1
|
Zhou J, Du JY, Xu R, Wu XJ, Zhang GY. Reduced miR-513a-5p expression in COPD may regulate airway mucous cell hyperplasia through TFR1-dependent signaling. Kaohsiung J Med Sci 2024; 40:139-149. [PMID: 37916742 DOI: 10.1002/kjm2.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Airway mucous cell metaplasia and mucous hypersecretion is one of the key characteristic pathophysiological status of chronic obstructive pulmonary disease (COPD). micro(mi)RNAs are acknowledged as non-encoding RNA molecules playing important roles in gene expression regulation. In this study, we searched the Gene Expression Omnibus (GEO) database for the differentially expressed miRNAs between COPD and non-COPD controls with bioinformatics analysis. Finally, we focused on miR-513a-5p and investigated the potential mechanism by which miR-513a-5p regulates airway mucous hypersecretion and goblet cell metaplasia. A dual-luciferase reporter assay was then showing that miR-513a-5p targeted the 3'-UTR of TFR1 and inhibited its expression in vitro. In vivo transfection demonstrated that TFR1 downregulation partially blocked MUC5AC hypersecretion and goblet cell hyperplasia in COPD model rats. In vitro study, CSE increased the intracellular expression and secretion of MUC5AC by BEAS-2B branchial epithelial cells in the BEAS-2B cell and THP-1 cell coculture system. Coculture with either miR-513a-5p mimic-pretreated or TFR1-deficient THP-1 cells attenuated intracellular MUC5AC expression in BEAS-2B cells exposed to CSE. ELISA demonstrated that transfection of TFR1 siRNA or pretreatment with miR-513a-5p mimic reduced the secretion of inflammatory factors that are responsible for airway goblet cell hyperplasia, such as IL-1β, IL-13, and IL-17, by THP-1 cells after CSE stimulation. Our findings supported that miR-513a-5p/TFR1 signaling axis might activate macrophages as well as promote airway inflammation and airway mucous cell hyperplasia in COPD.
Collapse
Affiliation(s)
- Jia Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun-Yi Du
- Standardized Training Base For Resident Physician, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Rui Xu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiao-Juan Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, People's Republic of China
| | - Guo-Yue Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Mo C, Ye Z, Pan Y, Zhang Y, Wu Q, Bi C, Liu S, Mitchell B, Kochunov P, Hong LE, Ma T, Chen S. An in-depth association analysis of genetic variants within nicotine-related loci: Meeting in middle of GWAS and genetic fine-mapping. Mol Cell Neurosci 2023; 127:103895. [PMID: 37634742 PMCID: PMC11128188 DOI: 10.1016/j.mcn.2023.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023] Open
Abstract
In the last two decades of Genome-wide association studies (GWAS), nicotine-dependence-related genetic loci (e.g., nicotinic acetylcholine receptor - nAChR subunit genes) are among the most replicable genetic findings. Although GWAS results have reported tens of thousands of SNPs within these loci, further analysis (e.g., fine-mapping) is required to identify the causal variants. However, it is computationally challenging for existing fine-mapping methods to reliably identify causal variants from thousands of candidate SNPs based on the posterior inclusion probability. To address this challenge, we propose a new method to select SNPs by jointly modeling the SNP-wise inference results and the underlying structured network patterns of the linkage disequilibrium (LD) matrix. We use adaptive dense subgraph extraction method to recognize the latent network patterns of the LD matrix and then apply group LASSO to select causal variant candidates. We applied this new method to the UK biobank data to identify the causal variant candidates for nicotine addiction. Eighty-one nicotine addiction-related SNPs (i.e.,-log(p) > 50) of nAChR were selected, which are highly correlated (average r2>0.8) although they are physically distant (e.g., >200 kilobase away) and from various genes. These findings revealed that distant SNPs from different genes can show higher LD r2 than their neighboring SNPs, and jointly contribute to a complex trait like nicotine addiction.
Collapse
Affiliation(s)
- Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Yezhi Pan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Yuan Zhang
- Department of Statistics, College of Arts and Sciences, Ohio State University, Columbus, Ohio, United States
| | - Qiong Wu
- Department of Mathematics, University of Maryland, College Park, Maryland, United States
| | - Chuan Bi
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Braxton Mitchell
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, Maryland, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
3
|
Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol 2023; 14:1201658. [PMID: 37520564 PMCID: PMC10374037 DOI: 10.3389/fimmu.2023.1201658] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The airway epithelium comprises of different cell types and acts as a physical barrier preventing pathogens, including inhaled particles and microbes, from entering the lungs. Goblet cells and submucosal glands produce mucus that traps pathogens, which are expelled from the respiratory tract by ciliated cells. Basal cells act as progenitor cells, differentiating into different epithelial cell types, to maintain homeostasis following injury. Adherens and tight junctions between cells maintain the epithelial barrier function and regulate the movement of molecules across it. In this review we discuss how abnormal epithelial structure and function, caused by chronic injury and abnormal repair, drives airway disease and specifically asthma and chronic obstructive pulmonary disease (COPD). In both diseases, inhaled allergens, pollutants and microbes disrupt junctional complexes and promote cell death, impairing the barrier function and leading to increased penetration of pathogens and a constant airway immune response. In asthma, the inflammatory response precipitates the epithelial injury and drives abnormal basal cell differentiation. This leads to reduced ciliated cells, goblet cell hyperplasia and increased epithelial mesenchymal transition, which contribute to impaired mucociliary clearance and airway remodelling. In COPD, chronic oxidative stress and inflammation trigger premature epithelial cell senescence, which contributes to loss of epithelial integrity and airway inflammation and remodelling. Increased numbers of basal cells showing deregulated differentiation, contributes to ciliary dysfunction and mucous hyperproduction in COPD airways. Defective antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or epigenetic factors, may confer susceptibility to airway epithelial dysfunction in these diseases. The current evidence suggests that a constant cycle of injury and abnormal repair of the epithelium drives chronic airway inflammation and remodelling in asthma and COPD. Mechanistic understanding of injury susceptibility and damage response may lead to improved therapies for these diseases.
Collapse
Affiliation(s)
- Katie Louise Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - James Tonkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Pankaj Kumar Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| |
Collapse
|
4
|
Carlin DE, Larsen SJ, Sirupurapu V, Cho MH, Silverman EK, Baumbach J, Ideker T. Hierarchical association of COPD to principal genetic components of biological systems. PLoS One 2023; 18:e0286064. [PMID: 37228113 DOI: 10.1371/journal.pone.0286064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Many disease-causing genetic variants converge on common biological functions and pathways. Precisely how to incorporate pathway knowledge in genetic association studies is not yet clear, however. Previous approaches employ a two-step approach, in which a regular association test is first performed to identify variants associated with the disease phenotype, followed by a test for functional enrichment within the genes implicated by those variants. Here we introduce a concise one-step approach, Hierarchical Genetic Analysis (Higana), which directly computes phenotype associations against each function in the large hierarchy of biological functions documented by the Gene Ontology. Using this approach, we identify risk genes and functions for Chronic Obstructive Pulmonary Disease (COPD), highlighting microtubule transport, muscle adaptation, and nicotine receptor signaling pathways. Microtubule transport has not been previously linked to COPD, as it integrates genetic variants spread over numerous genes. All associations validate strongly in a second COPD cohort.
Collapse
Affiliation(s)
- Daniel E Carlin
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, United States of America
| | | | - Vikram Sirupurapu
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, United States of America
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Jan Baumbach
- Department of Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Trey Ideker
- Department of Medicine, Division of Genetics, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
5
|
SERPINA1 and More? A Putative Genetic Contributor to Pulmonary Dysfunction in Alpha-1 Antitrypsin Deficiency. J Clin Med 2023; 12:jcm12051708. [PMID: 36902496 PMCID: PMC10003154 DOI: 10.3390/jcm12051708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a common inherited disorder associated with an increased risk of pulmonary disease. Its clinical presentation, including the nature and severity of organ involvement, is highly variable and unpredictable and is not as strongly linked to genotype and environmental exposure (e.g., smoking history) as might be expected. Significant differences were observed within matched populations of severe AATD patients regarding risk of complications, age at onset, and disease course, including the dynamics of lung function decline. Genetic factors are among the putative modifiers contributing to the clinical variability in AATD, yet their role remains elusive. Here, we review and summarise our current understanding of epigenetic and genetic modifiers of pulmonary dysfunction in subjects with AATD.
Collapse
|
6
|
Faherty L, Kenny S, Cloonan SM. Iron and mitochondria in the susceptibility, pathogenesis and progression of COPD. Clin Sci (Lond) 2023; 137:219-237. [PMID: 36729089 DOI: 10.1042/cs20210504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease characterised by airflow limitation, chronic bronchitis, emphysema and airway remodelling. Cigarette smoke is considered the primary risk factor for the development of COPD; however, genetic factors, host responses and infection also play an important role. Accumulating evidence highlights a role for iron dyshomeostasis and cellular iron accumulation in the lung as a key contributing factor in the development and pathogenesis of COPD. Recent studies have also shown that mitochondria, the central players in cellular iron utilisation, are dysfunctional in respiratory cells in individuals with COPD, with alterations in mitochondrial bioenergetics and dynamics driving disease progression. Understanding the molecular mechanisms underlying the dysfunction of mitochondria and cellular iron metabolism in the lung may unveil potential novel investigational avenues and therapeutic targets to aid in the treatment of COPD.
Collapse
Affiliation(s)
- Lynne Faherty
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suzanne M Cloonan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, U.S.A
| |
Collapse
|
7
|
Biological and Genetic Mechanisms of COPD, Its Diagnosis, Treatment, and Relationship with Lung Cancer. Biomedicines 2023; 11:biomedicines11020448. [PMID: 36830984 PMCID: PMC9953173 DOI: 10.3390/biomedicines11020448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most prevalent chronic adult diseases, with significant worldwide morbidity and mortality. Although long-term tobacco smoking is a critical risk factor for this global health problem, its molecular mechanisms remain unclear. Several phenomena are thought to be involved in the evolution of emphysema, including airway inflammation, proteinase/anti-proteinase imbalance, oxidative stress, and genetic/epigenetic modifications. Furthermore, COPD is one main risk for lung cancer (LC), the deadliest form of human tumor; formation and chronic inflammation accompanying COPD can be a potential driver of malignancy maturation (0.8-1.7% of COPD cases develop cancer/per year). Recently, the development of more research based on COPD and lung cancer molecular analysis has provided new light for understanding their pathogenesis, improving the diagnosis and treatments, and elucidating many connections between these diseases. Our review emphasizes the biological factors involved in COPD and lung cancer, the advances in their molecular mechanisms' research, and the state of the art of diagnosis and treatments. This work combines many biological and genetic elements into a single whole and strongly links COPD with lung tumor features.
Collapse
|
8
|
Forder A, Zhuang R, Souza VGP, Brockley LJ, Pewarchuk ME, Telkar N, Stewart GL, Benard K, Marshall EA, Reis PP, Lam WL. Mechanisms Contributing to the Comorbidity of COPD and Lung Cancer. Int J Mol Sci 2023; 24:ijms24032859. [PMID: 36769181 PMCID: PMC9918127 DOI: 10.3390/ijms24032859] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Lung cancer and chronic obstructive pulmonary disease (COPD) often co-occur, and individuals with COPD are at a higher risk of developing lung cancer. While the underlying mechanism for this risk is not well understood, its major contributing factors have been proposed to include genomic, immune, and microenvironment dysregulation. Here, we review the evidence and significant studies that explore the mechanisms underlying the heightened lung cancer risk in people with COPD. Genetic and epigenetic changes, as well as the aberrant expression of non-coding RNAs, predispose the lung epithelium to carcinogenesis by altering the expression of cancer- and immune-related genes. Oxidative stress generated by tobacco smoking plays a role in reducing genomic integrity, promoting epithelial-mesenchymal-transition, and generating a chronic inflammatory environment. This leads to abnormal immune responses that promote cancer development, though not all smokers develop lung cancer. Sex differences in the metabolism of tobacco smoke predispose females to developing COPD and accumulating damage from oxidative stress that poses a risk for the development of lung cancer. Dysregulation of the lung microenvironment and microbiome contributes to chronic inflammation, which is observed in COPD and known to facilitate cancer initiation in various tumor types. Further, there is a need to better characterize and identify the proportion of individuals with COPD who are at a high risk for developing lung cancer. We evaluate possible novel and individualized screening strategies, including biomarkers identified in genetic studies and exhaled breath condensate analysis. We also discuss the use of corticosteroids and statins as chemopreventive agents to prevent lung cancer. It is crucial that we optimize the current methods for the early detection and management of lung cancer and COPD in order to improve the health outcomes for a large affected population.
Collapse
Affiliation(s)
- Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Zhuang
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle E Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erin A Marshall
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
9
|
Meng D, Zhu C, Jia R, Li Z, Wang W, Song S. The molecular mechanism of ferroptosis and its role in COPD. Front Med (Lausanne) 2023; 9:1052540. [PMID: 36687445 PMCID: PMC9852995 DOI: 10.3389/fmed.2022.1052540] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Ferroptosis, a new type of cell death, is mainly characterized by intracellular iron accumulation and lipid peroxidation. The complex regulatory network of iron metabolism, lipid metabolism, amino acid metabolism, p53-related signaling, and Nrf2-related signaling factors is involved in the entire process of ferroptosis. It has been reported that ferroptosis is involved in the pathogenesis of neurological diseases, cancer, and ischemia-reperfusion injury. Recent studies found that ferroptosis is closely related to the pathogenesis of COPD, which, to some extent, indicates that ferroptosis is a potential therapeutic target for COPD. This article mainly discusses the related mechanisms of ferroptosis, including metabolic regulation and signaling pathway regulation, with special attention to its role in the pathogenesis of COPD, aiming to provide safe and effective therapeutic targets for chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Dandan Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengfeng Zhu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Jia
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zongxin Li
- Department of Second Department of Haematology, Jinan Haematology Hospital, Jinan, China
| | - Wantao Wang
- Department of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Wantao Wang ✉
| | - Suhua Song
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,Suhua Song ✉
| |
Collapse
|
10
|
Kim W, Hecker J, Barr RG, Boerwinkle E, Cade B, Correa A, Dupuis J, Gharib SA, Lange L, London SJ, Morrison AC, O'Connor GT, Oelsner EC, Psaty BM, Vasan RS, Redline S, Rich SS, Rotter JI, Yu B, Lange C, Manichaikul A, Zhou JJ, Sofer T, Silverman EK, Qiao D, Cho MH. Assessing the contribution of rare genetic variants to phenotypes of chronic obstructive pulmonary disease using whole-genome sequence data. Hum Mol Genet 2022; 31:3873-3885. [PMID: 35766891 PMCID: PMC9652112 DOI: 10.1093/hmg/ddac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/13/2022] [Accepted: 05/16/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Genetic variation has a substantial contribution to chronic obstructive pulmonary disease (COPD) and lung function measurements. Heritability estimates using genome-wide genotyping data can be biased if analyses do not appropriately account for the nonuniform distribution of genetic effects across the allele frequency and linkage disequilibrium (LD) spectrum. In addition, the contribution of rare variants has been unclear. OBJECTIVES We sought to assess the heritability of COPD and lung function using whole-genome sequence data from the Trans-Omics for Precision Medicine program. METHODS Using the genome-based restricted maximum likelihood method, we partitioned the genome into bins based on minor allele frequency and LD scores and estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio in 11 051 European ancestry and 5853 African-American participants. MEASUREMENTS AND MAIN RESULTS In European ancestry participants, the estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio were 35.5%, 55.6% and 32.5%, of which 18.8%, 19.7%, 17.8% were from common variants, and 16.6%, 35.8%, and 14.6% were from rare variants. These estimates had wide confidence intervals, with common variants and some sets of rare variants showing a statistically significant contribution (P-value < 0.05). In African-Americans, common variant heritability was similar to European ancestry participants, but lower sample size precluded calculation of rare variant heritability. CONCLUSIONS Our study provides updated and unbiased estimates of heritability for COPD and lung function, and suggests an important contribution of rare variants. Larger studies of more diverse ancestry will improve accuracy of these estimates.
Collapse
Affiliation(s)
- Wonji Kim
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - R Graham Barr
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Josée Dupuis
- Department of Biostatistics, Boston University of Public Health, Boston, MA 02118, USA
| | - Sina A Gharib
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Leslie Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Alanna C Morrison
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - George T O'Connor
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Elizabeth C Oelsner
- Departments of Medicine and Epidemiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
- Departments of Epidemiology and Health Services, University of Washington, Seattle, WA 98101, USA
| | - Ramachandran S Vasan
- Lung and Blood Institute Framingham Heart Study, Boston University and National Heart, Framingham, MA 01702, USA
- Department of Preventive Medicine and Epidemiology, School of Medicine and Public Health, Boston University, Boston, MA 02118, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christoph Lange
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jin J Zhou
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ 85721, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorder, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Cui Y, Gutierrez S, Ariai S, Öberg L, Thörn K, Gehrmann U, Cloonan SM, Naessens T, Olsson H. Non-heme iron overload impairs monocyte to macrophage differentiation via mitochondrial oxidative stress. Front Immunol 2022; 13:998059. [PMID: 36341326 PMCID: PMC9634638 DOI: 10.3389/fimmu.2022.998059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Iron is a key element for systemic oxygen delivery and cellular energy metabolism. Thus regulation of systemic and local iron metabolism is key for maintaining energy homeostasis. Significant changes in iron levels due to malnutrition or hemorrhage, have been associated with several diseases such as hemochromatosis, liver cirrhosis and COPD. Macrophages are key cells in regulating iron levels in tissues as they sequester excess iron. How iron overload affects macrophage differentiation and function remains a subject of debate. Here we used an in vitro model of monocyte-to-macrophage differentiation to study the effect of iron overload on macrophage function. We found that providing excess iron as soluble ferric ammonium citrate (FAC) rather than as heme-iron complexes derived from stressed red blood cells (sRBC) interferes with macrophage differentiation and phagocytosis. Impaired macrophage differentiation coincided with increased expression of oxidative stress-related genes. Addition of FAC also led to increased levels of cellular and mitochondrial reactive oxygen species (ROS) and interfered with mitochondrial function and ATP generation. The effects of iron overload were reproduced by the mitochondrial ROS-inducer rotenone while treatment with the ROS-scavenger N-Acetylcysteine partially reversed FAC-induced effects. Finally, we found that iron-induced oxidative stress interfered with upregulation of M-CSFR and MAFB, two crucial determinants of macrophage differentiation and function. In summary, our findings suggest that high levels of non-heme iron interfere with macrophage differentiation by inducing mitochondrial oxidative stress. These findings might be important to consider in the context of diseases like chronic obstructive pulmonary disease (COPD) where both iron overload and defective macrophage function have been suggested to play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Yue Cui
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- *Correspondence: Yue Cui, ; Saray Gutierrez,
| | - Saray Gutierrez
- Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- *Correspondence: Yue Cui, ; Saray Gutierrez,
| | - Sheller Ariai
- Early Product Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Öberg
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thörn
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- School of Medicine, Trinity Biomedical Sciences Institute and Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Thomas Naessens
- Bioscience Cough & In vivo, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
12
|
Yang L, Yang Z, Zuo C, Lv X, Liu T, Jia C, Chen H. Epidemiological evidence for associations between variants in CHRNA genes and risk of lung cancer and chronic obstructive pulmonary disease. Front Oncol 2022; 12:1001864. [PMID: 36276121 PMCID: PMC9582127 DOI: 10.3389/fonc.2022.1001864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background Genetic studies have previously reported that single-nucleotide polymorphisms (SNPs) in CHRNA genes (such as CHRNA3, CHRNA4, CHRNA5, or CHRNA3-CHRNA5-CHRNB4 clusters) are linked to the risk of neoplastic and non-neoplastic diseases. However, these conclusions were controversial and no systematic research synopsis has been available. We aimed to synthesize current knowledge of variants in the CHRNA genes on the risk of diseases. Methods We systematically searched for publications using PubMed, Medline, and Web of Science on or before 25 August 2021. A total of 1,818 publications were identified, of which 29 were deemed eligible for inclusion that could be used to perform meta-analysis based on at least three data sources to assess whether the morbidity associated with neoplastic and non-neoplastic diseases can be attributed to SNPs in CHRNA genes. To further evaluate the authenticity of cumulative evidence proving significant associations, the present study covered the Venice criteria and false-positive report probability tests. Through the Encyclopedia of DNA Elements (ENCODE) project, we created functional annotations for strong associations. Results Meta-analyses were done for nine genetic variants with two diseases {chronic obstructive pulmonary disease (COPD) and lung cancer (LC)}that had at least three data sources. Interestingly, eight polymorphisms were significantly related to changes in the susceptibility COPD and LC (p < 0.05). Of these, strong evidence was assigned to six variants (28 significant associations): CHRNA3 rs1051730, CHRNA3 rs6495309, and CHRNA5 rs16969968 with COPD risk, and CHRNA3 rs1051730, CHRNA3 rs578776, CHRNA3 rs6495309, CHRNA3 rs938682, CHRNA5 rs16969968, and CHRNA5 rs588765 with LC risk; moderate evidence was assigned to five SNPs (12 total associations) with LC or COPD risk. Data from ENCODE and other public databases showed that SNPs with strong evidence may be located in presumptive functional regions. Conclusions Our study summarized comprehensive evidence showing that common mutations in CHRNA genes are strongly related to LC and COPD risk. The study also elucidated the vital function of CHRNA genes in genetic predispositions to human diseases.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zelin Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjian Zuo
- Department of Thoracic Surgery, Army Medical Center of People’s Liberation Army of China (PLA), Chongqing, China
| | - Xiaolong Lv
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyu Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenhao Jia
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huanwen Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Huanwen Chen,
| |
Collapse
|
13
|
Physiological Effects of Ferroptosis on Organ Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5295434. [PMID: 36238649 PMCID: PMC9553398 DOI: 10.1155/2022/5295434] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a new type of programmed cell death with unique morphological, biochemical, and genetic features. From the initial study of histomorphology to the exploration of subcellular organelles and even molecular mechanisms, a net connecting ferroptosis and fibrosis is being woven and formed. Inflammation may be the bridge between both processes. In this review, we will discuss the ferroptosis theory and process and the physiological functions of ferroptosis, followed by a description of the pathological effects and the underlying mechanisms of ferroptosis in the pathogenesis of tumorigenesis, ischemic damage, degenerative lesions, autoimmune diseases, and necroinflammation. We then focus on the role of ferroptosis in the fibrosis process in the liver, lung, kidney, heart, and other organs. Although the molecular mechanism of ferroptosis has been explored extensively in the past few years, many challenges remain to be resolved to translate this information into antifibrotic practice, which is becoming a promising new direction in the field of fibrotic disease prevention and treatment.
Collapse
|
14
|
Targeting ferroptosis as a vulnerability in pulmonary diseases. Cell Death Dis 2022; 13:649. [PMID: 35882850 PMCID: PMC9315842 DOI: 10.1038/s41419-022-05070-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent regulated cell death marked by excessive oxidative phospholipids (PLs). The polyunsaturated fatty acids-containing phospholipids (PUFA-PLs) are highly susceptible to lipid peroxidation under oxidative stress. Numerous pulmonary diseases occurrences and degenerative pathologies are driven by ferroptosis. This review discusses the role of ferroptosis in the pathogenesis of pulmonary diseases including asthma, lung injury, lung cancer, fibrotic lung diseases, and pulmonary infection. Additionally, it is proposed that targeting ferroptosis is a potential treatment for pulmonary diseases, particularly drug-resistant lung cancer or antibiotic-resistant pulmonary infection, and reduces treatment-related adverse events.
Collapse
|
15
|
Role of Iron in Aging Related Diseases. Antioxidants (Basel) 2022; 11:antiox11050865. [PMID: 35624729 PMCID: PMC9137504 DOI: 10.3390/antiox11050865] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Iron progressively accumulates with age and can be further exacerbated by dietary iron intake, genetic factors, and repeated blood transfusions. While iron plays a vital role in various physiological processes within the human body, its accumulation contributes to cellular aging in several species. In its free form, iron can initiate the formation of free radicals at a cellular level and contribute to systemic disorders. This is most evident in high iron conditions such as hereditary hemochromatosis, when accumulation of iron contributes to the development of arthritis, cirrhosis, or cardiomyopathy. A growing body of research has further identified iron’s contributory effects in neurodegenerative diseases, ocular disorders, cancer, diabetes, endocrine dysfunction, and cardiovascular diseases. Reducing iron levels by repeated phlebotomy, iron chelation, and dietary restriction are the common therapeutic considerations to prevent iron toxicity. Chelators such as deferoxamine, deferiprone, and deferasirox have become the standard of care in managing iron overload conditions with other potential applications in cancer and cardiotoxicity. In certain animal models, drugs with iron chelating ability have been found to promote health and even extend lifespan. As we further explore the role of iron in the aging process, iron chelators will likely play an increasingly important role in our health.
Collapse
|
16
|
Ghio AJ, Pavlisko EN, Roggli VL, Todd NW, Sangani RG. Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. Int J Chron Obstruct Pulmon Dis 2022; 17:117-140. [PMID: 35046648 PMCID: PMC8763205 DOI: 10.2147/copd.s337354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
It is proposed that the mechanistic basis for non-neoplastic lung injury with cigarette smoking is a disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP). Following the complexation and sequestration of intracellular iron by CSP, the host response (eg, inflammation, mucus production, and fibrosis) attempts to reverse a functional metal deficiency. Clinical manifestations of this response can present as respiratory bronchiolitis, desquamative interstitial pneumonitis, pulmonary Langerhans’ cell histiocytosis, asthma, pulmonary hypertension, chronic bronchitis, and pulmonary fibrosis. If the response is unsuccessful, the functional deficiency of iron progresses to irreversible cell death evident in emphysema and bronchiectasis. The subsequent clinical and pathological presentation is a continuum of lung injuries, which overlap and coexist with one another. Designating these non-neoplastic lung injuries after smoking as distinct disease processes fails to recognize shared relationships to each other and ultimately to CSP, as well as the common mechanistic pathway (ie, disruption of iron homeostasis).
Collapse
Affiliation(s)
- Andrew J Ghio
- Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, 27514, USA
- Correspondence: Andrew J Ghio Human Studies Facility, US Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC, USA Email
| | | | | | - Nevins W Todd
- Department of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Rahul G Sangani
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
17
|
Aloufi N, Alluli A, Eidelman DH, Baglole CJ. Aberrant Post-Transcriptional Regulation of Protein Expression in the Development of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222111963. [PMID: 34769392 PMCID: PMC8584689 DOI: 10.3390/ijms222111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Noof Aloufi
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medical Laboratory Technology, Applied Medical Science, Taibah University, Universities Road, Medina P.O. Box 344, Saudi Arabia
| | - Aeshah Alluli
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Carolyn J. Baglole
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
18
|
Ye Z, Mo C, Liu S, Hatch KS, Gao S, Ma Y, Hong LE, Thompson PM, Jahanshad N, Acheson A, Garavan H, Shen L, Nichols TE, Kochunov P, Chen S, Ma T. White Matter Integrity and Nicotine Dependence: Evaluating Vertical and Horizontal Pleiotropy. Front Neurosci 2021; 15:738037. [PMID: 34720862 PMCID: PMC8551454 DOI: 10.3389/fnins.2021.738037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 01/26/2023] Open
Abstract
Tobacco smoking is an addictive behavior that supports nicotine dependence and is an independent risk factor for cancer and other illnesses. Its neurogenetic mechanisms are not fully understood but may act through alterations in the cerebral white matter (WM). We hypothesized that the vertical pleiotropic pathways, where genetic variants influence a trait that in turn influences another trait, link genetic factors, integrity of cerebral WM, and nicotine addiction. We tested this hypothesis using individual genetic factors, WM integrity measured by fractional anisotropy (FA), and nicotine dependence-related smoking phenotypes, including smoking status (SS) and cigarettes per day (CPDs), in a large epidemiological sample collected by the UK Biobank. We performed a genome-wide association study (GWAS) to identify previously reported loci associated with smoking behavior. Smoking was found to be associated with reduced WM integrity in multiple brain regions. We then evaluated two competing vertical pathways: Genes → WM integrity → Smoking versus Genes → Smoking → WM integrity and a horizontal pleiotropy pathway where genetic factors independently affect both smoking and WM integrity. The causal pathway analysis identified 272 pleiotropic single-nucleotide polymorphisms (SNPs) whose effects on SS were mediated by FA, as well as 22 pleiotropic SNPs whose effects on FA were mediated by CPD. These SNPs were mainly located in important susceptibility genes for smoking-induced diseases NCAM1 and IREB2. Our findings revealed the role of cerebral WM in the maintenance of the complex addiction and provided potential genetic targets for future research in examining how changes in WM integrity contribute to the nicotine effects on the brain.
Collapse
Affiliation(s)
- Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Chen Mo
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kathryn S Hatch
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Si Gao
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Yizhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ashley Acheson
- Department of Psychiatry and Behavioral Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hugh Garavan
- Department of Psychiatry, The University of Vermont, Burlington, VT, United States
| | - Li Shen
- Department of Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas E Nichols
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Tianzhou Ma
- Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
19
|
Mizumura K, Gon Y. Iron-Regulated Reactive Oxygen Species Production and Programmed Cell Death in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2021; 10:antiox10101569. [PMID: 34679704 PMCID: PMC8533398 DOI: 10.3390/antiox10101569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent respiratory symptoms and airflow limitation. However, the pathogenesis of COPD remains unclear. Currently, it is known to involve the loss of alveolar surface area (emphysema) and airway inflammation (bronchitis), primarily due to exposure to cigarette smoke (CS). CS causes epithelial cell death, resulting in pulmonary emphysema. Moreover, CS induces iron accumulation in the mitochondria and cytosol, resulting in programmed cell death. Although apoptosis has long been investigated as the sole form of programmed cell death in COPD, accumulating evidence indicates that a regulated form of necrosis, called necroptosis, and a unique iron-dependent form of non-apoptotic cell death, called ferroptosis, is implicated in the pathogenesis of COPD. Iron metabolism plays a key role in producing reactive oxygen species (ROS), including mitochondrial ROS and lipid peroxidation end-products, and activating both necroptosis and ferroptosis. This review outlines recent studies exploring CS-mediated iron metabolism and ROS production, along with the regulation of programmed cell death in COPD. Elucidating the mechanisms of these pathways may provide novel therapeutic targets for COPD.
Collapse
|
20
|
Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res 2021; 22:133. [PMID: 33926483 PMCID: PMC8082489 DOI: 10.1186/s12931-021-01722-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.
Collapse
|
21
|
DeMeo DL. Sex and Gender Omic Biomarkers in Men and Women With COPD: Considerations for Precision Medicine. Chest 2021; 160:104-113. [PMID: 33745988 DOI: 10.1016/j.chest.2021.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Sex and gender differences in lung health and disease are imperative to consider and study if precision pulmonary medicine is to be achieved. The development of reliable COPD biomarkers has been elusive, and the translation of biomarkers to clinical care has been limited. Useful and effective biomarkers must be developed with attention to clinical heterogeneity of COPD; inherent heterogeneity exists related to grouping women and men together in the studies of COPD. Considering sex and gender differences and influences related to -omics may represent progress in susceptibility, diagnostic, prognostic, and therapeutic biomarker development and clinical innovation to improve the lung health of men and women.
Collapse
Affiliation(s)
- Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
22
|
Hopkins RJ, Duan F, Gamble GD, Chiles C, Cavadino A, Billings P, Aberle D, Young RP. Chr15q25 genetic variant (rs16969968) independently confers risk of lung cancer, COPD and smoking intensity in a prospective study of high-risk smokers. Thorax 2021; 76:272-280. [PMID: 33419953 DOI: 10.1136/thoraxjnl-2020-214839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
IMPORTANCE While cholinergic receptor nicotinic alpha 5 (CHRNA5) variants have been linked to lung cancer, chronic obstructive pulmonary disease (COPD) and smoking addiction in case-controls studies, their corelationship is not well understood and requires retesting in a cohort study. OBJECTIVE To re-examine the association between the CHRNA5 variant (rs16969968 AA genotype) and the development of lung cancer, relative to its association with COPD and smoking. METHODS In 9270 Non-Hispanic white subjects from the National Lung Screening Trial, a substudy of high-risk smokers were followed for an average of 6.4 years. We compared CHRNA5 genotype according to baseline smoking exposure, lung function and COPD status. We also compared the lung cancer incidence rate, and used multiple logistic regression and mediation analysis to examine the role of the AA genotype of the CHRNA5 variant in smoking exposure, COPD and lung cancer. RESULTS As previously reported, we found the AA high-risk genotype was associated with lower lung function (p=0.005), greater smoking intensity (p<0.001), the presence of COPD (OR 1.28 (95% CI 1.10 to 1.49) p=0.0015) and the development of lung cancer (HR 1.41, (95% CI 1.03 to 1.93) p=0.03). In a mediation analyses, the AA genotype was independently associated with smoking intensity (OR 1.42 (95% CI 1.25 to 1.60, p<0.0001), COPD (OR 1.25, (95% CI 1.66 to 2.53), p=0.0015) and developing lung cancer (OR 1.37, (95% CI 1.03 to 1.82) p=0.03). CONCLUSION In this large-prospective study, we found the CHRNA5 rs 16 969 968 AA genotype to be independently associated with smoking exposure, COPD and lung cancer (triple whammy effect).
Collapse
Affiliation(s)
- Raewyn J Hopkins
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Fenghai Duan
- Department of Biostatistics and Centre for Statistical Science, Brown University, Providence, Rhode Island, USA
| | - Greg D Gamble
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Caroline Chiles
- Department of Radiology, Wake Forest Baptist Medical Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | - Alana Cavadino
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| | | | - Denise Aberle
- Department of Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, California, USA
| | - Robert P Young
- The University of Auckland Faculty of Medical and Health Sciences, Auckland, New Zealand
| |
Collapse
|
23
|
Zeng Q, Chen Q, Zou D, Guo R, Xiao D, Jiang S, Chen R, Wang Y, Ma G. Different Associations Between the IREB2 Variants and Chronic Obstructive Pulmonary Disease Susceptibility. Front Genet 2020; 11:598053. [PMID: 33304392 PMCID: PMC7701307 DOI: 10.3389/fgene.2020.598053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
Background: Iron responsive element binding protein 2 (IREB2) variants may be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). Recently, many studies have been performed on IREB2 susceptibility variants, including rs2568494, rs2656069, rs10851906, rs12593229, and rs13180, associated with COPD. However, inconsistent findings have been reported. The aim of our research was to determine the association of IREB2 SNPs with COPD. Methods: A comprehensive meta-analysis was performed to accurately estimate the association between IREB2 variants and COPD among four different genetic models. Results: This meta-analysis included a total of 4,096 patients and 5,870 controls. Here, we investigated the 5 IREB2 variants to identify COPD risk. Our results indicate that rs2568494 was associated with an increased risk of COPD for the dominant model (AA+GA vs. GG: OR = 1.150, 95% CI: 1.5–1.304, P = 0.029); rs2656069 was associated with a decreased risk of COPD for the recessive model (GG vs. AA+AG: OR = 0.589, 95% CI: 0.440–0.789; P = 0.000), additive model (GG vs. AA: OR =0.641, 95% CI: 0.441–0.931; P = 0.020), and allele model (G vs. A: OR = 0.812, 95% CI: 0.668–0.988; P = 0.037); and rs10851906 was associated with a decreased risk of COPD for the recessive model (GG vs. AA+AG: OR = 0.732, 95% CI: 0.560–0.958; P = 0.023) and additive model (GG vs. AA: OR = 0.777, 95% CI: 0.637–0.947; P = 0.012). Conclusion: Our findings suggest that the IREB2 rs2568494 minor alleles A may be a genetic factor in susceptibility to COPD. In addition, the minor alleles G of rs2656069 and rs10851906 appear to have a protective effect.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Qikang Chen
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Dehua Zou
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Runmin Guo
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.,Department of Medicine, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Dawei Xiao
- Department of Medicine, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Shaohu Jiang
- Department of Pediatrics, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.,Department of Pediatrics, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yajun Wang
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.,Department of Medicine, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
24
|
Wang L, Fang R, Zhu M, Qin N, Wang Y, Fan J, Sun Q, Ji M, Fan X, Xie J, Ma H, Dai J. Integrated gene-based and pathway analyses using UK Biobank data identify novel genes for chronic respiratory diseases. Gene 2020; 767:145287. [PMID: 33181258 DOI: 10.1016/j.gene.2020.145287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Chronic respiratory diseases have become a non-negligible cause of death globally. Although smoking and environmental exposures are primary risk factors for chronic respiratory diseases, genetic factors also play an important role in determining individual's susceptibility to diseases. Here we performed integrated gene-based and pathway analyses to systematically illuminate the heritable characteristics of chronic respiratory diseases. METHODS UK (United Kingdom) Biobank is a very large, population-based prospective study with over 500,000 participants, established to allow detailed investigations of the genetic and nongenetic determinants of the diseases. Utilizing the GWAS-summarized data downloaded from UK Biobank, we conducted gene-based analysis to obtain associations of susceptibility genes with asthma, chronic obstructive pulmonary disease(COPD) and pneumonia using FUSION and MAGMA software. Across the identified susceptibility regions, functional annotation integrating multiple functional data sources was performed to explore potential regulatory mechanisms with INQUISIT algorithm. To further detect the biological process involved in the development of chronic respiratory diseases, we undertook pathway enrichment analysis with the R package (clusterProfiler). RESULTS A total of 195 susceptibility genes were identified significantly associated with chronic respiratory diseases (Pbonferroni < 0.05), and 24/195 located out of known susceptibility regions (e.g. WDPCP in 2p15). Within the identified susceptibility regions, functional annotation revealed an aggregation of credible variants in promoter-like and enhancer-like histone modification regions and such regulatory mechanisms were specific to lung tissues. Furthermore, 110 genes with INQUISIT score ≥1 may influence diseases susceptibility through exerting effects on coding sequences, proximal promoter and distal enhancer regulations. Pathway enrichment results showed that these genes were enriched in immune-related processes and nicotinic acetylcholine receptors pathways. CONCLUSIONS This study implemented an integrated gene-based and pathway strategy to explore the underlying biological mechanisms and our findings may serve as promising targets for future clinical treatments of chronic respiratory diseases.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Fang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Na Qin
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingyi Fan
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qi Sun
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengmeng Ji
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xikang Fan
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junxing Xie
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
25
|
Zhou RP, Chen Y, Wei X, Yu B, Xiong ZG, Lu C, Hu W. Novel insights into ferroptosis: Implications for age-related diseases. Theranostics 2020; 10:11976-11997. [PMID: 33204324 PMCID: PMC7667696 DOI: 10.7150/thno.50663] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Rapid increase in aging populations is an urgent problem because older adults are more likely to suffer from disabilities and age-related diseases (ARDs), burdening healthcare systems and society in general. ARDs are characterized by the progressive deterioration of tissues and organs over time, eventually leading to tissue and organ failure. To date, there are no effective interventions to prevent the progression of ARDs. Hence, there is an urgent need for new treatment strategies. Ferroptosis, an iron-dependent cell death, is linked to normal development and homeostasis. Accumulating evidence, however, has highlighted crucial roles for ferroptosis in ARDs, including neurodegenerative and cardiovascular diseases. In this review, we a) summarize initiation, regulatory mechanisms, and molecular signaling pathways involved in ferroptosis, b) discuss the direct and indirect involvement of the activation and/or inhibition of ferroptosis in the pathogenesis of some important diseases, and c) highlight therapeutic targets relevant for ARDs.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Bin Yu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
26
|
Perez E, Baker JR, Di Giandomenico S, Kermani P, Parker J, Kim K, Yang J, Barnes PJ, Vaulont S, Scandura JM, Donnelly LE, Stout-Delgado H, Cloonan SM. Hepcidin Is Essential for Alveolar Macrophage Function and Is Disrupted by Smoke in a Murine Chronic Obstructive Pulmonary Disease Model. THE JOURNAL OF IMMUNOLOGY 2020; 205:2489-2498. [PMID: 32958690 DOI: 10.4049/jimmunol.1901284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease associated with cigarette smoking. Alterations in local lung and systemic iron regulation are associated with disease progression and pathogenesis. Hepcidin, an iron regulatory peptide hormone, is altered in subjects with COPD; however, the molecular role of hepcidin in COPD pathogenesis remains to be determined. In this study, using a murine model of smoke-induced COPD, we demonstrate that lung and circulating hepcidin levels are inhibited by cigarette smoke. We show that cigarette smoke exposure increases erythropoietin and bone marrow-derived erythroferrone and leads to expanded but inefficient erythropoiesis in murine bone marrow and an increase in ferroportin on alveolar macrophages (AMs). AMs from smokers and subjects with COPD display increased expression of ferroportin as well as hepcidin. Notably, murine AMs exposed to smoke fail to increase hepcidin in response to Gram-negative or Gram-positive infection. Loss of hepcidin in vivo results in blunted functional responses of AMs and exaggerated responses to Streptococcus pneumoniae infection.
Collapse
Affiliation(s)
- Elizabeth Perez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jonathan R Baker
- Airway Disease Section, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | - Silvana Di Giandomenico
- Division of Hematology and Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Pouneh Kermani
- Division of Hematology and Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jacqueline Parker
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Jianjun Yang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | - Sophie Vaulont
- Université de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, 75014 Paris, France.,Laboratory of Excellence GR-Ex, 75015 Paris, France; and
| | - Joseph M Scandura
- Division of Hematology and Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065.,New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065
| | - Louise E Donnelly
- Airway Disease Section, National Heart and Lung Institute, Imperial College London and Royal Brompton Hospital, London SW3 6NP, United Kingdom
| | - Heather Stout-Delgado
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065; .,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin D24 NR04, Ireland
| |
Collapse
|
27
|
Zhang WZ, Oromendia C, Kikkers SA, Butler JJ, O'Beirne S, Kim K, O'Neal WK, Freeman CM, Christenson SA, Peters SP, Wells JM, Doerschuk C, Putcha N, Barjaktarevic I, Woodruff PG, Cooper CB, Bowler RP, Comellas AP, Criner GJ, Paine R, Hansel NN, Han MK, Crystal RG, Kaner RJ, Ballman KV, Curtis JL, Martinez FJ, Cloonan SM. Increased airway iron parameters and risk for exacerbation in COPD: an analysis from SPIROMICS. Sci Rep 2020; 10:10562. [PMID: 32601308 PMCID: PMC7324559 DOI: 10.1038/s41598-020-67047-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Levels of iron and iron-related proteins including ferritin are higher in the lung tissue and lavage fluid of individuals with chronic obstructive pulmonary disease (COPD), when compared to healthy controls. Whether more iron in the extracellular milieu of the lung associates with distinct clinical phenotypes of COPD, including increased exacerbation susceptibility, is unknown. We measured iron and ferritin levels in the bronchoalveolar lavage fluid (BALF) of participants enrolled in the SubPopulations and InteRmediate Outcome Measures In COPD (SPIROMICS) bronchoscopy sub-study (n = 195). BALF Iron parameters were compared to systemic markers of iron availability and tested for association with FEV1 % predicted and exacerbation frequency. Exacerbations were modelled using a zero-inflated negative binomial model using age, sex, smoking, and FEV1 % predicted as clinical covariates. BALF iron and ferritin were higher in participants with COPD and in smokers without COPD when compared to non-smoker control participants but did not correlate with systemic iron markers. BALF ferritin and iron were elevated in participants who had COPD exacerbations, with a 2-fold increase in BALF ferritin and iron conveying a 24% and 2-fold increase in exacerbation risk, respectively. Similar associations were not observed with plasma ferritin. Increased airway iron levels may be representative of a distinct pathobiological phenomenon that results in more frequent COPD exacerbation events, contributing to disease progression in these individuals.
Collapse
Affiliation(s)
- William Z Zhang
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- New York-Presbyterian Hospital, New York, New York, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Clara Oromendia
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, USA
| | - Sarah Ann Kikkers
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
| | - James J Butler
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
| | - Sarah O'Beirne
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Kihwan Kim
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
| | - Wanda K O'Neal
- University of North Carolina Marsico Lung Institute, Chapel Hill, North Carolina, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Christine M Freeman
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Stephanie A Christenson
- University of California at San Francisco, San Francisco, California, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Stephen P Peters
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - J Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, UK
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Claire Doerschuk
- University of North Carolina Marsico Lung Institute, Chapel Hill, North Carolina, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Nirupama Putcha
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, University of California Los Angeles Medical Center, Los Angeles, California, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Prescott G Woodruff
- University of California at San Francisco, San Francisco, California, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, University of California Los Angeles Medical Center, Los Angeles, California, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Russell P Bowler
- University of Colorado School of Medicine, Aurora, Colorado, USA
- National Jewish Health, Denver, Colorado, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Alejandro P Comellas
- Division of Pulmonary and Critical Care, University of Iowa, Iowa City, Iowa, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Gerard J Criner
- Department of Pulmonary & Critical Care Medicine, Temple University, Philadelphia, Pennsylvania, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Robert Paine
- Section of Pulmonary and Critical Care Medicine, Salt Lake City Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Nadia N Hansel
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Meilan K Han
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Robert J Kaner
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Karla V Ballman
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey L Curtis
- Pulmonary and Critical Care Medicine Division, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Fernando J Martinez
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA
- New York-Presbyterian Hospital, New York, New York, USA
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA
| | - Suzanne M Cloonan
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, USA.
- School of Medicine, Trinity Biomedical Sciences Institute and Tallaght University Hospital, Trinity College Dublin, Trinity, Ireland.
- SPIROMICS investigators, Collaborative Studies Coordinating Center, Department of Biostatistics Gillings School of Global Public Health, University of North Carolina at Chapel Hill 123 W. Franklin Street Suite 450, Chapel Hill, NC 27516, USA.
| |
Collapse
|
28
|
Zhang J, Kong X, Zhang Y, Sun W, Wang J, Chen M, Chen X. FDXR regulates TP73 tumor suppressor via IRP2 to modulate aging and tumor suppression. J Pathol 2020; 251:284-296. [PMID: 32304229 DOI: 10.1002/path.5451] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/27/2020] [Accepted: 04/03/2020] [Indexed: 11/10/2022]
Abstract
Ferredoxin reductase (FDXR) is a mitochondrial flavoprotein that initiates electron transport from NADPH to several cytochromes P450 via two electron carriers, ferredoxin 1 (FDX1) and FDX2. FDXR is the sole ferredoxin reductase in humans and plays a critical role in steroidogenesis and biosynthesis of heme and iron-sulfur clusters. However, much less is known about the role of FDXR in cancer. Here, we show that FDXR plays a role in tumorigenesis by modulating expression of the tumor suppressor p73. By using genetically modified mouse models, we recently showed that mice deficient in either Fdxr or Trp73 had a shorter lifespan and were prone to spontaneous tumors as compared with wild-type (WT) mice. Interestingly, compound Trp73 +/- ;Fdxr +/- mice lived longer and developed fewer tumors when compared with Fdxr +/- or Trp73 +/- mice. Moreover, we found that cellular senescence was increased in Trp73 +/- and Fdxr +/- mouse embryonic fibroblasts (MEFs), which was further increased in Trp73 +/- ;Fdxr +/- MEFs, as compared with that in WT MEFs. As FDXR is regulated by p73, we examined whether there was a feedback regulation between p73 and FDXR. Indeed, we found that Trp73 expression was decreased by loss of Fdxr in MEFs and that FDXR is required for p73 expression in multiple human cancer cell lines independent of p53. Mechanistically, we found that loss of FDXR, via FDX2, increased expression of iron-binding protein 2 (IRP2), which subsequently repressed TP73 mRNA stability. We also showed that TP73 transcript contained an iron response element in its 3'UTR, which was required for IRP2 to destabilize TP73 mRNA. Together, these data reveal a novel regulation of p73 by FDXR via IRP2 and that the FDXR-p73 axis plays a critical role in aging and tumor suppression. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Wenqiang Sun
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| | - Jian Wang
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
29
|
Sato K, Inoue S, Igarashi A, Tokairin Y, Yamauchi K, Kimura T, Nishiwaki M, Nemoto T, Nakano H, Sato M, Machida H, Yang S, Minegishi Y, Furuyama K, Watanabe M, Shibata Y. Effect of Iron Deficiency on a Murine Model of Smoke-induced Emphysema. Am J Respir Cell Mol Biol 2020; 62:588-597. [DOI: 10.1165/rcmb.2018-0239oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Yoshikane Tokairin
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Michiko Nishiwaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Hiroshi Nakano
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Hiroyoshi Machida
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Sujeong Yang
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Yukihiro Minegishi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Kodai Furuyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University Faculty of Medicine, Yamagata, Japan; and
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
30
|
Zhang WZ, Cloonan SM. To "Fe"ed or Not to "Fe"ed: Iron Depletion Exacerbates Emphysema Development in Murine Smoke Model. Am J Respir Cell Mol Biol 2020; 62:541-542. [PMID: 31743655 PMCID: PMC7193792 DOI: 10.1165/rcmb.2019-0376ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Cornell MedicineNew York, New Yorkand
- New York-Presbyterian HospitalNew York, New York
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Cornell MedicineNew York, New Yorkand
| |
Collapse
|
31
|
Morgan J, Bell R, Jones AL. Endogenous doesn't always mean innocuous: a scoping review of iron toxicity by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:107-136. [PMID: 32106786 DOI: 10.1080/10937404.2020.1731896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ambient air pollution is a leading risk factor for the global burden of disease. One possible pathway of particulate matter (PM)-induced toxicity is through iron (Fe), the most abundant metal in the atmosphere. The aim of the review was to consider the complexity of Fe-mediated toxicity following inhalation exposure focusing on the chemical and surface reactivity of Fe as a transition metal and possible pathways of toxicity via reactive oxygen species (ROS) generation as well as considerations of size, morphology, and source of PM. A broad term search of 4 databases identified 2189 journal articles and reports examining exposure to Fe via inhalation in the past 10 years. These were sequentially analyzed by title, abstract and full-text to identify 87 articles publishing results on the toxicity of Fe-containing PM by inhalation or instillation to the respiratory system. The remaining 87 papers were examined to summarize research dealing with in vitro, in vivo and epidemiological studies involving PM containing Fe or iron oxide following inhalation or instillation. The major findings from these investigations are summarized and tabulated. Epidemiological studies showed that exposure to Fe oxide is correlated with an increased incidence of cancer, cardiovascular diseases, and several respiratory diseases. Iron PM was found to induce inflammatory effects in vitro and in vivo and to translocate to remote locations including the brain following inhalation. A potential pathway for the PM-containing Fe-mediated toxicity by inhalation is via the generation of ROS which leads to lipid peroxidation and DNA and protein oxidation. Our recommendations include an expansion of epidemiological, in vivo and in vitro studies, integrating research improvements outlined in this review, such as the method of particle preparation, cell line type, and animal model, to enhance our understanding of the complex biological interactions of these particles.
Collapse
Affiliation(s)
- Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Robin Bell
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
32
|
Aghapour M, Remels AHV, Pouwels SD, Bruder D, Hiemstra PS, Cloonan SM, Heijink IH. Mitochondria: at the crossroads of regulating lung epithelial cell function in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2020; 318:L149-L164. [PMID: 31693390 PMCID: PMC6985875 DOI: 10.1152/ajplung.00329.2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Disturbances in mitochondrial structure and function in lung epithelial cells have been implicated in the pathogenesis of various lung diseases, including chronic obstructive pulmonary disease (COPD). Such disturbances affect not only cellular energy metabolism but also alter a range of indispensable cellular homeostatic functions in which mitochondria are known to be involved. These range from cellular differentiation, cell death pathways, and cellular remodeling to physical barrier function and innate immunity, all of which are known to be impacted by exposure to cigarette smoke and have been linked to COPD pathogenesis. Next to their well-established role as the first physical frontline against external insults, lung epithelial cells are immunologically active. Malfunctioning epithelial cells with defective mitochondria are unable to maintain homeostasis and respond adequately to further stress or injury, which may ultimately shape the phenotype of lung diseases. In this review, we provide a comprehensive overview of the impact of cigarette smoke on the development of mitochondrial dysfunction in the lung epithelium and highlight the consequences for cell function, innate immune responses, epithelial remodeling, and epithelial barrier function in COPD. We also discuss the applicability and potential therapeutic value of recently proposed strategies for the restoration of mitochondrial function in the treatment of COPD.
Collapse
Affiliation(s)
- Mahyar Aghapour
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control, and Prevention, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany and Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Alexander H V Remels
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Dunja Bruder
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control, and Prevention, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University, Magdeburg, Germany and Immune Regulation Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Stanford I, Weill Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
33
|
Pizzini A, Aichner M, Sonnweber T, Tancevski I, Weiss G, Löffler-Ragg J. The Significance of iron deficiency and anemia in a real-life COPD cohort. Int J Med Sci 2020; 17:2232-2239. [PMID: 32922186 PMCID: PMC7484656 DOI: 10.7150/ijms.46163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Current evidence suggests an increased prevalence of iron deficiency (ID) and anemia in chronic obstructive pulmonary disease (COPD). ID and subsequent anemia can be due to iron losses via bleeding resulting in absolute ID or inflammation-driven retention of iron within macrophages resulting in functional ID and anemia of inflammation. Methods: This is a retrospective analysis of 204 non-exacerbated COPD patients in outpatient care. Current definitions of absolute and functional ID were applied to determine the prevalence of ID and to analyze associations to disease severity in terms of lung function parameters and clinical symptoms. Results: The studied cohort of COPD patients demonstrated a high prevalence of ID, ranging from 30 to 40% during the observation time. At the initial presentation, absolute or functional ID was found in 9.3% to 12.3% of COPD individuals, whereas combined forms of absolute and functional ID were most prevalent (25.9% of all individuals). The prevalence of ID increased during longitudinal follow-up (37 ± 15 months), and especially combined forms of ID were significantly related to anemia. Anemia prevalence ranged between 14.2% and 20.8% during the observation period and anemia was associated with lower FEV1, DLCOc, and CRP elevation. Accordingly, ID was associated with decreased FEV1, DLCOc, and an elevation in CRP. Conclusion: ID is common in COPD patients, but a uniform definition for accurate diagnosis does not exist. Prevalence of functional ID and anemia increased during follow-up. The associations of ID and anemia with reduced functional lung capacity and elevated inflammation may reflect a more severe COPD phenotype.
Collapse
Affiliation(s)
- Alex Pizzini
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Magdalena Aichner
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Infectious Diseases, Pneumology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Rodríguez-Arce I, Al-Jubair T, Euba B, Fernández-Calvet A, Gil-Campillo C, Martí S, Törnroth-Horsefield S, Riesbeck K, Garmendia J. Moonlighting of Haemophilus influenzae heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence 2019; 10:315-333. [PMID: 30973092 PMCID: PMC6550540 DOI: 10.1080/21505594.2019.1596506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023] Open
Abstract
Nutrient iron sequestration is the most significant form of nutritional immunity and causes bacterial pathogens to evolve strategies of host iron scavenging. Cigarette smoking contains iron particulates altering lung and systemic iron homeostasis, which may enhance colonization in the lungs of patients suffering chronic obstructive pulmonary disease (COPD) by opportunistic pathogens such as nontypeable. NTHi is a heme auxotroph, and the NTHi genome contains multiple heme acquisition systems whose role in pulmonary infection requires a global understanding. In this study, we determined the relative contribution to NTHi airway infection of the four heme-acquisition systems HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF that are located at the bacterial outer membrane or the periplasm. Our computational studies provided plausible 3D models for HbpA, SapA, PE, and HxuA interactions with heme. Generation and characterization of single mutants in the hxuCBA, hpe, sapA, and hbpA genes provided evidence for participation in heme binding-storage and inter-bacterial donation. The hxuA, sapA, hbpA, and hpe genes showed differential expression and responded to heme. Moreover, HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF presented moonlighting properties related to resistance to antimicrobial peptides or glutathione import, together likely contributing to the NTHi-host airway interplay, as observed upon cultured airway epithelia and in vivo lung infection. The observed multi-functionality was shown to be system-specific, thus limiting redundancy. Together, we provide evidence for heme uptake systems as bacterial factors that act in a coordinated and multi-functional manner to subvert nutritional- and other sources of host innate immunity during NTHi airway infection.
Collapse
Affiliation(s)
| | - Tamim Al-Jubair
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Begoña Euba
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
35
|
Cho HY, Kleeberger SR. Mitochondrial biology in airway pathogenesis and the role of NRF2. Arch Pharm Res 2019; 43:297-320. [PMID: 31486024 DOI: 10.1007/s12272-019-01182-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
A constant improvement in understanding of mitochondrial biology has provided new insights into mitochondrial dysfunction in human disease pathogenesis. Impaired mitochondrial dynamics caused by various stressors are characterized by structural abnormalities and leakage, compromised turnover, and reactive oxygen species overproduction in mitochondria as well as increased mitochondrial DNA mutation frequency, which leads to modified energy production and mitochondria-derived cell signaling. The mitochondrial dysfunction in airway epithelial, smooth muscle, and endothelial cells has been implicated in diseases including chronic obstructive lung diseases and acute lung injury. Increasing evidence indicates that the NRF2-antioxidant response element (ARE) pathway not only enhances redox defense but also facilitates mitochondrial homeostasis and bioenergetics. Identification of functional or potential AREs further supports the role for Nrf2 in mitochondrial dysfunction-associated airway disorders. While clinical reports indicate mixed efficacy, NRF2 agonists acting on respiratory mitochondrial dynamics are potentially beneficial. In lung cancer, growth advantage provided by sustained NRF2 activation is suggested to be through increased cellular antioxidant defense as well as mitochondria reinforcement and metabolic reprogramming to the preferred pathways to meet the increased energy demands of uncontrolled cell proliferation. Further studies are warranted to better understand NRF2 regulation of mitochondrial functions as therapeutic targets in airway disorders.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| |
Collapse
|
36
|
Wadhwa R, Aggarwal T, Malyla V, Kumar N, Gupta G, Chellappan DK, Dureja H, Mehta M, Satija S, Gulati M, Maurya PK, Collet T, Hansbro PM, Dua K. Identification of biomarkers and genetic approaches toward chronic obstructive pulmonary disease. J Cell Physiol 2019; 234:16703-16723. [DOI: 10.1002/jcp.28482] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ridhima Wadhwa
- Faculty of Life Sciences and Biotechnology South Asian University New Delhi India
| | - Taru Aggarwal
- Amity Institute of Biotechnology Amity University Noida Uttar Pradesh India
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| | - Nitesh Kumar
- Amity Institute for Advanced Research & Studies (M&D) Amity University Noida Uttar Pradesh India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences Jaipur National University, Jagatpura Jaipur Rajasthan India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy International Medical University Bukit Jalil Kuala Lumpur Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences Maharishi Dayanand University Rohtak Haryana India
| | - Meenu Mehta
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Saurabh Satija
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Monica Gulati
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Pawan Kumar Maurya
- Department of Biochemistry Central University of Haryana Mahendergarh Haryana India
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation Queensland University of Technology Brisbane Queensland Australia
| | - Philip Michael Hansbro
- Priority Research Centre for Healthy Lungs University of Newcastle & Hunter Medical Research Institute Newcastle New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
- School of Life Sciences University of Technology Sydney Sydney New South Wales Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs University of Newcastle & Hunter Medical Research Institute Newcastle New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| |
Collapse
|
37
|
Zhang WZ, Butler JJ, Cloonan SM. Smoking-induced iron dysregulation in the lung. Free Radic Biol Med 2019; 133:238-247. [PMID: 30075191 PMCID: PMC6355389 DOI: 10.1016/j.freeradbiomed.2018.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Iron is one of the most abundant transition elements and is indispensable for almost all organisms. While the ability of iron to participate in redox chemistry is an essential requirement for participation in a range of vital enzymatic reactions, this same feature of iron also makes it dangerous in the generation of hydroxyl radicals and superoxide anions. Given the high local oxygen tensions in the lung, the regulation of iron acquisition, utilization, and storage therefore becomes vitally important, perhaps more so than in any other biological system. Iron plays a critical role in the biology of essentially every cell type in the lung, and in particular, changes in iron levels have important ramifications on immune function and the local lung microenvironment. There is substantial evidence that cigarette smoke causes iron dysregulation, with the implication that iron may be the link between smoking and smoking-related lung diseases. A better understanding of the connection between cigarette smoke, iron, and respiratory diseases will help to elucidate pathogenic mechanisms and aid in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- William Z Zhang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Department of Medicine, New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY 10021, USA
| | - James J Butler
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
38
|
Iron in Lung Pathology. Pharmaceuticals (Basel) 2019; 12:ph12010030. [PMID: 30781366 PMCID: PMC6469192 DOI: 10.3390/ph12010030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022] Open
Abstract
The lung presents a unique challenge for iron homeostasis. The entire airway is in direct contact with the environment and its iron particulate matter and iron-utilizing microbes. However, the homeostatic and adaptive mechanisms of pulmonary iron regulation are poorly understood. This review provides an overview of systemic and local lung iron regulation, as well as the roles of iron in the development of lung infections, airway disease, and lung injury. These mechanisms provide an important foundation for the ongoing development of therapeutic applications.
Collapse
|
39
|
Parker MM, Lutz SM, Hobbs BD, Busch R, McDonald MN, Castaldi PJ, Beaty TH, Hokanson JE, Silverman EK, Cho MH. Assessing pleiotropy and mediation in genetic loci associated with chronic obstructive pulmonary disease. Genet Epidemiol 2019; 43:318-329. [PMID: 30740764 DOI: 10.1002/gepi.22192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Genetic association studies have increasingly recognized variant effects on multiple phenotypes. Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with environmental and genetic causes. Multiple genetic variants have been associated with COPD, many of which show significant associations to additional phenotypes. However, it is unknown if these associations represent biological pleiotropy or if they exist through correlation of related phenotypes ("mediated pleiotropy"). Using 6,670 subjects from the COPDGene study, we describe the association of known COPD susceptibility loci with other COPD-related phenotypes and distinguish if these act directly on the phenotypes (i.e., biological pleiotropy) or if the association is due to correlation (i.e., mediated pleiotropy). We identified additional associated phenotypes for 13 of 25 known COPD loci. Tests for pleiotropy between genotype and associated outcomes were significant for all loci. In cases of significant pleiotropy, we performed mediation analysis to test if SNPs had a direct association to phenotype. Most loci showed a mediated effect through the hypothesized causal pathway. However, many loci also had direct associations, suggesting causal explanations (i.e., emphysema leading to reduced lung function) are incomplete. Our results highlight the high degree of pleiotropy in complex disease-associated loci and provide novel insights into the mechanisms underlying COPD.
Collapse
Affiliation(s)
- Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sharon M Lutz
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robert Busch
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - MerryLynn N McDonald
- Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John E Hokanson
- Department of Epidemiology, University of Colorado, Denver, Aurora, Colorado
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
40
|
Integrating predicted transcriptome from multiple tissues improves association detection. PLoS Genet 2019; 15:e1007889. [PMID: 30668570 PMCID: PMC6358100 DOI: 10.1371/journal.pgen.1007889] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/01/2019] [Accepted: 12/12/2018] [Indexed: 11/19/2022] Open
Abstract
Integration of genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) studies is needed to improve our understanding of the biological mechanisms underlying GWAS hits, and our ability to identify therapeutic targets. Gene-level association methods such as PrediXcan can prioritize candidate targets. However, limited eQTL sample sizes and absence of relevant developmental and disease context restrict our ability to detect associations. Here we propose an efficient statistical method (MultiXcan) that leverages the substantial sharing of eQTLs across tissues and contexts to improve our ability to identify potential target genes. MultiXcan integrates evidence across multiple panels using multivariate regression, which naturally takes into account the correlation structure. We apply our method to simulated and real traits from the UK Biobank and show that, in realistic settings, we can detect a larger set of significantly associated genes than using each panel separately. To improve applicability, we developed a summary result-based extension called S-MultiXcan, which we show yields highly concordant results with the individual level version when LD is well matched. Our multivariate model-based approach allowed us to use the individual level results as a gold standard to calibrate and develop a robust implementation of the summary-based extension. Results from our analysis as well as software and necessary resources to apply our method are publicly available. We develop a new method, MultiXcan, to test the mediating role of gene expression variation on complex traits, integrating information available across multiple tissue studies. We show this approach has higher power than traditional single-tissue methods. We extend this method to use only summary-statistics from public GWAS. We apply these methods to 222 complex traits available in the UK Biobank cohort, and 109 complex traits from public GWAS and discuss the findings.
Collapse
|
41
|
Abstract
The lung is often overlooked as a metabolically active organ, yet biochemical studies have long demonstrated that glucose utilization surpasses that of many other organs, including the heart, kidney, and brain. For most cells in the lung, energy consumption is relegated to performing common cellular tasks, like mRNA transcription and protein translation. However, certain lung cell populations engage in more specialized types of energy-consuming behaviors, such as the beating of cilia or the production of surfactant. While many extrapulmonary diseases are now linked to abnormalities in cellular metabolism, the pulmonary community has only recently embraced the concept of metabolic dysfunction as a driver of respiratory pathology. Herein, we provide an overview of the major metabolic pathways in the lung and discuss how cells sense and adapt to low-energy states. Moreover, we review some of the emerging evidence that links alterations in cellular metabolism to the pathobiology of several common respiratory diseases.
Collapse
Affiliation(s)
- Gang Liu
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA;
| |
Collapse
|
42
|
Abstract
Mitochondria are an iconic distinguishing feature of eukaryotic cells. Mitochondria encompass an active organellar network that fuses, divides, and directs a myriad of vital biological functions, including energy metabolism, cell death regulation, and innate immune signaling in different tissues. Another crucial and often underappreciated function of these dynamic organelles is their central role in the metabolism of the most abundant and biologically versatile transition metals in mammalian cells, iron. In recent years, cellular and animal models of mitochondrial iron dysfunction have provided vital information in identifying new proteins that have elucidated the pathways involved in mitochondrial homeostasis and iron metabolism. Specific signatures of mitochondrial iron dysregulation that are associated with disease pathogenesis and/or progression are becoming increasingly important. Understanding the molecular mechanisms regulating mitochondrial iron pathways will help better define the role of this important metal in mitochondrial function and in human health and disease.
Collapse
Affiliation(s)
- Diane M Ward
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
43
|
Qiao D, Ameli A, Prokopenko D, Chen H, Kho AT, Parker MM, Morrow J, Hobbs BD, Liu Y, Beaty TH, Crapo JD, Barnes KC, Nickerson DA, Bamshad M, Hersh CP, Lomas DA, Agusti A, Make BJ, Calverley PMA, Donner CF, Wouters EF, Vestbo J, Paré PD, Levy RD, Rennard SI, Tal-Singer R, Spitz MR, Sharma A, Ruczinski I, Lange C, Silverman EK, Cho MH. Whole exome sequencing analysis in severe chronic obstructive pulmonary disease. Hum Mol Genet 2018; 27:3801-3812. [PMID: 30060175 PMCID: PMC6196654 DOI: 10.1093/hmg/ddy269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is substantially influenced by genetic factors. Alpha-1 antitrypsin deficiency demonstrates that rare coding variants of large effect can influence COPD susceptibility. To identify additional rare coding variants in patients with severe COPD, we conducted whole exome sequencing analysis in 2543 subjects from two family-based studies (Boston Early-Onset COPD Study and International COPD Genetics Network) and one case-control study (COPDGene). Applying a gene-based segregation test in the family-based data, we identified significant segregation of rare loss of function variants in TBC1D10A and RFPL1 (P-value < 2x10-6), but were unable to find similar variants in the case-control study. In single-variant, gene-based and pathway association analyses, we were unable to find significant findings that replicated or were significant in meta-analysis. However, we found that the top results in the two datasets were in proximity to each other in the protein-protein interaction network (P-value = 0.014), suggesting enrichment of these results for similar biological processes. A network of these association results and their neighbors was significantly enriched in the transforming growth factor beta-receptor binding and cilia-related pathways. Finally, in a more detailed examination of candidate genes, we identified individuals with putative high-risk variants, including patients harboring homozygous mutations in genes associated with cutis laxa and Niemann-Pick Disease Type C. Our results likely reflect heterogeneity of genetic risk for COPD along with limitations of statistical power and functional annotation, and highlight the potential of network analysis to gain insight into genetic association studies.
Collapse
Affiliation(s)
- Dandi Qiao
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Asher Ameli
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Dmitry Prokopenko
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Alvin T Kho
- Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jarrett Morrow
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian D Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yanhong Liu
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James D Crapo
- National Jewish Health, Denver, Colorado, United States of America
| | - Kathleen C Barnes
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington , United States of America
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, IDIBAPS, University of Barcelona, CIBERES, Barcelona, Spain
| | - Barry J Make
- National Jewish Health, Denver, Colorado, United States of America
| | | | - Claudio F Donner
- Mondo Medico di I.F.I.M. srl, Multidisciplinary and Rehabilitation Outpatient Clinic, Borgomanero, Novara, Italy
| | - Emiel F Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, AZ Maastricht, The Netherlands
| | - Jørgen Vestbo
- University of Manchester, Manchester, United Kingdom
| | - Peter D Paré
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T, Canada
| | - Robert D Levy
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6T, Canada
| | - Stephen I Rennard
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- AstraZeneca, Cambridge CB2 0RE, United Kingdom
| | - Ruth Tal-Singer
- GSK Research and Development, KingOf Prussia, Pennsylvania, United States of America
| | - Margaret R Spitz
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Christoph Lange
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Channing Division of Network Medicine, Longwood Avenue, Boston, MA, USA
| |
Collapse
|
44
|
Aggarwal T, Wadhwa R, Thapliyal N, Sharma K, Rani V, Maurya PK. Oxidative, inflammatory, genetic, and epigenetic biomarkers associated with chronic obstructive pulmonary disorder. J Cell Physiol 2018; 234:2067-2082. [DOI: 10.1002/jcp.27181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Taru Aggarwal
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | - Ridhima Wadhwa
- Amity Institute of Biotechnology, Amity UniversityNoida India
| | | | - Kanishka Sharma
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Varsha Rani
- Amity Education GroupOakdale, Long Island (Suffolk) New York
| | - Pawan K. Maurya
- Amity Institute of Biotechnology, Amity UniversityNoida India
- Amity Education GroupOakdale, Long Island (Suffolk) New York
- Interdisciplinary Laboratory of Clinical Neuroscience (LINC), Department of PsychiatryFederal University of São PauloSão Paulo Brazil
| |
Collapse
|
45
|
Lee H, Lee J, Hong SH, Rahman I, Yang SR. Inhibition of RAGE Attenuates Cigarette Smoke-Induced Lung Epithelial Cell Damage via RAGE-Mediated Nrf2/DAMP Signaling. Front Pharmacol 2018; 9:684. [PMID: 30013476 PMCID: PMC6036614 DOI: 10.3389/fphar.2018.00684] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
The oxidative stress and cellular apoptosis by environmental factor including cigarette smoke induces alveolar airway remodeling leading to chronic obstructive pulmonary disease (COPD). Recently, the receptor for advanced glycan end products (RAGE) which is highly expressed in alveolar epithelium is emerging as a biomarker for COPD susceptibility or progression. However, it still remains unknown how RAGE plays a role in cigarette smoke extract (CSE)-exposed human alveolar type II epithelial cell line. Therefore, we determined the efficacy of RAGE-specific antagonist FPS-ZM1 in response to CSE-induced lung epithelial cells. CSE induced the elevated generation of RONS and release of pro-inflammatory cytokines, and impaired the cellular antioxidant defense system. Further, CSE induced the alteration of RAGE distribution via the activation of redox-sensitive DAMP (Damage-associated molecular patterns) signaling through Nrf2 in cells. Although pre-treatment with SB202190 (p38 inhibitor) or SP600125 (JNK inhibitor) failed to recover the alteration of RAGE distribution, treatment of FPS-ZM1 significantly exhibited anti-inflammatory and anti-oxidative/nitrosative effects, also inhibited the activation of redox-sensitive DAMP signaling through Nrf2 (nuclear factor erythroid 2-related factor 2) migration in the presence of CSE. Taken together, our data demonstrate that RAGE and Nrf2 play a pivotal role in maintenance of alveolar epithelial integrity.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea,*Correspondence: Se-Ran Yang,
| |
Collapse
|
46
|
Nedeljkovic I, Carnero-Montoro E, Lahousse L, van der Plaat DA, de Jong K, Vonk JM, van Diemen CC, Faiz A, van den Berge M, Obeidat M, Bossé Y, Nickle DC, Consortium B, Uitterlinden AG, van Meurs JJB, Stricker BCH, Brusselle GG, Postma DS, Boezen HM, van Duijn CM, Amin N. Understanding the role of the chromosome 15q25.1 in COPD through epigenetics and transcriptomics. Eur J Hum Genet 2018; 26:709-722. [PMID: 29422661 PMCID: PMC5945654 DOI: 10.1038/s41431-017-0089-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 12/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major health burden in adults and cigarette smoking is considered the most important environmental risk factor of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. Our study aims at understanding the mechanism underlying the association of chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in a population-based setting. To assess if COPD-associated variants in 15q25.1 are methylation quantitative trait loci, epigenome-wide association analysis of four genetic variants, previously associated with COPD (P < 5 × 10-8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, rs8034191:T>C-HYKK, rs13180:C>T-IREB2 and rs8042238:C>T-IREB2), was performed in the Rotterdam study (n = 1489). All four variants were significantly associated (P < 1.4 × 10-6) with blood DNA methylation of IREB2, CHRNA3 and PSMA4, of which two, including IREB2 and PSMA4, were also differentially methylated in COPD cases and controls (P < 0.04). Further additive and multiplicative effects of smoking were evaluated and no significant effect was observed. To evaluate if these four genetic variants are expression quantitative trait loci, transcriptome-wide association analysis was performed in 1087 lung samples. All four variants were also significantly associated with differential expression of the IREB2 3'UTR in lung tissues (P < 5.4 × 10-95). We conclude that regulatory mechanisms affecting the expression of IREB2 gene, such as DNA methylation, may explain the association between genetic variants in chromosome 15q25.1 and COPD, largely independent of smoking.
Collapse
Affiliation(s)
- Ivana Nedeljkovic
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Elena Carnero-Montoro
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Pfizer University of Granada, GENYO Centre for Genomics and Oncological Research, Andalusian Region Government, Granada, Spain
| | - Lies Lahousse
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Bioanalysis Pharmaceutical Care Unit, Ghent University Hospital, Ghent, Belgium
| | - Diana A van der Plaat
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Kim de Jong
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Cleo C van Diemen
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Alen Faiz
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - David C Nickle
- Genetics and Pharmacogenomics (GpGx), Merck Research Laboratories, Seattle, WA, USA
| | | | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Joyce J B van Meurs
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Bruno C H Stricker
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Guy G Brusselle
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Bioanalysis Pharmaceutical Care Unit, Ghent University Hospital, Ghent, Belgium
- Department of Respiratory Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
- Department of Pulmonology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Vargas Buonfiglio LG, Borcherding JA, Frommelt M, Parker GJ, Duchman B, Vanegas Calderón OG, Fernandez-Ruiz R, Noriega JE, Stone EA, Gerke AK, Zabner J, Comellas AP. Airway surface liquid from smokers promotes bacterial growth and biofilm formation via iron-lactoferrin imbalance. Respir Res 2018. [PMID: 29524964 PMCID: PMC5845328 DOI: 10.1186/s12931-018-0743-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Smoking is a leading cause of respiratory infections worldwide. Tobacco particulate matter disrupts iron homeostasis in the lungs and increases the iron content in the airways of smokers. The airway epithelia secrete lactoferrin to quench iron required for bacteria to proliferate and cause lung infections. We hypothesized that smokers would have increased bacterial growth and biofilm formation via iron lactoferrin imbalance. Methods We collected bronchoalveolar lavage (BAL) samples from non-smokers and smokers. We challenged these samples using a standard inoculum of Staphylococcus aureus and Pseudomonas aeruginosa and quantified bacterial growth and biofilm formation. We measured both iron and lactoferrin in the samples. We investigated the effect of supplementing non-smoker BAL with cigarette smoke extract (CSE) or ferric chloride and the effect of supplementing smoker BAL with lactoferrin on bacterial growth and biofilm formation. Results BAL from smokers had increased bacterial growth and biofilm formation compared to non-smokers after both S. aureus and P. aeruginosa challenge. In addition, we found that samples from smokers had a higher iron to lactoferrin ratio. Supplementing the BAL of non-smokers with cigarette smoke extract and ferric chloride increased bacterial growth. Conversely, supplementing the BAL of smokers with lactoferrin had a concentration-dependent decrease in bacterial growth and biofilm formation. Conclusion Cigarette smoking produces factors which increase bacterial growth and biofilm formation in the BAL. We propose that smoking disrupts the iron-to-lactoferrin in the airways. This finding offers a new avenue for potential therapeutic interventions to prevent respiratory infections in smokers. Electronic supplementary material The online version of this article (10.1186/s12931-018-0743-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis G Vargas Buonfiglio
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Jennifer A Borcherding
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Mark Frommelt
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Gavin J Parker
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA, USA
| | - Bryce Duchman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Oriana G Vanegas Calderón
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ruth Fernandez-Ruiz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Julio E Noriega
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Elizabeth A Stone
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA, USA
| | - Alicia K Gerke
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Alejandro P Comellas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
48
|
Korytina GF, Akhmadishina LZ, Viktorova EV, Kochetova OV, Viktorova TV. IREB2, CHRNA5, CHRNA3, FAM13A & hedgehog interacting protein genes polymorphisms & risk of chronic obstructive pulmonary disease in Tatar population from Russia. Indian J Med Res 2018; 144:865-876. [PMID: 28474623 PMCID: PMC5433279 DOI: 10.4103/ijmr.ijmr_1233_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background & objectives: Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease of the respiratory system affecting primarily distal respiratory pathways and lung parenchyma. This study was aimed at investigating the association of COPD with IREB2, CHRNA5, CHRNA3, FAM13A and hedgehog interacting protein (HHIP) genes in a Tatar population from Russia. Methods: Six single nucleotide polymorphisms (SNPs) (rs13180, rs16969968, rs1051730, rs6495309, rs7671167, rs13118928) were genotyped by the real-time polymerase chain reaction in this study (511 COPD patients and 508 controls). Logistic regression was used to detect the association of SNPs and haplotypes of linked loci in different models. Linear regression analyses were performed to estimate the relationship between SNPs and lung function parameters and pack-years. Results: The rs13180 (IREB2), rs16969968 (CHRNA5) and rs1051730 (CHRNA3) were significantly associated with COPD in additive model [Padj=0.00001, odds ratio (OR)=0.64; Padj=0.0001, OR=1.41 and Padj=0.0001, OR=1.47]. The C-G haplotype by rs13180 and rs1051730 was a protective factor for COPD in our population (Padj=0.0005, OR=0.61). These results were confirmed only in smokers. The rs16969968 and rs1051730 were associated with decrease of forced expiratory volume in 1 sec % predicted (Padj=0.005 and Padj=0.0019). Interpretation & conclusions: Our study showed the association of rs13180, rs16969968 and rs1051730 with COPD and lung function in Tatar population from Russia. Further studies need to be done in other ethnic populations.
Collapse
Affiliation(s)
- Gulnaz Faritovna Korytina
- Department of Genomics, Institute of Biochemistry & Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation
| | - Leysan Zinurovna Akhmadishina
- Department of Genomics, Institute of Biochemistry & Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation
| | | | - Olga Vladimirovna Kochetova
- Department of Genomics, Institute of Biochemistry & Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation
| | - Tatyana Victorovna Viktorova
- Department of Genomics, Institute of Biochemistry & Genetics, Ufa Scientific Centre, Russian Academy of Sciences; Department of Biology, Bashkortostan State Medical University, Ufa, Russian Federation
| |
Collapse
|
49
|
Morrow JD, Cho MH, Platig J, Zhou X, DeMeo DL, Qiu W, Celli B, Marchetti N, Criner GJ, Bueno R, Washko GR, Glass K, Quackenbush J, Silverman EK, Hersh CP. Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease. Hum Genomics 2018; 12:1. [PMID: 29335020 PMCID: PMC5769240 DOI: 10.1186/s40246-018-0132-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/02/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) significantly associated with chronic obstructive pulmonary disease (COPD). However, many genetic variants show suggestive evidence for association but do not meet the strict threshold for genome-wide significance. Integrative analysis of multiple omics datasets has the potential to identify novel genes involved in disease pathogenesis by leveraging these variants in a functional, regulatory context. RESULTS We performed expression quantitative trait locus (eQTL) analysis using genome-wide SNP genotyping and gene expression profiling of lung tissue samples from 86 COPD cases and 31 controls, testing for SNPs associated with gene expression levels. These results were integrated with a prior COPD GWAS using an ensemble statistical and network methods approach to identify relevant genes and observe them in the context of overall genetic control of gene expression to highlight co-regulated genes and disease pathways. We identified 250,312 unique SNPs and 4997 genes in the cis(local)-eQTL analysis (5% false discovery rate). The top gene from the integrative analysis was MAPT, a gene recently identified in an independent GWAS of lung function. The genes HNRNPAB and PCBP2 with RNA binding activity and the gene ACVR1B were identified in network communities with validated disease relevance. CONCLUSIONS The integration of lung tissue gene expression with genome-wide SNP genotyping and subsequent intersection with prior GWAS and omics studies highlighted candidate genes within COPD loci and in communities harboring known COPD genes. This integration also identified novel disease genes in sub-threshold regions that would otherwise have been missed through GWAS.
Collapse
Affiliation(s)
- Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - John Platig
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Bartholome Celli
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Nathaniel Marchetti
- Division of Pulmonary and Critical Care Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Gerard J Criner
- Division of Pulmonary and Critical Care Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| |
Collapse
|
50
|
Visual Assessment of Chest Computed Tomographic Images Is Independently Useful for Genetic Association Analysis in Studies of Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2017; 14:33-40. [PMID: 27739898 DOI: 10.1513/annalsats.201606-427oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RATIONALE Automated analysis of computed tomographic (CT) lung images for epidemiologic and genetic association studies is increasingly common, but little is known about the utility of visual versus semiautomated emphysema and airway assessments for genetic association studies. OBJECTIVES Assess the relative utility of visual versus semiautomated emphysema and airway assessments for genetic association studies. METHODS A standardized inspection protocol was used to visually assess chest CT images for 1,540 non-Hispanic white subjects within the COPDGene Study for the presence and severity of radiographic features representing airway wall thickness and emphysema. A genome-wide association study (GWAS) was performed, and two sets of candidate single-nucleotide polymorphisms with a higher prior likelihood of association were specified a priori for separate analysis. For each visual CT examination feature, a corresponding semiautomated CT feature(s) was identified for comparison in the same subjects. MEASUREMENTS AND MAIN RESULTS GWAS for visual features of chest CT scans identified a genome-wide significant association with visual emphysema at the 15q25 locus (P = 6.3e-9). In the a priori-specified set of 19 previously identified GWAS loci, 7 and 8 loci were associated with airway measures or emphysema measures, respectively. In the a priori-specified candidate gene set, 13 of 196 candidate genes harbored a nearby single-nucleotide polymorphism significantly associated with an emphysema phenotype. Visual CT examination associations were robust to adjustment for semiautomated correlates in many cases. CONCLUSIONS Standardized visual assessments of emphysema and airway disease are significantly associated with genetic loci previously associated with chronic obstructive pulmonary disease susceptibility or semiautomated CT examination phenotypes in GWAS. Visual CT measures of emphysema and airways disease offer independent information for genetic association studies in relation to standard semiautomated measures.
Collapse
|