1
|
Chen Y, Zhou G, Li Y, Liu S, Xu Q, Liu X. Construction of nitroreductase-responsive near-infrared composite nanoprobe and its application in tumor hypoxia imaging. Talanta 2025; 289:127750. [PMID: 39983382 DOI: 10.1016/j.talanta.2025.127750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Hypoxia is an important feature in the development of solid tumors. Nitroreductase (NTR) is closely related to the level of hypoxia, thus NTR-responsive fluorescent probes with high selectivity and sensitivity will help to evaluate the degree of hypoxia and guide personalized treatment. In this study, a near-infrared (NIR) NTR-activated composite nanoprobe 780-pNBC@MP-B was developed for tumor hypoxia imaging. The nanoprobe has a mesoporous organosilicon nanostructure functionalized with PEG for in vivo long circulation, and encapsulates a NIR molecular probe 780-pNBC for NTR imaging, which can exhibit responsive degradation to glutathione (GSH) attributed to the disulfide bond in the nanocarrier structure. Benefiting from the hydrophilic nanocarrier, 780-pNBC@MP-B with good water dispersibility and photostability was successfully applied to visualize NTR in hypoxic cells and tumor-bearing mice. Therefore, this work provides a new tool for tumor hypoxia detection and expands the new application of mesoporous silica in the field of enzyme probes.
Collapse
Affiliation(s)
- Ying Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Guanglian Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yitong Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuxian Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qianru Xu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiumei Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Fayazi M, Rostami M, Amiri Moghaddam M, Nasiri K, Tadayonfard A, Roudsari MB, Ahmad HM, Parhizgar Z, Majbouri Yazdi A. A state-of-the-art review of the recent advances in drug delivery systems for different therapeutic agents in periodontitis. J Drug Target 2025; 33:612-647. [PMID: 39698877 DOI: 10.1080/1061186x.2024.2445051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Periodontitis (PD) is a chronic gum illness that may be hard to cure for a number of reasons, including the fact that no one knows what causes it, the side effects of anti-microbial treatment, and how various kinds of bacteria interact with one another. As a result, novel therapeutic approaches for PD treatment must be developed. Additionally, supplementary antibacterial regimens, including local and systemic medication administration of chemical agents, are necessary for deep pockets to assist with mechanical debridement of tooth surfaces. As our knowledge of periodontal disease and drug delivery systems (DDSs) grows, new targeted delivery systems like extracellular vesicles, lipid-based nanoparticles (NPs), metallic NPs, and polymer NPs have been developed. These systems aim to improve the targeting and precision of PD treatments while reducing the systemic side effects of antibiotics. Nanozymes, photodermal therapy, antibacterial metallic NPs, and traditional PD therapies have all been reviewed in this research. Medicinal herbs, antibiotics, photothermal therapy, nanozymes, antibacterial metallic NPs, and conventional therapies for PD have all been examined in this research. After that, we reviewed the key features of many innovative DDSs and how they worked for PD therapy. Finally, we have discussed the advantages and disadvantages of these DDSs.
Collapse
Affiliation(s)
- Mehrnaz Fayazi
- School of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mitra Rostami
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Azadeh Tadayonfard
- Department of Prosthodontics, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Behnam Roudsari
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Zahra Parhizgar
- Resident of Periodontology, Department of Periodontics, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
3
|
Guo H, Zhao X, Duan Y, Shi J. Hollow mesoporous silica nanoparticles for drug formulation and delivery: Opportunities for cancer therapy. Colloids Surf B Biointerfaces 2025; 249:114534. [PMID: 39874869 DOI: 10.1016/j.colsurfb.2025.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
The advantages of large surface area, high volume ratio, good biocompatibility, and controllable surface functionalization make hollow mesoporous silica nanoparticles (HMSNs) an ideal drug carrier. HMSNs can achieve high efficiency, targeting, and controlled release by adjusting the microstructure and surface modification of its particles, which makes it broad application prospects in the field of medical therapy, especially in cancer therapy. Numerous studies have shown that preparation method, shape, particle size, hollow inner diameter, aperture and wall thickness of the HMSNs, the characteristics of the drugs, the interaction between the drugs and the carriers, and the external environment all closely affect the drug delivery, release, and efficacy. The external environment includes temperature, pH value, light intensity, magnetic field intensity, enzyme type and concentration, etc. This review summarizes the research progress of HMSNs as carrier materials in the past five years, analyzes the existing problems in the application process and presents the development prospects of HMSNs.
Collapse
Affiliation(s)
- Huiqi Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China
| | - Xia Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China.
| | - Yanping Duan
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China
| | - Jingzhuan Shi
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China
| |
Collapse
|
4
|
Li Z, Wang Y, Yuan X, Xu M, Wang X, Liu C, Zhu C, Pei W, Bai J, Shang X. Peptide-modified mesoporous silica nanoparticles for the coordinated regulation of macrophage polarization and pyroptosis in the treatment of implant-related infections. Mater Today Bio 2025; 31:101629. [PMID: 40124338 PMCID: PMC11930442 DOI: 10.1016/j.mtbio.2025.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Implant-related infections (IRIs) present a significant challenge in clinical treatment because of the formation of biofilms. The complex architecture of biofilms not only impedes antibiotic penetration, fostering the evolution of multidrug resistance in bacteria under minimal selective pressure but also suppresses the antimicrobial activity of macrophages and induces their pyroptosis in large quantities. This excessive pyroptosis impairs the collective immune function of macrophages, enabling pathogens to evade immune system clearance and rendering infection difficult to eradicate. Existing treatment strategies often necessitate extensive surgical debridement, which not only causes significant harm to patients' physiological health and quality of life but also results in limited therapeutic outcomes. To address these challenges, this study developed a mesoporous silica nanoparticle system (MRL) modified with the RGD (Arginine-Glycine-Aspartic acid) tripeptide and loaded with the antimicrobial peptide LL-37. The LL-37 released from MRL can not only directly disrupt bacterial cell membranes, preventing bacteria from developing resistance through conventional mutation mechanisms, but also enhance antimicrobial activity by modulating macrophage polarization toward the M1 phenotype. However, LL-37 may induce and exacerbate macrophage pyroptosis within biofilms. Therefore, we modified the nanoparticles with RGD to increase macrophage viability and reduce their number of deaths, thereby alleviating the immunosuppression caused by excessive macrophage pyroptosis. In vitro and in vivo experiments demonstrated that MRL, while preserving the antimicrobial activity and immunomodulatory function of LL-37, significantly reduced macrophage pyroptosis and protected the collective immune activity of macrophages. Thus, the fine-tuned regulation of immune response was achieved, providing new insights and strategies for the treatment of IRIs.
Collapse
Affiliation(s)
- Zhi Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yuhang Wang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xingshi Yuan
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingyou Xu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xiaofang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chang Liu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Pei
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xifu Shang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
5
|
Wu Z, Wu X, Meng X, Lei J, Zeng C, Pu H, Liu Y, Xu Z, Wu X, Huang S, Qin J, Liu J, Lu X, Li B. Functional anti-inflammatory mesoporous silica nanoplatform for Synergistic and Targeted abdominal aortic aneurysm treatment. J Colloid Interface Sci 2025; 683:1040-1054. [PMID: 39721076 DOI: 10.1016/j.jcis.2024.12.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammation-driven disease characterized by aortic wall destruction and expansion, leading to high morbidity and mortality. However, previous drug treatments for its common risk factors have not achieved favorable results, and the early prevention and treatment is still the main clinical dilemma. Anti-inflammation therapy is a promising therapeutical method targeting its pathogenesis mechanism, but it has not been explored in depth. Herein, interleukin-1 receptor antagonist-loaded manganese-doped mesoporous silica nanoparticles (IL-1Ra@MMSN) were designed and synthesized to target macrophage-mediated chronic aortic inflammation for AAA treatment. IL-1Ra@MMSN showed high IL-1Ra-loading efficiency, great stability and pH-responsive drug-releasing property. IL-1Ra@MMSN specially phagocytosed by macrophages can protect against oxidative stress injury and promoted the M2 polarization via transforming growth factor-β (TGF-β) signaling in vitro. Furthermore, IL-1Ra@MMSN exhibited good lesion targeting ability, hemocompatibility and biocompatibility in angiotensin II-induced murine AAA model. In vivo experiments also confirmed the excellent treatment efficacy in reducing AAA formation and progression via protecting aortic wall integrity and promoting anti-inflammatory microenvironment. Taken together, the current study demonstrated that IL-1Ra@MMSN is a promising nanoplatform for early intervention of AAA, which provides a novel treatment strategy based on anti-inflammatory immune regulation.
Collapse
Affiliation(s)
- Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiangtian Meng
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiahao Lei
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chenlin Zeng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hongji Pu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yijun Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University. Shanghai 200240, China
| | - Xiaodong Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Sheng Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jianqiang Liu
- Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, and School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
6
|
Arvejeh PM, Chermahini FA, Marincola F, Taheri F, Mirzaei SA, Alizadeh A, Deris F, Jafari R, Amiri N, Soltani A, Bijad E, Dehkordi ES, Khosravian P. A novel approach for the co-delivery of 5-fluorouracil and everolimus for breast cancer combination therapy: stimuli-responsive chitosan hydrogel embedded with mesoporous silica nanoparticles. J Transl Med 2025; 23:382. [PMID: 40165241 PMCID: PMC11956229 DOI: 10.1186/s12967-025-06396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Breast cancer remains one of the leading causes of death among women globally, with traditional therapies often limited by challenges such as drug resistance and significant side effects. Combination therapies, coupled with nanotechnology-based co-delivery systems, offer enhanced efficacy by targeting multiple pathways in cancer progression. In this study, we developed an injectable, stimuli-responsive nanosystem using a chitosan hydrogel embedded with mesoporous silica nanoparticles for the co-administration of 5-fluorouracil and everolimus. This approach aims to optimize controlled drug release, enhance the synergistic anticancer effect, and overcome challenges associated with co-loading different therapeutic agents. METHODS Various techniques were employed to characterize the nanoparticles and the hydrogel. Cell uptake, apoptosis, and proliferation of 4T1 breast cancer cells were evaluated by flow cytometry and Resazurin assay, respectively. The Balb/C mice model of breast cancer, which received the therapeutical nanoplatforms subcutaneously near the tumoral region was used to examine tumor size and lung metastases. RESULTS The results revealed that the nanoparticles had a suitable loading capacity and high cellular uptake. The drug release was pH-sensitive and synergistic. By incorporating nanoparticles into the hydrogel, the cell death rate and apoptosis of 4T1 breast cancer cells increased significantly, due to the synergistic effects of co-delivered drugs. Additionally, the combination treatment groups showed a significant reduction in tumor size and lung metastasis compared to the monotherapy and control groups. CONCLUSIONS These findings underscore the potential of the nanocomposite used to develop a novel co-delivery system to enhance therapeutic outcomes, reduce side effects, and provide a promising new strategy for future cancer treatments.
Collapse
Affiliation(s)
- Pooria Mohammadi Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Amini Chermahini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Fatemeh Taheri
- Department of Pathology, Hematology & Anatomical Sciences, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Abbas Mirzaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Deris
- Department of Epidemiology and Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Raziyeh Jafari
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Niloufar Amiri
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ebrahim Soleiman Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Le KV, Nguyen HVT, Pham PQ, Nguyen NH, Doan TLH, Nguyen LHT, Phan BT, Nguyen LTM, Park S, Pham NK, Krisbiantoro PA, Wu KCW, Mai NXD. Biogenic fluorescent carbon dot-decorated mesoporous organosilica nanoparticles for enhanced bioimaging and chemotherapy. NANOSCALE HORIZONS 2025. [PMID: 40131243 DOI: 10.1039/d4nh00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Hybrid materials possess the unique properties of their individual components, enabling their use in multiple synergistic applications. In this study, we synthesized biogenic fluorescent carbon dots (CDs) decorated with biodegradable periodic mesoporous organosilica nanoparticles (BPMO), creating BPMO@CDs. The CDs, approximately 9.8 nm in diameter, were derived from Musa paradisiaca cv. Awak juice using a rapid microwave method, exhibiting a spherical shape and green and red luminescence. The resulting BPMO@CDs are spherical, around 100 nm in size, and maintain high pore volume and surface area. The elemental chemical state in the BPMO@CDs remains consistent with that of pure BPMO. Our findings demonstrate that BPMO@CDs achieve efficient cellular uptake rates of 46.74% in MCF7 cells and 17.07% in L929 cells, with preserved fluorescence within the cells. The optical properties of the CDs are retained in the BPMO@CDs, allowing for detection upon cellular uptake. Additionally, when loaded with anticancer drugs, the BPMO@CDs significantly enhance the cytotoxicity against MCF7 breast cancer cells, highlighting their potential for synergistic bioimaging and chemotherapy applications.
Collapse
Affiliation(s)
- Ky-Vien Le
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hanh-Vy Tran Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phu-Quan Pham
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
| | - Ngoc Hong Nguyen
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Linh Ho Thuy Nguyen
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, University of Health Sciences (UHS), Ho Chi Minh City, Vietnam
| | - Bach Thang Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lan Thi My Nguyen
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, South Korea
| | - Ngoc Kim Pham
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
| | | | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City 350, Taiwan
| | - Ngoc Xuan Dat Mai
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Wang S, Li J, Zhang Z, Cao S, Zhang Z, Bian Y, Xu Y, Ma C. Advances in nanomedicine and delivery systems for gastric cancer research. Front Bioeng Biotechnol 2025; 13:1565999. [PMID: 40190709 PMCID: PMC11968739 DOI: 10.3389/fbioe.2025.1565999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
The early diagnosis rate of gastric cancer is low, and most patients are already at an advanced stage by the time they are diagnosed, posing significant challenges for treatment and exhibiting high recurrence rates, which notably diminish patients' survival time and quality of life. Therefore, there is an urgent need to identify methods that can enhance treatment efficacy. Nanomedicine, distinguished by its small size, high targeting specificity, and strong biological compatibility, is particularly well-suited to address the toxic side effects associated with current diagnostic and therapeutic approaches for gastric cancer. Consequently, the application of nanomedicine and delivery systems in the diagnosis and treatment of gastric cancer has garnered increasing interest from researchers. This review provides an overview of recent advancements in the use of nanomaterials as drugs or drug delivery systems in gastric cancer research, encompassing their applications in diagnosis, chemotherapy, radiotherapy, surgery, and phototherapy, and explores the promising prospects of nanomedicine in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sizhe Wang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Jilei Li
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Shasha Cao
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Zihan Zhang
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Yifan Bian
- Henan University of Chinese Medicine(The Second Clinical Medical College of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Yanchao Xu
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| | - Chunzheng Ma
- Henan Province Hospital of TCM, Zhengzhou(The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, Henan, China
| |
Collapse
|
9
|
Sha X, Wang C, Liu Y, Zhong N, Lu Y, Zhang Q, Lu S, He D, Jin Y, Tang Y, Wang S. Multifunctional glycyrrhizic acid-loaded nanoplatform combining ferroptosis induction and HMGB1 blockade for enhanced tumor immunotherapy. J Nanobiotechnology 2025; 23:224. [PMID: 40108690 PMCID: PMC11924601 DOI: 10.1186/s12951-025-03307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
Inducing ferroptotic cell death has been recognized as a promising approach in cancer therapy. However, ferroptosis can provoke tumor infiltration by myeloid-derived suppressor cells (MDSCs) through HMGB1 secretion, causing a tumor suppressive immune response. On the other hand, ferroptosis also occurs the immune cells due to its non-selective properties, which can compromise anti-tumor immunity. To address these challenges, a two-pronged approach is proposed, encompassing selectively triggered ferroptosis in tumor cells and HMGB1 blockade, aimed at eliciting systemic anti-tumor immunity and alleviating immunosuppression. Herein, GSH-specific driven nanoplatform is composed of uniform FeOOH nanospindles coated with tetrasulfide bond-bridged mesoporous organosilica (DMOS) shell, and loaded with the HMGB1 inhibitor, glycyrrhizic acid (GA). This nanoplatform is endowed with high glutathione (GSH) depletion efficiency and exhibits highly efficient Fe2+ and ROS generation capacity, which promotes the accumulation of LPO and subsequently induces ferroptosis. Concurrently, the inhibition of HMGB1 release counteracts the immunosuppressive effects within the tumor microenvironment. This innovative nanoplatform effectively suppresses the growth of 4T1 tumors and notably enhancing the therapeutic outcomes of immune checkpoint blockade across experimental data. The collective findings indicate its potential as a reliable therapeutic strategy for boosting ferroptosis-mediated tumor immunity with favorable safety profiles.
Collapse
Affiliation(s)
- Xuan Sha
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanbing Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Nan Zhong
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yishi Lu
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Department of Ultrasound, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Shangyu Lu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Doudou He
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yingying Jin
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yuxia Tang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Shouju Wang
- Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Li D, Wang J, Li X, Wang Z, Yu Q, Koh SB, Wu R, Ye L, Guo Y, Okoli U, Pati-Alam A, Mota E, Wei W, Yoo KH, Cho WC, Feng D, Heavey S. Interactions between radiotherapy resistance mechanisms and the tumor microenvironment. Crit Rev Oncol Hematol 2025; 210:104705. [PMID: 40107436 DOI: 10.1016/j.critrevonc.2025.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Resistance to radiotherapy (RT) presents a significant clinical challenge in management of cancer. Recent evidence points to specific mechanisms of resistance within the tumor microenvironment (TME), which we aim to discuss, with the aim of overcoming the clinical challenge. METHODS We performed the narrative review using PubMed and Web of Science databases to identify studies that reported the regulative network and treatments of RT resistance from TME perspectives. RESULTS RT significantly changes the immune TME of cancers, which is closely appearing to play a key role in RT resistance (RTR) by modulating immune cell infiltration and function. Various phenotypes are involved in the development of RTR, such as autophagy, senescence, oxidative stress, cell polarization, ceramide metabolism, and angiogenesis in the TME. Key genes and pathways are also implicated in RTR, including immune and inflammatory cytokines, TGF-β, P53, the NF-κB pathway, the cGAS/STING pathway, the ERK and AKT pathway, and the STAT pathway. Based on the mechanism of RTR in the TME, many proposed routes to overcome RTR, several specifically target the TME including targeting fibroblast activation protein, exosomes management, nanomedicine, and immunotherapy. Many challenges in RT resistance still need to be further explored with emerging investigative methods, such as artificial intelligence, genetic technologies, and bioengineering. CONCLUSIONS The complex interactions between RT and TME significantly affect the efficiency of RT. Novel approaches to overcome this clinical difficulty are promising, which needs future work to further explore and identify better treatment strategies.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, Zhejiang 315211, China
| | - Siang Boon Koh
- Faculty of Health and Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Uzoamaka Okoli
- Division of Surgery & Interventional Science, University College London, London, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu, Nigeria
| | - Alisha Pati-Alam
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Eduardo Mota
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Surgery & Interventional Science, University College London, London, UK.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
11
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Kovtareva SY, Kopishev EE, Zhang H, Filippov SK. Exploring the physicochemical interactions and loading strategies of mesoporous silicon dioxide nanoparticles for drug delivery. Eur J Pharm Biopharm 2025; 208:114654. [PMID: 39909321 DOI: 10.1016/j.ejpb.2025.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Mesoporous silica nanoparticles play an important role in drug delivery due to their high surface area, porous structure, tunable pore size, chemical stability and functionalization capability. Such properties make them a good candidate for drug encapsulation. However, molecular binding is another parameter that govern drug loading apart of pores' structure and size. There is a lack of comprehensive reviews on that topic nowadays. This paper overviews the latest publications on the physicochemical aspects of the interaction of mesoporous silica nanoparticles with drugs. The review is focused primarily on a such parameters of the intermolecular binding between a drug and silica nanoparticle as a binding constant, enthalpy and entropy changes and experimental methods with the emphasis on the principles of thermodynamic parameters characterization. Such information would be very important for the development and optimization of drug delivery strategies based on mesoporous silica nanoparticles.
Collapse
Affiliation(s)
- Svetlana Yu Kovtareva
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian University National University 010008 Astana, Kazakhstan
| | - Eldar E Kopishev
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian University National University 010008 Astana, Kazakhstan
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Sergey K Filippov
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50 52056 Aachen, Germany.
| |
Collapse
|
13
|
Moura JVB, Gomes-da-Silva NC, Rebêlo Alencar LM, Ferreira WC, da Luz Lima C, Santos-Oliveira R. Silver Dimolybdate Nanorods: In Vitro Anticancer Activity Against Breast and Prostate Tumors and In Vivo Pharmacological Insights. Pharmaceutics 2025; 17:298. [PMID: 40142962 PMCID: PMC11946425 DOI: 10.3390/pharmaceutics17030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Background: The development of nanostructured materials for cancer therapy has garnered significant interest due to their unique physicochemical properties, including enhanced surface area and tunable electronic structures, which can facilitate targeted drug delivery and oxidative stress modulation. This study investigates the anticancer potential of monoclinic silver dimolybdate nanorods (m-Ag₂Mo₂O₇) against aggressive breast (MDA-MB-231) and prostate (PC-3) cancer cells and explores their in vivo pharmacokinetic behavior. Methods: m-Ag₂Mo₂O₇ nanorods were synthesized via a hydrothermal method and characterized using XRD, SEM, Raman, and FTIR spectroscopy. In vitro cytotoxicity was evaluated using MTT assays on MDA-MB-231 and PC-3 cell lines across concentrations ranging from 1.56 to 100 µg/mL. In vivo biodistribution and radiopharmacokinetics were assessed using technetium-99m-labeled nanorods in male Swiss rats, with gamma counting employed for tissue uptake analysis and pharmacokinetic parameter determination. Results: m-Ag₂Mo₂O₇ nanorods exhibited a modest cytotoxic effect on MDA-MB-231 cells, with 50 µg/mL reducing cell viability by 23.5% (p < 0.05), while no significant cytotoxicity was observed in PC-3 cells. In vivo studies revealed predominant accumulation in the stomach, liver, spleen, and bladder, indicating reticuloendothelial system uptake and renal clearance. Pharmacokinetic analysis showed a rapid systemic clearance (half-life ~6.76 h) and a low volume of distribution (0.0786 L), suggesting primary retention in circulation with minimal off-target diffusion. Conclusions: While m-Ag₂Mo₂O₇ nanorods display limited standalone cytotoxicity, their ability to induce oxidative stress and favorable pharmacokinetic profile support their potential as adjuvant agents in cancer therapy, particularly for chemoresistant breast cancers. Further studies are warranted to elucidate their molecular mechanisms, optimize combinatorial treatment strategies, and assess long-term safety in preclinical models.
Collapse
Affiliation(s)
| | - Natália Cristina Gomes-da-Silva
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, RJ, Brazil;
| | | | | | - Cleânio da Luz Lima
- Department of Physics, Federal University of Piauí, Teresina 64049-550, PI, Brazil;
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, RJ, Brazil;
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070-200, RJ, Brazil
| |
Collapse
|
14
|
Al Tahan MA, Al-Khattawi A, Russell C. Stearic acid-capped mesoporous silica microparticles as novel needle-like-structured drug delivery carriers. Eur J Pharm Biopharm 2025; 207:114619. [PMID: 39716609 DOI: 10.1016/j.ejpb.2024.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Mesoporous silica are widely utilised as drug carriers due to their large pore volume and surface area, which facilitate effective loading. Additionally, they can be used to enhance drugs stability and protect against enzymatic degradation due to their silica framework. However, without the addition of a capping material, the loaded cargo may be prematurely released before reaching the target site. This work reports the functionalisation of a commercially available silica microparticle (SYLOID XDP 3050) with stearic acid at various stearic acid loading concentrations (20-120 % w/w). Scanning electron microscopy (SEM) analysis revealed that the pores were capped with stearic acid, with the filling ratio increasing proportionally to the loading concentration. Notably, needle-like structures appeared when the stearic acid amount exceeded 80 % w/w, surpassing the calculated theoretical maximum pore filling ratio (64.32 %). The molecular interactions were highlighted using Fourier-transform infrared spectroscopy (FTIR), as the intensity of the CH3 increased with increased stearic acid loading concentrations. The needle-structures phenomenon was corroborated by 3D confocal imaging. It utilised the autofluorescence properties of stearic acid to demonstrate its presence within the carrier, with fluorescence intensity increasing alongside the stearic acid concentration. Differential scanning calorimetry (DSC) indicated the crystalline nature of these needle structures, which was further confirmed by X-ray diffraction (XRD) analysis, validating the crystallisation of the stearic acid needles. Moreover, nitrogen porosimetry was employed to assess the pore volume and surface area, where the formulation containing 120 % stearic acid exhibited the lowest pore volume (0.59 cc). This value was smaller than unloaded SYLOID (2.1 cc), indicating near-complete filling of the carrier. This newly developed SYLOID-stearic acid carrier will now be used to enhance formulation development as a platform to enhance protein oral drug delivery.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom; Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Ali Al-Khattawi
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom.
| | - Craig Russell
- School of Pharmacy, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
15
|
Lee H, Rho WY, Kim YH, Chang H, Jun BH. CRISPR-Cas9 Gene Therapy: Non-Viral Delivery and Stimuli-Responsive Nanoformulations. Molecules 2025; 30:542. [PMID: 39942646 PMCID: PMC11820414 DOI: 10.3390/molecules30030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
The CRISPR-Cas9 technology, one of the groundbreaking genome editing methods for addressing genetic disorders, has emerged as a powerful, precise, and efficient tool. However, its clinical translation remains hindered by challenges in delivery efficiency and targeting specificity. This review provides a comprehensive analysis of the structural features, advantages, and potential applications of various non-viral and stimuli-responsive systems, examining recent progress to emphasize the potential to address these limitations and advance CRISPR-Cas9 therapeutics. We describe how recent reports emphasize that nonviral vectors, including lipid-based nanoparticles, extracellular vesicles, polymeric nanoparticles, gold nanoparticles, and mesoporous silica nanoparticles, can offer diverse advantages to enhance stability, cellular uptake, and biocompatibility, based on their structures and physio-chemical stability. We also summarize recent progress on stimuli-responsive nanoformulations, a type of non-viral vector, to introduce precision and control in CRISPR-Cas9 delivery. Stimuli-responsive nanoformulations are designed to respond to pH, redox states, and external triggers, facilitate controlled and targeted delivery, and minimize off-target effects. The insights in our review suggest future challenges for clinical applications of gene therapy technologies and highlight the potential of delivery systems to enhance CRISPR-Cas9's clinical efficacy, positioning them as pivotal tools for future gene-editing therapies.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Yoon-Hee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si 24341, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (H.L.); (Y.-H.K.)
| |
Collapse
|
16
|
Šťastný J, Morellá-Aucejo Á, Skala T, Bernardos A, Maršík P, Lérida-Viso A, Matějka J, Mascellani Bergo A, Marcos MD, Martínez-Máñez R, Jablonský I, Klouček P. Chemical characterization and encapsulation of Ganoderma pfeifferi extract with cytotoxic properties. Front Pharmacol 2025; 16:1526502. [PMID: 39917618 PMCID: PMC11799868 DOI: 10.3389/fphar.2025.1526502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025] Open
Abstract
Mushrooms of the genus Ganoderma are known for diverse biological activities, demonstrated both traditionally and experimentally. Their secondary metabolites have shown cytotoxic potential across different cancer cell lines. Besides exploration of the most active components in different species or genotypes, new formulation techniques are in development. In recent years, there has been a growing interest in the use of nanomaterials because of significant potential for pharmacology applications as substance carriers. Applying nanoparticles may enhance the medicinal effect of the mushroom substances. This study investigated the cytotoxic properties of Ganoderma species methanolic extracts against the HeLa cancer cell line. Notably, the extract obtained from Ganoderma pfeifferi demonstrated the highest activity and was further used for encapsulation within synthesized mesoporous silica nanoparticles MCM-41. Subsequently, the cytotoxic effect of the loaded MCM-41 to the free form of extract was compared. The obtained results indicate successful encapsulation, and similar activity comparing encapsulated form to free extracts (IC50 16.6 μg/mL and 20.5 μg/mL, respectively). In addition, the four unique compounds were identified as applanoxidic acid A, applanoxidic acid G, ganoderone A, and ganoderone B in the G. pfeifferi. This study is an essential prerequisite for further steps like nanoparticle functionalization for sustained or on-command delivery of these natural extracts.
Collapse
Affiliation(s)
- Jan Šťastný
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Ángela Morellá-Aucejo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tec-nológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València-Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valencia, Spain
| | - Tomáš Skala
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tec-nológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València-Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valencia, Spain
| | - Petr Maršík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Araceli Lérida-Viso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tec-nológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València-Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valencia, Spain
| | - Jaroslav Matějka
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tec-nológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València-Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tec-nológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València-Centro de Investigación Príncipe Felipe, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Valencia, Spain
| | - Ivan Jablonský
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Klouček
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
17
|
Primavera R, Wang J, Buchwald P, Ganguly A, Patel S, Bettencourt L, Chetty S, Yarani R, Regmi S, Levitte S, Kevadiya B, Guindani M, Decuzzi P, Thakor AS. Controlled Nutrient Delivery to Pancreatic Islets Using Polydopamine-Coated Mesoporous Silica Nanoparticles. NANO LETTERS 2025; 25:939-950. [PMID: 39791700 DOI: 10.1021/acs.nanolett.4c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this study, we designed a nanoscale platform for sustained amino acid delivery to support transplanted pancreatic islets. The platform features mesoporous silica nanoparticles (MSNPs) loaded with glutamine (G), an essential amino acid required for islet survival and function, and coated with polydopamine (PD). We investigated various PD concentrations (0.5-2 mg/mL) and incubation times (0.5-2 h) to optimize G release, identifying that a PD concentration of 0.5 mg/mL incubated for 0.5 h yielded the best results to support islet viability and functionality ex vivo, particularly under inflammatory conditions. In syngeneic islet transplantation in STZ-diabetic mice, G alone provided only temporary benefits; however, PD-G-MSNPs significantly improved islet engraftment and function, with animals maintaining glycemic control for 30 days due to controlled G release. Our findings support the use of this nanoscale platform to provide essential nutrients like G to transplanted islets until they can establish their own blood and nutrient supply.
Collapse
Affiliation(s)
- Rosita Primavera
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Jing Wang
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Peter Buchwald
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Abantika Ganguly
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Shaini Patel
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Lili Bettencourt
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Shashank Chetty
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Herlev 2730, Denmark
| | - Shobha Regmi
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Steven Levitte
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Bhavesh Kevadiya
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Michele Guindani
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Avnesh S Thakor
- Department of Radiology, Interventional Radiology Innovation at Stanford (IRIS), Stanford University School of Medicine, Palo Alto, California 94304, United States
| |
Collapse
|
18
|
Dilnawaz F, Jena S, Nayak S. Evaluation of anticancer efficacy of survivin si-RNA functionalized combined drug-loaded mesoporous silica nanoparticles in a lung cancer mouse model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03751-y. [PMID: 39777536 DOI: 10.1007/s00210-024-03751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Lung cancer continues to be the leading cause of mortality globally. Nanotechnology-mediated targeted drug delivery approach is one of the promising strategies for the treatment of lung cancer. Due to their multifactorial role, mesoporous silica nanoparticles (MSNs), have attracted a lot of attention for drug delivery. The emerging dual-drug co-delivery approach has drawn much attention due to circumventing various drug-resistant mechanisms in tumor cells. Further, functionalization of si-RNA (survivin) to the dual drugs (etoposide plus carfilzomib) or (docetaxel plus carfilzomib) loaded MSNs can be a potential tool to inhibit gene expression specifically. In the present study, we investigated the comparative therapeutic efficacy of co-delivered anticancer drugs functionalized with survivin siRNA in MSNs for lung cancer. According to our findings, this kind of combination therapy has inhibited the function of the survivin protein while promoting increased therapeutic efficacy due to synergistic pharmacological activity, and found si-RNA- (etoposide plus carfilzomib) to be a better candidate for lung cancer treatment in the future.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India.
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.
| | - Sarita Jena
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sunita Nayak
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| |
Collapse
|
19
|
Wan H, Zhong X, Yang S, Deng J, Song X, Liu Y, Li Y, Yin Z, Zhao X. Enhancing the Therapeutic Potential of Peptide Antibiotics Using Bacteriophage Mimicry Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411753. [PMID: 39587836 PMCID: PMC11744576 DOI: 10.1002/advs.202411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Indexed: 11/27/2024]
Abstract
The rise of antibiotic resistance, coupled with a dwindling antibiotic pipeline, presents a significant threat to public health. Consequently, there is an urgent need for novel therapeutics targeting antibiotic-resistant pathogens. Nisin, a promising peptide antibiotic, exhibits potent bactericidal activity through a mechanism distinct from that of clinically used antibiotics. However, its cationic nature leads to hemolysis and cytotoxicity, which has limited its clinical application. Here, nanodelivery systems have been developed by mimicking the mechanisms bacteriophages use to deliver their genomes to host bacteria. These systems utilize bacteriophage receptor-binding proteins conjugated to loading modules, enabling efficient targeting of bacterial pathogens. Peptide antibiotics are loaded via dynamic covalent bonds, allowing for infection microenvironment-responsive payload release. These nanodelivery systems demonstrate remarkable specificity against target pathogens and effectively localize to bacteria-infected lungs in vivo. Notably, they significantly reduce the acute toxicity of nisin, rendering it suitable for intravenous administration. Additionally, these bacteriophage-mimicking nanomedicines exhibit excellent therapeutic efficacy in a mouse model of MRSA-induced pneumonia. The facile synthesis, potent antimicrobial performance, and favorable biocompatibility of these nanomedicines highlight their potential as alternative therapeutics for combating antibiotic-resistant pathogens. This study underscores the effectiveness of bacteriophage mimicry as a strategy for transforming peptide antibiotics into viable therapeutics.
Collapse
Affiliation(s)
- Hongping Wan
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Xinyi Zhong
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Shinong Yang
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Jiarong Deng
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| | - Xu Song
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
| | - Yong Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Yuanfeng Li
- Translational Medicine LaboratoryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Zhongqiong Yin
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
| | - Xinghong Zhao
- Center for Sustainable AntimicrobialsDepartment of Pharmacy, College of Veterinary MedicineSichuan Agricultural UniversityChengdu611130China
- Center for Infectious Diseases Control (CIDC)Sichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
20
|
Wu C, Huang Z, Chen J, Li N, Cai Y, Chen J, Ruan G, Han W, Ding C, Lu Y. Efficiently directing differentiation and homing of mesenchymal stem cells to boost cartilage repair in osteoarthritis via a nanoparticle and peptide dual-engineering strategy. Biomaterials 2025; 312:122720. [PMID: 39084098 DOI: 10.1016/j.biomaterials.2024.122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 07/07/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.
Collapse
Affiliation(s)
- Cuixi Wu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhenwen Huang
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianmao Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Li
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yu Cai
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands
| | - Jieli Chen
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Clinical Research Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weiyu Han
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Changhai Ding
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - Yao Lu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
22
|
Pablos JL, Lozano D, Manzano M, Vallet-Regí M. Regenerative medicine: Hydrogels and mesoporous silica nanoparticles. Mater Today Bio 2024; 29:101342. [PMID: 39649249 PMCID: PMC11625165 DOI: 10.1016/j.mtbio.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/10/2024] Open
Abstract
Hydrogels, that are crosslinked polymer networks, can absorb huge quantities of water and/or biological fluids. Their physical properties, such as elasticity and soft tissue, together with their biocompatibility and biodegradability, closely resemble living tissues. The versatility of hydrogels has fuelled their application in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Their combination with nanoparticles, specifically with Mesoporous Silica Nanoparticles (MSNs), have elevated these composites to the next level, since MSNs could improve the hydrogel mechanical properties, their ability to encapsulate and controlled release great amounts of different therapeutic agents, and their responsiveness to a variety of external and internal stimuli. In this review, the main features of both MSNs and hydrogels are introduced, followed by the discussion of different hydrogels-MSNs structures and an overview of their use in different applications, such as drug delivery technologies and tissue engineering.
Collapse
Affiliation(s)
- Jesús L. Pablos
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Daniel Lozano
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| | - Miguel Manzano
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre i+12, Plaza Ramón y Cajal s/n, Madrid, 28040, Spain
- Centro de Investigación Biomédica en Red, CIBER-BBN, Madrid, Spain
| |
Collapse
|
23
|
Toader C, Tataru CP, Munteanu O, Serban M, Covache-Busuioc RA, Ciurea AV, Enyedi M. Decoding Neurodegeneration: A Review of Molecular Mechanisms and Therapeutic Advances in Alzheimer's, Parkinson's, and ALS. Int J Mol Sci 2024; 25:12613. [PMID: 39684324 PMCID: PMC11641752 DOI: 10.3390/ijms252312613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, ALS, and Huntington's, remain formidable challenges in medicine, with their relentless progression and limited therapeutic options. These diseases arise from a web of molecular disturbances-misfolded proteins, chronic neuroinflammation, mitochondrial dysfunction, and genetic mutations-that slowly dismantle neuronal integrity. Yet, recent scientific breakthroughs are opening new paths to intervene in these once-intractable conditions. This review synthesizes the latest insights into the underlying molecular dynamics of neurodegeneration, revealing how intertwined pathways drive the course of these diseases. With an eye on the most promising advances, we explore innovative therapies emerging from cutting-edge research: nanotechnology-based drug delivery systems capable of navigating the blood-brain barrier, gene-editing tools like CRISPR designed to correct harmful genetic variants, and stem cell strategies that not only replace lost neurons but foster neuroprotective environments. Pharmacogenomics is reshaping treatment personalization, enabling tailored therapies that align with individual genetic profiles, while molecular diagnostics and biomarkers are ushering in an era of early, precise disease detection. Furthermore, novel perspectives on the gut-brain axis are sparking interest as mounting evidence suggests that microbiome modulation may play a role in reducing neuroinflammatory responses linked to neurodegenerative progression. Taken together, these advances signal a shift toward a comprehensive, personalized approach that could transform neurodegenerative care. By integrating molecular insights and innovative therapeutic techniques, this review offers a forward-looking perspective on a future where treatments aim not just to manage symptoms but to fundamentally alter disease progression, presenting renewed hope for improved patient outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Ophthalmology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
24
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
25
|
Al Tahan MA, Al Tahan S. Pioneering Advances and Innovative Applications of Mesoporous Carriers for Mitochondria-Targeted Therapeutics. Br J Biomed Sci 2024; 81:13707. [PMID: 39624468 PMCID: PMC11608979 DOI: 10.3389/bjbs.2024.13707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025]
Abstract
Mitochondria, known as the cell's powerhouse, play a critical role in energy production, cellular maintenance, and stemness regulation in non-cancerous cells. Despite their importance, using drug delivery systems to target the mitochondria presents significant challenges due to several barriers, including cellular uptake limitations, enzymatic degradation, and the mitochondrial membranes themselves. Additionally, barriers in the organs to be targetted, along with extracellular barriers formed by physiological processes such as the reticuloendothelial system, contribute to the rapid elimination of nanoparticles designed for mitochondrial-based drug delivery. Overcoming these challenges has led to the development of various strategies, such as molecular targeting using cell-penetrating peptides, genomic editing, and nanoparticle-based systems, including porous carriers, liposomes, micelles, and Mito-Porters. Porous carriers stand out as particularly promising candidates as drug delivery systems for targeting the mitochondria due to their large pore size, surface area, and ease of functionalisation. Depending on the pore size, they can be classified as micro-, meso-, or macroporous and are either ordered or non-ordered based on both size and pore uniformity. Several methods are employed to target the mitochondria using porous carriers, such as surface modifications with polyethylene glycol (PEG), incorporation of targeting ligands like triphenylphosphonium, and capping the pores with gold nanoparticles or chitosan to enable controlled and triggered drug delivery. Photodynamic therapy is another approach, where drug-loaded porous carriers generate reactive oxygen species (ROS) to enhance mitochondrial targeting. Further advancements have been made in the form of functionalised porous silica and carbon nanoparticles, which have demonstrated potential for effective drug delivery to mitochondria. This review highlights the various approaches that utilise porous carriers, specifically focusing on silica-based systems, as efficient vehicles for targeting mitochondria, paving the way for improved drug delivery strategies in mitochondrial therapies.
Collapse
Affiliation(s)
- Mohamad Anas Al Tahan
- Aston Medical Research Institute, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Sana Al Tahan
- Faculty of Pharmacy, Arab International University, Daraa, Syria
| |
Collapse
|
26
|
Zhang J, Liu Z, Zhang Z, Yang H, Wang H, Yang Z, Xu Y, Li S, Yang D. Recent Advances in Silica-Based Nanomaterials for Enhanced Tumor Imaging and Therapy. ACS APPLIED BIO MATERIALS 2024; 7:7133-7169. [PMID: 39495482 DOI: 10.1021/acsabm.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Cancer remains a formidable challenge, inflicting profound physical, psychological, and financial burdens on patients. In this context, silica-based nanomaterials have garnered significant attention for their potential in tumor imaging and therapy owing to their exceptional properties, such as biocompatibility, customizable porosity, and versatile functionalization capabilities. This review meticulously examines the latest advancements in the application of silica-based nanomaterials for tumor imaging and therapy. It underscores their potential in enhancing various cancer imaging modalities, including fluorescence imaging, magnetic resonance imaging, computed tomography, positron emission tomography, ultrasound imaging, and multimodal imaging approaches. Moreover, the review delves into their therapeutic efficacy in chemotherapy, radiotherapy, phototherapy, immunotherapy, gas therapy, sonodynamic therapy, chemodynamic therapy, starvation therapy, and gene therapy. Critical evaluations of the biosafety profiles and degradation pathways of these nanomaterials within biological environments are also presented. By discussing the current challenges and prospects, this review aims to provide a nuanced perspective on the clinical translation of silica-based nanomaterials, thereby highlighting their promise in revolutionizing cancer diagnostics, enabling real-time monitoring of therapeutic responses, and advancing personalized medicine.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu 233030, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Yunjian Xu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271000, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Shengke Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
27
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
28
|
Hu J, Yan L, Cao Z, Geng B, Cao X, Liu B, Guo J, Zhu J. Tumor Microenvironment Activated Cu Crosslinked Near-Infrared Sonosensitizers for Visualized Cuproptosis-Enhanced Sonodynamic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407196. [PMID: 39331855 DOI: 10.1002/advs.202407196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Reactive oxygen species (ROS)-mediated sonodynamic therapy (SDT) holds increasing potential in treating deep-seated tumor owing to the high tissue-penetration depth. However, the inevitable accumulation of sonosensitizers in normal tissues not only make it difficult to realize the in situ SDT, but also induces sonodynamic effects in normal tissues. Herein, this work reports the passivation and selective activation strategies for the sonodynamic and near-infrared (NIR) imaging performances of an intelligent antitumor theranostic platform termed Cu-IR783 nanoparticles (NPs). Owing to the ruptured coordination bond between IR783 with Cu ions by responding to tumor microenvironment (TME), the selective activation of IR783 only occurred in tumor tissues to achieve the visualized in-situ SDT. The tumor-specific released Cu ions not only realized the cascade amplification of ROS generation through Cu+-mediated Fenton-like reaction, but also triggered cuproptosis through Cu+-induced DLAT oligomerization and mitochondrial dysfunction. More importantly, the immunosuppressive TME can be reversed by the greatly enhanced ROS levels and high-efficiency cuproptosis, ultimately inducing immunogenic cell death that promotes robust systemic immune responses for the eradication of primary tumors and suppression of distant tumors. This work provides a distinct paradigm of the integration of SDT, CDT, and cuproptosis in a controlled manner to achieve visualized in-situ antitumor therapy.
Collapse
Affiliation(s)
- Jinyan Hu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Lang Yan
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhi Cao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Bijiang Geng
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiqian Cao
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jiangbo Zhu
- Department of Health Toxicology, College of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
29
|
Santos-Silva T, Viana IS, Queiroz ABPS, de Oliveira FS, Horvath-Pereira BDO, da Silva-Júnior LN, Araujo MS, Canola PA, Dias LGGG, Soares MM, Miglino MA. PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles. J Funct Biomater 2024; 15:311. [PMID: 39452609 PMCID: PMC11508647 DOI: 10.3390/jfb15100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
Bone defects in animals can arise from various causes, including diseases, neoplasms, and most commonly, trauma. Comminuted fractures that exceed the critical size may heal poorly due to deficient or interrupted vascularization, resulting in an insufficient number of progenitor cells necessary for bone regeneration. In this context, 3D printing techniques using poly-L-lactic acid/graphene oxide (PLLA/GO) aim to address this issue by creating customized scaffolds combined with canine placenta hydrogel and mesenchymal stem cells for use in goat mandibles, compared to a control group using titanium plate fixation. Ten canine placentas were decellularized and characterized using histological techniques. A hydrogel derived from the canine placenta extracellular matrix (cpECM) was produced to improve cell attachment to the scaffolds. In vitro cytotoxicity and cell adhesion to the cpECM hydrogel were assessed by scanning electron microscopy (SEM). The resulting biomaterials, cpECM hydrogel and PLLA/GO scaffolds, maintained their functional structure and supported cell adhesion, maintenance, and proliferation in vitro. Thermography showed that PLLA/GO scaffolds with cpECM hydrogel performed effectively, similar to the control group. Computed tomography scans revealed bone calluses, suggesting an ongoing repair process. These findings demonstrate the innovative technological potential of these materials for use in surgical interventions. Future studies on PLLA/GO scaffolds will provide further insights into their effects on goat models.
Collapse
Affiliation(s)
- Thamires Santos-Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Inácio Silva Viana
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Andrea Barros Piazzon S. Queiroz
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (A.B.P.S.Q.); (F.S.d.O.)
| | - Fabrício Singaretti de Oliveira
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (A.B.P.S.Q.); (F.S.d.O.)
| | - Bianca de Oliveira Horvath-Pereira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Leandro Norberto da Silva-Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (T.S.-S.); (B.d.O.H.-P.); (L.N.d.S.-J.); (M.S.A.)
| | - Paulo Alescio Canola
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Luís Gustavo Gosuen G. Dias
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal Campus 14884-900, SP, Brazil; (I.S.V.); (P.A.C.); (L.G.G.G.D.)
| | - Marcelo Melo Soares
- Institute of Orofacial Osteogenesis Rehabilitation S/S Ltda., Vila Olímpia 04532-060, SP, Brazil;
| | - Maria Angelica Miglino
- Department of Animal Anatomy, University of Marilia, Mirante, Marília 17525-902, SP, Brazil
| |
Collapse
|
30
|
Yuan G, Yang B, Chen P, Bai L, Qiao G, Xu Z, Cao Z, Wang Q, Xie L, Lu Y, Pan Y. Regulating Manganese-Site Electronic Structure via Reconstituting Nitrogen Coordination for Efficient Non-Oxygen-Dependent Sonocatalytic Therapy against Orthotopic Breast Cancer. ACS NANO 2024; 18:27630-27641. [PMID: 39327724 DOI: 10.1021/acsnano.4c09052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Sonocatalytic therapy (SCT) has emerged as a promising noninvasive modality for tumor treatment but is hindered by the insufficient generation of ultrasound-induced reactive oxygen species (ROS) and the hypoxic tumor microenvironments. Herein, we fabricated a carbon nanoframe-confined N-coordinated manganese single-atom sonocatalyst with a five-coordinated structure (MnN5 SA/CNF) using a phthalocyanine-mediated pyrolysis strategy. The precise coordination structure was identified by synchrotron X-ray absorption fine structure analyses. The MnN5 SA/CNF exhibits superior and nonoxygen-dependent sonocatalytic activity owing to the optimized coordination structure and cavitation effect enhanced by defects. Additionally, density functional theory studies reveal that the five-coordination structure downshifts the d-band center of Mn from -0.547 to -0.829 eV and enhances the desorption capacity for oxygen-containing intermediates, thus accelerating the catalytic process. Finally, the as-synthesized MnN5 SA/CNF demonstrates a significantly enhanced antitumor effect through mitochondrial apoptosis in an orthotopic breast cancer mouse model. This work explores the potential of SAzymes-supported biomedical interventions by leveraging enzymatic activity with sonocatalytic properties.
Collapse
Affiliation(s)
- Guotao Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Shenzhen 518116, China
| | - Bowen Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lu Bai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ge Qiao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zexin Xu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengyu Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qiwei Wang
- Jihua Institute of Biomedical Engineering Technology, Jihua Laboratory, Foshan 528200, China
| | - Lisi Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
31
|
Liu X, Wang Q, Diao Z, Huo D, Hou C. Label-free fluorescent biosensor based on AuNPs etching releasing signal for miRNA-155 detection. Talanta 2024; 278:126481. [PMID: 38968655 DOI: 10.1016/j.talanta.2024.126481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Quantitative microRNA (miRNA) detection is crucial for early breast cancer diagnosis and prognosis. However, quick and stable fluorescence sensing for miRNA identification is still challenging. This work developed a novel label-free detection method based on AuNPs etching for quantitatively detecting miRNA-155. A layer of AuNPs was grown on the surface of mesoporous silica nanoparticles (MSN) loaded with Rhodamine 6G (R6G) using seed-mediated growth, followed by probe attachment. In the presence of miRNA-155, the MSN@R6G@AuNP surface loses the protection of the attached probe, rendering AuNPs susceptible to etching by hydrochloric acid. This results in a significant fluorescent signal being released in the free space. The encapsulation with AuNPs effectively reduces signal leakage, while the rapid etching process shortens detection time. This strategy enables sensitive and fast detection with a detection range of 100 fM to 100 nM, a detection limit of 2.18 fM, and a detection time of 30 min. The recovery rate in normal human serum ranges from 99.02 % to 106.34 %. This work presents a simple biosensing strategy with significant potential for application in tumor diagnosis.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China
| | - Qun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China
| | - Zhan Diao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
32
|
Zhang G, Kang Y, Dong J, Shi D, Xiang Y, Gao H, Lin Z, Wei X, Ding R, Fan B, Zhang H, Zhu T, Wang L, Yan X. Fluffy hybrid nanoadjuvants for reversing the imbalance of osteoclastic and osteogenic niches in osteoporosis. Bioact Mater 2024; 39:354-374. [PMID: 38846529 PMCID: PMC11153935 DOI: 10.1016/j.bioactmat.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Osteoporosis is majorly caused by an imbalance between osteoclastic and osteogenic niches. Despite the development of nationally recognized first-line anti-osteoporosis drugs, including alendronate (AL), their low bioavailability, poor uptake rate, and dose-related side effects present significant challenges in treatment. This calls for an urgent need for more effective bone-affinity drug delivery systems. In this study, we produced hybrid structures with bioactive components and stable fluffy topological morphology by cross-linking calcium and phosphorus precursors based on mesoporous silica to fabricate nanoadjuvants for AL delivery. The subsequent grafting of -PEG-DAsp8 ensured superior biocompatibility and bone targeting capacity. RNA sequencing revealed that these fluffy nanoadjuvants effectively activated adhesion pathways through CARD11 and CD34 molecular mechanisms, hence promoting cellular uptake and intracellular delivery of AL. Experiments showed that small-dose AL nanoadjuvants effectively suppress osteoclast formation and potentially promote osteogenesis. In vivo results restored the balance between osteogenic and osteoclastic niches against osteoporosis as well as the consequent significant recovery of bone mass. Therefore, this study constructed a drug nanoadjuvant with peculiar topological structures and high bone targeting capacities, efficient intracellular drug delivery as well as bone bioactivity. This provides a novel perspective on drug delivery for osteoporosis and treatment strategies for other bone diseases.
Collapse
Affiliation(s)
- Guoyang Zhang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Yuhao Kang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jizhao Dong
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Dingyi Shi
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
| | - Yu Xiang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Haihan Gao
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Zhiqi Lin
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaojuan Wei
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Ren Ding
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Department of Orthopedics, No. 181 Youyi Road, Shanghai, 201900, China
| | - Beibei Fan
- Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, Department of Pharmacy, No. 181 Youyi Road, Shanghai, 201900, China
| | - Hongmei Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Shanghai, 201620, China
| | - Liren Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| | - Xiaoyu Yan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
- Shanghai Jiao Tong University School of Medicine, No. 227 South Chongqing Road, Shanghai, 200025, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
33
|
Chen M, Hei J, Huang Y, Liu X, Huang Y. In vivo safety evaluation method for nanomaterials for cancer therapy. Clin Transl Oncol 2024; 26:2126-2141. [PMID: 38573443 DOI: 10.1007/s12094-024-03466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Nanomaterials are extensively used in the diagnosis and treatment of cancer and other diseases because of their distinctive physicochemical properties, including the small size and ease of modification. The approval of numerous nanomaterials for clinical treatment has led to a significant increase in human exposure to these materials. When nanomaterials enter organisms, they interact with DNA, cells, tissues, and organs, potentially causing various adverse effects, such as genotoxicity, reproductive toxicity, immunotoxicity, and damage to tissues and organs. Therefore, it is crucial to elucidate the side effects and toxicity mechanisms of nanomaterials thoroughly before their clinical applications. Although methods for in vitro safety evaluation of nanomaterials are well established, systematic methods for in vivo safety evaluation are still lacking. This review focuses on the in vivo safety evaluation of nanomaterials and explores their potential effects. In addition, the experimental methods for assessing such effects in various disciplines, including toxicology, pharmacology, physiopathology, immunology, and bioinformatics are also discussed.
Collapse
Affiliation(s)
- Mengqi Chen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jingyi Hei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yan Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
34
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
35
|
Ma W, Wang X, Zhang D, Mu X. Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System. Int J Nanomedicine 2024; 19:7547-7566. [PMID: 39071505 PMCID: PMC11283832 DOI: 10.2147/ijn.s471734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years. The construction of a reduction-sensitive nanomedicine delivery system based on disulfide bonds has attracted much attention. Disulfide bonds have good reductive responsiveness and can effectively target the high glutathione (GSH) levels in the tumor environment, enabling precise drug delivery. To further enhance targeting and accelerate drug release, disulfide bonds are often combined with pH-responsive nanocarriers and highly expressed ligands in tumor cells to construct drug delivery systems. Disulfide bonds can connect drug molecules and polymer molecules in the drug delivery system, as well as between different drug molecules and carrier molecules. This article summarized the drug delivery systems (DDS) that researchers have constructed in recent years based on disulfide bond drug delivery systems targeting the tumor microenvironment, disulfide bond cleavage-triggering conditions, various drug loading strategies, and carrier design. In this review, we also discuss the controlled release mechanisms and effects of these DDS and further discuss the clinical applicability of delivery systems based on disulfide bonds and the challenges faced in clinical translation.
Collapse
Affiliation(s)
- Weiran Ma
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Xiaoying Wang
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
36
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
37
|
Li J, Gao Z, Li N, Yao L, Liu C, Xu C, Ren X, Wang A, Gao S, Wang M, Gao X, Li K, Wang J. Evaluation of the Ocular Safety of Hollow Mesoporous Organosilica Nanoparticles with Different Tetrasulfur Bond Content. Int J Nanomedicine 2024; 19:7123-7136. [PMID: 39055375 PMCID: PMC11269456 DOI: 10.2147/ijn.s464524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Background Drug therapy for eye diseases has been limited by multiple protective mechanisms of the eye, which can be improved using well-designed drug delivery systems. Mesoporous silica nanoparticles (MSNs) had been used in many studies as carriers of therapeutic agents for ocular diseases treatment. However, no studies have focused on ocular biosafety. Considering that MSNs containing tetrasulfur bonds have unique advantages and have drawn increasing attention in drug delivery systems, it is necessary to explore the ocular biosafety of tetrasulfur bonds before their widespread application as ophthalmic drug carriers. Methods In this study, hollow mesoporous silica nanoparticles (HMSNs) with different tetrasulfur bond contents were prepared and characterized. The ocular biosafety of HMSN-E was evaluated in vitro on the three selected ocular cell lines, including corneal epithelial cells, lens epithelial cells and retinal endothelial cells (HREC), and in vivo by using topical eye drops and intravitreal injections. Results In cellular experiments, HMSNs caused obvious S content-dependent cytotoxic effect. HMSNs with the highest tetrasulfur bond content (HMSN-E), showed the highest cytotoxicity among all the HMSNs, and HREC was the most vulnerable cell to HMSN-E. It was shown that HMSN-E could react with intracellular GSH to generate H2S and decrease intracellular GSH concentration. Treatment of HREC with HMSN-E increased intracellular ROS, decreased mitochondrial membrane potential, and induced cell cycle arrest at the G1/S checkpoint, finally caused apoptosis and necrosis of HREC. Topical eye drops of HMSN-E could cause corneal damage. The intravitreal injection of HMSN-E could induce inflammation in the vitreum and ganglion cell layers, resulting in vitreous opacities and retinal abnormalities. Conclusion The incorporation of tetrasulfur bonds into HMSN can have toxic effects on ocular tissues. Therefore, when mesoporous silica nanocarriers are designed for ophthalmic pharmaceuticals, the ocular toxicity of the tetrasulfur bonds should be considered.
Collapse
Affiliation(s)
- Juan Li
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Ziqing Gao
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Ning Li
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Ling Yao
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Chao Liu
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Che Xu
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Xiaohui Ren
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Aiqin Wang
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Siqi Gao
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Miao Wang
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Xiang Gao
- School of Clinical Medicine, Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| | - Kun Li
- School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People’s Republic of China
| | - Jianfeng Wang
- Department of Ophthalmology, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233004, People’s Republic of China
| |
Collapse
|
38
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
39
|
Zhou Y, Shi H, Xia X, Yang S, Li J, Qing Z, Zheng J, Yang R. Integration of Hybridization Chain Reaction and Protein-Binding Amplification for Long-Term Imaging of Intracellular mRNA: Avoiding Signal Fluctuation. Anal Chem 2024; 96:11061-11067. [PMID: 38922611 DOI: 10.1021/acs.analchem.4c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Amplified nanoprobes based on hybridization chain reaction (HCR) have been widely developed for the detection of intracellular low abundance mRNA. However, the formed chain-like assembly decorated with fluorophore would be degraded rapidly by endogenous enzyme, resulting in failure of the long-term fluorescence imaging. To address this issue, herein, a composite signal-amplifying strategy that integrates HCR into protein-binding signal amplification (HPSA) was communicated for the in situ imaging of mRNA by avoiding signal fluctuation. Different from conventional HCR-based nanoprobes (HCR-nanoprobe), the HCR was used as the signal-triggered mode and the amplifying signal generated from in situ fluorophore-protein binding in cells, which can maintain high stability of the signal for a long time. As a proof-of-principle, a nanobeacon based on HPSA (HPSA-nanobeacon) was constructed to detect TK1 mRNA. Taking advantage of the double signal-amplifying mode, the endogenous TK1 mRNA was sensitively detected and the fluorescence signal was maintained for more than 8 h in HepG2 cells. The attempt in this work provides a new option to the current signal-amplifying strategy for sensing nucleic acid targets with high stability, significantly enhancing the acquisition of intracellular molecular information.
Collapse
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Huiqiu Shi
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Xinchao Xia
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Sheng Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| | - Junbin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P.R. China
| |
Collapse
|
40
|
Wang S, Lv Y. Silica-coated liquid metal nanoparticles with different stiffness for cellular uptake-enhanced tumor photothermal therapy. BIOMATERIALS ADVANCES 2024; 161:213872. [PMID: 38733802 DOI: 10.1016/j.bioadv.2024.213872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Cells can sense the mechanical stimulation of nanoparticles (NPs) and then regulate the cellular uptake process. The enhanced endocytosis efficiency can improve the concentration of NPs in tumor cells significantly, which is the key prerequisite for achieving efficient biological performance. However, the preparation methods of NPs with flexible and tunable stiffness are relatively limited, and the impact of stiffness property on their interaction with tumor cells remains unclear. In this study, soft liquid metal (LM) core was coated with hard silica layer, the obtained core-shell NPs with a wide range of Young's modulus (130.5 ± 25.6 MPa - 1729.2 ± 146.7 MPa) were prepared by adjusting the amount of silica. It was found that the NPs with higher stiffness exhibited superior cellular uptake efficiency and lysosomal escape ability compared to the NPs with lower stiffness. The silica layer not only affected the stiffness, but also improved the photothermal stability of the LM NPs. Both in vitro and in vivo results demonstrated that the NPs with higher stiffness displayed significantly enhanced tumor hyperthermia capability. This work may provide a paradigm for the preparation of NPs with varying stiffness and offer insights into the role of the mechanical property of NPs in their delivery.
Collapse
Affiliation(s)
- Shuai Wang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, PR China.
| |
Collapse
|
41
|
Meng J, Wang ZG, Zhao X, Wang Y, Chen DY, Liu DL, Ji CC, Wang TF, Zhang LM, Bai HX, Li BY, Liu Y, Wang L, Yu WG, Yin ZT. Silica nanoparticle design for colorectal cancer treatment: Recent progress and clinical potential. World J Clin Oncol 2024; 15:667-673. [PMID: 38946830 PMCID: PMC11212613 DOI: 10.5306/wjco.v15.i6.667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 06/24/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.
Collapse
Affiliation(s)
- Jin Meng
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Zhi-Gang Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Xiu Zhao
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Ying Wang
- Acupuncture and Tuina College, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| | - De-Yu Chen
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - De-Long Liu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Cheng-Chun Ji
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Tian-Fu Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Li-Mei Zhang
- Department of Neurology, Central Hospital of Dalian University of Technology, Dalian 116001, Liaoning Province, China
| | - Hai-Xia Bai
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Bo-Yang Li
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Yuan Liu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Lei Wang
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Wei-Gang Yu
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| | - Zhi-Tao Yin
- Department of Anorectal Disease, Shenyang Coloproctology Hospital, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
42
|
Zhao X, Zhong X, Yang S, Deng J, Deng K, Huang Z, Li Y, Yin Z, Liu Y, Viel JH, Wan H. Guiding antibiotics towards their target using bacteriophage proteins. Nat Commun 2024; 15:5287. [PMID: 38902231 PMCID: PMC11190222 DOI: 10.1038/s41467-024-49603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Novel therapeutic strategies against difficult-to-treat bacterial infections are desperately needed, and the faster and cheaper way to get them might be by repurposing existing antibiotics. Nanodelivery systems enhance the efficacy of antibiotics by guiding them to their targets, increasing the local concentration at the site of infection. While recently described nanodelivery systems are promising, they are generally not easy to adapt to different targets, and lack biocompatibility or specificity. Here, nanodelivery systems are created that source their targeting proteins from bacteriophages. Bacteriophage receptor-binding proteins and cell-wall binding domains are conjugated to nanoparticles, for the targeted delivery of rifampicin, imipenem, and ampicillin against bacterial pathogens. They show excellent specificity against their targets, and accumulate at the site of infection to deliver their antibiotic payload. Moreover, the nanodelivery systems suppress pathogen infections more effectively than 16 to 32-fold higher doses of free antibiotics. This study demonstrates that bacteriophage sourced targeting proteins are promising candidates to guide nanodelivery systems. Their specificity, availability, and biocompatibility make them great options to guide the antibiotic nanodelivery systems that are desperately needed to combat difficult-to-treat infections.
Collapse
Affiliation(s)
- Xinghong Zhao
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xinyi Zhong
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shinong Yang
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiarong Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Deng
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengqun Huang
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanfeng Li
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongqiong Yin
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China.
| | - Jakob H Viel
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, Netherlands
| | - Hongping Wan
- Center for Sustainable Antimicrobials, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Center for Infectious Diseases Control (CIDC), College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
43
|
Zhang Y, Lin X, Chen X, Fang W, Yu K, Gu W, Wei Y, Zheng H, Piao J, Li F. Strategies to Regulate the Degradation and Clearance of Mesoporous Silica Nanoparticles: A Review. Int J Nanomedicine 2024; 19:5859-5878. [PMID: 38887691 PMCID: PMC11182361 DOI: 10.2147/ijn.s451919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNs) have attracted extensive attention as drug delivery systems because of their unique meso-structural features (high specific surface area, large pore volume, and tunable pore structure), easily modified surface, high drug-loading capacity, and sustained-release profiles. However, the enduring and non-specific enrichment of MSNs in healthy tissues may lead to toxicity due to their slow degradability and hinder their clinical application. The emergence of degradable MSNs provided a solution to this problem. The understanding of strategies to regulate degradation and clearance of these MSNs for promoting clinical trials and expanding their biological applications is essential. Here, a diverse variety of degradable MSNs regarding considerations of physiochemical properties and doping strategies of degradation, the biodistribution of MSNs in vivo, internal clearance mechanism, and adjusting physical parameters of clearance are highlighted. Finally, an overview of these degradable and clearable MSNs strategies for biosafety is provided along with an outlook of the encountered challenges.
Collapse
Affiliation(s)
- Yuelin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xue Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Xinxin Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Weixiang Fang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Kailing Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Wenting Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Jigang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
44
|
Chen ZA, Wu CH, Wu SH, Huang CY, Mou CY, Wei KC, Yen Y, Chien IT, Runa S, Chen YP, Chen P. Receptor Ligand-Free Mesoporous Silica Nanoparticles: A Streamlined Strategy for Targeted Drug Delivery across the Blood-Brain Barrier. ACS NANO 2024; 18:12716-12736. [PMID: 38718220 PMCID: PMC11112986 DOI: 10.1021/acsnano.3c08993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.
Collapse
Affiliation(s)
- Zih-An Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiung-Yin Huang
- Neuroscience
Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chung-Yuan Mou
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Nano
Targeting & Therapy Biopharma Inc., Taipei 10087, Taiwan
| | - Kuo-Chen Wei
- Neuroscience
Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- School
of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department
of Neurosurgery, New Taipei Municipal TuCheng
Hospital, New Taipei City 23652, Taiwan
| | - Yun Yen
- Center
for Cancer Translational Research, Tzu Chi
University, Hualien 970374, Taiwan
- Cancer
Center, Taipei Municipal WanFang Hospital, Taipei 116081, Taiwan
| | - I-Ting Chien
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Sabiha Runa
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- SRS Medical Communications,
LLC, Cleveland, Ohio 44124, United States
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International
Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Peilin Chen
- Research
Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
45
|
Huang B, Li JM, Zang XM, Wang M, Pan W, Zhang KD, He H, Tan QG, Miao AJ. Cell-excreted proteins mediate the interactions of differently sized silica nanoparticles during cellular uptake. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133894. [PMID: 38452668 DOI: 10.1016/j.jhazmat.2024.133894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Exposure to different types of nanoparticles (NPs) results in their deposition in human bodies. While most studies have examined the cellular uptake of only one type of NP at a time, how the dynamics of NP uptake may change in the presence of other types of NPs remains unclear. We therefore investigated the interplay of two differently sized SiO2 NPs during their uptake by A549 human lung carcinoma cells. Both NPs contained a CdSeTe core, which was labeled with different Cd isotopes to differentiate between them. Our study showed that the uptake of one size of SiO2 NPs either increased or decreased with the concentration of the other size of SiO2 NPs. This variation in uptake was attributable to the concentration-dependent aggregation of SiO2 NPs, as determined by the amount of cell-excreted proteins adsorbed on the NP surface. Further, the effects of the protein corona on the attachment of SiO2 NPs to the cell surface and uptake competition between differently sized SiO2 NPs also played important roles. Cell-excreted proteins were then analyzed by proteomics. Overall, the complex interactions between coexisting NPs of different physicochemical properties and cell-excreted proteins should be considered during bio-applications and bio-safety evaluations of NPs.
Collapse
Affiliation(s)
- Bin Huang
- Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, PR China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Jia-Ming Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Xiao-Mei Zang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Mei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Wei Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Ke-Da Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China
| | - Huan He
- Jiangsu Open Laboratory of Major Scientific Instrument and Equipment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, PR China.
| |
Collapse
|
46
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
47
|
Medaglia S, Otri I, Bernardos A, Marcos MD, Aznar E, Sancenón F, Martínez-Máñez R. Synergistic antimicrobial photodynamic therapy using gated mesoporous silica nanoparticles containing curcumin and polymyxin B. Int J Pharm 2024; 654:123947. [PMID: 38408553 DOI: 10.1016/j.ijpharm.2024.123947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Photodynamic Therapy is a therapy based on combining a non-toxic compound, known as photosensitizer (PS), and irradiation with light of the appropriate wavelength to excite the PS molecule. The photon absorption by the PS leads to reactive oxygen species generation and a subsequent oxidative burst that causes cell damage and death. In this work, we report an antimicrobial nanodevice that uses the activity of curcumin (Cur) as a PS for antimicrobial Photodynamic Therapy (aPDT), based on mesoporous silica nanoparticles in which the action of the classical antibiotic PMB is synergistically combined with the aPDT properties of curcumin to combat bacteria. The synergistic effect of the designed gated device in combination with irradiation with blue LED light (470 nm) is evaluated against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus epidermidis. The results show that the nanodevice exhibits a noteworthy antibacterial activity against these microorganisms, a much more significant effect than free Cur and PMB at equivalent concentrations. Thus, 0.1 µg/mL of MSNs-Cur-PMB eliminates a bacterial concentration of about 105 CFU/mL of E. coli, while 1 µg/mL of MSNs-Cur-PMB is required for P. aeruginosa and S. epidermidis. In addition, antibiofilm activity against the selected bacteria was also tested. We found that 0.1 mg/mL of MSNs-Cur-PMB inhibited 99 % biofilm formation for E. coli, and 1 mg/mL of MSNs-Cur-PMB achieved 90 % and 100 % inhibition of biofilm formation for S. epidermidis and P. aeruginosa, respectively.
Collapse
Affiliation(s)
- Serena Medaglia
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ismael Otri
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de Valencia, Universitat de València, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Química, Universidad Politécnica de Valencia, Cami de Vera s/n, 46022 Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Av Fernando Abril Martorell 106, 46026 Valencia, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
48
|
Enyu X, Xinbo L, Xuelian C, Huimin C, Yin C, Yan C. Construction and performance evaluation of pH-responsive oxidized hyaluronic acid hollow mesoporous silica nanoparticles. Int J Biol Macromol 2024; 257:128656. [PMID: 38065461 DOI: 10.1016/j.ijbiomac.2023.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
In this study, hollow mesoporous silica (HMSN) was created to facilitate drug distribution using the hard template method. The oxidized hyaluronic acid (oxiHA) was coated on the carrier surface by the Schiff base reaction, producing the pH-responsive nanoparticles HMSNs-DOX-oxiHA targeted by CD44 and preventing drug leakage from mesopores. The prepared nanoparticles had a size of 151.79 ± 13.52 nm and a surface potential of -8.42 ± 0.48 mV. The rich mesoporous structure and internal cavity of HMSNs-NH2 achieved the effective encapsulation and loading rates of doxorubicin (DOX) at 76.84 ± 0.24 % and 18.73 ± 0.05 %, respectively. Owing to the pH sensitivity of imine bonds, HMSNs-DOX-oxiHA has a good pH response and release performance. The in vitro experiments showed that the nanoparticles were not cytotoxic and could enhance HCT-116 uptake efficiency by hyaluronic acid/CD44 receptor-mediated endocytosis, effectively inhibiting tumor cell proliferation and reducing toxic side effects on normal cells. In summary, the polysaccharide-based nano-drug delivery system constructed in this experiment not only has the basic response properties of a carrier but also introduces the bioactive advantages of natural polysaccharides.
Collapse
Affiliation(s)
- Xu Enyu
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Liu Xinbo
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Xuelian
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Huimin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China
| | - Chen Yin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| | - Chen Yan
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan 316000, People's Republic of China.
| |
Collapse
|
49
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
50
|
Ali M, Benfante V, Di Raimondo D, Salvaggio G, Tuttolomondo A, Comelli A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals (Basel) 2024; 17:126. [PMID: 38256959 PMCID: PMC10818631 DOI: 10.3390/ph17010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound's bioavailability and therapeutic effectiveness.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Giuseppe Salvaggio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|