Basel) 2022; 11:antibiotics11081106. [PMID: 36009975 PMCID: PMC9404966 DOI: 10.3390/antibiotics11081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Surface-active compounds (SACs), biomolecules produced by bacteria, yeasts, and filamentous fungi, have interesting properties, such as the ability to interact with surfaces as well as hydrophobic or hydrophilic interfaces. Because of their advantages over other compounds, such as biodegradability, low toxicity, antimicrobial, and healing properties, SACs are attractive targets for research in various applications in medicine. As a result, a growing number of properties related to SAC production have been the subject of scientific research during the past decade, searching for potential future applications in biomedical, pharmaceutical, and therapeutic fields. This review aims to provide a comprehensive understanding of the potential of biosurfactants and emulsifiers as antimicrobials, modulators of virulence factors, anticancer agents, and wound healing agents in the field of biotechnology and biomedicine, to meet the increasing demand for safer medical and pharmacological therapies.
Collapse
|
9
|
Yang BY, Zhou ZY, Liu SY, Shi MJ, Liu XJ, Cheng TM, Deng GY, Tian Y, Song J, Li XH. Porous Se@SiO2 Nanoparticles Enhance Wound Healing by ROS-PI3K/Akt Pathway in Dermal Fibroblasts and Reduce Scar Formation. Front Bioeng Biotechnol 2022; 10:852482. [PMID: 35387298 PMCID: PMC8978548 DOI: 10.3389/fbioe.2022.852482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Hypertrophic scarring, which is characterized by excessive extracellular matrix deposition and abnormal fibroblast homeostasis, is an undesirable outcome of dermal wound healing. Once formed, the scar will replace the normal function of local skin, and there are few noninvasive clinical treatments that can cure it. Se@SiO2 nanoparticles were synthesized to suppress oxidative stress, which induced the presence and activation of myofibroblasts during wound recovery. The characterization, antioxidant capacity and biological safety of Se@SiO2 NPs were evaluated. A full-thickness excisional wound model was established, and the wounds were divided into three groups. The re-epithelization and distribution of collagen fibers were assessed using hematoxylin and eosin staining and Masson’s trichome staining after specific treatments. Our results revealed that the Se@SiO2 NPs accelerated dermal wound healing and suppressed the formation of hypertrophic scars, accompanied by oxidative stress inhibition. Moreover, we found that Se@SiO2 NPs worked by activating the PI3K/Akt pathway and upregulating the phosphorylation of Akt. The findings of our study provide a new method to promote dermal scar-free wound healing by suppressing excessive oxidative stress and through PI3K/Akt pathway activation.
Collapse
Affiliation(s)
- Bo-Yu Yang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhi-Yuan Zhou
- Shanghai Pudong New Area GongLi Hospital, Shanghai, China
| | - Shi-Yun Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xi-Jian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Tian-Ming Cheng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Ying Deng
- Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ye Tian
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Jian Song, ; Xuan-Hao Li,
| | - Jian Song
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Jian Song, ; Xuan-Hao Li,
| | - Xuan-Hao Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ye Tian, ; Jian Song, ; Xuan-Hao Li,
| |
Collapse
|
10
|
Kang X, Lei J, Yang C, Zhang P, Li X, Zheng S, Li Q, Zhang J. A hybrid hydrogel composed of chitin and β-glucan for effectively management of wound healing and scarring. Biomater Sci 2022; 10:6024-6036. [DOI: 10.1039/d2bm00935h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-functional scar commonly forms after the skin injury. At present, most of the clinical treatments for scar eradication are typically with long treatment courses, low curative effects and expensive. In...
Collapse
|
11
|
Tobramycin Supplemented Small-Diameter Vascular Grafts for Local Antibiotic Delivery: A Preliminary Formulation Study. Int J Mol Sci 2021; 22:ijms222413557. [PMID: 34948352 PMCID: PMC8709041 DOI: 10.3390/ijms222413557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 01/26/2023] Open
Abstract
Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA. Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 μm and its internal diameter was 2.61 ± 0.05 mm. The graft's antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.
Collapse
|
12
|
Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends. INT J POLYM SCI 2021. [DOI: 10.1155/2021/4907027] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.
Collapse
|
13
|
McArdle C, Abbah SA, Bhowmick S, Collin E, Pandit A. Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model. Biomater Sci 2021; 9:3136-3149. [PMID: 33725045 DOI: 10.1039/d0bm01928c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypertrophic scarring (HS) is an intractable complication associated with cutaneous wound healing. Although transforming growth factor β1 (TGF-β1) has long been documented as a central regulatory cytokine in fibrogenesis and fibroplasia, there is currently no cure. Gene therapy is emerging as a powerful tool to attenuate the overexpression of TGF-β1 and its signaling activities. An effective approach may require transferring multiple genes to regulate different aspects of TGF-β1 signaling activities in a Spatio-temporal manner. Herein we report the additive anti-fibrotic effects of two plasmid DNAs encoding interleukin 10 (IL-10) and decorin (DCN) co-delivered via a biphasic 3D collagen scaffold reservoir platform. Combined gene therapy significantly attenuated inflammation and extracellular matrix components' accumulation in a rabbit ear ulcer model; and suppressed the expressions of genes associated with fibrogenesis, including collagen type I, as well as TGF-β1 and TGF-β2, while enhancing the genes commonly associated with regenerative healing including collagen type III. These findings may serve to provide a non-viral gene therapy platform that is safe, optimized, and effective to deliver multiple genes onto the diseased tissue in a wider range of tissue fibrosis-related maladies.
Collapse
Affiliation(s)
- Ciarstan McArdle
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sunny Akogwu Abbah
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sirsendu Bhowmick
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Estelle Collin
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| |
Collapse
|
14
|
Ebrahimpour N, Mehrabani M, Iranpour M, Kordestani Z, Mehrabani M, Nematollahi MH, Asadipour A, Raeiszadeh M, Mehrbani M. The efficacy of a traditional medicine preparation on second-degree burn wounds in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112570. [PMID: 31945402 DOI: 10.1016/j.jep.2020.112570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 12/08/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lime Salve (L.S) has been well documented from the 9th to the 19th century AD by traditional Iranian medicine (TIM) as an effective remedy for burn healing. AIM OF THE STUDY The present study was undertaken to evaluate the healing effect and related underlying mechanisms of Lime Salve in a model of deep second-degree thermal burn in male Wistar rats. MATERIALS AND METHOD L.S was made up of a combination of refined calcium hydroxide powder, beeswax and sesame oil and its quality control was assessed. A deep second-degree burn was created by a hot plate in 48 male Wistar rats. Afterwards, they were randomly divided into four groups including normal saline (C group), L.S (T group), basement of formulation composed of beeswax and sesame oil (B group) and silver sulfadiazine (S group). On days 5, 10, 17 and 24, the wounds were digitally photographed by a camera and after sacrifice of the rats, skin samples were obtained for performing qRT-PCR, immunohistochemistry staining and histological examination. RESULTS L.S prominently augmented the wound closure rate, neovascularization on day 10 and collagen formation on days 17 and 24 in comparison with the C group. Furthermore, the Salve-exposed specimens showed a significant higher epithelialization during the experiment with a peak on day 24. qRT-PCR also showed that on day 10, VEGF and TGF-β1 genes were significantly higher in the T group as compared with the C group. Also, MMP-9 and MMP-2 genes had a significant peak of expression on day 17 and rapid reduction of expression on day 24. Expression levels of IL-6 and TNF-α genes peaked on day 10 in the T group, followed by a progressive reduction until the end of the examination. CONCLUSION L.S could effectively accelerate the healing process of deep second-degree burn wounds and therefore, it may be recommended as a promising topical medication for treating burn wounds in the future clinical trials.
Collapse
Affiliation(s)
- Nasser Ebrahimpour
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehrnaz Mehrabani
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Iranpour
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zeinab Kordestani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Asadipour
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Medical Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahboobeh Raeiszadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Department of Traditional Pharmacy, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehrzad Mehrbani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Zarubova J, Hasani-Sadrabadi MM, Bacakova L, Li S. Nano-in-Micro Dual Delivery Platform for Chronic Wound Healing Applications. MICROMACHINES 2020; 11:mi11020158. [PMID: 32024165 PMCID: PMC7074578 DOI: 10.3390/mi11020158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Here, we developed a combinatorial delivery platform for chronic wound healing applications. A microfluidic system was utilized to form a series of biopolymer-based microparticles with enhanced affinity to encapsulate and deliver vascular endothelial growth factor (VEGF). Presence of heparin into the structure can significantly increase the encapsulation efficiency up to 95% and lower the release rate of encapsulated VEGF. Our in vitro results demonstrated that sustained release of VEGF from microparticles can promote capillary network formation and sprouting of endothelial cells in 2D and 3D microenvironments. These engineered microparticles can also encapsulate antibiotic-loaded nanoparticles to offer a dual delivery system able to fight bacterial infection while promoting angiogenesis. We believe this highly tunable drug delivery platform can be used alone or in combination with other wound care products to improve the wound healing process and promote tissue regeneration.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA (M.M.H.-S.)
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic;
| | | | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic;
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA (M.M.H.-S.)
- Correspondence: ; Tel.: +1-310-794-6140
| |
Collapse
|
16
|
Tatara AM, Watson E, Albert ND, Kontoyiannis PD, Kontoyiannis DP, Mikos AG. A murine model of cutaneous aspergillosis for evaluation of biomaterials-based local delivery therapies. J Biomed Mater Res A 2019; 107:1867-1874. [PMID: 30882993 PMCID: PMC6626589 DOI: 10.1002/jbm.a.36671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/10/2023]
Abstract
Cutaneous fungal infection is a challenging condition to treat that primarily afflicts immunocompromised patients. Local antifungal therapy may permit the delivery of high concentrations of antifungals directly to wounds while minimizing systemic toxicities. However, the field currently lacks suitable in vivo models. Therefore, a large cutaneous wound was created in immunosuppressed mice and inoculated with Aspergillus fumigatus. We fabricated biodegradable polymer microparticles (MPs) that were capable of locally delivering antifungal and characterized in vitro release kinetics. We compared wound bed size, fungal burden, and histological presence of fungi in mice treated with antifungal-loaded MPs. Mice with a cutaneous defect but no infection, mice with infected cutaneous defect but no treatment, and infected mice treated with blank MPs were used as controls. Infection of large wounds inhibited healing and resulted in tissue invasion in an inoculum-dependent manner. MPs were capable of releasing antifungals at concentrations above A. fumigatus Minimum Inhibitory Concentration (MIC) for at least 6 days. Wounds treated with MPs had significantly decreased size compared with no treatment (64.2% vs. 19.4% wound reduction, p = 0.002) and were not significantly different from uninfected controls (64.2% vs. 58.1%, p = 0.497). This murine model may serve to better understand cutaneous fungal infection and evaluate local biomaterials-based therapies. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1867-1874, 2019.
Collapse
Affiliation(s)
- Alexander M. Tatara
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Nathaniel D. Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
17
|
Shah SA, Sohail M, Khan S, Minhas MU, de Matas M, Sikstone V, Hussain Z, Abbasi M, Kousar M. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139:975-993. [PMID: 31386871 DOI: 10.1016/j.ijbiomac.2019.08.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Non-healing, chronic wounds place a huge burden on healthcare systems as well as individual patients. These chronic wounds especially diabetic wounds will ultimately lead to compromised mobility, amputation of limbs and even death. Currently, wounds and limb ulcers associated with diabetes remain significant health issues; the associated healthcare cost ultimately leads to the increased clinical burden. The presence of diabetes interrupts a highly coordinated cascade of events in the wound closure process. Advances in the understanding of pathophysiological conditions associated with diabetic wounds lead to the development of drug delivery systems which can enhance wound healing by targeting various phases of the impaired processes. Wound environments typically contain degradative enzymes, along with an elevated pH and demonstrate a physiological cascade involved in the regeneration of tissue, which requires the application of an effective delivery system. This article aims to review the pathophysiological conditions associated with chronic and diabetic wounds. The delivery systems, involved in their treatment are described, highlighting potential biomaterials and polymers for establishing drug delivery systems, specifically for the treatment of diabetic wounds and the promotion of the associated mechanisms involved in advanced wound healing. Emerging approaches and engineered devices for effective wound care are reported. The discussion will give insight into the mechanisms relevant to all stages of wound healing.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan.
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409, USA.; Discipline of Pharmaceutical Sciences, School of Health Sciences, UKZN, Durban, South Africa
| | | | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Victoria Sikstone
- Division of Pharmacy and Optometry, School of Health Sciences, The University of Manchester, UK
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mudassir Abbasi
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22060, Pakistan
| |
Collapse
|
18
|
Chen Y, Tian L, Yang F, Tong W, Jia R, Zou Y, Yin L, Li L, He C, Liang X, Ye G, Lv C, Song X, Yin Z. Tannic Acid Accelerates Cutaneous Wound Healing in Rats Via Activation of the ERK 1/2 Signaling Pathways. Adv Wound Care (New Rochelle) 2019; 8:341-354. [PMID: 31737421 DOI: 10.1089/wound.2018.0853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: This study was aimed to evaluate the effect of tannic acid (TA), a natural plant polyphenol astringent, on wound healing in vitro and in vivo, and to elucidate the underlying molecular signaling pathway in the wound healing. Approach: Cutaneous skin wounds were created in rats and then treated until closure with purified TA, serum or tissue samples were collected to test the concentration of factors by enzyme-linked immunosorbent assay (ELISA), and the expression in gene or protein was measured by quantitative real-time polymerase chain reaction or Western blot. We explored the cell-/dose-specific responses of TA (0.1-0.4 μg/mL) on proliferation and gene and protein expression of fibroblast NIH 3T3 cells. Results: The wounds on rats treated by TA got healed faster than those in the untreated group. The histopathology study showed that TA accelerated re-epithelialization and increase in hair follicles could be detected. The levels of growth factors including basic fibroblast growth factor (bFGF), transforming growth factor-beta, and vascular endothelial growth factor in TA-treated groups were all increased, and the content of interleukin-1 (IL-1) and IL-6 was decreased significantly when compared with that of the untreated group. The NIH 3T3 cells grow faster in 6 h at concentration of 0.1 μg/mL, and the expression of bFGF in gene and protein was increased significantly in the 0.1 μg/mL TA group. Further study revealed that the protein levels of bFGF, extracellular signal regulated kinase (Erk) 1/2, and P-Erk 1/2 in Erk 1/2 pathway were increased after TA treatment. Innovation: The role of TA in wound healing efficacy is unclear; this study, therefore, assesses the effects of TA on wound healing in different periods and the underlying molecular mechanisms. Conclusion: These results suggested that TA could accelerate wound healing through modulation of inflammatory cytokines and growth factors and activate Erk 1/2 pathway. In conclusion, TA may be a potential agent in promoting wound healing.
Collapse
Affiliation(s)
- Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lvbo Tian
- Sichuan International Travel Health Care Center, Chengdu, China
| | - Fengyu Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wenzhi Tong
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Oroojalian F, Jahanafrooz Z, Chogan F, Rezayan AH, Malekzade E, Rezaei SJT, Nabid MR, Sahebkar A. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications. J Cell Biochem 2019; 120:17194-17207. [PMID: 31104319 DOI: 10.1002/jcb.28980] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Loss of skin integrity due to injury, burning, or illness makes the development of new treatment options necessary. Skin tissue engineering provides some solutions for these problems. OBJECTIVE The potential of a biodegradable star-shaped copolymer [Poly(CL─CO─LA)-b-PEG] and penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) was assessed for skin tissue engineering applications. METHODS Two copolymers were synthesized for cellular culture scaffolds and their mechanical properties were compared. The resulting star-shaped copolymer and thermosensitive penta-block copolymer were characterized using Fourier transform infrared and nuclear magnetic resonance spectroscopy. The crystallizability of the two copolymers was analyzed using X-ray diffraction. The resulting thermosensitive penta-block copolymer was evaluated by differential thermal analysis, differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscopy and in vitro degradation of the polymer network in phosphate buffer solutions (pH 7.4) at 37°C were also examined. The pore size of the gels was calculated with Image Analyzer software. Finally, the cytotoxic, morphological, and gene expression effects of copolymers on the skin fibroblast were evaluated. RESULTS The experiments showed that the PNIPAAm-PCL-PEG-PCL-PNIPAAm polymer with the right composition and the expected molecular weight was achieved. The hydrogel had less crystallizability compared with its precursors. The resulting thermosensitive hydrogel had a three-dimensional structure with interconnected pores that mimicked the extracellular matrix. The control of the degradability rate can be possible by weight percent changes. The pore size correlated with the polymer concentration in aqueous solution and the pore sizes of the 20 wt% hydrogel were better for fibroblast cultivation than those of the 10 wt% hydrogel. Cell proliferation on the 20% gel was more than that of the 10% gel. The hydrogel not only preserved the viability and phenotypical morphology of the entrapped cells but also stimulated the initial cell-cell interactions and proliferation of fibroblasts. The hydrogel did not influence cell conformation and this property of the polymer underlined its safety. Cells seeded on this copolymer showed a normal and spear shape and formed a focal adhesion with the hydrogel surface. Notably, the hydrogel increased collagen I α1 and collagen III mRNAs expression. CONCLUSION Due to the low molecular weight and poor mechanical strength of the star-shaped copolymer, it was not considered for fabrication of the scaffolds for wound healing. The biodegradable, biocompatible, injectable and thermosensitive PNIPAAm-PCL-PEG-PCL-PNIPAAm hydrogel in 20 wt% demonstrated a desirable potential for future application as a cell scaffold in skin tissue engineering and wound healing.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.,Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zohreh Jahanafrooz
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faraz Chogan
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Ali Hossein Rezayan
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Elham Malekzade
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Silva GF, Silva TG, Gobbi VG, Portela TL, Teixeira BN, Santos Mendonça T, Silva Moreira Thiré RM, Oliveira RN, Yaunner RS, Almeida Rodrigues Junior J, Mendonça RH. Swelling degree prediction of polyhydroxybutyrate/chitosan matrices loaded with “
Arnica‐do‐Brasil”. J Appl Polym Sci 2019. [DOI: 10.1002/app.47838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Glauco Fonseca Silva
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Talita Goulart Silva
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Vinícius Guedes Gobbi
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Theresa Lomeu Portela
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Bruna Nunes Teixeira
- PEMM/COPPEUniversidade Federal do Rio de Janeiro Ilha do Fundão, PO Box 68505, 21941‐972, Rio de Janeiro RJ Brazil
| | - Tiago Santos Mendonça
- Departamento de Física Teórica ‐ Instituto de Física A. D. TavaresUniversidade do Estado do Rio de Janeiro R. São Francisco Xavier, 524. Rio de Janeiro RJ 20550‐013 Brazil
| | | | - Renata Nunes Oliveira
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| | - Ricardo Stutz Yaunner
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Federal do Rio de Janeiro (UFRJ). Pólo de Xistoquímica, Rua Hélio de Almeida 40, Cidade Universitária Rio de Janeiro RJ 21941‐614 Brazil
| | - Jorge Almeida Rodrigues Junior
- Departamento de Química Orgânica, Instituto de QuímicaUniversidade Federal do Rio de Janeiro (UFRJ). Pólo de Xistoquímica, Rua Hélio de Almeida 40, Cidade Universitária Rio de Janeiro RJ 21941‐614 Brazil
| | - Roberta Helena Mendonça
- DEQ/ITUniversidade Federal Rural do Rio de Janeiro Rod BR 465, 23890‐000, Seropédica RJ Brazil
| |
Collapse
|
21
|
Chen C, Liu Y, Sun L, Chen G, Wu X, Ren J, Zhao Y. Antibacterial Porous Microcarriers with a Pathological State Responsive Switch for Wound Healing. ACS APPLIED BIO MATERIALS 2019; 2:2155-2161. [PMID: 35030654 DOI: 10.1021/acsabm.9b00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Guopu Chen
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yuanjin Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
22
|
Song WK, Liu D, Sun LL, Li BF, Hou H. Physicochemical and Biocompatibility Properties of Type I Collagen from the Skin of Nile Tilapia ( Oreochromis niloticus) for Biomedical Applications. Mar Drugs 2019; 17:E137. [PMID: 30813606 PMCID: PMC6471296 DOI: 10.3390/md17030137] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this study is to investigate the physicochemical properties, biosafety, and biocompatibility of the collagen extract from the skin of Nile tilapia, and evaluate its use as a potential material for biomedical applications. Two extraction methods were used to obtain acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from tilapia skin. Amino acid composition, FTIR, and SDS-PAGE results showed that ASC and PSC were type I collagen. The molecular form of ASC and PSC is (α₁)₂α₂. The FTIR spectra of ASC and PSC were similar, and the characteristic peaks corresponding to amide A, amide B, amide I, amide II, and amide III were 3323 cm-1, 2931 cm-1, 1677 cm-1, 1546 cm-1, and 1242 cm-1, respectively. Denaturation temperatures (Td) were 36.1 °C and 34.4 °C, respectively. SEM images showed the loose and porous structure of collagen, indicting its physical foundation for use in applications of biomedical materials. Negative results were obtained in an endotoxin test. Proliferation rates of osteoblastic (MC3T3E1) cells and fibroblast (L929) cells from mouse and human umbilical vein endothelial cells (HUVEC) were increased in the collagen-treated group compared with the controls. Furthermore, the acute systemic toxicity test showed no acute systemic toxicity of the ASC and PSC collagen sponges. These findings indicated that the collagen from Nile tilapia skin is highly biocompatible in nature and could be used as a suitable biomedical material.
Collapse
Affiliation(s)
- Wen-Kui Song
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| | - Dan Liu
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266003, China.
| | - Lei-Lei Sun
- College of Life Science, Yantai University, Yantai 264005, China.
| | - Ba-Fang Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| |
Collapse
|
23
|
Zhang S, Xing M, Li B. Capsule-Integrated Polypeptide Multilayer Films for Effective pH-Responsive Multiple Drug Co-Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44267-44278. [PMID: 30511568 PMCID: PMC6461212 DOI: 10.1021/acsami.8b17264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many applications using drug-carrying biomedical materials require on-demand, localized delivery of multiple therapeutic agents in precisely controlled and patient-specific time sequences, especially after assembly of the delivery vehicles; however, creating such materials has proven extremely challenging. Here, we report a novel strategy to create polypeptide multilayer films integrated with capsules as vehicles for co-delivery of multiple drugs using layer-by-layer self-assembly technology. Our approach allows the multilayered polypeptide nanofilms and preimpregnated capsules to assemble into innovative biomedical materials with high and controllable loading of multiple drugs at any time postpreparation and to achieve pH-responsive and sustained release. The resulting capsule-integrated polypeptide multilayer films effectively co-deliver various drugs with very different properties, including proteins (e.g., growth factors) and nanoparticles, achieving bovine serum albumin loading of 80 μg cm-2 and release of 2 weeks, and histone loading of 100 μg cm-2 and release of 6 weeks; which also enable Staphylococcus aureus killing efficacy of 83% while maintaining osteoblast viability of >85% with silver nanoparticle delivery; and >5-fold cell adhesion and proliferation capability with live cell percentage of >90% via human recombinant bone morphogenetic protein 2 delivery. The successful development of such fascinating materials can not only function as advanced nanocoatings to reduce two major complications of orthopedic bone injuries (i.e., infection and delayed bone regeneration) but also provide new insights into the design and development of multifunctional materials for various other biomedical applications.
Collapse
Affiliation(s)
- Shichao Zhang
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
24
|
Pugliese E, Coentro JQ, Raghunath M, Zeugolis DI. Wound healing and scar wars. Adv Drug Deliv Rev 2018; 129:1-3. [PMID: 29909924 DOI: 10.1016/j.addr.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - João Q Coentro
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI, Galway), Galway, Ireland.
| |
Collapse
|