1
|
Liu X, Shi P, Ge J. Analysis of PDE6G mutations in a patient with retinitis pigmentosa. BMC Ophthalmol 2024; 24:353. [PMID: 39160471 PMCID: PMC11334475 DOI: 10.1186/s12886-024-03623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Mutations in PDE6A and PDE6B are known to cause autosomal recessive RP in humans, On the other hand, mutations in PDE6G are rare but can lead to severe early-onset RP. CASE PRESENTATION An 8-year-old Chinese boy was referred to our hospital for poor vision issues. Refraction with cycloplegia showed high hyperopia with astigmatism both eyes. Funduscopic examination revealed typical bone spicule-type pigment deposits in the periphery and midperiphery. The patient was given glasses and a whole exome sequencing containing mitochondrial genes was performed. The results of genetic testing showed that there was a heterozygous frameshift mutation and a segment deletion in the proband's PDE6G gene. Analysis of the parental genes showed that frameshift mutation was inherited from the proband's mother and segment deletion from his father. CONCLUSIONS In this paper, we give a firsthand report that the complex heterozygous mutations of PDE6G gene can causes autosomal recessiveRP (arRP), which expands the understanding of the pathogenic genes of RP.
Collapse
Affiliation(s)
- Xiaona Liu
- Jinan Mingshui Eye Hospital, Longquan Road 5601, Zhangqiu District, Jinan, China
| | - Peiyan Shi
- Jinan Mingshui Eye Hospital, Longquan Road 5601, Zhangqiu District, Jinan, China
| | - Jinling Ge
- Jinan Mingshui Eye Hospital, Longquan Road 5601, Zhangqiu District, Jinan, China.
| |
Collapse
|
2
|
Xie Z, Zhang T, Kim S, Lu J, Zhang W, Lin CH, Wu MR, Davis A, Channa R, Giancardo L, Chen H, Wang S, Chen R, Zhi D. iGWAS: Image-based genome-wide association of self-supervised deep phenotyping of retina fundus images. PLoS Genet 2024; 20:e1011273. [PMID: 38728357 PMCID: PMC11111076 DOI: 10.1371/journal.pgen.1011273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/22/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we generated phenotypes from 130,329 images of 65,629 British White participants in the UK Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-wide significance (p<5×10-8 and intersection of hits from left and right eyes). We also did GWAS on the retina color, the average color of the center region of the retinal fundus photos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw image phenotype. Our results establish the feasibility of this new framework of genomic study based on self-supervised phenotyping of medical images.
Collapse
Affiliation(s)
- Ziqian Xie
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Tao Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sangbae Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jiaxiong Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Wanheng Zhang
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Cheng-Hui Lin
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Man-Ru Wu
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Davis
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roomasa Channa
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Luca Giancardo
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Han Chen
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Sui Wang
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Degui Zhi
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
3
|
Li X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p. Arch Physiol Biochem 2024; 130:119-127. [PMID: 34674599 DOI: 10.1080/13813455.2021.1985144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Diabetic retinopathy (DR) is the main cause of adult insomnia, which causes certain social and economic pressure. This research was to investigate the role and regulatory mechanisms of MALAT1, miR-378a-3p and PDE6g in retinal microvascular endothelial cells (RMECs) under high glucose (HG). MALAT1, Mir-378a-3p and PDE6G expressions level were detected by qRT-PCR and Western blot. The proliferation, Bax and Bcl-2 protein expression of RMECs were detected by CCK-8 and western blot. The target relationships of MALAT1, miR-378a-3p and PDE6G were determined by bioinformatics analysis, dual-luciferase reporter gene, RIP and RNA pull-down assay. HG enhanced the expression of MALAT1 and PDE6G, and inhibited the expression of miR-378a-3p. Overexpression of MALAT1 promotes the proliferation of RMECs and inhibits apoptosis under HG condition. MALAT1 competitively adsorbed miR-378a-3p, which targeted PDE6G. Data reveal that MALAT1/miR-378a-3p/PDE6G signal axis restrain the apoptosis of RMECs under HG. This finding may help to delay the development of DR.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Ophthalmology, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
4
|
Yalaz C, Bridges E, Alham NK, Zois CE, Chen J, Bensaad K, Miar A, Pires E, Muschel RJ, McCullagh JSO, Harris AL. Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response. Cancer Metab 2024; 12:5. [PMID: 38350962 PMCID: PMC10863171 DOI: 10.1186/s40170-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.
Collapse
Affiliation(s)
- Ceren Yalaz
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Esther Bridges
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nasullah K Alham
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Christos E Zois
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jianzhou Chen
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Karim Bensaad
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Miar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ruth J Muschel
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
5
|
Jentzsch MC, Tsang SH, Koch SF. A New Preclinical Model of Retinitis Pigmentosa Due to Pde6g Deficiency. OPHTHALMOLOGY SCIENCE 2023; 3:100332. [PMID: 37363133 PMCID: PMC10285708 DOI: 10.1016/j.xops.2023.100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023]
Abstract
Purpose Retinitis pigmentosa (RP) is the most common cause of inherited blindness, with onset occurring as early as 4 years of age in certain rare but severe forms caused by mutations in the gamma subunit of phosphodiesterase 6 (PDE6). Studies in humans and mice have shown that RP pathology begins with progressive photoreceptor death, which then drives changes in downstream neurons, neighboring retinal pigment epithelium (RPE), and vasculature. Here, we present the first detailed analysis of RP disease progression in Pde6g-deficient mice. Design Experimental study of an RP mouse model. Subjects We studied Pde6g-/- and Pde6g+/- mice at the age of 7, 16, 30, 44, and 56 days with n = 2 to 5 per group and time point. Methods Photoreceptor degeneration and retinal remodeling were analyzed in retinal sections by immunofluorescence. Retinal blood vessel degradation was analyzed in flat-mounted retinas immunolabeled for isolectin GS-IB4. Protein expression was measured by immunoblot. Acellular capillaries were assessed in trypsin-digested and hematoxylin-eosin-stained retinas at postnatal day (P) 44. Retinal pigment epithelium cells were delineated in flat-mounted RPE-choroid-sclera by immunolabeling for the cell-adhesion protein β-catenin. Main Outcome Measures Immunofluorescence and morphometry (quantitative analysis of outer nuclear layer, dendrite area, vessel area, acellular vessels, RPE cell size, number of nuclei per RPE cell, RPE cell eccentricity, and RPE cell solidity). Results This novel RP model exhibits early onset and rapid rod degeneration, with the vast majority gone by P16. This pathology leads to retinal remodeling, including changes of inner retinal neurons, early activation of glia cells, degradation of retinal vasculature, and structural abnormalities of the RPE. Conclusions The pathology in our Pde6g-/- mouse model precisely mirrors human RP progression. The results demonstrate the significant role of the gamma subunit in maintaining phosphodiesterase activity and provide new insights into the disease progression due to Pde6g deficiency. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Michelle Carmen Jentzsch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephen H. Tsang
- Jonas Children’s Vision Care, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, New York
| | - Susanne Friederike Koch
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
Zheng Y, Sun C, Zhang X, Ruzycki PA, Chen S. Missense mutations in CRX homeodomain cause dominant retinopathies through two distinct mechanisms. eLife 2023; 12:RP87147. [PMID: 37963072 PMCID: PMC10645426 DOI: 10.7554/elife.87147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Homeodomain transcription factors (HD TFs) are instrumental to vertebrate development. Mutations in HD TFs have been linked to human diseases, but their pathogenic mechanisms remain elusive. Here, we use Cone-Rod Homeobox (CRX) as a model to decipher the disease-causing mechanisms of two HD mutations, p.E80A and p.K88N, that produce severe dominant retinopathies. Through integrated analysis of molecular and functional evidence in vitro and in knock-in mouse models, we uncover two novel gain-of-function mechanisms: p.E80A increases CRX-mediated transactivation of canonical CRX target genes in developing photoreceptors; p.K88N alters CRX DNA-binding specificity resulting in binding at ectopic sites and severe perturbation of CRX target gene expression. Both mechanisms produce novel retinal morphological defects and hinder photoreceptor maturation distinct from loss-of-function models. This study reveals the distinct roles of E80 and K88 residues in CRX HD regulatory functions and emphasizes the importance of transcriptional precision in normal development.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Chi Sun
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Xiaodong Zhang
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Genetics, Washington University in St LouisSaint LouisUnited States
| | - Shiming Chen
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Developmental Biology, Washington University in St LouisSaint LouisUnited States
| |
Collapse
|
7
|
Chen C, Ding P, Yan W, Wang Z, Lan Y, Yan X, Li T, Han J. Pharmacological roles of lncRNAs in diabetic retinopathy with a focus on oxidative stress and inflammation. Biochem Pharmacol 2023; 214:115643. [PMID: 37315816 DOI: 10.1016/j.bcp.2023.115643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is a complication caused by abnormal glucose metabolism, which affects the vision and quality of life of patients and severely impacts the society at large.DR has a complex pathogenic process. Evidence from multiple studies have shown that oxidative stress and inflammation play pivotal roles in DR.Additionally, with the rapid development of various genetic detection methods, the abnormal expression of long non-coding RNAs (lncRNAs) have been confirmed to promote the development of DR.Research has demonstrated the potential of lncRNAs as ideal biomarkers and theranostic targets in DR. In this narrative review, we will focus on the research results on mechanisms underlying DR, list lncRNAs confirmed to be closely related to these mechanisms, and discuss their potential clinical application value and limitations.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China; Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| |
Collapse
|
8
|
Schmitz J, Abbondanza F, Marianski K, Luciano M, Paracchini S. Identification of loci involved in childhood visual acuity and associations with cognitive skills and educational attainment. NPJ SCIENCE OF LEARNING 2023; 8:25. [PMID: 37491545 PMCID: PMC10368730 DOI: 10.1038/s41539-023-00175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Visual acuity significantly contributes to quality of life. Deficits in childhood are associated with reading difficulties, which can have detrimental effects on education outcomes. In adults, it has been observed that vision defects such as myopia are associated with higher educational attainment (EA). Understanding genetic factors contributing to visual acuity could help to dissect its links with cognitive skills, neurodevelopmental conditions, and education. We examined associations between distance visual acuity, cognitive measures including school grades, and neurodevelopmental conditions in a longitudinal cohort of British children (ALSPAC, n = 6807, M age = 11.8). We performed a genome-wide association study (GWAS, n = 5571) on visual acuity and tested for genetic associations with relevant phenotypes using polygenic scores (PGS) and genetic correlation analyses. Visual acuity was associated with better cognitive performance and school grades, and reduced in individuals with reading difficulties compared to controls. GWAS revealed genetic associations at the NPLOC4 locus and highlighted other genes involved in sensory function. In line with positive genetic correlations between visual acuity and cognitive measures, EA PGS were positively associated with visual acuity, while there was a less robust negative association with myopia PGS. In conclusion, increased visual acuity is associated with a range of positive outcomes, including better school grades. Our results suggest an association between a higher EA PGS and slightly increased visual acuity in childhood. This could indicate gene-environment correlation, in which environmental exposures linked to higher EA might have detrimental effects on vision offsetting the initial positive effect.
Collapse
Affiliation(s)
- Judith Schmitz
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
- Biological Personality Psychology, Georg-August-University Goettingen, Goettingen, Germany
| | | | | | - Michelle Luciano
- Department of Psychology, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK.
| |
Collapse
|
9
|
Zheng Y, Sun C, Zhang X, Ruzycki PA, Chen S. Missense mutations in CRX homeodomain cause dominant retinopathies through two distinct mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526652. [PMID: 36778408 PMCID: PMC9915647 DOI: 10.1101/2023.02.01.526652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homeodomain transcription factors (HD TFs) are instrumental to vertebrate development. Mutations in HD TFs have been linked to human diseases, but their pathogenic mechanisms remain elusive. Here we use Cone-Rod Homeobox (CRX) as a model to decipher the disease-causing mechanisms of two HD mutations, p.E80A and p.K88N, that produce severe dominant retinopathies. Through integrated analysis of molecular and functional evidence in vitro and in knock-in mouse models, we uncover two novel gain-of-function mechanisms: p.E80A increases CRX-mediated transactivation of canonical CRX target genes in developing photoreceptors; p.K88N alters CRX DNA-binding specificity resulting in binding at ectopic sites and severe perturbation of CRX target gene expression. Both mechanisms produce novel retinal morphological defects and hinder photoreceptor maturation distinct from loss-of-function models. This study reveals the distinct roles of E80 and K88 residues in CRX HD regulatory functions and emphasizes the importance of transcriptional precision in normal development.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Xiaodong Zhang
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Genetics, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Shiming Chen
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, USA
| |
Collapse
|
10
|
Munezero D, Aliff H, Salido E, Saravanan T, Sanzhaeva U, Guan T, Ramamurthy V. HSP90α is needed for the survival of rod photoreceptors and regulates the expression of rod PDE6 subunits. J Biol Chem 2023; 299:104809. [PMID: 37172722 PMCID: PMC10250166 DOI: 10.1016/j.jbc.2023.104809] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the stability of a small set of proteins essential in various cellular pathways. Cytosolic HSP90 has two closely related paralogs: HSP90α and HSP90β. Due to the structural and sequence similarities of cytosolic HSP90 paralogs, identifying the unique functions and substrates in the cell remains challenging. In this article, we assessed the role of HSP90α in the retina using a novel HSP90α murine knockout model. Our findings show that HSP90α is essential for rod photoreceptor function but was dispensable in cone photoreceptors. In the absence of HSP90α, photoreceptors developed normally. We observed rod dysfunction in HSP90α knockout at 2 months with the accumulation of vacuolar structures, apoptotic nuclei, and abnormalities in the outer segments. The decline in rod function was accompanied by progressive degeneration of rod photoreceptors that was complete at 6 months. The deterioration in cone function and health was a "bystander effect" that followed the degeneration of rods. Tandem mass tag proteomics showed that HSP90α regulates the expression levels of <1% of the retinal proteome. More importantly, HSP90α was vital in maintaining rod PDE6 and AIPL1 cochaperone levels in rod photoreceptor cells. Interestingly, cone PDE6 levels were unaffected. The robust expression of HSP90β paralog in cones likely compensates for the loss of HSP90α. Overall, our study demonstrated the critical need for HSP90α chaperone in the maintenance of rod photoreceptors and showed potential substrates regulated by HSP90α in the retina.
Collapse
Affiliation(s)
- Daniella Munezero
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Hunter Aliff
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Ezequiel Salido
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Thamaraiselvi Saravanan
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Urikhan Sanzhaeva
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Tongju Guan
- Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Visvanathan Ramamurthy
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
11
|
Chen C, Rong Y, Zhuang Y, Tang C, Liu Q, Lin P, Li D, Zhao X, Lu F, Qu J, Liu X. RNA-Seq Analysis Reveals an Essential Role of the cGMP-PKG-MAPK Pathways in Retinal Degeneration Caused by Cep250 Deficiency. Int J Mol Sci 2023; 24:8843. [PMID: 37240188 PMCID: PMC10218315 DOI: 10.3390/ijms24108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Usher syndrome (USH) is characterised by degenerative vision loss known as retinitis pigmentosa (RP), sensorineural hearing loss, and vestibular dysfunction. RP can cause degeneration and the loss of rod and cone photoreceptors, leading to structural and functional changes in the retina. Cep250 is a candidate gene for atypical Usher syndrome, and this study describes the development of a Cep250 KO mouse model to investigate its pathogenesis. OCT and ERG were applied in Cep250 and WT mice at P90 and P180 to access the general structure and function of the retina. After recording the ERG responses and OCT images at P90 and P180, the cone and rod photoreceptors were visualised using an immunofluorescent stain. TUNEL assays were applied to observe the apoptosis in Cep250 and WT mice retinas. The total RNA was extracted from the retinas and executed for RNA sequencing at P90. Compared with WT mice, the thickness of the ONL, IS/OS, and whole retina of Cep250 mice was significantly reduced. The a-wave and b-wave amplitude of Cep250 mice in scotopic and photopic ERG were lower, especially the a-wave. According to the immunostaining and TUNEL stain results, the photoreceptors in the Cep250 retinas were also reduced. An RNA-seq analysis showed that 149 genes were upregulated and another 149 genes were downregulated in Cep250 KO retinas compared with WT mice retinas. A KEGG enrichment analysis indicated that cGMP-PKG signalling pathways, MAPK signalling pathways, edn2-fgf2 axis pathways, and thyroid hormone synthesis were upregulated, whereas protein processing in the endoplasmic reticulum was downregulated in Cep250 KO eyes. Cep250 KO mice experience a late-stage retinal degeneration that manifests as the atypical USH phenotype. The dysregulation of the cGMP-PKG-MAPK pathways may contribute to the pathogenesis of cilia-related retinal degeneration.
Collapse
Affiliation(s)
- Chong Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Rong
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Youyuan Zhuang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Cheng Tang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qian Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Peng Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Dandan Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinyi Zhao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Fan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xinting Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; (C.C.); (Y.R.); (Y.Z.); (C.T.); (Q.L.); (P.L.); (D.L.); (X.Z.); (F.L.)
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
12
|
Srivastava D, Yadav RP, Singh S, Boyd K, Artemyev NO. Unique interface and dynamics of the complex of HSP90 with a specialized cochaperone AIPL1. Structure 2023; 31:309-317.e5. [PMID: 36657440 PMCID: PMC9992320 DOI: 10.1016/j.str.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
Photoreceptor phosphodiesterase PDE6 is central for visual signal transduction. Maturation of PDE6 depends on a specialized chaperone complex of HSP90 with aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). Disruption of PDE6 maturation underlies a severe form of retina degeneration. Here, we report a 3.9 Å cryoelectron microscopy (cryo-EM) structure of the complex of HSP90 with AIPL1. This structure reveals a unique interaction of the FK506-binding protein (FKBP)-like domain of AIPL1 with HSP90 at its dimer interface. Unusually, the N terminus AIPL1 inserts into the HSP90 lumen in a manner that was observed previously for HSP90 clients. Deletion of the 7 N-terminal residues of AIPL1 decreased its ability to cochaperone PDE6. Multi-body refinement of the cryo-EM data indicated large swing-like movements of AIPL1-FKBP. Modeling the complex of HSP90 with AIPL1 using crosslinking constraints indicated proximity of the mobile tetratricopeptide repeat (TPR) domain with the C-terminal domain of HSP90. Our study establishes a framework for future structural studies of PDE6 maturation.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sneha Singh
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
13
|
Gulati S, Palczewski K. Structural view of G protein-coupled receptor signaling in the retinal rod outer segment. Trends Biochem Sci 2023; 48:172-186. [PMID: 36163145 PMCID: PMC9868064 DOI: 10.1016/j.tibs.2022.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 01/26/2023]
Abstract
Visual phototransduction is the most extensively studied G protein-coupled receptor (GPCR) signaling pathway because of its quantifiable stimulus, non-redundancy of genes, and immense importance in vision. We summarize recent discoveries that have advanced our understanding of rod outer segment (ROS) morphology and the pathological basis of retinal diseases. We have combined recently published cryo-electron tomography (cryo-ET) data on the ROS with structural knowledge on individual proteins to define the precise spatial limitations under which phototransduction occurs. Although hypothetical, the reconstruction of the rod phototransduction system highlights the potential roles of phosphodiesterase 6 (PDE6) and guanylate cyclases (GCs) in maintaining the spacing between ROS discs, suggesting a plausible mechanism by which intrinsic optical signals are generated in the retina.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, Department of Physiology and Biophysics, Department of Chemistry, Molecular Biology, and Biochemistry, University of California Irvine, 850 Health Sciences Road, Irvine, CA 92697-4375, USA.
| |
Collapse
|
14
|
Inhibition of the MAPK/c-Jun-EGR1 Pathway Decreases Photoreceptor Cell Death in the rd1 Mouse Model for Inherited Retinal Degeneration. Int J Mol Sci 2022; 23:ijms232314600. [PMID: 36498926 PMCID: PMC9740268 DOI: 10.3390/ijms232314600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies that typically results in photoreceptor cell death and vision loss. Here, we explored the effect of early growth response-1 (EGR1) expression on photoreceptor cell death in Pde6brd1 (rd1) mice and its mechanism of action. To this end, single-cell RNA-seq (scRNA-seq) was used to identify differentially expressed genes in rd1 and congenic wild-type (WT) mice. Chromatin immunoprecipitation (ChIP), the dual-luciferase reporter gene assay, and western blotting were used to verify the relationship between EGR1 and poly (ADP-ribose) polymerase-1 (PARP1). Immunofluorescence staining was used to assess PARP1 expression after silencing or overexpression of EGR1. Photoreceptor cell death was assessed using the TUNEL assay following silencing/overexpression of EGR1 or administration of MAPK/c-Jun pathway inhibitors tanzisertib and PD98059. Our results showed differential expression of ERG1 in rd1 and WT mice via scRNA-seq analysis. The ChIP assay demonstrated EGR1 binding to the PARP1 promoter region. The dual-luciferase reporter gene assay and western blotting results revealed that EGR1 upregulated PARP1 expression. Additionally, the TUNEL assay showed that silencing EGR1 effectively reduced photoreceptor cell death. Similarly, the addition of tanzisertib and PD98059 reduced the expression of c-Jun and EGR1 and decreased photoreceptor cell death. Our study revealed that inhibition of the MAPK/c-Jun pathway reduced the expression of EGR1 and PARP1 and prevented photoreceptor cell death. These results highlight the importance of EGR1 for photoreceptor cell death and identify a new avenue for therapeutic interventions in RP.
Collapse
|
15
|
Karapetyan L, Gooding W, Li A, Yang X, Knight A, Abushukair HM, Vargas De Stefano D, Sander C, Karunamurthy A, Panelli M, Storkus WJ, Tarhini AA, Kirkwood JM. Sentinel Lymph Node Gene Expression Signature Predicts Recurrence-Free Survival in Cutaneous Melanoma. Cancers (Basel) 2022; 14:4973. [PMID: 36291758 PMCID: PMC9599365 DOI: 10.3390/cancers14204973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We sought to develop a sentinel lymph node gene expression signature score predictive of disease recurrence in patients with cutaneous melanoma. Gene expression profiling was performed on SLN biopsies using U133A 2.0 Affymetrix gene chips. The top 25 genes associated with recurrence-free survival (RFS) were selected and a penalized regression function was used to select 12 genes with a non-zero coefficient. A proportional hazards regression model was used to evaluate the association between clinical covariates, gene signature score, and RFS. Among the 45 patients evaluated, 23 (51%) had a positive SLN. Twenty-one (46.7%) patients developed disease recurrence. For the top 25 differentially expressed genes (DEG), 12 non-zero penalized coefficients were estimated (CLGN, C1QTNF3, ADORA3, ARHGAP8, DCTN1, ASPSCR1, CHRFAM7A, ZNF223, PDE6G, CXCL3, HEXIM1, HLA-DRB). This 12-gene signature score was significantly associated with RFS (p < 0.0001) and produced a bootstrap C index of 0.888. In univariate analysis, Breslow thickness, presence of primary tumor ulceration, SLN positivity were each significantly associated with RFS. After simultaneously adjusting for these prognostic factors in relation to the gene signature, the 12-gene score remained a significant independent predictor for RFS (p < 0.0001). This SLN 12-gene signature risk score is associated with melanoma recurrence regardless of SLN status and may be used as a prognostic factor for RFS.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - William Gooding
- Hillman Cancer Center, Biostatistics Facility, Pittsburgh, PA 15213, USA
| | - Aofei Li
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xi Yang
- Department of Medicine, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hassan M. Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Danielle Vargas De Stefano
- Department of Pathology, Division of Pediatric Pathology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Arivarasan Karunamurthy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Departments of Dermatology and Pathology, Divisions of Dermatopathology and Molecular Genetic Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | - Walter J. Storkus
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ahmad A. Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
Park SA, Rhodes J, Iwabe S, Ying GS, Pan W, Huang J, Komáromy AM. Quantitative and qualitative characterization of retinal dystrophies in canine models of inherited retinal diseases using spectral domain optical coherence tomography (SD-OCT). Exp Eye Res 2022; 220:109106. [PMID: 35588783 PMCID: PMC9789526 DOI: 10.1016/j.exer.2022.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to establish spectral domain optical coherence tomography (SD-OCT) assessment data in well-established canine models of inherited retinal dystrophies: PDE6B-rod-cone dysplasia 1 (RCD1: early onset retinitis pigmentosa), PRCD-progressive rod-cone degeneration (PRCD: late onset retinitis pigmentosa), CNGB3-achromatopsia, and RPE65-Leber congenital amaurosis (LCA). High resolution SD-OCT images of the retina were acquired from both eyes in 5 planes: temporal; superotemporal; superior; nasal; and inferior in adult dogs with: RCD1 (n = 4 dogs, median age: 1.5 yrs); PRCD (n = 2, 4.3 yrs); LCA (n = 3, 5.2 yrs); achromatopsia (n = 3, 4.2 yrs); and wild types (wt, n = 6, 5.5 yrs). Total, inner and outer retinal thicknesses and ellipsoid zone were analyzed. In selected animals, histomorphometric evaluations were performed. In dogs with RCD1, PRCD, and LCA, the thickness of the outer retina was, compared to wt, significantly decreased (p ≤ 0.02) in all OCT imaging planes, and in superotemporal and inferior imaging planes in dogs with achromatopsia. No significant thinning was observed in inner retina thickness in any disease model except in the inferior imaging plane in dogs with RCD1. Dogs with RCD1, PRCD, and LCA had significantly more areas with disrupted ellipsoid zone in the presumed area centralis than wt (p ≤ 0.001). OCT findings provide baseline information for research of retinal dystrophies using these canine models.
Collapse
Affiliation(s)
- Shin Ae Park
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Department of Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Jamie Rhodes
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Iwabe
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gui-Shuang Ying
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Pan
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiayan Huang
- Department of Ophthalmology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA; Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Bhardwaj A, Yadav A, Yadav M, Tanwar M. Genetic dissection of non-syndromic retinitis pigmentosa. Indian J Ophthalmol 2022; 70:2355-2385. [PMID: 35791117 PMCID: PMC9426071 DOI: 10.4103/ijo.ijo_46_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinitis pigmentosa (RP) belongs to a group of pigmentary retinopathies. It is the most common form of inherited retinal dystrophy, characterized by progressive degradation of photoreceptors that leads to nyctalopia, and ultimately, complete vision loss. RP is distinguished by the continuous retinal degeneration that progresses from the mid-periphery to the central and peripheral retina. RP was first described and named by Franciscus Cornelius Donders in the year 1857. It is one of the leading causes of bilateral blindness in adults, with an incidence of 1 in 3000 people worldwide. In this review, we are going to focus on the genetic heterogeneity of this disease, which is provided by various inheritance patterns, numerosity of variations and inter-/intra-familial variations based upon penetrance and expressivity. Although over 90 genes have been identified in RP patients, the genetic cause of approximately 50% of RP cases remains unknown. Heterogeneity of RP makes it an extremely complicated ocular impairment. It is so complicated that it is known as “fever of unknown origin”. For prognosis and proper management of the disease, it is necessary to understand its genetic heterogeneity so that each phenotype related to the various genetic variations could be treated.
Collapse
Affiliation(s)
- Aarti Bhardwaj
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Anshu Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Manoj Yadav
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| | - Mukesh Tanwar
- Department of Genetics, M. D. University, Rohtak, Haryana, India
| |
Collapse
|
18
|
Yadav RP, Boyd K, Artemyev NO. Molecular insights into the maturation of phosphodiesterase 6 by the specialized chaperone complex of HSP90 with AIPL1. J Biol Chem 2022; 298:101620. [PMID: 35065964 PMCID: PMC8857470 DOI: 10.1016/j.jbc.2022.101620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterase 6 (PDE6) is a key effector enzyme in vertebrate phototransduction, and its maturation and function are known to critically depend on a specialized chaperone, aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). Defects in PDE6 and AIPL1 underlie several severe retinal diseases, including retinitis pigmentosa and Leber congenital amaurosis. Here, we characterize the complex of AIPL1 with HSP90 and demonstrate its essential role in promoting the functional conformation of nascent PDE6. Our analysis suggests that AIPL1 preferentially binds to HSP90 in the closed state with a stoichiometry of 1:2, with the tetratricopeptide repeat domain and the tetratricopeptide repeat helix 7 extension of AIPL1 being the main contributors to the AIPL1/HSP90 interface. We demonstrate that mutations of these determinants markedly diminished both the affinity of AIPL1 for HSP90 and the ability of AIPL1 to cochaperone the maturation of PDE6 in a heterologous expression system. In addition, the FK506-binding protein (FKBP) domain of AIPL1 encloses a unique prenyl-binding site that anchors AIPL1 to posttranslational lipid modifications of PDE6. A mouse model with rod PDE6 lacking farnesylation of its PDE6A subunit revealed normal expression, trafficking, and signaling of the enzyme. Furthermore, AIPL1 was unexpectedly capable of inducing the maturation of unprenylated cone PDE6C, whereas mutant AIPL1 deficient in prenyl binding competently cochaperoned prenylated PDE6C. Thus, we conclude neither sequestration of the prenyl modifications is required for PDE6 maturation to proceed, nor is the FKBP-lipid interaction involved in the conformational switch of the enzyme into the functional state.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
19
|
Xu W, Li Y, Dong Y, Xiao L, Li L, Jiao K. Integrative RNA-seq and ATAC-seq analyses of phosphodiesterase 6 mutation-induced retinitis pigmentosa. Int Ophthalmol 2022; 42:2385-2395. [PMID: 35147831 DOI: 10.1007/s10792-022-02238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Inhibition of poly-ADP-ribose polymerase 1 (PARP1) could relieve phosphodiesterase 6 mutation-induced retinitis pigmentosa (RP). However, the mechanism related to PARP1 overexpression in the RP has not been clarified. We attempted to explore the potential mechanism related to PARP1 regulating RP. METHODS ATAC-seq and RNA-seq were performed for retina tissues of C3H and rd1 mice. The differentially expressed genes (DEGs) were identified, followed by the construction of PARP1-DEG co-expression and protein-protein interaction (PPI) networks. Gene ontology-biological process and pathway enrichment of DEGs were performed by clusterProfiler software. The overlapped genes that might play regulatory roles in PARP1 expression were mined by integrated analysis of RNA-seq and ATAC-seq data. RESULTS A total of 1061 DEGs were identified between C3H and rd1 group. Co-expression network was constructed with 313 PARP1-gene co-expression pairs. The down-regulated DEGs were closely related to visual perception and light stimulus-related biological process, while the up-regulated DEGs were significantly enriched in phototransduction and PPAR signaling pathway. PPI network was constructed with 202 nodes and 375 edges, which was clustered into 3 modules. Module 1 genes were closely related to detection of light stimulus, visual perception related biological process and phototransduction pathway (involved with Gnat1/Guca1b/Gnat2/Sag/Pde6g). By integrated analysis of the RNA-seq and ATAC-seq, the overlapped up-regulated genes were Asxl3 and Nyap2, while the down-regulated genes were Tmem136 and Susd3. CONCLUSION Gnat1 may play a key role in RP development by interacting with PARP1. Susd3 may play a regulatory role in PARP1 expression and affect RP formation.
Collapse
Affiliation(s)
- Wenrong Xu
- Kunming Medical University, Kunming, 650500, Yunnan, China
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, 650024, Kunming, Yunnan, China
| | - Yan Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, 650021, Kunming, China
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Yujie Dong
- Kunming Medical University, Kunming, 650500, Yunnan, China
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, 650021, Kunming, China
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Libo Xiao
- Kunming Medical University, Kunming, 650500, Yunnan, China
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, 650021, Kunming, China
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Lan Li
- Kunming Medical University, Kunming, 650500, Yunnan, China.
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, 650024, Kunming, Yunnan, China.
| | - Kangwei Jiao
- Kunming Medical University, Kunming, 650500, Yunnan, China.
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, 650021, Kunming, China.
- Key Laboratory of Yunnan Province, Yunnan Eye Institute, Yunnan University, 176 Qingnian, Kunming, 650021, China.
| |
Collapse
|
20
|
cGMP-PKG dependent transcriptome in normal and degenerating retinas: Novel insights into the retinitis pigmentosa pathology. Exp Eye Res 2021; 212:108752. [PMID: 34478738 DOI: 10.1016/j.exer.2021.108752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
Retinitis Pigmentosa represents a group of genetic disorders that cause progressive vision loss via degeneration of photoreceptors, but there is in principle no treatment available. For any therapy development, a deeper comprehension of the disease-leading mechanism(s) at the molecular level is needed. Here we focused on the cGMP-PKG system, which has been suggested to be a driver in several models of the disease. To gain insights in its downstream signaling we manipulated the cGMP-PKG system with the aid of organotypic retinal explant cultures from either a mouse-based disease model, i.e. the rd1 mouse, or its healthy wild-type counterpart (wt), by adding different types of cGMP analogues to either inhibit or activate PKG in retinal explants from rd1 and wt, respectively. An RNA sequencing was then performed to study the cGMP-PKG dependent transcriptome. Expression changes of gene sets related to specific pathways or functions, that fulfilled criteria involving that the changes should match PKG activation and inhibition, were determined via bioinformatics. The analyses highlighted that several gene sets linked to oxidative phosphorylation and mitochondrial pathways were regulated by this enzyme system. Specifically, the expression of such pathway components was upregulated in the rd1 treated with PKG inhibitor and downregulated in the wt with PKG activator treatment, suggesting that cGMP-PKG act as a negative regulator in this context. Downregulation of energy production pathways may thus play an integral part in the mechanism behind the degeneration for at least several RP mutations.
Collapse
|
21
|
Photoreceptor Phosphodiesterase (PDE6): Structure, Regulatory Mechanisms, and Implications for Treatment of Retinal Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:33-59. [PMID: 34170501 DOI: 10.1007/5584_2021_649] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The photoreceptor phosphodiesterase (PDE6) is a member of large family of Class I phosphodiesterases responsible for hydrolyzing the second messengers cAMP and cGMP. PDE6 consists of two catalytic subunits and two inhibitory subunits that form a tetrameric protein. PDE6 is a peripheral membrane protein that is localized to the signal-transducing compartment of rod and cone photoreceptors. As the central effector enzyme of the G-protein coupled visual transduction pathway, activation of PDE6 catalysis causes a rapid decrease in cGMP levels that results in closure of cGMP-gated ion channels in the photoreceptor plasma membrane. Because of its importance in the phototransduction pathway, mutations in PDE6 genes result in various retinal diseases that currently lack therapeutic treatment strategies due to inadequate knowledge of the structure, function, and regulation of this enzyme. This review focuses on recent progress in understanding the structure of the regulatory and catalytic domains of the PDE6 holoenzyme, the central role of the multi-functional inhibitory γ-subunit, the mechanism of activation by the heterotrimeric G protein, transducin, and future directions for pharmacological interventions to treat retinal degenerative diseases arising from mutations in the PDE6 genes.
Collapse
|
22
|
Lovera M, Lüders J. The ciliary impact of nonciliary gene mutations. Trends Cell Biol 2021; 31:876-887. [PMID: 34183231 DOI: 10.1016/j.tcb.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023]
Abstract
Mutations in genes encoding centriolar or ciliary proteins cause diseases collectively known as 'ciliopathies'. Interestingly, the Human Phenotype Ontology database lists numerous disorders that display clinical features reminiscent of ciliopathies but do not involve defects in the centriole-cilium proteome. Instead, defects in different cellular compartments may impair cilia indirectly and cause additional, nonciliopathy phenotypes. This phenotypic heterogeneity, perhaps combined with the field's centriole-cilium-centric view, may have hindered the recognition of ciliary contributions. Identifying these diseases and dissecting how the underlying gene mutations impair cilia not only will add to our understanding of cilium assembly and function but also may open up new therapeutic avenues.
Collapse
Affiliation(s)
- Marta Lovera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.
| |
Collapse
|
23
|
The PDE-Opathies: Diverse Phenotypes Produced by a Functionally Related Multigene Family. Trends Genet 2021; 37:669-681. [PMID: 33832760 DOI: 10.1016/j.tig.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
The phosphodiesterase (PDE)-opathies, an expanding set of disorders caused by germline mutations in cyclic nucleotide PDEs, present an intriguing paradox. The enzymes encoded by the PDE family all hydrolyze cAMP and/or cGMP, but mutations in different family members produce very divergent phenotypes. Three interacting factors have been shown recently to contribute to this phenotypic diversity: (i) the 21 genes encode over 80 different isoforms, using alternative mRNA splicing and related mechanisms; (ii) the various isoforms have different regulatory mechanisms, mediated by their unique amino-terminal regulatory domains; (iii) the isoforms differ widely in their pattern of tissue expression. These mechanisms explain why many PDE-opathies are gain-of-function mutations and how they exemplify uniqueness and redundancy within a multigene family.
Collapse
|
24
|
Bujakowska KM, Comander J. Moving Towards PDE6A Gene Supplementation Therapy. JAMA Ophthalmol 2020; 138:1251-1252. [PMID: 33057571 DOI: 10.1001/jamaophthalmol.2020.4216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| | - Jason Comander
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston
| |
Collapse
|
25
|
Lv M, Zhang Y, Liu K, Li C, Wang J, Fan G, Liu X, Yang H, Liu C, Mahboob S, Liu J, Shao C. A Chromosome-Level Genome Assembly of the Anglerfish Lophius litulon. Front Genet 2020; 11:581161. [PMID: 33329719 PMCID: PMC7729161 DOI: 10.3389/fgene.2020.581161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Anglerfishes are a highly diverse group of species with unique characteristics. Here, we report the first chromosome-level genome of a species in the order Lophiiformes, the yellow goosefish (Lophius litulon), obtained by whole genome shotgun sequencing and high-throughput chromatin conformation capture. Approximately 97.20% of the assembly spanning 709.23 Mb could be anchored to 23 chromosomes with a contig N50 of 164.91 kb. The BUSCO value was 95.4%, suggesting that the quality of the assembly was high. A comparative gene family analysis identified expanded and contracted gene families, and these may be associated with adaptation to the benthic environment and the lack of scales in the species. A majority of positively selected genes were related to metabolic processes, suggesting that digestive and metabolic system evolution expanded the diversity of yellow goosefish prey. Our study provides a valuable genetic resource for understanding the mechanisms underlying the unique features of the yellow goosefish and for investigating anglerfish evolution.
Collapse
Affiliation(s)
- Meiqi Lv
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chang Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Changlin Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shahid Mahboob
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Junnian Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
26
|
Wang Q, Banerjee S, So C, Qiu C, Lam HIC, Tse D, Völgyi B, Pan F. Unmasking inhibition prolongs neuronal function in retinal degeneration mouse model. FASEB J 2020; 34:15282-15299. [PMID: 32985731 DOI: 10.1096/fj.202001315rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022]
Abstract
All neurodegenerative diseases involve a relatively long period of timeframe from the onset of the disease to complete loss of functions. Extending this timeframe, even at a reduced level of function, would improve the quality of life of patients with these devastating diseases. The retina, as the part of the central nervous system and a frequent site of many distressing neurodegenerative disease, provides an ideal model to investigate the feasibility of extending the functional timeframe through pharmacologic intervention. Retinitis Pigmentosa (RP) is a group of blinding diseases. Although the rate of progression and degree of visual loss varies, there is usually a prolonged time before patients totally lose their photoreceptors and vision. It is believed that inhibitory mechanisms are still intact and may become relatively strong after the gradual loss of photoreceptors in RP patients. Therefore, it is possible that light-evoked responses of retinal ganglion cells and visual information processes in retinal circuits could be "unmasked" by blocking these inhibitory mechanisms restoring some level of visual function. Our results indicate that if the inhibition in the inner retina was unmasked in the retina of the rd10 mouse (the well-characterized RP mimicking, clinically relevant mouse model), the light-evoked responses of many retinal ganglion cells can be induced and restore their normal light sensitivity. GABA A receptor plays a major role in this masking inhibition. ERG b-wave and behavioral tests of spatial vision partly recovered after the application of PTX. Hence, removing retinal inhibition unmasks signalling mediated by surviving cones, thereby restoring some degree of visual function. These results may offer a novel strategy to restore the visual function with the surviving cones in RP patients and other gradual and progressive neurodegenerative diseases.
Collapse
Affiliation(s)
- Qin Wang
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Seema Banerjee
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chunghim So
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chunting Qiu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hang-I Christie Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Dennis Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Béla Völgyi
- Department of Experimental Zoology and Neurobiology, Szentágothai Research Centre, MTA NAP Retinal Electrical Synapses Research Group, University of Pécs, Pécs, Hungary
| | - Feng Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,The Centre for Eye and Vision Research, Hong Kong
| |
Collapse
|
27
|
Preussner M, Gao Q, Morrison E, Herdt O, Finkernagel F, Schumann M, Krause E, Freund C, Chen W, Heyd F. Splicing-accessible coding 3'UTRs control protein stability and interaction networks. Genome Biol 2020; 21:186. [PMID: 32727563 PMCID: PMC7392665 DOI: 10.1186/s13059-020-02102-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 3'-Untranslated regions (3'UTRs) play crucial roles in mRNA metabolism, such as by controlling mRNA stability, translation efficiency, and localization. Intriguingly, in some genes the 3'UTR is longer than their coding regions, pointing to additional, unknown functions. Here, we describe a protein-coding function of 3'UTRs upon frameshift-inducing alternative splicing in more than 10% of human and mouse protein-coding genes. RESULTS 3'UTR-encoded amino acid sequences show an enrichment of PxxP motifs and lead to interactome rewiring. Furthermore, an elevated proline content increases protein disorder and reduces protein stability, thus allowing splicing-controlled regulation of protein half-life. This could also act as a surveillance mechanism for erroneous skipping of penultimate exons resulting in transcripts that escape nonsense mediated decay. The impact of frameshift-inducing alternative splicing on disease development is emphasized by a retinitis pigmentosa-causing mutation leading to translation of a 3'UTR-encoded, proline-rich, destabilized frameshift-protein with altered protein-protein interactions. CONCLUSIONS We describe a widespread, evolutionarily conserved mechanism that enriches the mammalian proteome, controls protein expression and protein-protein interactions, and has important implications for the discovery of novel, potentially disease-relevant protein variants.
Collapse
Affiliation(s)
- Marco Preussner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Qingsong Gao
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Laboratory for Systems Biology and Functional Genomics, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Eliot Morrison
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Olga Herdt
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany
| | - Florian Finkernagel
- Center for Tumor Biology and Immunology (ZTI), Philipps-University Marburg, Hans-Meerwein-Straße 3, 35043, Marburg, Germany
| | - Michael Schumann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Eberhard Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of Protein Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Wei Chen
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China.
| | - Florian Heyd
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Laboratory of RNA Biochemistry, Takustrasse 6, 14195, Berlin, Germany.
| |
Collapse
|
28
|
Yuan X, Lan G, Li L, He H, Wang J, Hu S. Differential gene expression profiling of the goose pineal gland. Br Poult Sci 2020; 61:200-208. [PMID: 31830828 DOI: 10.1080/00071668.2019.1698014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The present study was conducted to obtain a better understanding of the molecular mechanisms underlying broodiness in a commercial breed, Tianfu geese, as little is known about the role of the pineal gland in this period. The aim was to identify genes which are differentially expressed in the pineal gland between the laying and broodiness periods by performing a transcriptome screen.2. After sequencing cDNA derived from the pineal gland and annotation of the results, a sequencing depth of 14.82 and 18.17 million mapped tags was obtained during the laying and broodiness periods, respectively, and a total of 120 differentially expressed genes were identified. Of these, 32 genes showing up-regulated expression and 88 genes showing down-regulated expression were identified in broodiness period vs. laying period libraries.3. Gene ontology (GO) analyses showed that these genes were related to the visual process, phototransduction, and lipoprotein metabolism. Kyoto Encyclopaedia of Genes and Genome (KEGG) analyses showed that phototransduction and tryptophan metabolism pathways exhibited the largest enrichment factors. The reliability of the RNA sequence data was confirmed by quantitative real-time PCR analysis of five genes, and the results were mostly consistent with those from the high-throughput RNA sequencing.4. The goose transcriptome and the identification of differentially expressed genes provided comprehensive gene expression information that enables a better understanding of the molecular mechanisms underlying the broodiness period of geese.
Collapse
Affiliation(s)
- X Yuan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China.,Animal husbandry and veterinary medicine, Chengdu Agriculture College, Wenjiang, Sichuan, P.R.China
| | - G Lan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| | - L Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| | - H He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| | - J Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| | - S Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| |
Collapse
|
29
|
Sundar JC, Munezero D, Bryan-Haring C, Saravanan T, Jacques A, Ramamurthy V. Rhodopsin signaling mediates light-induced photoreceptor cell death in rd10 mice through a transducin-independent mechanism. Hum Mol Genet 2020; 29:394-406. [PMID: 31925423 PMCID: PMC7015845 DOI: 10.1093/hmg/ddz299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is a debilitating blinding disease affecting over 1.5 million people worldwide, but the mechanisms underlying this disease are not well understood. One of the common models used to study RP is the retinal degeneration-10 (rd10) mouse, which has a mutation in Phosphodiesterase-6b (Pde6b) that causes a phenotype mimicking the human disease. In rd10 mice, photoreceptor cell death occurs with exposure to normal light conditions, but as demonstrated in this study, rearing these mice in dark preserves their retinal function. We found that inactivating rhodopsin signaling protected photoreceptors from degeneration suggesting that the pathway activated by this G-protein-coupled receptor is causing light-induced photoreceptor cell death in rd10 mice. However, inhibition of transducin signaling did not prevent the loss of photoreceptors in rd10 mice reared under normal light conditions implying that the degeneration caused by rhodopsin signaling is not mediated through its canonical G-protein transducin. Inexplicably, loss of transducin in rd10 mice also led to photoreceptor cell death in darkness. Furthermore, we found that the rd10 mutation in Pde6b led to a reduction in the assembled PDE6αβγ2 complex, which was corroborated by our data showing mislocalization of the γ subunit. Based on our findings and previous studies, we propose a model where light activates a non-canonical pathway mediated by rhodopsin but independent of transducin that sensitizes cyclic nucleotide gated channels to cGMP and causes photoreceptor cell death. These results generate exciting possibilities for treatment of RP patients without affecting their vision or the canonical phototransduction cascade.
Collapse
Affiliation(s)
- Jesse C Sundar
- Departments of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Daniella Munezero
- Departments of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Caitlyn Bryan-Haring
- Departments of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Thamaraiselvi Saravanan
- Departments of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Angelica Jacques
- Departments of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| | - Visvanathan Ramamurthy
- Departments of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
- Departments of Ophthalmology and Visual Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
- Departments of Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
30
|
Blond F, Léveillard T. Functional Genomics of the Retina to Elucidate its Construction and Deconstruction. Int J Mol Sci 2019; 20:E4922. [PMID: 31590277 PMCID: PMC6801968 DOI: 10.3390/ijms20194922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
The retina is the light sensitive part of the eye and nervous tissue that have been used extensively to characterize the function of the central nervous system. The retina has a central position both in fundamental biology and in the physiopathology of neurodegenerative diseases. We address the contribution of functional genomics to the understanding of retinal biology by reviewing key events in their historical perspective as an introduction to major findings that were obtained through the study of the retina using genomics, transcriptomics and proteomics. We illustrate our purpose by showing that most of the genes of interest for retinal development and those involved in inherited retinal degenerations have a restricted expression to the retina and most particularly to photoreceptors cells. We show that the exponential growth of data generated by functional genomics is a future challenge not only in terms of storage but also in terms of accessibility to the scientific community of retinal biologists in the future. Finally, we emphasize on novel perspectives that emerge from the development of redox-proteomics, the new frontier in retinal biology.
Collapse
Affiliation(s)
- Frédéric Blond
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| | - Thierry Léveillard
- Department of Genetics, Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France.
| |
Collapse
|
31
|
Sharon D, Ben-Yosef T, Goldenberg-Cohen N, Pras E, Gradstein L, Soudry S, Mezer E, Zur D, Abbasi AH, Zeitz C, Cremers FPM, Khan MI, Levy J, Rotenstreich Y, Birk OS, Ehrenberg M, Leibu R, Newman H, Shomron N, Banin E, Perlman I. A nationwide genetic analysis of inherited retinal diseases in Israel as assessed by the Israeli inherited retinal disease consortium (IIRDC). Hum Mutat 2019; 41:140-149. [PMID: 31456290 DOI: 10.1002/humu.23903] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/13/2023]
Abstract
Inherited retinal diseases (IRDs) cause visual loss due to dysfunction or progressive degeneration of photoreceptors. These diseases show marked phenotypic and genetic heterogeneity. The Israeli IRD consortium (IIRDC) was established in 2013 with the goal of performing clinical and genetic mapping of the majority of Israeli IRD patients. To date, we recruited 2,420 families including 3,413 individuals with IRDs. On the basis of our estimation, these patients represent approximately 40% of Israeli IRD patients. To the best of our knowledge, this is, by far, the largest reported IRD cohort, and one of the first studies addressing the genetic analysis of IRD patients on a nationwide scale. The most common inheritance pattern in our cohort is autosomal recessive (60% of families). The most common retinal phenotype is retinitis pigmentosa (43%), followed by Stargardt disease and cone/cone-rod dystrophy. We identified the cause of disease in 56% of the families. Overall, 605 distinct mutations were identified, of which 12% represent prevalent founder mutations. The most frequently mutated genes were ABCA4, USH2A, FAM161A, CNGA3, and EYS. The results of this study have important implications for molecular diagnosis, genetic screening, and counseling, as well as for the development of new therapeutic strategies for retinal diseases.
Collapse
Affiliation(s)
- Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nitza Goldenberg-Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel.,The Krieger Eye Research Laboratory, Felsenstein Medical Research Center (FMRC), Petach Tikva, Israel
| | - Eran Pras
- Department of Ophthalmology, Assaf-Harofeh Medical Center, Zerifin, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Libe Gradstein
- Department of Ophthalmology, Soroka Medical Center and Clalit Health Services, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva, Israel
| | - Shiri Soudry
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Ophthalmology, Rambam Healthcare Campus, Haifa, Israel
| | - Eedy Mezer
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Ophthalmology, Rambam Healthcare Campus, Haifa, Israel
| | - Dinah Zur
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Ophthalmology Division, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Anan H Abbasi
- Ziv Medical Center, Safed, Israel.,The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Christina Zeitz
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Muhammad I Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaime Levy
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ygal Rotenstreich
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,The Goldschleger Eye Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev, Ben-Gurion University, Beer Sheva, Israel.,Genetics Institute, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University, Beer Sheva, Israel
| | - Miriam Ehrenberg
- Ophthalmology Unit, Schneider Children's Medical Center in Israel, Petach Tikva, Israel
| | - Rina Leibu
- Department of Ophthalmology, Rambam Healthcare Campus, Haifa, Israel
| | - Hadas Newman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Ophthalmology Division, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ido Perlman
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Ophthalmology Division, Tel Aviv Medical Center, Tel Aviv, Israel
| |
Collapse
|
32
|
Power M, Das S, Schütze K, Marigo V, Ekström P, Paquet-Durand F. Cellular mechanisms of hereditary photoreceptor degeneration - Focus on cGMP. Prog Retin Eye Res 2019; 74:100772. [PMID: 31374251 DOI: 10.1016/j.preteyeres.2019.07.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Abstract
The cellular mechanisms underlying hereditary photoreceptor degeneration are still poorly understood, a problem that is exacerbated by the enormous genetic heterogeneity of this disease group. However, the last decade has yielded a wealth of new knowledge on degenerative pathways and their diversity. Notably, a central role of cGMP-signalling has surfaced for photoreceptor cell death triggered by a subset of disease-causing mutations. In this review, we examine key aspects relevant for photoreceptor degeneration of hereditary origin. The topics covered include energy metabolism, epigenetics, protein quality control, as well as cGMP- and Ca2+-signalling, and how the related molecular and metabolic processes may trigger photoreceptor demise. We compare and integrate evidence on different cell death mechanisms that have been associated with photoreceptor degeneration, including apoptosis, necrosis, necroptosis, and PARthanatos. A special focus is then put on the mechanisms of cGMP-dependent cell death and how exceedingly high photoreceptor cGMP levels may cause activation of Ca2+-dependent calpain-type proteases, histone deacetylases and poly-ADP-ribose polymerase. An evaluation of the available literature reveals that a large group of patients suffering from hereditary photoreceptor degeneration carry mutations that are likely to trigger cGMP-dependent cell death, making this pathway a prime target for future therapy development. Finally, an outlook is given into technological and methodological developments that will with time likely contribute to a comprehensive overview over the entire metabolic complexity of photoreceptor cell death. Building on such developments, new imaging technology and novel biomarkers may be used to develop clinical test strategies, that fully consider the genetic heterogeneity of hereditary retinal degenerations, in order to facilitate clinical testing of novel treatment approaches.
Collapse
Affiliation(s)
- Michael Power
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Centre for Integrative Neurosciences (CIN), University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany; Graduate Training Centre of Neuroscience (GTC), University of Tübingen, Germany
| | | | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Per Ekström
- Ophthalmology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Sweden
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Germany.
| |
Collapse
|
33
|
Plotnikov D, Shah RL, Rodrigues JN, Cumberland PM, Rahi JS, Hysi PG, Atan D, Williams C, Guggenheim JA. A commonly occurring genetic variant within the NPLOC4-TSPAN10-PDE6G gene cluster is associated with the risk of strabismus. Hum Genet 2019; 138:723-737. [PMID: 31073882 PMCID: PMC6611893 DOI: 10.1007/s00439-019-02022-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/20/2019] [Indexed: 12/31/2022]
Abstract
Strabismus refers to an abnormal alignment of the eyes leading to the loss of central binocular vision. Concomitant strabismus occurs when the angle of deviation is constant in all positions of gaze and often manifests in early childhood when it is considered to be a neurodevelopmental disorder of the visual system. As such, it is inherited as a complex genetic trait, affecting 2-4% of the population. A genome-wide association study (GWAS) for self-reported strabismus (1345 cases and 65,349 controls from UK Biobank) revealed a single genome-wide significant locus on chromosome 17q25. Approximately 20 variants across the NPLOC4-TSPAN10-PDE6G gene cluster and in almost perfect linkage disequilibrium (LD) were most strongly associated (lead variant: rs75078292, OR = 1.26, p = 2.24E-08). A recessive model provided a better fit to the data than an additive model. Association with strabismus was independent of refractive error, and the degree of association with strabismus was minimally attenuated after adjustment for amblyopia. The association with strabismus was replicated in an independent cohort of clinician-diagnosed children aged 7 years old (116 cases and 5084 controls; OR = 1.85, p = 0.009). The associated variants included 2 strong candidate causal variants predicted to have functional effects: rs6420484, which substitutes tyrosine for a conserved cysteine (C177Y) in the TSPAN10 gene, and a 4-bp deletion variant, rs397693108, predicted to cause a frameshift in TSPAN10. The population-attributable risk for the locus was approximately 8.4%, indicating an important role in conferring susceptibility to strabismus.
Collapse
Affiliation(s)
- Denis Plotnikov
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Rupal L Shah
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Jamille N Rodrigues
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Bristol, BS8 1NU, UK
| | - Phillippa M Cumberland
- Life Course Epidemiology and Biostatistics Section, Institute of Child Health, University College London, London, WC1N 1EH, UK
- Ulverscroft Vision Research Group, University College London Institute of Child Health, London, WC1N 1EH, UK
| | - Jugnoo S Rahi
- Life Course Epidemiology and Biostatistics Section, Institute of Child Health, University College London, London, WC1N 1EH, UK
- Ulverscroft Vision Research Group, University College London Institute of Child Health, London, WC1N 1EH, UK
- University College London Great Ormond Street Institute of Child Health, London, WC1N 3JH, UK
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and University College London Institute of Ophthalmology, London, WC1E 6BT, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - Denize Atan
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Bristol, BS8 1NU, UK
| | - Cathy Williams
- Population Health Sciences, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Bristol, BS8 1NU, UK.
| | - Jeremy A Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
34
|
Natural models for retinitis pigmentosa: progressive retinal atrophy in dog breeds. Hum Genet 2019; 138:441-453. [PMID: 30904946 DOI: 10.1007/s00439-019-01999-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 01/24/2023]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders eventually leading to blindness with different ages of onset, progression and severity. Human RP, first characterized by the progressive degeneration of rod photoreceptor cells, shows high genetic heterogeneity with more than 90 genes identified. However, about one-third of patients have no known genetic causes. Interestingly, dogs are also severely affected by similar diseases, called progressive retinal atrophy (PRA). Indeed, RP and PRA have comparable clinical signs, physiopathology and outcomes, similar diagnosis methods and most often, orthologous genes are involved. The many different dog PRAs often segregate in specific breeds. Indeed, undesired alleles have been selected and amplified through drastic selection and excessive use of inbreeding. Out of the 400 breeds, nearly 100 have an inherited form of PRA, which are natural animal models that can be used to investigate the genetics, disease progression and therapies in dogs for the benefit of both dogs and humans. Recent knowledge on the canine genome and access to new genotyping and sequencing technologies now efficiently allows the identification of mutations involved in canine genetic diseases. To date, PRA genes identified in dog breeds correspond to the same genes in humans and represent relevant RP models, and new genes found in dogs represent good candidate for still unknown human RP. We present here a review of the main advantages of the dog models for human RP with the genes already identified and an X-linked PRA in the Border collie as a model for orphan X-linked RPs in human.
Collapse
|
35
|
Anasagasti A, Ezquerra-Inchausti M, Barandika O, Muñoz-Culla M, Caffarel MM, Otaegui D, López de Munain A, Ruiz-Ederra J. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:2381-2392. [PMID: 29847644 PMCID: PMC5939684 DOI: 10.1167/iovs.18-24091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration.
Collapse
Affiliation(s)
- Ander Anasagasti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maitane Ezquerra-Inchausti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| | - Olatz Barandika
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - María M Caffarel
- Oncology Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - David Otaegui
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - Adolfo López de Munain
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Centro de Investigaciones Biomédicas en Red Sobre Enfermedades Neurodegenerativas, Instituto Carlos III, Ministerio de Economía y Competitividad, Spain.,Department of Neuroscience, University of the Basque Country, San Sebastian, Spain
| | - Javier Ruiz-Ederra
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| |
Collapse
|
36
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
37
|
Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech 2017; 7:251. [PMID: 28721681 DOI: 10.1007/s13205-017-0878-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.
Collapse
|
38
|
Van Schil K, Naessens S, Van de Sompele S, Carron M, Aslanidis A, Van Cauwenbergh C, Kathrin Mayer A, Van Heetvelde M, Bauwens M, Verdin H, Coppieters F, Greenberg ME, Yang MG, Karlstetter M, Langmann T, De Preter K, Kohl S, Cherry TJ, Leroy BP, De Baere E. Mapping the genomic landscape of inherited retinal disease genes prioritizes genes prone to coding and noncoding copy-number variations. Genet Med 2017; 20:202-213. [PMID: 28749477 PMCID: PMC5787040 DOI: 10.1038/gim.2017.97] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023] Open
Abstract
PurposePart of the hidden genetic variation in heterogeneous genetic conditions such as inherited retinal diseases (IRDs) can be explained by copy-number variations (CNVs). Here, we explored the genomic landscape of IRD genes listed in RetNet to identify and prioritize those genes susceptible to CNV formation.MethodsRetNet genes underwent an assessment of genomic features and of CNV occurrence in the Database of Genomic Variants and literature. CNVs identified in an IRD cohort were characterized using targeted locus amplification (TLA) on extracted genomic DNA.ResultsExhaustive literature mining revealed 1,345 reported CNVs in 81 different IRD genes. Correlation analysis between rankings of genomic features and CNV occurrence demonstrated the strongest correlation between gene size and CNV occurrence of IRD genes. Moreover, we identified and delineated 30 new CNVs in IRD cases, 13 of which are novel and three of which affect noncoding, putative cis-regulatory regions. Finally, the breakpoints of six complex CNVs were determined using TLA in a hypothesis-neutral manner.ConclusionWe propose a ranking of CNV-prone IRD genes and demonstrate the efficacy of TLA for the characterization of CNVs on extracted DNA. Finally, this IRD-oriented CNV study can serve as a paradigm for other genetically heterogeneous Mendelian diseases with hidden genetic variation.
Collapse
Affiliation(s)
- Kristof Van Schil
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Sarah Naessens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stijn Van de Sompele
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Marjolein Carron
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Alexander Aslanidis
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Anja Kathrin Mayer
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Mattias Van Heetvelde
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Miriam Bauwens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marty G Yang
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
39
|
Ramkumar HL, Gudiseva HV, Kishaba KT, Suk JJ, Verma R, Tadimeti K, Thorson JA, Ayyagari R. A Report on Molecular Diagnostic Testing for Inherited Retinal Dystrophies by Targeted Genetic Analyses. Genet Test Mol Biomarkers 2016; 21:66-73. [PMID: 28005406 DOI: 10.1089/gtmb.2016.0251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To test the utility of targeted sequencing as a method of clinical molecular testing in patients diagnosed with inherited retinal degeneration (IRD). METHODS After genetic counseling, peripheral blood was drawn from 188 probands and 36 carriers of IRD. Single gene testing was performed on each patient in a Clinical Laboratory Improvement Amendment (CLIA) certified laboratory. DNA was isolated, and all exons in the gene of interest were analyzed along with 20 base pairs of flanking intronic sequence. Genetic testing was most often performed on ABCA4, CTRP5, ELOV4, BEST1, CRB1, and PRPH2. Pathogenicity of novel sequence changes was predicted by PolyPhen2 and sorting intolerant from tolerant (SIFT). RESULTS Of the 225 genetic tests performed, 150 were for recessive IRD, and 75 were for dominant IRD. A positive molecular diagnosis was made in 70 (59%) of probands with recessive IRD and 19 (26%) probands with dominant IRD. Analysis confirmed 12 (34%) of individuals as carriers of familial mutations associated with IRD. Thirty-two novel variants were identified; among these, 17 sequence changes in four genes were predicted to be possibly or probably damaging including: ABCA4 (14), BEST1 (2), PRPH2 (1), and TIMP3 (1). CONCLUSIONS Targeted analysis of clinically suspected genes in 225 subjects resulted in a positive molecular diagnosis in 26% of patients with dominant IRD and 59% of patients with recessive IRD. Novel damaging mutations were identified in four genes. Single gene screening is not an ideal method for diagnostic testing given the phenotypic and genetic heterogeneity among IRD cases. High-throughput sequencing of all genes associated with retinal degeneration may be more efficient for molecular diagnosis.
Collapse
Affiliation(s)
- Hema L Ramkumar
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - Harini V Gudiseva
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - Kameron T Kishaba
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - John J Suk
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - Rohan Verma
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - Keerti Tadimeti
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| | - John A Thorson
- 2 Department of Pathology, University of California , San Diego, La Jolla, California
| | - Radha Ayyagari
- 1 Shiley Eye Institute, Jacobs Retina Center, University of California , San Diego, La Jolla, California
| |
Collapse
|
40
|
Ullah I, Kabir F, Iqbal M, Gottsch CBS, Naeem MA, Assir MZ, Khan SN, Akram J, Riazuddin S, Ayyagari R, Hejtmancik JF, Riazuddin SA. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases. Mol Vis 2016; 22:797-815. [PMID: 27440997 PMCID: PMC4947966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. METHODS Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon-intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. RESULTS The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10(-6)) that affected individuals inherited the causal mutation from a common ancestor. CONCLUSIONS Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families.
Collapse
Affiliation(s)
- Inayat Ullah
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Muhammad Iqbal
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaman Assir
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, CA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
41
|
Khan KN, Chana R, Ali N, Wright G, Webster AR, Moore AT, Michaelides M. Advanced diagnostic genetic testing in inherited retinal disease: experience from a single tertiary referral centre in the UK National Health Service. Clin Genet 2016; 91:38-45. [PMID: 27160483 DOI: 10.1111/cge.12798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/15/2016] [Accepted: 05/05/2016] [Indexed: 11/29/2022]
Abstract
In 2013, as part of our genetic investigation of patients with inherited retinal disease, we utilized multigene panel testing of 105 genes known to cause retinal disease in our patient cohorts. This test was performed in a UK National Health Service (NHS) accredited laboratory. The results of all multigene panel tests requested between 1.4.13 and 31.8.14 were retrospectively reviewed. All patients had been previously seen at Moorfields Eye Hospital, London, UK and diagnosed with an inherited retinal dystrophy after clinical examination and detailed retinal imaging. The results were categorized into three groups: (i) Testing helped establish a certain molecular diagnosis in 45 out of 115 (39%). Variants in USH2A (n = 6) and RP1 (n = 4) were most common. (ii) Definitive conclusions could not be drawn from molecular testing alone in 13 out of 115 (11%) as either insufficient pathogenic variants were discovered or those identified were not consistent with the phenotype. (iii) Testing did not identify any pathogenic variants responsible for the phenotype in 57 out of 115 (50%). Multigene panel testing performed in an NHS setting has enabled a molecular diagnosis to be confidently made in 40% of cases. Novel variants accounted for 38% of all identified variants. Detailed retinal phenotyping helped the interpretation of specific variants. Additional care needs to be taken when assessing polymorphisms in genes that have been infrequently associated with disease, as historical techniques were not as rigorous as contemporary ones. Future iterations of sequencing are likely to offer higher sensitivity, testing a broader range of genes, more rapidly and at a reduced cost.
Collapse
Affiliation(s)
- K N Khan
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK.,St. James's University Hospital, Leeds, UK
| | - R Chana
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| | - N Ali
- Moorfields Eye Hospital, London, UK
| | - G Wright
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| | - A R Webster
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| | - A T Moore
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| | - M Michaelides
- Moorfields Eye Hospital, London, UK.,UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
42
|
Kabir F, Ullah I, Ali S, Gottsch AD, Naeem MA, Assir MZ, Khan SN, Akram J, Riazuddin S, Ayyagari R, Hejtmancik JF, Riazuddin SA. Loss of function mutations in RP1 are responsible for retinitis pigmentosa in consanguineous familial cases. Mol Vis 2016; 22:610-25. [PMID: 27307693 PMCID: PMC4901054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/08/2016] [Indexed: 10/31/2022] Open
Abstract
PURPOSE This study was undertaken to identify causal mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous families. METHODS Large consanguineous families were ascertained from the Punjab province of Pakistan. An ophthalmic examination consisting of a fundus evaluation and electroretinography (ERG) was completed, and small aliquots of blood were collected from all participating individuals. Genomic DNA was extracted from white blood cells, and a genome-wide linkage or a locus-specific exclusion analysis was completed with polymorphic short tandem repeats (STRs). Two-point logarithm of odds (LOD) scores were calculated, and all coding exons and exon-intron boundaries of RP1 were sequenced to identify the causal mutation. RESULTS The ophthalmic examination showed that affected individuals in all families manifest cardinal symptoms of RP. Genome-wide scans localized the disease phenotype to chromosome 8q, a region harboring RP1, a gene previously implicated in the pathogenesis of RP. Sanger sequencing identified a homozygous single base deletion in exon 4: c.3697delT (p.S1233Pfs22*), a single base substitution in intron 3: c.787+1G>A (p.I263Nfs8*), a 2 bp duplication in exon 2: c.551_552dupTA (p.Q185Yfs4*) and an 11,117 bp deletion that removes all three coding exons of RP1. These variations segregated with the disease phenotype within the respective families and were not present in ethnically matched control samples. CONCLUSIONS These results strongly suggest that these mutations in RP1 are responsible for the retinal phenotype in affected individuals of all four consanguineous families.
Collapse
Affiliation(s)
- Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Inayat Ullah
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shahbaz Ali
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaman Assir
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, CA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Gopalakrishna KN, Boyd K, Yadav RP, Artemyev NO. Aryl Hydrocarbon Receptor-interacting Protein-like 1 Is an Obligate Chaperone of Phosphodiesterase 6 and Is Assisted by the γ-Subunit of Its Client. J Biol Chem 2016; 291:16282-91. [PMID: 27268253 DOI: 10.1074/jbc.m116.737593] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 12/26/2022] Open
Abstract
Phosphodiesterase 6 (PDE6) is the effector enzyme in the phototransduction cascade and is critical for the health of both rod and cone photoreceptors. Its dysfunction, caused by mutations in either the enzyme itself or AIPL1 (aryl hydrocarbon receptor-interacting protein-like 1), leads to retinal diseases culminating in blindness. Progress in research on PDE6 and AIPL1 has been severely hampered by failure to express functional PDE6 in a heterologous expression system. Here, we demonstrated that AIPL1 is an obligate chaperone of PDE6 and that it enables low yield functional folding of cone PDE6C in cultured cells. We further show that the AIPL1-mediated production of folded PDE6C is markedly elevated in the presence of the inhibitory Pγ-subunit of PDE6. As illustrated in this study, a simple and sensitive system in which AIPL1 and Pγ are co-expressed with PDE6 represents an effective tool for probing structure-function relationships of AIPL1 and reliably establishing the pathogenicity of its variants.
Collapse
Affiliation(s)
| | - Kimberly Boyd
- From the Departments of Molecular Physiology and Biophysics and
| | - Ravi P Yadav
- From the Departments of Molecular Physiology and Biophysics and
| | - Nikolai O Artemyev
- From the Departments of Molecular Physiology and Biophysics and Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
44
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Whole Exome Sequencing Reveals Mutations in Known Retinal Disease Genes in 33 out of 68 Israeli Families with Inherited Retinopathies. Sci Rep 2015; 5:13187. [PMID: 26306921 PMCID: PMC4549705 DOI: 10.1038/srep13187] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Whole exome sequencing (WES) is a powerful technique for identifying sequence changes in the human genome. The goal of this study was to delineate the genetic defects in patients with inherited retinal diseases (IRDs) using WES. WES was performed on 90 patient DNA samples from 68 families and 226 known genes for IRDs were analyzed. Sanger sequencing was used to validate potential pathogenic variants that were also subjected to segregation analysis in families. Thirty-three causative mutations (19 novel and 14 known) in 25 genes were identified in 33 of the 68 families. The vast majority of mutations (30 out of 33) have not been reported in the Israeli and the Palestinian populations. Nine out of the 33 mutations were detected in additional families from the same ethnic population, suggesting a founder effect. In two families, identified phenotypes were different from the previously reported clinical findings associated with the causative gene. This is the largest genetic analysis of IRDs in the Israeli and Palestinian populations to date. We also demonstrate that WES is a powerful tool for rapid analysis of known disease genes in large patient cohorts.
Collapse
|
46
|
Sothilingam V, Garcia Garrido M, Jiao K, Buena-Atienza E, Sahaboglu A, Trifunović D, Balendran S, Koepfli T, Mühlfriedel R, Schön C, Biel M, Heckmann A, Beck SC, Michalakis S, Wissinger B, Seeliger MW, Paquet-Durand F. Retinitis pigmentosa: impact of different Pde6a point mutations on the disease phenotype. Hum Mol Genet 2015; 24:5486-99. [PMID: 26188004 DOI: 10.1093/hmg/ddv275] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/09/2015] [Indexed: 11/13/2022] Open
Abstract
Mutations in the PDE6A gene can cause rod photoreceptors degeneration and the blinding disease retinitis pigmentosa (RP). While a number of pathogenic PDE6A mutations have been described, little is known about their impact on compound heterozygous situations and potential interactions of different disease-causing alleles. Here, we used a novel mouse model for the Pde6a R562W mutation in combination with an existing line carrying the V685M mutation to generate compound heterozygous Pde6a V685M/R562W animals, exactly homologous to a case of human RP. We compared the progression of photoreceptor degeneration in these compound heterozygous mice with the homozygous V685M and R562W mutants, and additionally with the D670G line that is known for a relatively mild phenotype. We investigated PDE6A expression, cyclic guanosine mono-phosphate accumulation, calpain and caspase activity, in vivo retinal function and morphology, as well as photoreceptor cell death and survival. This analysis confirms the severity of different Pde6a mutations and indicates that compound heterozygous mutants behave like intermediates of the respective homozygous situations. Specifically, the severity of the four different Pde6a situations may be categorized by the pace of photoreceptor degeneration: V685M (fastest) > V685M/R562W > R562W > D670G (slowest). While calpain activity was strongly increased in all four mutants, caspase activity was not. This points to the execution of non-apoptotic cell death and may lead to the identification of new targets for therapeutic interventions. For individual RP patients, our study may help to predict time-courses for Pde6a-related retinal degeneration and thereby facilitate the definition of a window-of-opportunity for clinical interventions.
Collapse
Affiliation(s)
- Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - Marina Garcia Garrido
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - Kangwei Jiao
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany, Second People's Hospital of Yunnan Province and Fourth Affiliated Hospital of Kunming Medical University, 176 Qingnian Road, Wuhua, Kunming, Yunnan 650021, China
| | - Elena Buena-Atienza
- Molecular Genetics Laboratory, Centre for Ophthalmology, University Clinics Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Ayse Sahaboglu
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Dragana Trifunović
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Sukirthini Balendran
- Molecular Genetics Laboratory, Centre for Ophthalmology, University Clinics Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Tanja Koepfli
- Molecular Genetics Laboratory, Centre for Ophthalmology, University Clinics Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - Christian Schön
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany and
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany and
| | | | - Susanne C Beck
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany and
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Centre for Ophthalmology, University Clinics Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Schleichstr.4/3, Tuebingen 72076, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany,
| |
Collapse
|
47
|
Kaiser VB, Svinti V, Prendergast JG, Chau YY, Campbell A, Patarcic I, Barroso I, Joshi PK, Hastie ND, Miljkovic A, Taylor MS, Enroth S, Memari Y, Kolb-Kokocinski A, Wright AF, Gyllensten U, Durbin R, Rudan I, Campbell H, Polašek O, Johansson Å, Sauer S, Porteous DJ, Fraser RM, Drake C, Vitart V, Hayward C, Semple CA, Wilson JF. Homozygous loss-of-function variants in European cosmopolitan and isolate populations. Hum Mol Genet 2015; 24:5464-74. [PMID: 26173456 PMCID: PMC4572071 DOI: 10.1093/hmg/ddv272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022] Open
Abstract
Homozygous loss of function (HLOF) variants provide a valuable window on gene function in humans, as well as an inventory of the human genes that are not essential for survival and reproduction. All humans carry at least a few HLOF variants, but the exact number of inactivated genes that can be tolerated is currently unknown—as are the phenotypic effects of losing function for most human genes. Here, we make use of 1432 whole exome sequences from five European populations to expand the catalogue of known human HLOF mutations; after stringent filtering of variants in our dataset, we identify a total of 173 HLOF mutations, 76 (44%) of which have not been observed previously. We find that population isolates are particularly well suited to surveys of novel HLOF genes because individuals in such populations carry extensive runs of homozygosity, which we show are enriched for novel, rare HLOF variants. Further, we make use of extensive phenotypic data to show that most HLOFs, ascertained in population-based samples, appear to have little detectable effect on the phenotype. On the contrary, we document several genes directly implicated in disease that seem to tolerate HLOF variants. Overall HLOF genes are enriched for olfactory receptor function and are expressed in testes more often than expected, consistent with reduced purifying selection and incipient pseudogenisation.
Collapse
Affiliation(s)
- Vera B Kaiser
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - Victoria Svinti
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - James G Prendergast
- The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - You-Ying Chau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Inga Patarcic
- Medical School, University of Split, Soltanska 2, Split 21000, Croatia
| | - Inês Barroso
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Peter K Joshi
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Nicholas D Hastie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - Ana Miljkovic
- Medical School, University of Split, Soltanska 2, Split 21000, Croatia
| | - Martin S Taylor
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | | | | | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala SE-75108, Sweden and
| | - Yasin Memari
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Alan F Wright
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala SE-75108, Sweden and
| | - Richard Durbin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Igor Rudan
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Harry Campbell
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Ozren Polašek
- Medical School, University of Split, Soltanska 2, Split 21000, Croatia, Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Åsa Johansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, Uppsala SE-75108, Sweden and
| | - Sascha Sauer
- Max-Planck-Institute for Molecular Genetics, Otto-Warburg-Laboratory, Berlin, Germany
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | - Ross M Fraser
- Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| | - Camilla Drake
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - Colin A Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and
| | - James F Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine and Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK
| |
Collapse
|
48
|
Nash BM, Wright DC, Grigg JR, Bennetts B, Jamieson RV. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. Transl Pediatr 2015; 4:139-63. [PMID: 26835369 PMCID: PMC4729094 DOI: 10.3978/j.issn.2224-4336.2015.04.03] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs.
Collapse
Affiliation(s)
- Benjamin M Nash
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Dale C Wright
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - John R Grigg
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Bruce Bennetts
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| | - Robyn V Jamieson
- 1 Eye Genetics Research Group, Children's Medical Research Institute, University of Sydney, The Children's Hospital at Westmead and Save Sight Institute, Sydney, NSW, Australia ; 2 Sydney Genome Diagnostics, The Children's Hospital at Westmead, Sydney, NSW, Australia ; 3 Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
49
|
Brennenstuhl C, Tanimoto N, Burkard M, Wagner R, Bolz S, Trifunovic D, Kabagema-Bilan C, Paquet-Durand F, Beck SC, Huber G, Seeliger MW, Ruth P, Wissinger B, Lukowski R. Targeted ablation of the Pde6h gene in mice reveals cross-species differences in cone and rod phototransduction protein isoform inventory. J Biol Chem 2015; 290:10242-55. [PMID: 25739440 DOI: 10.1074/jbc.m114.611921] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase-6 (PDE6) is a multisubunit enzyme that plays a key role in the visual transduction cascade in rod and cone photoreceptors. Each type of photoreceptor utilizes discrete catalytic and inhibitory PDE6 subunits to fulfill its physiological tasks, i.e. the degradation of cyclic guanosine-3',5'-monophosphate at specifically tuned rates and kinetics. Recently, the human PDE6H gene was identified as a novel locus for autosomal recessive (incomplete) color blindness. However, the three different classes of cones were not affected to the same extent. Short wave cone function was more preserved than middle and long wave cone function indicating that some basic regulation of the PDE6 multisubunit enzyme was maintained albeit by a unknown mechanism. To study normal and disease-related functions of cone Pde6h in vivo, we generated Pde6h knock-out (Pde6h(-/-)) mice. Expression of PDE6H in murine eyes was restricted to both outer segments and synaptic terminals of short and long/middle cone photoreceptors, whereas Pde6h(-/-) retinae remained PDE6H-negative. Combined in vivo assessment of retinal morphology with histomorphological analyses revealed a normal overall integrity of the retinal organization and an unaltered distribution of the different cone photoreceptor subtypes upon Pde6h ablation. In contrast to human patients, our electroretinographic examinations of Pde6h(-/-) mice suggest no defects in cone/rod-driven retinal signaling and therefore preserved visual functions. To this end, we were able to demonstrate the presence of rod PDE6G in cones indicating functional substitution of PDE6. The disparities between human and murine phenotypes caused by mutant Pde6h/PDE6H suggest species-to-species differences in the vulnerability of biochemical and neurosensory pathways of the visual signal transduction system.
Collapse
Affiliation(s)
- Christina Brennenstuhl
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | - Markus Burkard
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | - Rebecca Wagner
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | | | - Clement Kabagema-Bilan
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | | | | | | | | | - Peter Ruth
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy
| | - Bernd Wissinger
- the Molecular Genetics Laboratory, Centre for Ophthalmology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Robert Lukowski
- From the Institute of Pharmacy, Department of Pharmacology, Toxicology and Clinical Pharmacy,
| |
Collapse
|
50
|
A profile of transcriptomic changes in the rd10 mouse model of retinitis pigmentosa. Mol Vis 2014; 20:1612-28. [PMID: 25489233 PMCID: PMC4235044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022] Open
Abstract
PURPOSE Retinitis pigmentosa (RP) is a photoreceptor disease that affects approximately 100,000 people in the United States. Treatment options are limited, and the prognosis for most patients is progressive vision loss. Unfortunately, understanding of the molecular underpinnings of RP initiation and progression is still limited. However, the development of animal models of RP, coupled with high-throughput sequencing, has provided an opportunity to study the underlying cellular and molecular changes in this disease. METHODS Using RNA-Seq, we present the first retinal transcriptome analysis of the rd10 murine model of retinal degeneration. RESULTS Our data confirm the loss of rod-specific transcripts and the increased relative expression of Müller-specific transcripts, emphasizing the important role of reactive gliosis and innate immune activation in RP. Moreover, we report substantial changes in relative isoform usage among neuronal differentiation and morphogenesis genes, including a marked shift to shorter transcripts. CONCLUSIONS Our analyses implicate remodeling of the inner retina and possible Müller cell dedifferentiation.
Collapse
|