1
|
Woodward IR, Yu Y, Fromen CA. Experimental Full-volume Airway Approximation for Assessing Breath-dependent Regional Aerosol Deposition. DEVICE 2024; 2:100514. [PMID: 39734794 PMCID: PMC11671099 DOI: 10.1016/j.device.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Modeling aerosol dynamics in the airways is challenging, and most modern personalized in vitro tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an in vitro modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute. We show that the TIDAL system is easily coupled with industrially and clinically relevant devices for aerosol therapeutics. Using a vibrating mesh nebulizer, we report central-to-peripheral (C:P) aerosol deposition measurements aligned with both in vivo and in silico benchmarks. These findings underscore the effectiveness of the TIDAL model in predicting airway deposition dynamics for inhalable therapeutics.
Collapse
Affiliation(s)
- Ian R. Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Yinkui Yu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | | |
Collapse
|
2
|
Chen J, Ye Y, Yang Q, Fan Z, Shao Y, Wei X, Shi K, Dong J, Ma Y, Zhu J. Understanding the role of swirling flow in dry powder inhalers: Implications for design considerations and pulmonary delivery. J Control Release 2024; 373:410-425. [PMID: 39038545 DOI: 10.1016/j.jconrel.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Dry powder inhalers (DPIs) are widely employed to treat respiratory diseases, offering numerous advantages such as high dose capacity and stable formulations. However, they usually face challenges in achieving sufficient pulmonary drug delivery and minimizing excessive oropharyngeal deposition. This review provides a new viewpoint to address these challenges by focusing on the role of swirling flow, a crucial yet under-researched aspect that induces strong turbulence. In the review, we comprehensively discuss both key classic designs (tangential inlet, swirling chamber, grid mesh, and mouthpiece) and innovative designs in inhalers, exploring how the induced swirling flow initiates powder dispersion and promotes delivery efficiency. Valuable design considerations to effectively coordinate inhalers with formulations and patients are also provided. It is highlighted that the delicate manipulation of swirling flow is essential to maximize benefits. By emphasizing the role of swirling flow and its potential application, this review offers promising insights for advancing DPI technology and optimizing therapeutic outcomes in inhaled therapy.
Collapse
Affiliation(s)
- Jiale Chen
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Yuqing Ye
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China.
| | - Qingliang Yang
- College of Pharmaceutical Science, Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ziyi Fan
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yuanyuan Shao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Xiaoyang Wei
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jie Dong
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Ying Ma
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jesse Zhu
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Eastern Institute of Technology, Ningbo 315200, China.
| |
Collapse
|
3
|
Riaz HH, Munir A, Farooq U, Arshad A, Chan TC, Zhao M, Khan NB, Islam MS. Optimal Treatment of Tumor in Upper Human Respiratory Tract Using Microaerosols. ACS OMEGA 2024; 9:25106-25123. [PMID: 38882164 PMCID: PMC11170752 DOI: 10.1021/acsomega.4c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024]
Abstract
Lung cancer is a frequently diagnosed respiratory disease caused by particulate matter in the environment, especially among older individuals. For its effective treatment, a promising approach involves administering drug particles through the inhalation route. Multiple studies have investigated the flow behavior of inhaled particles in the respiratory airways of healthy patients. However, the existing literature lacks studies on the precise understanding of the transportation and deposition (TD) of inhaled particles through age-specific, unhealthy respiratory tracts containing a tumor, which can potentially optimize lung cancer treatment. This study aims to investigate the TD of inhaled drug particles within a tumorous, age-specific human respiratory tract. The computational model reports that drug particles within the size range of 5-10 μm are inclined to deposit more on the tumor located in the upper airways of a 70-year-old lung. Conversely, for individuals aged 50 and 60 years, an optimal particle size range for achieving the highest degree of particle deposition onto upper airway tumor falls within the 11-20 μm range. Flow disturbances are found to be at a maximum in the airway downstream of the tumor. Additionally, the impact of varying inhalation flow rates on particle TD is examined. The obtained patterns of airflow distribution and deposition efficiency on the tumor wall for different ages and tumor locations in the upper tracheobronchial airways would be beneficial for developing an efficient and targeted drug delivery system.
Collapse
Affiliation(s)
- Hafiz Hamza Riaz
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, Islamabad, Pakistan
| | - Adnan Munir
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, Islamabad, Pakistan
| | - Umar Farooq
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, Islamabad, Pakistan
- Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan, Republic of China
| | - Attique Arshad
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, Islamabad, Pakistan
| | - Tzu-Chi Chan
- Department of Mechanical and Computer-Aided Engineering, National Formosa University, Yunlin 632, Taiwan, Republic of China
| | - Ming Zhao
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Niaz Bahadur Khan
- Mechanical Engineering Department, College of Engineering, University of Bahrain, Isa Town 32038, Bahrain
| | - Mohammad S Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
4
|
Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X, Ren H, Xin X, Li X. Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309748. [PMID: 38460157 PMCID: PMC11095210 DOI: 10.1002/advs.202309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Qihao Dai
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Jinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ruitao Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Hao Ren
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xueming Li
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| |
Collapse
|
5
|
Zhang X, Li F, Rajaraman PK, Comellas AP, Hoffman EA, Lin CL. Investigating distributions of inhaled aerosols in the lungs of post-COVID-19 clusters through a unified imaging and modeling approach. Eur J Pharm Sci 2024; 195:106724. [PMID: 38340875 PMCID: PMC10948263 DOI: 10.1016/j.ejps.2024.106724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Recent studies, based on clinical data, have identified sex and age as significant factors associated with an increased risk of long COVID. These two factors align with the two post-COVID-19 clusters identified by a deep learning algorithm in computed tomography (CT) lung scans: Cluster 1 (C1), comprising predominantly females with small airway diseases, and Cluster 2 (C2), characterized by older individuals with fibrotic-like patterns. This study aims to assess the distributions of inhaled aerosols in these clusters. METHODS 140 COVID survivors examined around 112 days post-diagnosis, along with 105 uninfected, non-smoking healthy controls, were studied. Their demographic data and CT scans at full inspiration and expiration were analyzed using a combined imaging and modeling approach. A subject-specific CT-based computational model analysis was utilized to predict airway resistance and particle deposition among C1 and C2 subjects. The cluster-specific structure and function relationships were explored. RESULTS In C1 subjects, distinctive features included airway narrowing, a reduced homothety ratio of daughter over parent branch diameter, and increased airway resistance. Airway resistance was concentrated in the distal region, with a higher fraction of particle deposition in the proximal airways. On the other hand, C2 subjects exhibited airway dilation, an increased homothety ratio, reduced airway resistance, and a shift of resistance concentration towards the proximal region, allowing for deeper particle penetration into the lungs. CONCLUSIONS This study revealed unique mechanistic phenotypes of airway resistance and particle deposition in the two post-COVID-19 clusters. The implications of these findings for inhaled drug delivery effectiveness and susceptibility to air pollutants were explored.
Collapse
Affiliation(s)
- Xuan Zhang
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | - Frank Li
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Prathish K Rajaraman
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA
| | | | - Eric A Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Ching-Long Lin
- IIHR-Hydroscience & Engineering, University of Iowa, Iowa City, IA, USA; Department of Mechanical Engineering, University of Iowa, Iowa City, IA, USA; Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Spasov GH, Rossi R, Vanossi A, Cottini C, Benassi A. A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in upper intra-thoracic airways: Considerations on air flow. Comput Biol Med 2024; 170:107948. [PMID: 38219648 DOI: 10.1016/j.compbiomed.2024.107948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
A well-corroborated numerical methodology ensuring reproducibility in the modeling of pharmaceutical aerosols deposition in the respiratory system via CFD-DEM simulations within the RANS framework is currently missing. Often, inadequately clarified assumptions and approximations and the lack of evidences on their quantitative impact on the simulated deposition phenomenology, make a direct comparison among the different theoretical studies and the limited number of experiments a very challenging task. Here, with the ultimate goal of providing a critical analysis of some crucial computational aspects of aerosols deposition, we address the issues of velocity fluctuations propagation in the upper intra-thoracic airways and of the persistence of secondary flows using the SimInhale reference benchmark. We complement the investigation by describing how methodologies used to drive the flow through a truncated lung model may affect numerical results and how small discrepancies are observed in velocity profiles when comparing simulations based on different meshing strategies.
Collapse
Affiliation(s)
- G H Spasov
- International School for Advanced Studies (SISSA), Trieste, Italy; CNR-IOM, Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Trieste, Italy
| | - R Rossi
- RED Fluid Dynamics, Cagliari, Italy
| | - A Vanossi
- International School for Advanced Studies (SISSA), Trieste, Italy; CNR-IOM, Consiglio Nazionale delle Ricerche - Istituto Officina dei Materiali, Trieste, Italy
| | - C Cottini
- Chiesi Farmaceutici S.p.A., Parma, Italy
| | - A Benassi
- International School for Advanced Studies (SISSA), Trieste, Italy; Chiesi Farmaceutici S.p.A., Parma, Italy.
| |
Collapse
|
7
|
Liu Y, Li L, Huang G, Qiu W, Yang Y, Guo Y, Li W, Xu J, Chen R, Kang Y. A preliminary study of dynamic interactive simulation and computational CT scan of the ideal alveolus model. Med Phys 2024; 51:601-611. [PMID: 37831515 DOI: 10.1002/mp.16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND While the development of CT imaging technique has brought cognition of in vivo organs, the resolution of CT images and their static characteristics have gradually become barriers of microscopic tissue research. PURPOSE Previous research used the finite element method to study the airflow and gas exchange in the alveolus and acinar to show the fate of inhaled aerosols and studied the diffusive, convective, and sedimentation mechanisms. Our study combines these techniques with CT scan simulation to study the mechanisms of respiratory movement and its imaging appearance. METHODS We use 3D fluid-structure interaction simulation to study the movement of an ideal alveolus under regular and forced breathing situations and ill alveoli with different tissue elasticities. Additionally, we use the Monte Carlo algorithm within the OpenGATE platform to simulate the computational CT images of the dynamic process with different designated resolutions. The resolutions show the relationship between the kinematic model of the human alveolus and its imaging appearance. RESULTS The results show that the alveolus and the wall thickness can be seen with an image resolution smaller than 15.6 μm. With ordinary CT resolution, the alveolus is expressed with four voxels. CONCLUSIONS This is a preliminary study concerning the imaging appearance of the dynamic alveolus model. This technique will be used to study the imaging appearance of the dynamic bronchial tree and the lung lobe models in the future.
Collapse
Affiliation(s)
- Yang Liu
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Longyu Li
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
| | - Guangtao Huang
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
| | - Weiyan Qiu
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
| | - Yingjian Yang
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Yingwei Guo
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Wei Li
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
| | - Jiaxuan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Kang
- Medical Health and Intelligent Simulation Laboratory, Health Science and Environmental Engineering School, Shenzhen Technology University, Shenzhen, China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| |
Collapse
|
8
|
Glauser N, Lim-Hitchings YC, Schaufelbühl S, Hess S, Lunstroot K, Massonnet G. Fibres in the nasal cavity: A pilot study of the recovery, background, and transfer in smothering scenarios. Forensic Sci Int 2024; 354:111890. [PMID: 38101176 DOI: 10.1016/j.forsciint.2023.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
In cases where the suspected cause of death is smothering, fibre traces recovered from the nasal cavity are hypothesised to refute or support this proposition. In order to carry out such evaluations, an efficient recovery method must first be established. This pilot study tested five different recovery methods on 3D printed models of nasal cavities. Among which, the use of the transparent AccuTrans® polyvinyl Siloxane casts demonstrated the best recovery efficiency with a median of 90% of deposited fibres recovered. The efficacy of this method was then verified on cadavers. Apart from a reliable recovery method, an understanding of the background population of fibres in nasal cavities, as well as the mechanisms of the transfer from the purported smothering textile to the nasal cavity is essential to evaluate the findings in these cases of suspected smothering. Samplings of the nasal cavities of 20 cadavers were thus carried out to gather data on the background population of fibres. Results showed that nasal cavities are not void of fibres, but the quantities are expected to be low, with a mean of 3.8 fibres per cavity recovered. Information on generic fibre class, colour, and length of these background fibres were also obtained with the use of low and high-power microscopy. The frequencies found in this population of fibres closely align with data from other population studies where black cotton was the most common. Finally, transfer experiments using the 3D printed models fitted with a respiratory pump to simulate breathing were carried out, along with testing on live volunteers in-vivo. The results demonstrated a verifiable transfer of fibres into the nasal cavity in smothering scenarios. Textiles of various shedding capacities were used in these tests and the findings suggest an influence of this variable on the quantities of fibres transferred.
Collapse
Affiliation(s)
- Nick Glauser
- University of Lausanne, Ecole des sciences criminelles, Batochime, 1015 Lausanne, Switzerland.
| | - Yu Chen Lim-Hitchings
- University of Lausanne, Ecole des sciences criminelles, Batochime, 1015 Lausanne, Switzerland.
| | - Stefan Schaufelbühl
- University of Lausanne, Ecole des sciences criminelles, Batochime, 1015 Lausanne, Switzerland.
| | - Sabine Hess
- Forensisches Institut Zürich, Güterstrasse 33, 8010 Zurich, Switzerland.
| | - Kyra Lunstroot
- Nationaal Instituut voor Criminalistiek en Criminologie, Vilvoordsesteenweg 100, 1120 Brussel, Belgium.
| | - Geneviève Massonnet
- University of Lausanne, Ecole des sciences criminelles, Batochime, 1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Geng CL, Zhu XY, Chen N. Optimizing indoor air quality: CFD simulation and novel air cleaning methods for effective aerosol particle inhibition in public spaces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120528-120539. [PMID: 37943437 DOI: 10.1007/s11356-023-30832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
In contemporary building ventilation, displacement and mixing ventilation demand high air volumes for rapid virus elimination, resulting in elevated energy consumption. To minimize the spread of viruses and decrease energy consumption for ventilation, this study employed CFD to explore the efficacy of a downward uniform flow field in impeding the transmission of aerosol particles in a high-traffic public facility, like a supermarket. The findings indicate that the downward uniform flow field proves insufficient when individuals remain static for extended periods. A wind speed of 0.1 m/s or higher becomes essential to overpower the stationary thermal plume, which disrupts this flow field. In areas with human presence, however, this technique is found to be particularly efficient since mobile heat sources do not generate a fixed thermal plume. A 0.05 m/s downward uniform flow field can settle 90% of particles within just 22 s. This flow pattern contributes to the swift settling of aerosol particles and effectively diminishes their dispersion. Employing this flow pattern in public places with increased foot traffic, like supermarkets, can lower the risk of contracting novel coronavirus without augmenting energy consumption. In order to implement the flow field in a part of the domain, a new air purification device is proposed in this study. The device combined with shelves can optimize the flow field uniformity through the MLA (PSO-SVR) algorithm and alteration of the air distribution structure. The uniformity of the final flow field increased to 0.925. The combination of data-driven MLA with CFD showed good performance in predicting the flow field uniformity. These findings offer valuable insights and practical applications for the prevention and control of respiratory diseases, particularly in post-epidemic scenarios.
Collapse
Affiliation(s)
- Chao-Long Geng
- China University of Mining and Technology, Xuzhou, China
| | - Xu-Yanran Zhu
- China University of Mining and Technology, Xuzhou, China
| | - Ning Chen
- China University of Mining and Technology, Xuzhou, China.
| |
Collapse
|
10
|
Oh HJ, Chen Y, Kim H. Deposition of secondary organic aerosol in human lung model: Effect of photochemically aged aerosol on human respiratory system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115497. [PMID: 37729697 DOI: 10.1016/j.ecoenv.2023.115497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Ultrafine particles (UFP) of Secondary Organic Aerosol (SOA) penetrate deep into the human respiratory system and exert fatal effects on human health. However, there is little data on the potential deposited doses of UFP-generated SOA in the human respiratory tract. This study is to estimate the fraction of aerosol deposition using a multiple-path-particle-dosimetry (MPPD) model. For relevancy of real life, the model employed measured concentrations of toluene-derived fresh and aged SOA produced within serially connected smog chamber and PAM-OFR (Potential Aerosol Mass-Oxidation Flow Reactor) under atmospheric environmental conditions (NOx and relative humidity). The number concentrations and chemical composition of fresh and aged aerosols produced within the chambers were measured using Scanning Mobility Particle Sizer (SMPS) and High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), while the morphology of individual particles was analyzed using Scanning Electron Microscopy (SEM). The number concentration of aged SOA-w/s was more than double compared to that of fresh SOA-w/s (maximum reached after 10 h) with its size less than 100 nm. The O:C ratio for aged SOA-w/s were 0.96 and 1.15 depending on RH (0.96 at 3% RH and 1.15 at 50% RH), and individual spherical particles containing water were present in agglomerates with its size of less than 1 µm. In all inhalable fresh and aged SOA produced in the two chambers, 5-22% of aerosol is deposited in the Head airways, 4-8% in the tracheobronchial, and 8-34% in the alveolar regions. The predominant deposition of the aged aerosol occurred in the alveoli (in the generation 20th lobe), and the deposition faction in the alveoli was 2-3 times higher in the children group than the adults group. This study presented a quantitative exposure assessment of SOA generated under a realistic simulation and suggested the possibility of evaluating long-term exposure to SOA and potential health effects by determining the potential inhalable aerosol doses and the fraction of deposition in the human respiratory system.
Collapse
Affiliation(s)
- Hyeon-Ju Oh
- Institute of Health and Environment, Seoul National University, Seoul 08826, South Korea.
| | - Yanfang Chen
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea
| | - Hwajin Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
11
|
Xu Y, Li H, Sun N, Yao B, Dai W, Wang J, Si S, Liu S, Jiang L. Dry Powder Formulations for Inhalation Require a Smaller Aerodynamic Diameter for Usage at High Altitude. J Pharm Sci 2023; 112:2655-2666. [PMID: 37595750 DOI: 10.1016/j.xphs.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND High Altitude Pulmonary Edema (HAPE) seriously threatens the health of people at high altitudes. There are drug treatments for HAPE, and dry powder formulations (DPFs) represent a rapid and accessible delivery vehicle for these drugs. However, there are presently no reports on the inhalability of DPFs in low-pressure environments. Given the reduced atmospheric pressure typical at high altitudes, conventional DPFs might not be suitable for inhalation. Therefore, it is necessary to elucidate the deposition behaviors of dry powder in the respiratory tract at low pressure, as well as to improve their pulmonary deposition efficiency via adjustments to their formulation and design. METHODS The effect of air pressure, inspiratory velocity, and particle properties (such as size, density, and aerodynamic diameter) on pulmonary deposition of DPFs was calculated by a computational fluid dynamics (CFD)-coupled discrete phase model. DPFs of various aerodynamic diameters were prepared by spray drying, and the inhalability of these DPFs in a low-pressure environment was evaluated in mice. Finally, a mouse model of HAPE was established, and the treatment of HAPE by nifedipine-loaded DPFs with small aerodynamic diameter was validated. RESULTS CFD results showed that low pressure decreased the deposition of DPFs in the lungs. At 0.5 standard atmosphere, DPFs with aerodynamic diameter of ∼2.0 μm could not enter the lower respiratory tract; however, a decrease in the physical diameter, density, and, consequently, the aerodynamic diameter of the DPFs was able to enhance pulmonary deposition of these powders. To validate the CFD results, three kinds of dry powder with aerodynamic diameters of 0.66, 0.98, and 2.00 μm were prepared by spray drying. Powders with smaller aerodynamic diameter could be inhaled into the lungs of mice more effectively, and, consequently could ameliorate the progression of HAPE more effectively than conventional powders. These results were consistent with the CFD results. CONCLUSIONS Low atmospheric pressure can prevent the pulmonary deposition of DPFs at high altitudes. Compared with conventional DPFs, powders with smaller aerodynamic diameter can be effectively inhaled at these pressures and thus might be more suitable for the treatment the HAPE.
Collapse
Affiliation(s)
- Ya Xu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China
| | - Huiyang Li
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China
| | - Nan Sun
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China; The Affiliated Lianyungang Oriental Hospital of Xuzhou Medical University, Lianyungang 222042, China
| | - Bingmei Yao
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China
| | - Wenjin Dai
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China
| | - Jian Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China
| | - Sujia Si
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China
| | - Shuo Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China
| | - Liqun Jiang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221009, China.
| |
Collapse
|
12
|
Liu H, Ma S, Hu T, Ma D. Computational investigation of flow characteristics and particle deposition patterns in a realistic human airway model under different breathing conditions. Respir Physiol Neurobiol 2023:104085. [PMID: 37276915 DOI: 10.1016/j.resp.2023.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Airborne particle pollution causes a range of respiratory and cardiovascular disorders by entering the human respiratory system through the breathing process. The administration of pharmaceutical particles by inhalation is another effective way to treat pulmonary illnesses. Studying particle deposition in the respiratory system during human breathing is crucial to maintaining human health. This necessity served as the impetus for this work, which aims to investigate how the airflow and particles' deposition are influenced by constant inhalation and circulatory breathing, particle diameter, and changes in airflow rate. The focus of this paper is to compare the particle deposition results of circulatory respiration with constant respiration. Based on computed tomography (CT) scan pictures, a precise human airway model from the mouth cavity to the fifth-generation bronchi was created. Flow fields and particle deposition inside the respiratory tract were examined at varied breathing rates (30, 60, and 90L/min of constant and circulatory breathing) and varying haled particle sizes (5 and 10 μm). The results showed that the oropharyngeal area is often where the majority of particles are deposited. The particle distribution fraction is more significant in the bronchial area than the oropharyngeal region due to lower inhalation velocities and smaller particle sizes. For particles with a diameter of 5µm, constant respiration and circulatory respiration have virtually identical particle distribution fractions in each region. For particles with a diameter of 10µm, the particle distribution fraction for circulatory respiration is slightly higher than for constant respiration in the bronchial region as the flow rate increases. For both constant and circulatory respiration, particles are deposited more in the right lung and less in the left. These results contribute to further research on respiratory diseases caused by inhaled particles and guide inhalation therapy for better treatment outcomes.
Collapse
Affiliation(s)
- Huanxi Liu
- School of Mechanical Engineering, Shandong University, Jinan, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan, PR China; National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, Jinan, PR China
| | - Songhua Ma
- School of Mechanical Engineering, Shandong University, Jinan, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan, PR China; National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, Jinan, PR China.
| | - Tianliang Hu
- School of Mechanical Engineering, Shandong University, Jinan, PR China; Key Laboratory of High Efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education, Jinan, PR China; National Demonstration Center for Experimental Mechanical Engineering Education at Shandong University, Jinan, PR China
| | - Dedong Ma
- Qilu Hospital of Shandong University, Jinan, PR China; Key Laboratory of Otorhinolaryngology, National Health Commission - Shandong University, Jinan, PR China
| |
Collapse
|
13
|
Chan HW, Chow S, Zhang X, Zhao Y, Tong HHY, Chow SF. Inhalable Nanoparticle-based Dry Powder Formulations for Respiratory Diseases: Challenges and Strategies for Translational Research. AAPS PharmSciTech 2023; 24:98. [PMID: 37016029 PMCID: PMC10072922 DOI: 10.1208/s12249-023-02559-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The emergence of novel respiratory infections (e.g., COVID-19) and expeditious development of nanoparticle-based COVID-19 vaccines have recently reignited considerable interest in designing inhalable nanoparticle-based drug delivery systems as next-generation respiratory therapeutics. Among various available devices in aerosol delivery, dry powder inhalers (DPIs) are preferable for delivery of nanoparticles due to their simplicity of use, high portability, and superior long-term stability. Despite research efforts devoted to developing inhaled nanoparticle-based DPI formulations, no such formulations have been approved to date, implying a research gap between bench and bedside. This review aims to address this gap by highlighting important yet often overlooked issues during pre-clinical development. We start with an overview and update on formulation and particle engineering strategies for fabricating inhalable nanoparticle-based dry powder formulations. An important but neglected aspect in in vitro characterization methodologies for linking the powder performance with their bio-fate is then discussed. Finally, the major challenges and strategies in their clinical translation are highlighted. We anticipate that focused research onto the existing knowledge gaps presented in this review would accelerate clinical applications of inhalable nanoparticle-based dry powders from a far-fetched fantasy to a reality.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China
| | - Yayi Zhao
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao S.A.R., China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 2/F, Laboratory Block 21 Sassoon Road, Hong Kong S.A.R., L2-08B, Pokfulam, China.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Hong Kong S.A.R, Shatin, China.
| |
Collapse
|
14
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
15
|
Heise RL. Computational, Ex Vivo, and Tissue Engineering Techniques for Modeling Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:107-120. [PMID: 37195528 DOI: 10.1007/978-3-031-26625-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The large airways are a critical component of the respiratory tree serving both an immunoprotective role and a physiological role for ventilation. The physiological role of the large airways is to move a large amount of air to and from the gas exchange surfaces of the alveoli. This air becomes divided along the respiratory tree as it moves from the large airways to smaller airways, bronchioles, and alveoli. The large airways are incredibly important from an immunoprotective role as the large airways are an early line of defense against inhaled particles, bacteria, and viruses. The key immunoprotective feature of the large airways is mucus production and mucociliary clearance mechanism. Each of these key features of the lung is important from both a basic physiology perspective and an engineering perspective for regenerative medicine. In this chapter, we will cover the large airways from an engineering perspective to highlight existing models of the large airways as well as future directions for modeling and repair.
Collapse
Affiliation(s)
- Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
16
|
Zhu Q, Gou D, Li L, Chan HK, Yang R. Numerical investigation of powder dispersion mechanisms in Turbuhaler and the contact electrification effect. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Vara Almirall B, Inthavong K, Bradshaw K, Singh N, Johnson A, Storey P, Salati H. Flow Patterns and Particle Residence Times in the Oral Cavity during Inhaled Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15101259. [PMID: 36297371 PMCID: PMC9612176 DOI: 10.3390/ph15101259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/05/2022] Open
Abstract
Pulmonary drug delivery aims to deliver particles deep into the lungs, bypassing the mouth−throat airway geometry. However, micron particles under high flow rates are susceptible to inertial impaction on anatomical sites that serve as a defense system to filter and prevent foreign particles from entering the lungs. The aim of this study was to understand particle aerodynamics and its possible deposition in the mouth−throat airway that inhibits pulmonary drug delivery. In this study, we present an analysis of the aerodynamics of inhaled particles inside a patient-specific mouth−throat model generated from MRI scans. Computational Fluid Dynamics with a Discrete Phase Model for tracking particles was used to characterize the airflow patterns for a constant inhalation flow rate of 30 L/min. Monodisperse particles with diameters of 7 μm to 26 μm were introduced to the domain within a 3 cm-diameter sphere in front of the oral cavity. The main outcomes of this study showed that the time taken for particle deposition to occur was 0.5 s; a narrow stream of particles (medially and superiorly) were transported by the flow field; larger particles > 20 μm deposited onto the oropharnyx, while smaller particles < 12 μm were more disperse throughout the oral cavity and navigated the curved geometry and laryngeal jet to escape through the tracheal outlet. It was concluded that at a flow rate of 30 L/min the particle diameters depositing on the larynx and trachea in this specific patient model are likely to be in the range of 7 μm to 16 μm. Particles larger than 16 μm primarily deposited on the oropharynx.
Collapse
Affiliation(s)
- Brenda Vara Almirall
- Mechanical & Automotive Engineering, School of Engineering, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia
| | - Kiao Inthavong
- Mechanical & Automotive Engineering, School of Engineering, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia
- Correspondence:
| | - Kimberley Bradshaw
- Department of Otolaryngology, Head and Neck Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Narinder Singh
- Department of Otolaryngology, Head and Neck Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Aaron Johnson
- Department of Otolaryngology-Head and Neck Surgery & Department of Rehabilitation Medicine, Grossman School of Medicine, New York University, New York, NY 10017, USA
| | - Pippa Storey
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Hana Salati
- Mechanical & Automotive Engineering, School of Engineering, Royal Melbourne Institute of Technology University, Bundoora, VIC 3083, Australia
| |
Collapse
|
18
|
Rahman MM, Zhao M, Islam MS, Dong K, Saha SC. Nanoparticle transport and deposition in a heterogeneous human lung airway tree: An efficient one path model for CFD simulations. Eur J Pharm Sci 2022; 177:106279. [PMID: 35985443 DOI: 10.1016/j.ejps.2022.106279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Understanding nano-particle inhalation in human lung airways helps targeted drug delivery for treating lung diseases. A wide range of numerical models have been developed to analyse nano-particle transport and deposition (TD) in different parts of airways. However, a precise understanding of nano-particle TD in large-scale airways is still unavailable in the literature. This study developed an efficient one-path numerical model for simulating nano-particle TD in large-scale lung airway models. This first-ever one-path numerical approach simulates airflow and nano-particle TD in generations 0-11 of the human lung, accounting for 93% of the whole airway length. The one-path model enables the simulation of particle TD in many generations of airways with an affordable time. The particle TD of 5 nm, 10 nm and 20 nm particles is simulated at inhalation flow rates for two different physical activities: resting and moderate activity. It is found that particle deposition efficiency of 5 nm particles is 28.94% higher than 20 nm particles because of the higher dispersion capacity. It is further proved that the diffusion mechanism dominates the particle TD in generations 0-11. The deposition efficiency decreases with the increase of generation number irrespective of the flow rate and particle size. The effects of the particle size and flow rate on the escaping rate of each generation are opposite to the corresponding effects on the deposition rate. The quantified deposition and escaping rates at generations 0-11 provide valuable guidelines for drug delivery in human lungs.
Collapse
Affiliation(s)
- Md M Rahman
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia; Department of Mathematics, Faculty of Science, Islamic University, Kushtia 7003, Bangladesh
| | - Ming Zhao
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Mohammad S Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kejun Dong
- School of Engineering, Design and Built Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
19
|
Qin Z, Shi Y, Qiao J, Lin G, Tang B, Li X, Zhang J. CFD simulation of porous microsphere particles in the airways of pulmonary fibrosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107094. [PMID: 36087437 PMCID: PMC9436827 DOI: 10.1016/j.cmpb.2022.107094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Pulmonary fibrosis (PF) is a chronic progressive disease with an extremely high mortality rate and is a complication of COVID-19. Inhalable microspheres have been increasingly used in the treatment of lung diseases such as PF in recent years. Compared to the direct inhalation of drugs, a larger particle size is required to ensure the sustained release of microspheres. However, the clinical symptoms of PF may lead to the easier deposition of microspheres in the upper respiratory tract. Therefore, it is necessary to understand the effects of PF on the deposition of microspheres in the respiratory tract. METHODS In this study, airway models with different degrees of PF in humans and mice were established, and the transport and deposition of microspheres in the airway were simulated using computational fluid dynamics. RESULTS The simulation results showed that PF increases microsphere deposition in the upper respiratory tract and decreases bronchial deposition in both humans and mice. Porous microspheres with low density can ensure deposition in the lower respiratory tract and larger particle size. In healthy and PF humans, porous microspheres of 10 µm with densities of 700 and 400 kg/m³ were deposited most in the bronchi. Unlike in humans, microspheres larger than 4 µm are completely deposited in the upper respiratory tract of mice owing to their high inhalation velocity. For healthy and PF mice, microspheres of 6 µm with densities of and 100 kg/m³ are recommended. CONCLUSIONS The results showed that with the exacerbation of PF, it is more difficult for microsphere particles to deposit in the subsequent airway. In addition, there were significant differences in the deposition patterns among the different species. Therefore, it is necessary to process specific microspheres from different individuals. Our study can guide the processing of microspheres and achieve differentiated drug delivery in different subjects to maximize therapeutic effects.
Collapse
Affiliation(s)
- Zhilong Qin
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jinwei Qiao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Bingtao Tang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Xuelin Li
- School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
20
|
Huang F, Zhou X, Dai W, Yu J, Zhou Z, Tong Z, Yu A. In Vitro and In Silico Investigations on Drug Delivery in the Mouth-Throat Models with Handihaler®. Pharm Res 2022; 39:3005-3019. [PMID: 36071350 DOI: 10.1007/s11095-022-03386-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
This work aimed to evaluate the relative inhalation parameters that affect the deposition of inhaled aerosols, including mouth-throat morphology, airflow rate, and initial condition of emitted particles. In vitro experiments were conducted using the US Pharmacopeia (USP) throat and a realistic mouth-throat (RMT) with Handihaler®. Then, in silico study of the gas-solid flow was performed by computational fluid dynamics and discrete phase method. Results indicated that aerosol deposition in RMT was higher compared to that in USP throat at an airflow rate of 30 L/min, with 33.16 ± 7.84% and 21.11 ± 7.1% lung deposition in USP throat and RMT models, respectively, which showed a better correlation with in vivo data from the literature. Increasing airflow rate resulted in better drug aerosolization, while the fine particle dose trend ascended before declining, with the peak value obtained at a flow rate of 40 L/min. Overall, the effect of geometrical variation was more significant. Additionally, in silico results demonstrated clearly that the initial conditions of the emitted particles from inhalers affected the subsequent deposition. Larger momentum possessed by the central aerosol jet entering the mouth directly led to stronger impaction, which resulted in the deposition in the front region of mouth-throat models. This study is beneficial to develop an in silico method to understand the underlying mechanisms of in vivo mouth-throat deposition.
Collapse
Affiliation(s)
- Fen Huang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.,Department of Chemical Engineering, Monash University, Clayton, Vic, 3800, Australia
| | - Xudong Zhou
- Department of Chemical Engineering, Monash University, Clayton, Vic, 3800, Australia
| | - Wen Dai
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jiaqi Yu
- Institute for Process Modelling and Optimization, JITRI, Suzhou, 215000, China
| | - Zongyan Zhou
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Aibing Yu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.,Department of Chemical Engineering, Monash University, Clayton, Vic, 3800, Australia
| |
Collapse
|
21
|
Additive manufacturing in respiratory sciences - Current applications and future prospects. Adv Drug Deliv Rev 2022; 186:114341. [PMID: 35569558 DOI: 10.1016/j.addr.2022.114341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
Abstract
Additive Manufacturing (AM) comprises a variety of techniques that enable fabrication of customised objects with specific attributes. The versatility of AM procedures and constant technological improvements allow for their application in the development of medicinal products and medical devices. This review provides an overview of AM applications related to respiratory sciences. For this purpose, both fields of research are briefly introduced and the potential benefits of integrating AM to respiratory sciences at different levels of pharmaceutical development are highlighted. Tailored manufacturing of microstructures as a particle design approach in respiratory drug delivery will be discussed. At the dosage form level, we exemplify AM as an important link in the iterative loop of data driven inhaler design, rapid prototyping and in vitro testing. This review also presents the application of bioprinting in the respiratory field for design of biorelevant in vitro cellular models, followed by an overview of AM-related processes in preventive and therapeutic care. Finally, this review discusses future prospects of AM as a component in a digital health environment.
Collapse
|
22
|
Wang W, Ouyang D. Opportunities and challenges of physiologically based pharmacokinetic modeling in drug delivery. Drug Discov Today 2022; 27:2100-2120. [PMID: 35452792 DOI: 10.1016/j.drudis.2022.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is an important in silico tool to bridge drug properties and in vivo PK behaviors during drug development. Over the recent decade, the PBPK method has been largely applied to drug delivery systems (DDS), including oral, inhaled, transdermal, ophthalmic, and complex injectable products. The related therapeutic agents have included small-molecule drugs, therapeutic proteins, nucleic acids, and even cells. Simulation results have provided important insights into PK behaviors of new dosage forms, which strongly support drug regulation. In this review, we comprehensively summarize recent progress in PBPK applications in drug delivery, which shows large opportunities for facilitating drug development. In addition, we discuss the challenges of applying this methodology from a practical viewpoint.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
23
|
Optimization of intraperitoneal aerosolized drug delivery using computational fluid dynamics (CFD) modeling. Sci Rep 2022; 12:6305. [PMID: 35428819 PMCID: PMC9012796 DOI: 10.1038/s41598-022-10369-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/04/2022] [Indexed: 01/03/2023] Open
Abstract
Intraperitoneal (IP) aerosolized anticancer drug delivery was recently introduced in the treatment of patients with peritoneal metastases. However, little is known on the effect of treatment parameters on the spatial distribution of the aerosol droplets in the peritoneal cavity. Here, computational fluid dynamics (CFD) modeling was used in conjunction with experimental validation in order to investigate the effect of droplet size, liquid flow rate and viscosity, and the addition of an electrostatic field on the homogeneity of IP aerosol. We found that spatial distribution is optimal with small droplet sizes (1–5 µm). Using the current clinically used technology (droplet size of 30 µm), the optimal spatial distribution of aerosol is obtained with a liquid flow rate of 0.6 mL s−1. Compared to saline, nebulization of higher viscosity liquids results in less homogeneous aerosol distribution. The addition of electrostatic precipitation significantly improves homogeneity of aerosol distribution, but no further improvement is obtained with voltages higher than 6.5 kV. The results of the current study will allow to choose treatment parameters and settings in order to optimize spatial distribution of IP aerosolized drug, with a potential to enhance its anticancer effect.
Collapse
|
24
|
Kadota K, Matsumoto K, Uchiyama H, Tobita S, Maeda M, Maki D, Kinehara Y, Tachibana I, Sosnowski TR, Tozuka Y. In silico evaluation of particle transport and deposition in the airways of individual patients with chronic obstructive pulmonary disease. Eur J Pharm Biopharm 2022; 174:10-19. [DOI: 10.1016/j.ejpb.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
|
25
|
Assessment of the predictive capability of modelling and simulation to determine bioequivalence of inhaled drugs: A systematic review. Daru 2022; 30:229-243. [PMID: 35094370 PMCID: PMC9114201 DOI: 10.1007/s40199-021-00423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES There are a multitude of different modelling techniques that have been used for inhaled drugs. The main objective of this review was to conduct an exhaustive survey of published mathematical models in the area of asthma and chronic obstructive pulmonary disease (COPD) for inhalation drugs. Additionally, this review will attempt to assess the applicability of these models to assess bioequivalence (BE) of orally inhaled products (OIPs). EVIDENCE ACQUISITION PubMed, Science Direct, Web of Science, and Scopus databases were searched from 1996 to 2020, to find studies that described mathematical models used for inhaled drugs in asthma/COPD. RESULTS 50 articles were finally included in this systematic review. This research identified 22 articles on in silico aerosol deposition models, 20 articles related to population pharmacokinetics and 8 articles on physiologically based pharmacokinetic modelling (PBPK) modelling for inhaled drugs in asthma/COPD. Among all the aerosol deposition models, computational fluid dynamics (CFD) simulations are more likely to predict regional aerosol deposition pattern in human respiratory tracts. Across the population PK articles, body weight, gender, age and smoking status were the most common covariates that were found to be significant. Further, limited published PBPK models reported approximately 29 parameters relevant for absorption and distribution of inhaled drugs. The strengths and weaknesses of each modelling technique has also been reviewed. CONCLUSION Overall, while there are different modelling techniques that have been used for inhaled drugs in asthma and COPD, there is very limited application of these models for assessment of bioequivalence of OIPs. This review also provides a ready reference of various parameters that have been considered in various models which will aid in evaluation if one model or hybrid in silico models need to be considered when assessing bioequivalence of OIPs.
Collapse
|
26
|
Chaugule V, Wong CY, Inthavong K, Fletcher DF, Young PM, Soria J, Traini D. Combining experimental and computational techniques to understand and improve dry powder inhalers. Expert Opin Drug Deliv 2022; 19:59-73. [PMID: 34989629 DOI: 10.1080/17425247.2022.2026922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION : Dry Powder Inhalers (DPIs) continue to be developed to deliver an expanding range of drugs to treat an ever-increasing range of medical conditions; with each drug and device combination needing a specifically designed inhaler. Fast regulatory approval is essential to be first to market, ensuring commercial profitability. AREAS COVERED : In vitro deposition, particle image velocimetry, and computational modelling using the physiological geometry and representative anatomy can be combined to give complementary information to determine the suitability of a proposed inhaler design and to optimise its formulation performance. In combination they allow the entire range of questions to be addressed cost-effectively and rapidly. EXPERT OPINION : Experimental techniques and computational methods are improving rapidly, but each needs a skilled user to maximize results obtained from these techniques. Multidisciplinary teams are therefore key to making optimal use of these methods and such qualified teams can provide enormous benefits to pharmaceutical companies to improve device efficacy and thus time to market. There is already a move to integrate the benefits of Industry 4.0 into inhaler design and usage, a trend that will accelerate.
Collapse
Affiliation(s)
- V Chaugule
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - C Y Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia
| | - K Inthavong
- Mechanical and Automotive Engineering, School of Engineering, RMIT University, Bundoora, VIC 3083, Australia
| | - D F Fletcher
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - P M Young
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia.,Department of Marketing, Macquarie Business School, Macquarie University, NSW 2109, Australia
| | - J Soria
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - D Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW 2037, Australia.,Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
27
|
Effect of MDI Actuation Timing on Inhalation Dosimetry in a Human Respiratory Tract Model. Pharmaceuticals (Basel) 2022; 15:ph15010061. [PMID: 35056118 PMCID: PMC8777964 DOI: 10.3390/ph15010061] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 01/02/2023] Open
Abstract
Accurate knowledge of the delivery of locally acting drug products, such as metered-dose inhaler (MDI) formulations, to large and small airways is essential to develop reliable in vitro/in vivo correlations (IVIVCs). However, challenges exist in modeling MDI delivery, due to the highly transient multiscale spray formation, the large variability in actuation–inhalation coordination, and the complex lung networks. The objective of this study was to develop/validate a computational MDI-releasing-delivery model and to evaluate the device actuation effects on the dose distribution with the newly developed model. An integrated MDI–mouth–lung (G9) geometry was developed. An albuterol MDI with the chlorofluorocarbon propellant was simulated with polydisperse aerosol size distribution measured by laser light scatter and aerosol discharge velocity derived from measurements taken while using a phase Doppler anemometry. The highly transient, multiscale airflow and droplet dynamics were simulated by using large eddy simulation (LES) and Lagrangian tracking with sufficiently fine computation mesh. A high-speed camera imaging of the MDI plume formation was conducted and compared with LES predictions. The aerosol discharge velocity at the MDI orifice was reversely determined to be 40 m/s based on the phase Doppler anemometry (PDA) measurements at two different locations from the mouthpiece. The LES-predicted instantaneous vortex structures and corresponding spray clouds resembled each other. There are three phases of the MDI plume evolution (discharging, dispersion, and dispensing), each with distinct features regardless of the actuation time. Good agreement was achieved between the predicted and measured doses in both the device, mouth–throat, and lung. Concerning the device–patient coordination, delayed MDI actuation increased drug deposition in the mouth and reduced drug delivery to the lung. Firing MDI before inhalation was found to increase drug loss in the device; however, it also reduced mouth–throat loss and increased lung doses in both the central and peripheral regions.
Collapse
|
28
|
Liu W, Wu Y, Liu G, Lu H. Study on the multi-component particle-gas two-phase flow in a human upper respiratory tract. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Hickey AJ, Kwok PCL. In vitro-in vivo correlation of pharmaceutical aerosols. Adv Drug Deliv Rev 2021; 179:114025. [PMID: 34710531 DOI: 10.1016/j.addr.2021.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Ebrahimi S, Shamloo A, Alishiri M, Mofrad YM, Akherati F. Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: A patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion. Int J Pharm 2021; 609:121133. [PMID: 34563616 PMCID: PMC8459545 DOI: 10.1016/j.ijpharm.2021.121133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023]
Abstract
Since the beginning of the COVID-19 pandemic, nearly most confirmed cases develop respiratory syndromes. Using targeted drug delivery by microcarriers is one of the most important noteworthy methods for delivering drugs to the involved bronchi. This study aims to investigate the performance of a drug delivery that applies microcarriers to each branch of the lung under the influence of a magnetic field. The results show that by changing the inlet velocity from constant to pulsatile, the drug delivery performance to the lungs increases by ∼31%. For transferring the microcarriers to the right side branches (LUL and LLL), placing the magnet at zero height and ∼30° angle yields the best outcome. Also, the microcarriers' delivery to branch LUL improves by placing the magnet at LUL-LLL bifurcation and the angle of ∼30°. It was observed that dense (9300[kgm3]) microcarriers show the best performance for delivering drugs to LLL and RLL&RML branches. Also, low-density (1000[kgm3]) microcarriers are best for delivering drugs to LUL and RUL branches. The findings of this study can improve our understanding of different factors, such as inlet velocity, the magnet's position, and the choice of microcarrier - that affect drug delivery to the infected parts of the lung.
Collapse
Affiliation(s)
- Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mojgan Alishiri
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Fatemeh Akherati
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
31
|
Chow MYT, Tai W, Chang RYK, Chan HK, Kwok PCL. In vitro-in vivo correlation of cascade impactor data for orally inhaled pharmaceutical aerosols. Adv Drug Deliv Rev 2021; 177:113952. [PMID: 34461200 DOI: 10.1016/j.addr.2021.113952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
In vitro-in vivo correlation is the establishment of a predictive relationship between in vitro and in vivo data. In the context of cascade impactor results of orally inhaled pharmaceutical aerosols, this involves the linking of parameters such as the emitted dose, fine particle dose, fine particle fraction, and mass median aerodynamic diameter to in vivo lung deposition from scintigraphy data. If the dissolution and absorption processes after deposition are adequately understood, the correlation may be extended to the pharmacokinetics and pharmacodynamics of the delivered drugs. Correlation of impactor data to lung deposition is a relatively new research area that has been gaining recent interest. Although few in number, experiments and meta-analyses have been conducted to examine such correlations. An artificial neural network approach has also been employed to analyse the complex relationships between multiple factors and responses. However, much research is needed to generate more data to obtain robust correlations. These predictive models will be useful in improving the efficiency in product development by reducing the need of expensive and lengthy clinical trials.
Collapse
|
32
|
Sandell D. Bioequivalence assessment of pharmaceutical aerosol products through IVIVC. Adv Drug Deliv Rev 2021; 176:113895. [PMID: 34329687 DOI: 10.1016/j.addr.2021.113895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Many pharmaceutical developers of generic orally inhaled products (OIPs) are facing significant issues in passing the regulatory requirement to show pharmacokinetic (PK) bioequivalence (BE) to the originator product. The core of the issue is that no reliable in vitro-in vivo correlation (IVIVC) is available to guide their development. In this paper, several issues are identified and means to improve the data used for developing an IVIVC are discussed. The article also presents an "IVIVC-free" approach for developing a formulation matching the originator's PK performance.
Collapse
|
33
|
Gallegos-Catalán J, Warnken Z, Bahamondez-Canas TF, Moraga-Espinoza D. Innovating on Inhaled Bioequivalence: A Critical Analysis of the Current Limitations, Potential Solutions and Stakeholders of the Process. Pharmaceutics 2021; 13:1051. [PMID: 34371741 PMCID: PMC8309038 DOI: 10.3390/pharmaceutics13071051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.
Collapse
Affiliation(s)
- Jonattan Gallegos-Catalán
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
| | | | - Tania F. Bahamondez-Canas
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
- Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Daniel Moraga-Espinoza
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
- Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|