1
|
Sjøstrøm E, Bruel AL, Philippe C, Delanne J, Faivre L, Menke LA, Au PYB, Cormick JJ, Moosa S, Bayat A. Exploring the Cognitive and Behavioral Aspects of Shprintzen-Goldberg Syndrome; a Novel Cohort and Literature Review. Clin Genet 2025; 107:328-334. [PMID: 39600231 DOI: 10.1111/cge.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Shprintzen-Goldberg-syndrome (SGS) is caused by pathogenic exon 1 variants of SKI. Symptoms include dysmorphic features, skeletal and cardiovascular comorbidities, and cognitive and developmental impairments. We delineated the neurodevelopmental and behavioral features of SGS, as they are not well-documented. We collected physician-reported data of people with molecularly confirmed SGS through an international collaboration. We identified and deep-phenotyped the neurodevelopmental and behavioral features in four patients. Within our cohort, all exhibited developmental delays in motor skills and/or speech, with the average age of first words at 2 years and 6 months and independent walking at 3 years and 5 months. All four had learning disabilities and difficulties regulating emotions and behavior. Intellectual disability, ranging from borderline to moderate, was present in all four participants. Moreover, we reviewed the literature and identified 52 additional people with SGS, and summarized the features across both datasets. Mean age was 23 years (9-48 years). When combining our cohort and reported cases, we found that 80% (45/56) had developmental and/or cognitive impairment, with the remainder having normal intelligence. Our study elucidates the developmental, cognitive, and behavioral features in participants with SGS and contributes to a better understanding of this rare condition.
Collapse
Affiliation(s)
- Emilie Sjøstrøm
- Department of Pediatrics, Danish Epilepsy Center, Dianalund, Denmark
| | - Ange-Line Bruel
- INSERM, Genetics of Developmental Anomalies, Université de Bourgogne, Dijon, France
- Laboratoire de Génomique médicale-Centre NEOMICS, CHU Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- INSERM, Genetics of Developmental Anomalies, Université de Bourgogne, Dijon, France
- Laboratoire de Génomique médicale-Centre NEOMICS, CHU Dijon Bourgogne, Dijon, France
| | - Julian Delanne
- INSERM, Genetics of Developmental Anomalies, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Laurence Faivre
- INSERM, Genetics of Developmental Anomalies, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence "Anomalies du Développement et Syndromes Malformatifs de l'Inter-région Est", FHU TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Leonie A Menke
- Department of Pediatrics, Amsterdam UMC Location University of Amsterdam, Emma Children's Hospital, Amsterdam, The Netherlands
- Department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
- Cellular & Molecular Mechanisms, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pediatrics, Emma Center for Personalized Medicine, Amsterdam, The Netherlands
| | - P Y Billie Au
- Department of Medical Genetics, Alberta Children's Hospital, Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jessica Jane Cormick
- Division of Molecular Biology and Human Genetics, Stellenbosch University and Medical Genetics, Tygerberg Hospital, Cape Town, South Africa
| | - Shahida Moosa
- Division of Molecular Biology and Human Genetics, Stellenbosch University and Medical Genetics, Tygerberg Hospital, Cape Town, South Africa
| | - Allan Bayat
- Department of Pediatrics, Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Chatelain C, Kukor L, Bailleux S, Bours V, Bulk S, Docampo E. Shprintzen - Goldberg syndrome without intellectual disability: A clinical report and review of literature. Eur J Med Genet 2025; 73:104985. [PMID: 39638120 DOI: 10.1016/j.ejmg.2024.104985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/02/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Shprintzen-Goldberg syndrome is a rare systemic connective tissue disorder caused by heterozygous mutations in the Sloan-Kettering Institute (SKI) gene. The clinical presentation is reminiscent of Marfan and Loeys-Dietz syndromes, making differential diagnosis challenging. Shprintzen-Goldberg syndrome's distinctive features are craniosynostosis and learning disabilities. The pathophysiology of these three conditions is similar as they all result in the deregulation of the transforming growth factor beta (TGF-β) signaling pathway and thus an altered expression of TGF-β responsive genes. We report a family of two patients: one with initial suspicion of hypermobile Ehlers-Danlos syndrome and the second with suspicion of Marfan syndrome, as the Marfan systemic score was positive and no craniosynostosis or learning disabilities were described. They were diagnosed with Shprintzen-Goldberg syndrome after a heterozygous probably pathogenic variant in the second mutational hotspot of SKI Dachshund homology domain was identified. We reviewed the genotype-phenotype correlation among the three mutational hotspots in SKI: the amino acids 20 to 35 of the receptor-regulated small mothers against decapentaplegic domain (group 1, n = 32), amino acids 94 to 117 of Dachshund homology domain (group 2, n = 12), and threonine 180 of Dachshund homology domain (group 3, n = 11 including our patients). As the main differential diagnoses of Shprintzen-Goldberg syndrome are Marfan and Loeys-Dietz syndromes, we completed the comparison already made by Loeys and Dietz. (2008) of Shprintzen-Goldberg syndrome clinical features among the different mutational hotspots with Marfan syndrome and the different types of Loeys-Dietz syndrome. In addition to the already described absence of learning disabilities in Shprintzen-Goldberg patients with a pathogenic variant in the threonine 180 of Dachshund homology domain, facial features also appeared to be less severe. The clinical overlap with Marfan and Loeys-Dietz patients requires genetic testing in order to establish an accurate molecular diagnosis at the variant level, and to adapt genetic counseling and clinical management.
Collapse
Affiliation(s)
- Camille Chatelain
- Human Genetics Department, University Hospital of Liège, Avenue de l'Hôpital 1, 4000, Liège, Belgium.
| | - Léna Kukor
- Human Genetics Department, University Hospital of Liège, Avenue de l'Hôpital 1, 4000, Liège, Belgium
| | - Sophie Bailleux
- Dermatology Department, University Hospital of Liège, Avenue de l'Hôpital 1, 4000, Liège, Belgium
| | - Vincent Bours
- Human Genetics Department, University Hospital of Liège, Avenue de l'Hôpital 1, 4000, Liège, Belgium
| | - Saskia Bulk
- Human Genetics Department, University Hospital of Liège, Avenue de l'Hôpital 1, 4000, Liège, Belgium
| | - Elisa Docampo
- Human Genetics Department, University Hospital of Liège, Avenue de l'Hôpital 1, 4000, Liège, Belgium
| |
Collapse
|
3
|
Margot H, Pizano A, Amestoy A, Lacombe D, Berges C, Beneteau C, Innes AM. Investigations of an individual with a Marfanoid habitus, mild intellectual disability, and severe social anxiety identifies PCDHGA5 as a candidate neurodevelopmental disorder gene. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2024; 196:e32087. [PMID: 38591859 DOI: 10.1002/ajmg.c.32087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Marfanoid habitus and intellectual disability (MHID) co-occur in multiple neurodevelopmental disorders (NDD). Among those, Lujan-Fryns, an X-linked genetic disorder associated with variants in MED12 was the first such syndrome identified. Accurate molecular diagnosis for these MHID syndromes remains a challenge due to significant clinical and genetic heterogeneity. We present a case report of a 20-year-old male patient with MHID and severe social anxiety. A comprehensive clinical evaluation, including morphotype assessment, cognitive, and psychometric and genetic testing, was conducted to provide a detailed understanding of the patient's complex clinical presentation. Psychometric assessments revealed severe social anxiety and various cognitive and emotional challenges. Despite some autism-like symptoms, the patient's clinical presentation was more aligned with mild intellectual disability. Exome sequencing was inconclusive but identified a heterozygous de novo missense variant in the PCDHGA5 gene. This gene is not known in human pathology yet, but we also report a second patient with a syndromic neurodevelopmental disorder and a rare de novo variant which leads us to propose this as a candidate gene. Our findings emphasize the importance of multidisciplinary approach in the diagnosis and management of MHID. This case report underscores the need for objective clinical evaluations and standardized tools to better understand the complex clinical profiles of patients with NDDs. The identification of novel PCDHGA5 gene variants adds this gene's candidacy to the genetic landscape of MHID-NDD, warranting further investigation to determine its potential contribution.
Collapse
Affiliation(s)
- Henri Margot
- Univ. Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Adrien Pizano
- Aquitaine Autism Resources Centre, Centre Hospitalier Charles-Perrens, University Pole of Child and Adolescent Psychiatry, Bordeaux, France
| | - Anouck Amestoy
- Aquitaine Autism Resources Centre, Centre Hospitalier Charles-Perrens, University Pole of Child and Adolescent Psychiatry, Bordeaux, France
| | - Didier Lacombe
- Univ. Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Camille Berges
- Univ. Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Claire Beneteau
- Univ. Bordeaux, MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - A Micheil Innes
- Department of Medical Genetics and Pediatrics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
4
|
Han D, Wang Z, Chen X, Liu Z, Yang Z, Chen Y, Tian P, Li J, Wang Z. Targeted next-generation sequencing reveals the genetic mechanism of Chinese Marfan syndrome cohort with ocular manifestation. Mol Genet Genomic Med 2024; 12:e2482. [PMID: 38958168 PMCID: PMC11220501 DOI: 10.1002/mgg3.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a hereditary connective tissue disorder involving multiple systems, including ophthalmologic abnormalities. Most cases are due to heterozygous mutations in the fibrillin-1 gene (FBN1). Other associated genes include LTBP2, MYH11, MYLK, and SLC2A10. There is significant clinical overlap between MFS and other Marfan-like disorders. PURPOSE To expand the mutation spectrum of FBN1 gene and validate the pathogenicity of Marfan-related genes in patients with MFS and ocular manifestations. METHODS We recruited 318 participants (195 cases, 123 controls), including 59 sporadic cases and 88 families. All patients had comprehensive ophthalmic examinations showing ocular features of MFS and met Ghent criteria. Additionally, 754 cases with other eye diseases were recruited. Panel-based next-generation sequencing (NGS) screened mutations in 792 genes related to inherited eye diseases. RESULTS We detected 181 mutations with an 84.7% detection rate in sporadic cases and 87.5% in familial cases. The overall detection rate was 86.4%, with FBN1 accounting for 74.8%. In cases without FBN1 mutations, 23 mutations from seven Marfan-related genes were identified, including four pathogenic or likely pathogenic mutations in LTBP2. The 181 mutations included 165 missenses, 10 splicings, three frameshifts, and three nonsenses. FBN1 accounted for 53.0% of mutations. The most prevalent pathogenic mutation was FBN1 c.4096G>A. Additionally, 94 novel mutations were detected, with 13 de novo mutations in 14 families. CONCLUSION We expanded the mutation spectrum of the FBN1 gene and provided evidence for the pathogenicity of other Marfan-related genes. Variants in LTBP2 may contribute to the ocular manifestations in MFS, underscoring its role in phenotypic diversity.
Collapse
Affiliation(s)
- Dongming Han
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ziwei Wang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Xuan Chen
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zijia Liu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhengtao Yang
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yixi Chen
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Peiyi Tian
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Jiankang Li
- City University of Hong Kong Shenzhen Research InstituteShenzhenChina
- He UniversityShenyangChina
| | | |
Collapse
|
5
|
Janssen N, Coorens NA, Franssen AJPM, Daemen JHT, Michels IL, Hulsewé KWE, Vissers YLJ, de Loos ER. Pectus excavatum and carinatum: a narrative review of epidemiology, etiopathogenesis, clinical features, and classification. J Thorac Dis 2024; 16:1687-1701. [PMID: 38505013 PMCID: PMC10944748 DOI: 10.21037/jtd-23-957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/31/2023] [Indexed: 03/21/2024]
Abstract
Background and Objective A wide variety of congenital chest wall deformities that manifest in infants, children and adolescents exists, among which are pectus excavatum and pectus carinatum. Numerous studies have been conducted over the years aiming to better understand these deformities. This report provides a brief overview of what is currently known about the epidemiology, etiopathogenesis, clinical presentation, and classification of these deformities, and highlights the gaps in knowledge. Methods A search was conducted for all the above-described domains in the PubMed and Embase databases. Key Content and Findings A total of 147 articles were included in this narrative review. Estimation of the true incidence and prevalence of pectus excavatum and carinatum is challenging due to lacking consensus on a definition of both deformities. Nowadays, several theories for the development of pectus excavatum and carinatum have been suggested which focus on intrinsic or extrinsic pathogenic factors, with the leading hypothesis focusing on overgrowth or growth disturbance of costal cartilages. Furthermore, genetic predisposition to the deformities is likely to exist. Pectus excavatum is frequently associated with cardiopulmonary symptoms, while pectus carinatum patients mostly present with cosmetic complaints. Both deformities are classified based on the shape or severity of the deformity. However, each classification system has its limitations. Conclusions Substantial progress has been made in the past few decades in understanding the development and symptomatology of pectus excavatum and carinatum. Current hypotheses on the etiology of the deformities should be confirmed by biomedical and genetic studies. For clinical purposes, the establishment of a clear definition and classification system for both deformities based on objective morphologic features is eagerly anticipated.
Collapse
Affiliation(s)
- Nicky Janssen
- Division of General Thoracic Surgery, Department of Surgery, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Nadine A Coorens
- Division of General Thoracic Surgery, Department of Surgery, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Aimée J P M Franssen
- Division of General Thoracic Surgery, Department of Surgery, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Jean H T Daemen
- Division of General Thoracic Surgery, Department of Surgery, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Iris L Michels
- Division of General Thoracic Surgery, Department of Surgery, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Karel W E Hulsewé
- Division of General Thoracic Surgery, Department of Surgery, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Yvonne L J Vissers
- Division of General Thoracic Surgery, Department of Surgery, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Erik R de Loos
- Division of General Thoracic Surgery, Department of Surgery, Zuyderland Medical Center, Heerlen, The Netherlands
| |
Collapse
|
6
|
Spaziani G, Surace FC, Girolami F, Bianco F, Bucciarelli V, Bonanni F, Bennati E, Arcieri L, Favilli S. Hereditary Thoracic Aortic Diseases. Diagnostics (Basel) 2024; 14:112. [PMID: 38201421 PMCID: PMC10795846 DOI: 10.3390/diagnostics14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Advances in both imaging techniques and genetics have led to the recognition of a wide variety of aortic anomalies that can be grouped under the term 'hereditary thoracic aortic diseases'. The present review aims to summarize this very heterogeneous population's clinical, genetic, and imaging characteristics and to discuss the implications of the diagnosis for clinical counselling (on sports activity or pregnancy), medical therapies and surgical management.
Collapse
Affiliation(s)
- Gaia Spaziani
- Pediatric and Transition Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (F.G.); (E.B.); (S.F.)
| | - Francesca Chiara Surace
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy; (F.C.S.); (F.B.); (V.B.); (L.A.)
| | - Francesca Girolami
- Pediatric and Transition Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (F.G.); (E.B.); (S.F.)
| | - Francesco Bianco
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy; (F.C.S.); (F.B.); (V.B.); (L.A.)
| | - Valentina Bucciarelli
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy; (F.C.S.); (F.B.); (V.B.); (L.A.)
| | - Francesca Bonanni
- Department of Experimental and Clinical Medicine, School of Cardiology, Faculty of Medicine, University of Study of Florence, 50121 Florence, Italy;
| | - Elena Bennati
- Pediatric and Transition Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (F.G.); (E.B.); (S.F.)
| | - Luigi Arcieri
- Cardiovascular Sciences Department, AOU “Ospedali Riuniti”, 60126 Ancona, Italy; (F.C.S.); (F.B.); (V.B.); (L.A.)
| | - Silvia Favilli
- Pediatric and Transition Cardiology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy; (F.G.); (E.B.); (S.F.)
| |
Collapse
|
7
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
8
|
Manole S, Rancea R, Vulturar R, Simon SP, Molnar A, Damian L. Frail Silk: Is the Hughes-Stovin Syndrome a Behçet Syndrome Subtype with Aneurysm-Involved Gene Variants? Int J Mol Sci 2023; 24:ijms24043160. [PMID: 36834577 PMCID: PMC9968083 DOI: 10.3390/ijms24043160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Hughes-Stovin syndrome is a rare disease characterized by thrombophlebitis and multiple pulmonary and/or bronchial aneurysms. The etiology and pathogenesis of HSS are incompletely known. The current consensus is that vasculitis underlies the pathogenic process, and pulmonary thrombosis follows arterial wall inflammation. As such, Hughes-Stovin syndrome may belong to the vascular cluster with lung involvement of Behçet syndrome, although oral aphtae, arthritis, and uveitis are rarely found. Behçet syndrome is a multifactorial polygenic disease with genetic, epigenetic, environmental, and mostly immunological contributors. The different Behçet syndrome phenotypes are presumably based upon different genetic determinants involving more than one pathogenic pathway. Hughes-Stovin syndrome may have common pathways with fibromuscular dysplasias and other diseases evolving with vascular aneurysms. We describe a Hughes-Stovin syndrome case fulfilling the Behçet syndrome criteria. A MYLK variant of unknown significance was detected, along with other heterozygous mutations in genes that may impact angiogenesis pathways. We discuss the possible involvement of these genetic findings, as well as other potential common determinants of Behçet/Hughes-Stovin syndrome and aneurysms in vascular Behçet syndrome. Recent advances in diagnostic techniques, including genetic testing, could help diagnose a specific Behçet syndrome subtype and other associated conditions to personalize the disease management.
Collapse
Affiliation(s)
- Simona Manole
- Department of Radiology, “Niculae Stăncioiu” Heart Institute, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Raluca Rancea
- Cardiology Department, Heart Institute “Niculae Stăncioiu”, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy 6, Pasteur, 400349 Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30, Fântânele Street, 400294 Cluj-Napoca, Romania
- Correspondence:
| | - Siao-Pin Simon
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), 2-4 Clinicilor Street, 400347 Cluj-Napoca, Romania
- Discipline of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Adrian Molnar
- Department of Cardiovascular Surgery, Heart Institute “Niculae Stăncioiu”, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
- Department of Cardiovascular and Thoracic Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), 2-4 Clinicilor Street, 400347 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior Street, 400002 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Topa A, Rohlin A, Andersson MK, Fehr A, Lovmar L, Stenman G, Kölby L. The outcome of targeted NGS screening in patients with syndromic forms of sagittal and pansynostosis - IL11RA is an emerging core-gene for pansynostosis. Eur J Med Genet 2022; 65:104476. [PMID: 35331937 DOI: 10.1016/j.ejmg.2022.104476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/03/2022]
Abstract
Here, we have studied the prevalence and spectrum of genetic alterations in syndromic forms of sagittal and pansynostosis. Eighteen patients with sagittal synostosis (isolated or combined with other synostoses, except coronal) or pansynostosis were phenotypically assessed by retrospective analysis of medical records, three-dimensional computed tomography skull reconstructions, and registered photos. Patient DNAs were analyzed using a targeted next-generation sequencing (NGS) panel including 63 craniosynostosis (CS) related genes. Pathogenic and likely pathogenic variants were found in 72% of the cases, mainly affecting FGFR2, TWIST1, IL11RA, and SKI. Two patients that were negative at NGS screening - one with a supernumerary marker chromosome with duplication of 15q25.2q26.3 and one with a pathogenic PHEX variant - were identified using microarray and single gene analysis, respectively. The overall diagnostic rate in the cohort was thus 83%. We identified two novel likely pathogenic variants in FGFR2 (NM_022970.3: c.811_812delGGinsCC, p.Gly271Pro) and TWIST1 (NM_000474.3: c.476T > A, p.Leu159His), and a novel variant of unclear phenotypic significance in RUNX2 (NM_001024630.3: c.340G > A, p.Val114Ile) which could suggest a modulatory effect. Notably, we also identified three new patients with pansynostosis and a Crouzon-like phenotype with IL11RA mutation. Targeted NGS using a broad panel of CS-related genes is a simple and powerful tool for detecting pathogenic mutations in patients with syndromic forms of CS and multiple suture involvement, in particular pansynostosis. Our results provide additional evidence of an association between pansynostosis and IL11RA, an emerging core gene for autosomal recessive CS.
Collapse
Affiliation(s)
- Alexandra Topa
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias K Andersson
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Sahlgrenska Center for Cancer Research, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - André Fehr
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Göran Stenman
- Department of Laboratory Medicine, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Sahlgrenska Center for Cancer Research, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden; Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| |
Collapse
|
10
|
Update on the molecular landscape of thoracic aortic aneurysmal disease. Curr Opin Cardiol 2022; 37:201-211. [PMID: 35175228 DOI: 10.1097/hco.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THE REVIEW Thoracic aortic aneurysms and dissections (TAADs) are a major health problem in the Western population. This review summarises recent discoveries in the genetic landscape of TAAD disease, discusses current challenges in clinical practice, and describes the molecular road ahead in TAAD research. Disorders, in which aneurysmal disease is not observed in the thoracic aorta, are not discussed. RECENT FINDINGS Current gene discovery studies have pinpointed about 40 genes associated with TAAD risk, accounting for about 30% of the patients. Importantly, novel genes, and their subsequent functional characterisation, have expanded the knowledge on disease-related pathways providing crucial information on key elements in this disease, and it pinpoints new therapeutic targets. Moreover, current molecular evidence also suggests the existence of less monogenic nature of TAAD disease, in which the presentation of a diseased patient is most likely influenced by a multitude of genetic and environmental factors. SUMMARY CLINICAL PRACTICE/RELEVANCE Ongoing molecular genetic research continues to expand our understanding on the pathomechanisms underlying TAAD disease in order to improve molecular diagnosis, optimise risk stratification, advance therapeutic strategies and facilitate counselling of TAAD patients and their families.
Collapse
|
11
|
Almpani K, Liberton DK, Jani P, Keyvanfar C, Mishra R, Curry N, Orzechowski P, Frischmeyer-Guerrerio PA, Lee JS. Loeys-Dietz and Shprintzen-Goldberg syndromes: analysis of TGF-β-opathies with craniofacial manifestations using an innovative multimodality method. J Med Genet 2021; 59:938-946. [PMID: 34916229 PMCID: PMC9554024 DOI: 10.1136/jmedgenet-2021-107695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/02/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Elevated transforming growth factor-beta (TGF-β) signalling has been implicated in the pathogenesis of Loeys-Dietz syndrome (LDS) and Shprintzen-Goldberg syndrome (SGS). In this study, we provide a qualitative and quantitative analysis of the craniofacial and functional features among the LDS subtypes and SGS. METHODS We explore the variability within and across a cohort of 44 patients through deep clinical phenotyping, three-dimensional (3D) facial photo surface analysis, cephalometric and geometric morphometric analyses of cone-beam CT scans. RESULTS The most common craniofacial features detected in this cohort include mandibular retrognathism (84%), flat midface projection (84%), abnormal eye shape (73%), low-set ears (73%), abnormal nose (66%) and lip shape (64%), hypertelorism (41%) and a relatively high prevalence of nystagmus/strabismus (43%), temporomandibular joint disorders (38%) and obstructive sleep apnoea (23%). 3D cephalometric analysis demonstrated an increased cranial base angle with shortened anterior cranial base and underdevelopment of the maxilla and mandible, with evidence of a reduced pharyngeal airway in 55% of those analysed. Geometric morphometric analysis confirmed that the greatest craniofacial shape variation was among patients with LDS type 2, with distinct clustering of patients with SGS. CONCLUSIONS This comprehensive phenotypic approach identifies developmental abnormalities that segregate to mutation variants along the TGF-β signalling pathway, with a particularly severe phenotype associated with TGFBR2 and SKI mutations. Multimodality assessment of craniofacial anomalies objectively reveals the impact of mutations of the TGF-β pathway with perturbations associated with the cranium and cranial base with severe downstream effects on the orbit, maxilla and mandible with the resultant clinical phenotypes.
Collapse
Affiliation(s)
- Konstantinia Almpani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Denise K Liberton
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Priyam Jani
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Cyrus Keyvanfar
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Rashmi Mishra
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Natasha Curry
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | - Pamela Orzechowski
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| | | | - Janice S Lee
- Craniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Lodato V, Orlando V, Alesi V, Di Tommaso S, Bengala M, Parlapiano G, Agnolucci E, Cicenia M, Calì F, Digilio MC, Drago F, Novelli A, Baban A. 1p36 Deletion Syndrome and the Aorta: A Report of Three New Patients and a Literature Review. J Cardiovasc Dev Dis 2021; 8:jcdd8110159. [PMID: 34821712 PMCID: PMC8618808 DOI: 10.3390/jcdd8110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Monosomy 1p36 syndrome is now considered the most common terminal deletion syndrome, with an estimated incidence of 1 in 5000. Cardiac involvement is well described in the literature mainly in terms of congenital heart defects (CHDs) and cardiomyopathies (CMPs). Few data in the literature describe the potential progressive nature of aortic dilatation (root and ascending aorta) in 1p36 deletion syndrome. SKI harboured in the deleted region might play a predisposing factor for this aspect. METHODS we reviewed the aortic aspect both in the literature and in our cohort, where major attention to the aortic abnormalities was given through dedicated echocardiographic measurements even in previously screened individuals. RESULTS aortic involvement in 1p36 deletion syndrome was described in the literature three times within the CHD context. We observed three additional patients from our cohort (three out of nine patients) with aortic dilatation. All patients with dilated aorta had SKI haploinsufficiency within the deleted region. CONCLUSIONS at long-term outcome and with a growing population of this rare disease, this association (1p36 deletion and aortic dilatation) might represent a major concern especially in terms of risk stratification and the potential need for specific management (conservative pharmacologic and eventually surgical) whenever indicated. The present study suggests the need for detailed multicentric studies and indication to periodic echocardiographic screening in addition to baseline tests, especially in individuals with deletions harbouring SKI.
Collapse
Affiliation(s)
- Valentina Lodato
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (E.A.); (M.C.); (F.C.); (F.D.)
| | - Valeria Orlando
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.O.); (V.A.); (S.D.T.); (G.P.); (A.N.)
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.O.); (V.A.); (S.D.T.); (G.P.); (A.N.)
| | - Silvia Di Tommaso
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.O.); (V.A.); (S.D.T.); (G.P.); (A.N.)
| | - Mario Bengala
- Laboratory of Medical Genetics, Tor Vergata Hospital, 00133 Rome, Italy;
| | - Giovanni Parlapiano
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.O.); (V.A.); (S.D.T.); (G.P.); (A.N.)
| | - Elisa Agnolucci
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (E.A.); (M.C.); (F.C.); (F.D.)
| | - Marianna Cicenia
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (E.A.); (M.C.); (F.C.); (F.D.)
| | - Federica Calì
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (E.A.); (M.C.); (F.C.); (F.D.)
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Division, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy;
| | - Fabrizio Drago
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (E.A.); (M.C.); (F.C.); (F.D.)
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.O.); (V.A.); (S.D.T.); (G.P.); (A.N.)
| | - Anwar Baban
- The European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Pediatric Cardiology and Arrhythmia/Syncope Units, Bambino Gesù Children Hospital and Research Institute, IRCCS, 00165 Rome, Italy; (V.L.); (E.A.); (M.C.); (F.C.); (F.D.)
- Correspondence: ; Tel.: +39-0668593559
| |
Collapse
|
13
|
Ziegler SG, MacCarrick G, Dietz HC. Toward precision medicine in vascular connective tissue disorders. Am J Med Genet A 2021; 185:3340-3349. [PMID: 34428348 DOI: 10.1002/ajmg.a.62461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022]
Abstract
Tremendous progress has been made in understanding the etiology, pathogenesis, and treatment of inherited vascular connective tissue disorders. While new insights regarding disease etiology and pathogenesis have informed patient counseling and care, there are numerous obstacles that need to be overcome in order to achieve the full promise of precision medicine. In this review, these issues will be discussed in the context of Marfan syndrome and Loeys-Dietz syndrome, with additional emphasis on the pioneering contributions made by Victor McKusick.
Collapse
Affiliation(s)
- Shira G Ziegler
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gretchen MacCarrick
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry C Dietz
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
14
|
Trujillo-Quintero JP, Gabau Vila E, Larrañaga Moreira JM, Ruiz Nel Lo A, Monserrat L, Barriales-Villa R. Shprintzen-Goldberg syndrome and aortic dilatation: apropos of 2 new cases. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2021; 74:551-553. [PMID: 33478915 DOI: 10.1016/j.rec.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Juan Pablo Trujillo-Quintero
- Unitat de Genètica Clínica, Servei de Medicina Pediàtrica, Parc Taulí Hospital Universitari, Sabadell, Barcelona, Spain.
| | - Elisabeth Gabau Vila
- Unitat de Genètica Clínica, Servei de Medicina Pediàtrica, Parc Taulí Hospital Universitari, Sabadell, Barcelona, Spain
| | - José María Larrañaga Moreira
- Unidad de Cardiopatías Familiares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Galicia, Spain
| | - Anna Ruiz Nel Lo
- Laboratorio de Genética de la UDIAT-CD, Parc Taulí Hospital Universitari, Sabadell, Barcelona, Spain
| | | | - Roberto Barriales-Villa
- Unidad de Cardiopatías Familiares, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
15
|
Síndrome de Shprintzen-Goldberg y dilatación aórtica: a propósito de dos nuevos casos. Rev Esp Cardiol (Engl Ed) 2021. [DOI: 10.1016/j.recesp.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Srivastava P, Shende S, Mandal K. Deciphering the Pathogenic Nature of Two de novo Sequence Variations in a Patient with Shprintzen-Goldberg Syndrome. Mol Syndromol 2021; 12:141-147. [PMID: 34177429 DOI: 10.1159/000514125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022] Open
Abstract
Shprintzen-Goldberg syndrome (SGS) is autosomal dominant disorder with features of craniosynostosis, distinctive craniofacial features, skeletal abnormalities, marfanoid body habitus, aortic dilatation, and intellectual disability. SGS is caused by mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFβ activity. We present the unusual molecular findings in a 12-year-old female child with SGS. There was co-occurrence of 2 heterozygous missense variations, c.346G>A (p.Gly116Arg) and c.687G>C (p.Lys229Asn), in exon 1 (hotspot) of the SKI gene, which makes this propositus different from all other patients reported in the literature. Both variants were found to be de novo. In silico analysis revealed that both of them are pathogenic, but later on, Gly116Arg was proven to be more pathogenic by various in silico prediction tools. c.687G>C (p.Lys229Asn) was found as a single report in ExAC in the South Asian population, but c.346G>A (p.Gly116Arg) is not reported anywhere, thereby making it a novel sequence variant in the SKI gene, giving rise to SGS. This case illustrates the issues regarding the importance and difficulties associated with the determination of the causative variations in a single-gene disorder.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shashank Shende
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
17
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Clinically relevant variants in a large cohort of Indian patients with Marfan syndrome and related disorders identified by next-generation sequencing. Sci Rep 2021; 11:764. [PMID: 33436942 PMCID: PMC7804850 DOI: 10.1038/s41598-020-80755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Marfan syndrome and related disorders are a group of heritable connective tissue disorders and share many clinical features that involve cardiovascular, skeletal, craniofacial, ocular, and cutaneous abnormalities. The majority of affected individuals have aortopathies associated with early mortality and morbidity. Implementation of targeted gene panel next-generation sequencing in these individuals is a powerful tool to obtain a genetic diagnosis. Here, we report on clinical and genetic spectrum of 53 families from India with a total of 83 patients who had a clinical diagnosis suggestive of Marfan syndrome or related disorders. We obtained a molecular diagnosis in 45/53 (85%) index patients, in which 36/53 (68%) had rare variants in FBN1 (Marfan syndrome; 63 patients in total), seven (13.3%) in TGFBR1/TGFBR2 (Loeys–Dietz syndrome; nine patients in total) and two patients (3.7%) in SKI (Shprintzen–Goldberg syndrome). 21 of 41 rare variants (51.2%) were novel. We did not detect a disease-associated variant in 8 (15%) index patients, and none of them met the Ghent Marfan diagnostic criteria. We found the homozygous FBN1 variant p.(Arg954His) in a boy with typical features of Marfan syndrome. Our study is the first reporting on the spectrum of variants in FBN1, TGFBR1, TGFBR2, and SKI in Indian individuals.
Collapse
|
19
|
Gori I, George R, Purkiss AG, Strohbuecker S, Randall RA, Ogrodowicz R, Carmignac V, Faivre L, Joshi D, Kjær S, Hill CS. Mutations in SKI in Shprintzen-Goldberg syndrome lead to attenuated TGF-β responses through SKI stabilization. eLife 2021; 10:e63545. [PMID: 33416497 PMCID: PMC7834018 DOI: 10.7554/elife.63545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Shprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-β signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional co-repressor SKI, which is a negative regulator of TGF-β signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing, and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-β responses, both in knockin cells expressing an SGS mutation and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-β-induced transcriptional responses, and not enhancement, which has important implications for other Marfan-related syndromes.
Collapse
Affiliation(s)
- Ilaria Gori
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Roger George
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Andrew G Purkiss
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Stephanie Strohbuecker
- Bioinformatics and Biostatistics Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Rebecca A Randall
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Roksana Ogrodowicz
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | | | - Laurence Faivre
- INSERM - Université de Bourgogne UMR1231 GAD, FHU-TRANSLADDijonFrance
| | - Dhira Joshi
- Peptide Chemistry Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Svend Kjær
- Structural Biology Facility, The Francis Crick InstituteLondonUnited Kingdom
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
20
|
Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular Matrix in Vascular Disease, Part 2/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2189-2203. [PMID: 32354385 DOI: 10.1016/j.jacc.2020.03.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/01/2023]
Abstract
Medium-sized and large arteries consist of 3 layers: the tunica intima, tunica media, and tunica adventitia. The tunica media accounts for the bulk of the vessel wall and is the chief determinant of mechanical compliance. It is primarily composed of circumferentially arranged layers of vascular smooth muscle cells that are separated by concentrically arranged elastic lamellae; a form of extracellular matrix (ECM). The tunica media is separated from the tunica intima and tunica adventitia, the innermost and outermost layers, respectively, by the internal and external elastic laminae. This second part of a 4-part JACC Focus Seminar discusses the contributions of the ECM to vascular homeostasis and pathology. Advances in genetics and proteomics approaches have fostered significant progress in our understanding of vascular ECM. This review highlights the important role of the ECM in vascular disease and the prospect of translating these discoveries into clinical disease biomarkers and potential future therapies.
Collapse
Affiliation(s)
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Marieke Rienks
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Aline Verstraeten
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
21
|
Yoon JG, Hahn HM, Choi S, Kim SJ, Aum S, Yu JW, Park EK, Shim KW, Lee MG, Kim YO. Molecular Diagnosis of Craniosynostosis Using Targeted Next-Generation Sequencing. Neurosurgery 2020; 87:294-302. [PMID: 31754721 DOI: 10.1093/neuros/nyz470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic factors play an important role in the pathogenesis of craniosynostosis (CRS). However, the molecular diagnosis of CRS in clinical practice is limited because of its heterogeneous etiology. OBJECTIVE To investigate the genomic landscape of CRS in a Korean cohort and also to establish a practical diagnostic workflow by applying targeted panel sequencing. METHODS We designed a customized panel covering 34 CRS-related genes using in-solution hybrid capture method. We enrolled 110 unrelated Korean patients with CRS, including 40 syndromic and 70 nonsyndromic cases. A diagnostic pipeline was established by combining in-depth clinical reviews and multiple bioinformatics tools for analyzing single-nucleotide variants (SNV)s and copy number variants (CNV)s. RESULTS The diagnostic yield of the targeted panel was 30.0% (33/110). Twenty-five patients (22.7%) had causal genetic variations resulting from SNVs or indels in 9 target genes (TWIST1, FGFR3, TCF12, ERF, FGFR2, ALPL, EFNB1, FBN1, and SKI, in order of frequency). CNV analysis identified 8 (7.3%) additional patients with chromosomal abnormalities involving 1p32.3p31.3, 7p21.1, 10q26, 15q21.3, 16p11.2, and 17p13.3 regions; these cases mostly presented with syndromic clinical features. CONCLUSION The present study shows the wide genomic landscape of CRS, revealing various genetic factors for CRS pathogenesis. In addition, the results demonstrate that an efficient diagnostic workup using target panel sequencing provides great clinical utility in the molecular diagnosis of CRS.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Hyung Min Hahn
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sungkyoung Choi
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Soo Jung Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sowon Aum
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Jung Woo Yu
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea.,Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Eun Kyung Park
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kyu Won Shim
- Department of Pediatric Neurosurgery, Craniofacial Reforming and Reconstruction Clinic, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Research Center for Human Genetics, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Yong Oock Kim
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Scoliosis in Shprintzen-Goldberg Syndrome. Case Rep Orthop 2020; 2020:8857463. [PMID: 33299628 PMCID: PMC7704212 DOI: 10.1155/2020/8857463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
We report a case of scoliosis in a 12-year-old girl with Shprintzen–Goldberg syndrome. She was diagnosed with Shprintzen–Goldberg syndrome at birth. She was hospitalized for a surgical treatment because scoliosis gradually progressed. Preoperative X-ray confirmed 80° symptomatic scoliosis in T10–L5. Posterior correction and fusion were performed, and postoperative X-ray showed a correction to 43°in T10-L5. Limited subcutaneous tissues and fragile bones must be considered when selecting the appropriate surgical method. Accurate placement of a screw into thin pedicle is essential to obtain sufficient correction and fusion. The use of a navigation system is recommended.
Collapse
|
23
|
Landry NM, Dixon IMC. Fibroblast mechanosensing, SKI and Hippo signaling and the cardiac fibroblast phenotype: Looking beyond TGF-β. Cell Signal 2020; 76:109802. [PMID: 33017619 DOI: 10.1016/j.cellsig.2020.109802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022]
Abstract
Cardiac fibroblast activation to hyper-synthetic myofibroblasts following a pathological stimulus or in response to a substrate with increased stiffness may be a key tipping point for the evolution of cardiac fibrosis. Cardiac fibrosis per se is associated with progressive loss of heart pump function and is a primary contributor to heart failure. While TGF-β is a common cytokine stimulus associated with fibroblast activation, a druggable target to quell this driver of fibrosis has remained an elusive therapeutic goal due to its ubiquitous use by different cell types and also in the signaling complexity associated with SMADs and other effector pathways. More recently, mechanical stimulus of fibroblastic cells has been revealed as a major point of activation; this includes cardiac fibroblasts. Further, the complexity of TGF-β signaling has been offset by the discovery of members of the SKI family of proteins and their inherent anti-fibrotic properties. In this respect, SKI is a protein that may bind a number of TGF-β associated proteins including SMADs, as well as signaling proteins from other pathways, including Hippo. As SKI is also known to directly deactivate cardiac myofibroblasts to fibroblasts, this mode of action is a putative candidate for further study into the amelioration of cardiac fibrosis. Herein we provide a synthesis of this topic and highlight novel candidate pathways to explore in the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Natalie M Landry
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
24
|
Eye Manifestations of Shprintzen–Goldberg Craniosynostosis Syndrome: A Case Report and Systematic Review. Case Rep Genet 2020; 2020:7353452. [PMID: 33628537 PMCID: PMC7895601 DOI: 10.1155/2020/7353452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022] Open
Abstract
Shprintzen–Goldberg craniosynostosis syndrome (SGS) is a rare autosomal dominant condition that was first documented in literature in 1982. The disorder is caused by pathogenic variants in the proto-oncogene SKI gene, a known suppressor of TGF-β activity, located on chromosome 1p36. There is considerable phenotypic overlap with Marfan and Loeys–Dietz syndromes. Common clinical features of SGS include craniosynostosis, marfanoid habitus, hypotonia, dysmorphic facies, cardiovascular anomalies, and other skeletal and connective tissue abnormalities. Ocular manifestations may include hypertelorism, downslanting palpebral fissures, proptosis, myopia, and ectopia lentis. We describe a 25-year-old male with the syndrome. Genetic analysis revealed a novel c.350G>A (p.Arg117His) de novo variant, which was predicted to be pathogenic by the CTGT laboratory. The patient presented with dysmorphic features, marfanoid habitus, severe joint contractures, mitral valve insufficiency, aortic root dilatation, and a history of seizures. His ocular manifestations included hypertelorism, downslanting palpebral fissures, bilateral ptosis, and high myopia. Ophthalmic manifestations are an integral component of the syndrome; however, they have not been well characterized in the literature. From a systematic review of previously published cases to date, we summarize the eye and ocular adnexa manifestations reported.
Collapse
|
25
|
Chevarin M, Duffourd Y, A Barnard R, Moutton S, Lecoquierre F, Daoud F, Kuentz P, Cabret C, Thevenon J, Gautier E, Callier P, St-Onge J, Jouan T, Lacombe D, Delrue MA, Goizet C, Morice-Picard F, Van-Gils J, Munnich A, Lyonnet S, Cormier-Daire V, Baujat G, Holder M, Petit F, Leheup B, Odent S, Jouk PS, Lopez G, Geneviève D, Collignon P, Martin-Coignard D, Jacquette A, Perrin L, Putoux A, Sarrazin E, Amarof K, Missotte I, Coubes C, Jagadeesh S, Lapi E, Demurger F, Goldenberg A, Doco-Fenzy M, Mignot C, Héron D, Jean-Marçais N, Masurel A, El Chehadeh S, Marle N, Huet F, Binquet C, Collod-Beroud G, Arnaud P, Hanna N, Boileau C, Jondeau G, Olaso R, Lechner D, Poe C, Assoum M, Carmignac V, Duplomb L, Tran Mau-Them F, Philippe C, Vitobello A, Bruel AL, Boland A, Deleuze JF, Thauvin-Robinet C, Rivière JB, O'Roak BJ, Faivre L. Excess of de novo variants in genes involved in chromatin remodelling in patients with marfanoid habitus and intellectual disability. J Med Genet 2020; 57:466-474. [PMID: 32277047 DOI: 10.1136/jmedgenet-2019-106425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/22/2019] [Accepted: 12/21/2019] [Indexed: 01/10/2023]
Abstract
PURPOSE Marfanoid habitus (MH) combined with intellectual disability (ID) (MHID) is a clinically and genetically heterogeneous presentation. The combination of array CGH and targeted sequencing of genes responsible for Marfan or Lujan-Fryns syndrome explain no more than 20% of subjects. METHODS To further decipher the genetic basis of MHID, we performed exome sequencing on a combination of trio-based (33 subjects) or single probands (31 subjects), of which 61 were sporadic. RESULTS We identified eight genes with de novo variants (DNVs) in at least two unrelated individuals (ARID1B, ATP1A1, DLG4, EHMT1, NFIX, NSD1, NUP205 and ZEB2). Using simulation models, we showed that five genes (DLG4, NFIX, EHMT1, ZEB2 and ATP1A1) met conservative Bonferroni genomewide significance for an excess of the observed de novo point variants. Overall, at least one pathogenic or likely pathogenic variant was identified in 54.7% of subjects (35/64). These variants fell within 27 genes previously associated with Mendelian disorders, including NSD1 and NFIX, which are known to be mutated in overgrowth syndromes. CONCLUSION We demonstrated that DNVs were enriched in chromatin remodelling (p=2×10-4) and genes regulated by the fragile X mental retardation protein (p=3×10-8), highlighting overlapping genetic mechanisms between MHID and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Martin Chevarin
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Yannis Duffourd
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Rebecca A Barnard
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Sébastien Moutton
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - François Lecoquierre
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Fatma Daoud
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Paul Kuentz
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Caroline Cabret
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Julien Thevenon
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | | | - Patrick Callier
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Judith St-Onge
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Thibaud Jouan
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Didier Lacombe
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Marie Ange Delrue
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Cyril Goizet
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Fanny Morice-Picard
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Julien Van-Gils
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Ouest, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | - Arnold Munnich
- IHU Imagine, Département de Génétique, APHP, Hôpital Necker Enfants Malades, Paris, France
| | - Stanislas Lyonnet
- IHU Imagine, Département de Génétique, APHP, Hôpital Necker Enfants Malades, Paris, France
| | - Valérie Cormier-Daire
- IHU Imagine, Département de Génétique, APHP, Hôpital Necker Enfants Malades, Paris, France
| | - Geneviève Baujat
- IHU Imagine, Département de Génétique, APHP, Hôpital Necker Enfants Malades, Paris, France
| | - Muriel Holder
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Nord, Centre Hospitalier Universitaire Lille, Lille, France
| | - Florence Petit
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Nord, Centre Hospitalier Universitaire Lille, Lille, France
| | - Bruno Leheup
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Ouest, Centre Hospitalier Universitaire Nancy, Nancy, France
| | - Sylvie Odent
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Pierre-Simon Jouk
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Centre Est, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - Gipsy Lopez
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Centre Est, Centre Hospitalier Universitaire Grenoble, Grenoble, France
| | - David Geneviève
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Languedoc Roussillon, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Patrick Collignon
- Centre de Compétence Anomalies du Développement et Syndromes Malformatifs Sud-Est, CHI de Toulon - La Seyne-sur-Mer, France
| | - Dominique Martin-Coignard
- Centre de compétence Anomalies du Développement et Syndromes Malformatifs, CH Le Mans, Le Mans, France
| | - Aurélia Jacquette
- Département de Génétique et Centre de Référence Déficiences intellectuelles de causes rares, APHP, La Pitié Salpêtrière, Paris, France
| | - Laurence Perrin
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Ile de France, APHP, Hôpital Robert Debré, Paris, France
| | - Audrey Putoux
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Centre Est, Hospices Civils de Lyon, Lyon, France
| | - Elisabeth Sarrazin
- Centre de Référence Caribéen des Maladies Rares Neurologiques et Neuromusculaires, CHU de Fort de France, Hôpital Pierre Zobda-Quitman, La Martinique, France
| | - Khadija Amarof
- Centre de Référence Caribéen des Maladies Rares Neurologiques et Neuromusculaires, CHU de Fort de France, Hôpital Pierre Zobda-Quitman, La Martinique, France
| | - Isabelle Missotte
- Service de Pédiatrie, Centre Hospitalier Territorial, Nouvelle Calédonie, France
| | - Christine Coubes
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs Sud-Languedoc Roussillon, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | | | - Elisabetta Lapi
- Genetica Medica, Azienda Ospedaliera Universitaria Anna Meyer, Firenze, Italia
| | | | - Alice Goldenberg
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Rouen, Rouen, France
| | - Martine Doco-Fenzy
- EA3801, Centre de Référence Anomalies du Développement et Syndromes Malformatifs et service de génétique, CHU Reims et UFR de médecine de Reims, Reims, France
| | - Cyril Mignot
- Département de Génétique et Centre de Référence Déficiences intellectuelles de causes rares, APHP, La Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Département de Génétique et Centre de Référence Déficiences intellectuelles de causes rares, APHP, La Pitié Salpêtrière, Paris, France
| | | | - Alice Masurel
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Salima El Chehadeh
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Nathalie Marle
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Frédéric Huet
- FHU TRANSLAD, CHU Dijon, Dijon, France.,Service de Pédiatrie 1, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Christine Binquet
- Centre d'Investigation Clinique - Epidémiologie Clinique, Centre Hospitalier Universitaire Dijon, Dijon, France
| | | | - Pauline Arnaud
- Centre de référence syndromes de Marfan et syndromes apparentés, APHP, Hôpital Bichat, Paris, France
| | - Nadine Hanna
- Centre de référence syndromes de Marfan et syndromes apparentés, APHP, Hôpital Bichat, Paris, France
| | - Catherine Boileau
- Centre de référence syndromes de Marfan et syndromes apparentés, APHP, Hôpital Bichat, Paris, France
| | - Guillaume Jondeau
- Centre de référence syndromes de Marfan et syndromes apparentés, APHP, Hôpital Bichat, Paris, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Doris Lechner
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Charlotte Poe
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Mirna Assoum
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Virginie Carmignac
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Laurence Duplomb
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Frédéric Tran Mau-Them
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Christophe Philippe
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Antonio Vitobello
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Ange-Line Bruel
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Christel Thauvin-Robinet
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France.,Centre de Référence Déficience intellectuelle, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Jean-Baptiste Rivière
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France.,FHU TRANSLAD, CHU Dijon, Dijon, France
| | - Brian J O'Roak
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Laurence Faivre
- INSERM, U1231, Génétique des Anomalies du Développement, Université de Bourgogne Franche-Comté, UMR Lipides, Nutrition, Dijon, France .,FHU TRANSLAD, CHU Dijon, Dijon, France.,Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Centre de Référence Déficience intellectuelle, Centre Hospitalier Universitaire Dijon, Dijon, France
| |
Collapse
|
26
|
Nuche J, Palomino-Doza J, Ynsaurriaga FA, Delgado JF, Ibáñez B, Oliver E, Subías PE. Potential Molecular Pathways Related to Pulmonary Artery Aneurysm Development: Lessons to Learn from the Aorta. Int J Mol Sci 2020; 21:ijms21072509. [PMID: 32260370 PMCID: PMC7177585 DOI: 10.3390/ijms21072509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease caused by pulmonary vascular remodeling. Current vasodilator treatments have substantially improved patients’ survival. This improved survival has led to the appearance of complications related to conditions previously underdiagnosed or even ignored, such as pulmonary artery aneurysm (PAA). The presence of a dilated pulmonary artery has been shown to be related to an increased risk of sudden cardiac death among PAH patients. This increased risk could be associated to the development of left main coronary artery compression or pulmonary artery dissection. Nevertheless, very little is currently known about the molecular mechanisms related to PAA. Thoracic aortic aneurysm (TAA) is a well-known condition with an increased risk of sudden death caused by acute aortic dissection. TAA may be secondary to chronic exposure to classic cardiovascular risk factors. In addition, a number of genetic variants have been shown to be related to a marked risk of TAA and dissection as part of multisystemic syndromes or isolated familial TAA. The molecular pathways implied in the development of TAA have been widely studied and described. Many of these molecular pathways are involved in the pathogenesis of PAH and could be involved in PAA. This review aims to describe all these common pathways to open new research lines that could help lead to a better understanding of the pathophysiology of PAH and PAA and their clinical implications.
Collapse
Affiliation(s)
- Jorge Nuche
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julián Palomino-Doza
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Fernando Arribas Ynsaurriaga
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan F. Delgado
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Borja Ibáñez
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Eduardo Oliver
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: (E.O.); (P.E.S.)
| | - Pilar Escribano Subías
- Centro de Investigaciones Biomédicas en Red de enfermedades CardioVasculares (CIBERCV), 28029 Madrid, Spain; (J.N.); (J.P.-D.); (F.A.Y.); (J.F.D.); (B.I.)
- Servicio de Cardiología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (E.O.); (P.E.S.)
| |
Collapse
|
27
|
Chou EL, Lindsay ME. The genetics of aortopathies: Hereditary thoracic aortic aneurysms and dissections. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:136-148. [PMID: 32034893 DOI: 10.1002/ajmg.c.31771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Aortopathies encompass a variety of inherited and acquired pathologies that increase risk of life-threatening dissection or rupture. Identifying individuals with hereditary thoracic aortic aneurysm and dissection (HTAAD) for longitudinal monitoring, medical therapy, or elective and preventative repair is paramount to reduce risk of cardiovascular-related mortality and complications from dissection and rupture. Over the past couple of decades, pathogenic variants in numerous genes have been identified in relation to HTAAD. The genetic diagnosis can help stratify patient risk and provide guidance on medical treatment, timing of prophylactic surgical repair, as well as longitudinal surveillance and imaging. Implicated genes and their associated proteins have been found to act on a diverse variety of pathways, cells and structural components linked to transforming growth factor beta (TGF-β) signaling pathways, disruption of the vascular smooth muscle cell contractile apparatus, and primary disruption of extracellular matrix homeostasis. This review describes relevant genetic variants that may help identify and guide the management of hereditary thoracic aortic aneurysms and dissections.
Collapse
Affiliation(s)
- Elizabeth L Chou
- Division of Vascular Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Thoracic Aortic Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark E Lindsay
- Thoracic Aortic Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cardiovascular Genetics Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Pediatric Cardiology Division, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
A new mutational hotspot in the SKI gene in the context of MFS/TAA molecular diagnosis. Hum Genet 2020; 139:461-472. [PMID: 31980905 DOI: 10.1007/s00439-019-02102-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022]
Abstract
SKI pathogenic variations are associated with Shprintzen-Goldberg Syndrome (SGS), a rare systemic connective tissue disorder characterized by craniofacial, skeletal and cardiovascular features. So far, the clinical description, including intellectual disability, has been relatively homogeneous, and the known pathogenic variations were located in two different hotspots of the SKI gene. In the course of diagnosing Marfan syndrome and related disorders, we identified nine sporadic probands (aged 2-47 years) carrying three different likely pathogenic or pathogenic variants in the SKI gene affecting the same amino acid (Thr180). Seven of these molecular events were confirmed de novo. All probands displayed a milder morphological phenotype with a marfanoid habitus that did not initially lead to a clinical diagnosis of SGS. Only three of them had learning disorders, and none had intellectual disability. Six out of nine presented thoracic aortic aneurysm, which led to preventive surgery in the oldest case. This report extends the phenotypic spectrum of variants identified in the SKI gene. We describe a new mutational hotspot associated with a marfanoid syndrome with no intellectual disability. Cardiovascular involvement was confirmed in a significant number of cases, highlighting the importance of accurately diagnosing SGS and ensuring appropriate medical treatment and follow-up.
Collapse
|
29
|
O'Dougherty GR, Fulkerson DH, Kern M, Haldar K, Calhoun B. Complications of Insufficient Dura and Blood Loss During Surgical Intervention in Shprintzen-Goldberg Syndrome: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:1159-1169. [PMID: 31391415 PMCID: PMC6698069 DOI: 10.12659/ajcr.914924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Shprintzen-Goldberg syndrome (SGS) is an extremely rare collagenopathy, most often caused by autosomal-dominant mutations in the SKI proto-oncogene, which is a component of the transforming growth factor beta (TGF-ß) signaling pathway. Approximately 50-60 cases of SGS have been recorded in the literature worldwide since its discovery in 1982. This collagen disorder affects bone and vascular development throughout the body, resulting in craniosynostosis, scoliosis, chest deformities, and aortic root dilation. Patients may have problems in the central nervous system, including Chiari 1 malformation, hydrocephalus, and dilation of the lateral ventricles. Unfortunately, the symptoms of SGS closely parallel those of related collagenopathies involving mutations in the TGF-ß signaling pathway, which makes accurate diagnosis difficult without genetic testing, especially in cases with complex presentation. CASE REPORT In this report we present the unique and complex disease manifestations in a 9-year-old girl with SGS. The patient had severe cervical spinal instability that resolved after surgical occipital-C4 fusion with an autograft from the rib. Midface distraction surgery was used to treat the patient's craniosynostosis and related facial deformities. This surgery was complicated by loss of 750 mL of blood due to insufficient dura and prominent vasculature. CONCLUSIONS Connective tissue symptoms associated with SGS can involve dural and vascular problems, as seen in this case report. Thus, the risk of extreme blood loss should be anticipated any time midface distraction surgery is performed on an SGS patient. Continued research is needed to define how this case relates to the SGS patient population.
Collapse
Affiliation(s)
- Gabrielle R O'Dougherty
- Boler-Parseghian Center for Rare and Neglected Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Melissa Kern
- Memorial Hospital South Bend, South Bend, IN, USA
| | - Kasturi Haldar
- Boler-Parseghian Center for Rare and Neglected Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Barbara Calhoun
- Boler-Parseghian Center for Rare and Neglected Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
30
|
Zhang L, Xu X, Sun K, Sun J, Wang Y, Liu Y, Yang N, Tao C, Cai B, Shi G, Zhang F, Shi J. A de novo mutation in DHD domain of SKI causing spina bifida with no craniofacial malformation or intellectual disability. Am J Med Genet A 2019; 179:936-939. [PMID: 30883014 DOI: 10.1002/ajmg.a.61088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 11/05/2022]
Abstract
Shprintzen-Goldberg syndrome (SGS) is a rare systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations. It is associated with a significant risk of intellectual disability, a feature which distinguishes it from Marfan and Loeys-Dietz syndromes. SGS is mainly caused by mutations in the SKI gene, a repressor of TGF-β activity. Most SKI mutations are found in exon 1 of the gene and are located in the R-SMAD domain, a proposed hotspot for de novo mutations. Here, we report on a de novo SKI mutation located in the DHD domain of SKI. By adding our finding to previously reported de novo SKI mutations, a new mutational hotspot in the DHD domain is proposed. Our patient presented with a lipomeningomyelocele, tethered cord, and spina bifida but with no SGS-related clinical findings apart from a marfanoid habitus and long slender fingers. Specifically, she did not have an intellectual disability, craniofacial, or cardiovascular abnormalities. By comparing the clinical findings on patients with mutations in the R-SMAD and DHD domains of SKI, we propose that mutations in those domains have different effects on TGF-β activity during embryonic development with resulting phenotypic differences.
Collapse
Affiliation(s)
- Ling Zhang
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Ximing Xu
- Department of orthopaedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical Univerisity, Shanghai 20003, People's Republic of China
| | - Kaiqiang Sun
- Department of orthopaedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical Univerisity, Shanghai 20003, People's Republic of China
| | - Jingchuan Sun
- Department of orthopaedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical Univerisity, Shanghai 20003, People's Republic of China
| | - Yuan Wang
- Department of orthopaedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical Univerisity, Shanghai 20003, People's Republic of China
| | - Yang Liu
- Department of orthopaedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical Univerisity, Shanghai 20003, People's Republic of China
| | - Nan Yang
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Chengqiu Tao
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Baozhu Cai
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Guodong Shi
- Department of orthopaedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical Univerisity, Shanghai 20003, People's Republic of China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| | - Jiangang Shi
- Department of orthopaedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical Univerisity, Shanghai 20003, People's Republic of China
| |
Collapse
|
31
|
MacFarlane EG, Parker SJ, Shin JY, Kang BE, Ziegler SG, Creamer TJ, Bagirzadeh R, Bedja D, Chen Y, Calderon JF, Weissler K, Frischmeyer-Guerrerio PA, Lindsay ME, Habashi JP, Dietz HC. Lineage-specific events underlie aortic root aneurysm pathogenesis in Loeys-Dietz syndrome. J Clin Invest 2019; 129:659-675. [PMID: 30614814 PMCID: PMC6355234 DOI: 10.1172/jci123547] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022] Open
Abstract
The aortic root is the predominant site for development of aneurysm caused by heterozygous loss-of-function mutations in positive effectors of the transforming growth factor-β (TGF-β) pathway. Using a mouse model of Loeys-Dietz syndrome (LDS) that carries a heterozygous kinase-inactivating mutation in TGF-β receptor I, we found that the effects of this mutation depend on the lineage of origin of vascular smooth muscle cells (VSMCs). Secondary heart field-derived (SHF-derived), but not neighboring cardiac neural crest-derived (CNC-derived), VSMCs showed impaired Smad2/3 activation in response to TGF-β, increased expression of angiotensin II (AngII) type 1 receptor (Agtr1a), enhanced responsiveness to AngII, and higher expression of TGF-β ligands. The preserved TGF-β signaling potential in CNC-derived VSMCs associated, in vivo, with increased Smad2/3 phosphorylation. CNC-, but not SHF-specific, deletion of Smad2 preserved aortic wall architecture and reduced aortic dilation in this mouse model of LDS. Taken together, these data suggest that aortic root aneurysm predisposition in this LDS mouse model depends both on defective Smad signaling in SHF-derived VSMCs and excessive Smad signaling in CNC-derived VSMCs. This work highlights the importance of considering the regional microenvironment and specifically lineage-dependent variation in the vulnerability to mutations in the development and testing of pathogenic models for aortic aneurysm.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Humans
- Loeys-Dietz Syndrome/embryology
- Loeys-Dietz Syndrome/genetics
- Loeys-Dietz Syndrome/pathology
- Mice
- Mice, Mutant Strains
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction
- Smad2 Protein/genetics
- Smad2 Protein/metabolism
- Smad3 Protein/genetics
Collapse
Affiliation(s)
| | - Sarah J. Parker
- McKusick-Nathans Institute of Genetic Medicine
- Division of Cardiology, and
| | - Joseph Y. Shin
- McKusick-Nathans Institute of Genetic Medicine, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Shira G. Ziegler
- McKusick-Nathans Institute of Genetic Medicine, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tyler J. Creamer
- Department of Surgery
- McKusick-Nathans Institute of Genetic Medicine, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Yichun Chen
- McKusick-Nathans Institute of Genetic Medicine
| | - Juan F. Calderon
- McKusick-Nathans Institute of Genetic Medicine, Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Katherine Weissler
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Mark E. Lindsay
- McKusick-Nathans Institute of Genetic Medicine
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer P. Habashi
- McKusick-Nathans Institute of Genetic Medicine
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Harry C. Dietz
- McKusick-Nathans Institute of Genetic Medicine
- Howard Hughes Medical Institute, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Muench DE, Ferchen K, Velu CS, Pradhan K, Chetal K, Chen X, Weirauch MT, Colmenares C, Verma A, Salomonis N, Grimes HL. SKI controls MDS-associated chronic TGF-β signaling, aberrant splicing, and stem cell fitness. Blood 2018; 132:e24-e34. [PMID: 30249787 PMCID: PMC6251005 DOI: 10.1182/blood-2018-06-860890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
The transforming growth factor beta (TGF-β) signaling pathway controls hematopoietic stem cell (HSC) behavior in the marrow niche; however, TGF-β signaling becomes chronic in early-stage myelodysplastic syndrome (MDS). Although TGF-β signaling normally induces negative feedback, in early-stage MDS, high levels of microRNA-21 (miR-21) contribute to chronic TGF-β signaling. We found that a TGF-β signal-correlated gene signature is sufficient to identify an MDS patient population with abnormal RNA splicing (eg, CSF3R) independent of splicing factor mutations and coincident with low HNRNPK activity. Levels of SKI messenger RNA (mRNA) encoding a TGF-β antagonist are sufficient to identify these patients. However, MDS patients with high SKI mRNA and chronic TGF-β signaling lack SKI protein because of miR-21 activity. To determine the impact of SKI loss, we examined murine Ski -/- HSC function. First, competitive HSC transplants revealed a profound defect in stem cell fitness (competitive disadvantage) but not specification, homing, or multilineage production. Aged recipients of Ski -/- HSCs exhibited mild phenotypes similar to phenotypes in those with macrocytic anemia. Second, blastocyst complementation revealed a dramatic block in Ski -/- hematopoiesis in the absence of transplantation. Similar to SKI-high MDS patient samples, Ski -/- HSCs strikingly upregulated TGF-β signaling and deregulated expression of spliceosome genes (including Hnrnpk). Moreover, novel single-cell splicing analyses demonstrated that Ski -/- HSCs and high levels of SKI expression in MDS patient samples share abnormal alternative splicing of common genes (including those that encode splicing factors). We conclude that miR-21-mediated loss of SKI activates TGF-β signaling and alternative splicing to impair the competitive advantage of normal HSCs (fitness), which could contribute to selection of early-stage MDS-genic clones.
Collapse
Affiliation(s)
- David E Muench
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kyle Ferchen
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chinavenmeni S Velu
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kith Pradhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Matthew T Weirauch
- Division of Biomedical Informatics
- Center for Autoimmune Genomics and Etiology, and
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Clemencia Colmenares
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Amit Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY; and
| | | | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
34
|
The phenotypic spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review of the literature. Genet Med 2018; 21:1308-1318. [PMID: 30356099 PMCID: PMC6752669 DOI: 10.1038/s41436-018-0339-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Germline WWOX pathogenic variants
have been associated with disorder of sex differentiation (DSD), spinocerebellar
ataxia (SCA), and WWOX-related epileptic
encephalopathy (WOREE syndrome). We review clinical and molecular data on
WWOX-related disorders, further
describing WOREE syndrome and phenotype/genotype correlations. Methods We report clinical and molecular findings in 20 additional patients
from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants
in the WWOX gene. Different molecular
screening approaches were used (quantitative polymerase chain reaction/multiplex
ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic
hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome
sequencing), genome sequencing. Results Two copy-number variations (CNVs) or two single-nucleotide
variations (SNVs) were found respectively in four and nine families, with
compound heterozygosity for one SNV and one CNV in five families. Eight novel
missense pathogenic variants have been described. By aggregating our patients
with all cases reported in the literature, 37 patients from 27 families with
WOREE syndrome are known. This review suggests WOREE syndrome is a very severe
epileptic encephalopathy characterized by absence of language development and
acquisition of walking, early-onset drug-resistant seizures, ophthalmological
involvement, and a high likelihood of premature death. The most severe clinical
presentation seems to be associated with null genotypes. Conclusion Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic
encephalopathy. We report here the largest cohort of individuals with WOREE
syndrome.
Collapse
|
35
|
Abstract
Craniosynostosis is a common craniofacial birth defect. This review focusses on the advances that have been achieved through studying the pathogenesis of craniosynostosis using mouse models. Classic methods of gene targeting which generate individual gene knockout models have successfully identified numerous genes required for normal development of the skull bones and sutures. However, the study of syndromic craniosynostosis has largely benefited from the production of knockin models that precisely mimic human mutations. These have allowed the detailed investigation of downstream events at the cellular and molecular level following otherwise unpredictable gain-of-function effects. This has greatly enhanced our understanding of the pathogenesis of this disease and has the potential to translate into improvement of the clinical management of this condition in the future.
Collapse
Affiliation(s)
- Kevin K L Lee
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Philip Stanier
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Erwin Pauws
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
36
|
Abstract
Craniosynostosis refers to a condition during early development in which one or more of the fibrous sutures of the skull prematurely fuse by turning into bone, which produces recognizable patterns of cranial shape malformations depending on which suture(s) are affected. In addition to cases with isolated cranial dysmorphologies, craniosynostosis appears in syndromes that include skeletal features of the eyes, nose, palate, hands, and feet as well as impairment of vision, hearing, and intellectual development. Approximately 85% of the cases are nonsyndromic sporadic and emerge after de novo structural genome rearrangements or single nucleotide variation, while the remainders consist of syndromic cases following mendelian inheritance. By karyotyping, genome wide linkage, and CNV analyses as well as by whole exome and whole genome sequencing, numerous candidate genes for craniosynostosis belonging to the FGF, Wnt, BMP, Ras/ERK, ephrin, hedgehog, STAT, and retinoic acid signaling pathways have been identified. Many of the craniosynostosis-related candidate genes form a functional network based upon protein-protein or protein-DNA interactions. Depending on which node of this craniosynostosis-related network is affected by a gene mutation or a change in gene expression pattern, a distinct craniosynostosis syndrome or set of phenotypes ensues. Structural variations may alter the dosage of one or several genes or disrupt the genomic architecture of genes and their regulatory elements within topologically associated chromatin domains. These may exert dominant effects by either haploinsufficiency, dominant negative partial loss of function, gain of function, epistatic interaction, or alteration of levels and patterns of gene expression during development. Molecular mechanisms of dominant modes of action of these mutations may include loss of one or several binding sites for cognate protein partners or transcription factor binding sequences. Such losses affect interactions within functional networks governing development and consequently result in phenotypes such as craniosynostosis. Many of the novel variants identified by genome wide CNV analyses, whole exome and whole genome sequencing are incorporated in recently developed diagnostic algorithms for craniosynostosis.
Collapse
Affiliation(s)
- Martin Poot
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
38
|
Miranda-Fernández MC, Ramírez-Oyaga S, Restrepo CM, Huertas-Quiñones VM, Barrera-Castañeda M, Quero R, Hernández-Toro CJ, Tamar Silva C, Laissue P, Cabrera R. Identification of a New Candidate Locus for Ebstein Anomaly in 1p36.2. Mol Syndromol 2018; 9:164-169. [PMID: 29928183 DOI: 10.1159/000488820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Ebstein anomaly (EA) is a rare congenital heart defect (CHD) with a poorly characterized genetic etiology. However, some EA patients carry deletions in 1p36, all of which have been reported to carry distal deletions and share loss of the PRDM16 gene, which is currently considered the most likely candidate for EA development in this region. Here, we report a patient with an 11.96-Mb proximal 1p36 deletion, without loss of PRDM16, who presented with EA and a proximal deletion phenotype. This finding suggests that PRDM16 loss is not required for the development of EA in 1p36 deletions and that the loss of an additional proximal locus in 1p36 is also likely associated with EA. Our data suggest that a distal locus containing the SKI gene and a proximal locus containing the CHD-associated genes RERE and UBE4B are the most probable etiological factors for EA in patients with 1p36 deletion syndrome.
Collapse
Affiliation(s)
| | - Silvia Ramírez-Oyaga
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Bogotá, Colombia
| | - Carlos M Restrepo
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, and Facultades de Medicina de, Bogotá, Colombia
| | - Victor-Manuel Huertas-Quiñones
- Instituto de Cardiopatías Congénitas, Bogotá, Colombia.,Universidad Nacional de Colombia, Bogotá, Colombia.,Universidad del Rosario, Bogotá, Colombia
| | - Magally Barrera-Castañeda
- Departamento de Investigaciones, Fundación Cardioinfantil-Instituto de Cardiología (FCI-IC), Bogotá, Colombia
| | - Rossi Quero
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, and Facultades de Medicina de, Bogotá, Colombia
| | | | - Claudia Tamar Silva
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, and Facultades de Medicina de, Bogotá, Colombia
| | - Paul Laissue
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, and Facultades de Medicina de, Bogotá, Colombia
| | - Rodrigo Cabrera
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Bogotá, Colombia
| |
Collapse
|
39
|
Moutton S, Bruel AL, Assoum M, Chevarin M, Sarrazin E, Goizet C, Guerrot AM, Charollais A, Charles P, Heron D, Faudet A, Houcinat N, Vitobello A, Tran-Mau-Them F, Philippe C, Duffourd Y, Thauvin-Robinet C, Faivre L. Truncating variants of the DLG4
gene are responsible for intellectual disability with marfanoid features. Clin Genet 2018; 93:1172-1178. [DOI: 10.1111/cge.13243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 02/02/2023]
Affiliation(s)
- S. Moutton
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - A.-L. Bruel
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - M. Assoum
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - M. Chevarin
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - E. Sarrazin
- Caribbean Reference Center for Rare Neurological and Neuromuscular Diseases; Fort de France University Hospital; Fort de France France
| | - C. Goizet
- Reference Center for Developmental Anomalies, Medical Genetics Department, CHU Bordeaux and Laboratoire MRGM, INSERM U1211; University of Bordeaux; Bordeaux France
| | - A.-M. Guerrot
- Department of Genetics; Rouen University Hospital; Rouen France
| | - A. Charollais
- Department of Neonatal Medicine and Intensive Care, Neuropediatrics and Reference Centre for Learning Disabilities; Rouen University Hospital; Rouen France
| | - P. Charles
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - D. Heron
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - A. Faudet
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - N. Houcinat
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - A. Vitobello
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - F. Tran-Mau-Them
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - C. Philippe
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - Y. Duffourd
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - C. Thauvin-Robinet
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - L. Faivre
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| |
Collapse
|
40
|
Goumans MJ, Ten Dijke P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a022210. [PMID: 28348036 DOI: 10.1101/cshperspect.a022210] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genetic studies in animals and humans indicate that gene mutations that functionally perturb transforming growth factor β (TGF-β) signaling are linked to specific hereditary vascular syndromes, including Osler-Rendu-Weber disease or hereditary hemorrhagic telangiectasia and Marfan syndrome. Disturbed TGF-β signaling can also cause nonhereditary disorders like atherosclerosis and cardiac fibrosis. Accordingly, cell culture studies using endothelial cells or smooth muscle cells (SMCs), cultured alone or together in two- or three-dimensional cell culture assays, on plastic or embedded in matrix, have shown that TGF-β has a pivotal effect on endothelial and SMC proliferation, differentiation, migration, tube formation, and sprouting. Moreover, TGF-β can stimulate endothelial-to-mesenchymal transition, a process shown to be of key importance in heart valve cushion formation and in various pathological vascular processes. Here, we discuss the roles of TGF-β in vasculogenesis, angiogenesis, and lymphangiogenesis and the deregulation of TGF-β signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
41
|
Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X. Transforming growth factor-β in stem cells and tissue homeostasis. Bone Res 2018; 6:2. [PMID: 29423331 PMCID: PMC5802812 DOI: 10.1038/s41413-017-0005-4] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 02/05/2023] Open
Abstract
TGF-β 1-3 are unique multi-functional growth factors that are only expressed in mammals, and mainly secreted and stored as a latent complex in the extracellular matrix (ECM). The biological functions of TGF-β in adults can only be delivered after ligand activation, mostly in response to environmental perturbations. Although involved in multiple biological and pathological processes of the human body, the exact roles of TGF-β in maintaining stem cells and tissue homeostasis have not been well-documented until recent advances, which delineate their functions in a given context. Our recent findings, along with data reported by others, have clearly shown that temporal and spatial activation of TGF-β is involved in the recruitment of stem/progenitor cell participation in tissue regeneration/remodeling process, whereas sustained abnormalities in TGF-β ligand activation, regardless of genetic or environmental origin, will inevitably disrupt the normal physiology and lead to pathobiology of major diseases. Modulation of TGF-β signaling with different approaches has proven effective pre-clinically in the treatment of multiple pathologies such as sclerosis/fibrosis, tumor metastasis, osteoarthritis, and immune disorders. Thus, further elucidation of the mechanisms by which TGF-β is activated in different tissues/organs and how targeted cells respond in a context-dependent way can likely be translated with clinical benefits in the management of a broad range of diseases with the involvement of TGF-β.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Gehua Zhen
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Janet L. Crane
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
42
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
43
|
Saito T, Nakane T, Yagasaki H, Naito A, Sugita K. Shprintzen-Goldberg syndrome associated with first cervical vertebra defects. Pediatr Int 2017; 59:1098-1100. [PMID: 28857439 DOI: 10.1111/ped.13354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Tomohiro Saito
- Division of Neonatology, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Takaya Nakane
- Department of Pediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hideaki Yagasaki
- Department of Pediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Atsushi Naito
- Division of Neonatology, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
| | - Kanji Sugita
- Department of Pediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
44
|
Gillis E, Kumar AA, Luyckx I, Preuss C, Cannaerts E, van de Beek G, Wieschendorf B, Alaerts M, Bolar N, Vandeweyer G, Meester J, Wünnemann F, Gould RA, Zhurayev R, Zerbino D, Mohamed SA, Mital S, Mertens L, Björck HM, Franco-Cereceda A, McCallion AS, Van Laer L, Verhagen JMA, van de Laar IMBH, Wessels MW, Messas E, Goudot G, Nemcikova M, Krebsova A, Kempers M, Salemink S, Duijnhouwer T, Jeunemaitre X, Albuisson J, Eriksson P, Andelfinger G, Dietz HC, Verstraeten A, Loeys BL. Candidate Gene Resequencing in a Large Bicuspid Aortic Valve-Associated Thoracic Aortic Aneurysm Cohort: SMAD6 as an Important Contributor. Front Physiol 2017; 8:400. [PMID: 28659821 PMCID: PMC5469151 DOI: 10.3389/fphys.2017.00400] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter ≥ 4.0 cm in adults, or a Z-score ≥ 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype.
Collapse
Affiliation(s)
- Elisabeth Gillis
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ajay A Kumar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Ilse Luyckx
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Christoph Preuss
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Elyssa Cannaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Gerarda van de Beek
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Björn Wieschendorf
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Maaike Alaerts
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Nikhita Bolar
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Geert Vandeweyer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Josephina Meester
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Florian Wünnemann
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Russell A Gould
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Rustam Zhurayev
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Dmytro Zerbino
- Department of Clinical pathology, Lviv National Medical University after Danylo HalytskyLviv, Ukraine
| | - Salah A Mohamed
- Department of Cardiac and Thoracic Vascular Surgery, University Hospital Schleswig-HolsteinLübeck, Germany
| | - Seema Mital
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Luc Mertens
- Cardiovascular Research, SickKids University HospitalToronto, ON, Canada
| | - Hanna M Björck
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Anders Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska InstituteStockholm, Sweden
| | - Andrew S McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Lut Van Laer
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | | | - Marja W Wessels
- Department of Clinical Genetics, Erasmus University Medical CenterRotterdam, Netherlands
| | - Emmanuel Messas
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Guillaume Goudot
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Michaela Nemcikova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine-Charles University and Motol University HospitalPrague, Czechia
| | - Alice Krebsova
- Institute of Clinical and Experimental MedicinePrague, Czechia
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Simone Salemink
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Toon Duijnhouwer
- Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | - Xavier Jeunemaitre
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Juliette Albuisson
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Université Paris Descartes, Paris Sorbonne Cité; Institut National de la Santé et de la Recherche Médicale, UMRSParis, France
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska InstituteStockholm, Sweden
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Université de MontrealMontreal, QC, Canada
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of MedicineBaltimore, MD, United States.,Howard Hughes Medical InstituteBaltimore, MD, United States
| | - Aline Verstraeten
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium
| | - Bart L Loeys
- Faculty of Medicine and Health Sciences, Center of Medical Genetics, University of Antwerp and Antwerp University HospitalAntwerp, Belgium.,Department of Human Genetics, Radboud University Medical CentreNijmegen, Netherlands
| | | |
Collapse
|
45
|
Abstract
Aortic aneurysms are a major health problem because they account for 1-2% of all deaths in the Western population. Although abdominal aortic aneurysms (AAAs) are more prevalent than thoracic aortic aneurysms (TAAs), TAAs have been more exhaustively studied over the past 2 decades because they have a higher heritability and affect younger individuals. Gene identification in both syndromic and nonsyndromic TAA is proceeding at a rapid pace and has already pinpointed >20 genes associated with familial TAA risk. Whereas these genes explain <30% of all cases of familial TAA, their functional characterization has substantially improved our knowledge of the underlying pathological mechanisms. As such, perturbed extracellular matrix homeostasis, transforming growth factor-β signalling, and vascular smooth muscle cell contractility have been proposed as important processes in TAA pathogenesis. These new insights enable novel treatment options that are currently being investigated in large clinical trials. Moreover, together with the advent of next-generation sequencing approaches, these genetic findings are promoting a shift in the management of patients with TAA by enabling gene-tailored interventions. In this Review, we comprehensively describe the molecular landscape of familial TAA, and we discuss whether familial TAA, from a biological point of view, can serve as a paradigm for the genetically more complex forms of the condition, such as sporadic TAA or AAA.
Collapse
|
46
|
Abstract
Thoracic aortic aneurysm is a potentially life-threatening condition in that it places patients at risk for aortic dissection or rupture. However, our modern understanding of the pathogenesis of thoracic aortic aneurysm is quite limited. A genetic predisposition to thoracic aortic aneurysm has been established, and gene discovery in affected families has identified several major categories of gene alterations. The first involves mutations in genes encoding various components of the transforming growth factor beta (TGF-β) signaling cascade (FBN1, TGFBR1, TGFBR2, TGFB2, TGFB3, SMAD2, SMAD3 and SKI), and these conditions are known collectively as the TGF-β vasculopathies. The second set of genes encode components of the smooth muscle contractile apparatus (ACTA2, MYH11, MYLK, and PRKG1), a group called the smooth muscle contraction vasculopathies. Mechanistic hypotheses based on these discoveries have shaped rational therapies, some of which are under clinical evaluation. This review discusses published data on genes involved in thoracic aortic aneurysm and attempts to explain divergent hypotheses of aneurysm origin.
Collapse
Affiliation(s)
- Eric M Isselbacher
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christian Lacks Lino Cardenas
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Mark E Lindsay
- From Thoracic Aortic Center (E.M.I., C.L.L.C., M.E.L.), Cardiovascular Genetics Program (M.E.L.), Cardiovascular Research Center (C.L.L.C., M.E.L.), and Cardiology Division (E.M.I., C.L.L.C., M.E.L.), Department of Medicine, and Pediatric Cardiology Division, Department of Pediatrics (M.E.L.), Massachusetts General Hospital, Harvard Medical School, Boston.
| |
Collapse
|
47
|
De Backer J, Muiño-Mosquera L, Demulier L. Aortopathy. PREGNANCY AND CONGENITAL HEART DISEASE 2017. [DOI: 10.1007/978-3-319-38913-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Mutation Screening of Candidate Genes in Patients with Nonsyndromic Sagittal Craniosynostosis. Plast Reconstr Surg 2016; 137:952-961. [PMID: 26910679 DOI: 10.1097/01.prs.0000479978.75545.ee] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Craniosynostosis is a condition that includes the premature fusion of one or multiple cranial sutures. Among various craniosynostosis forms, sagittal nonsyndromic craniosynostosis is the most prevalent. Although different gene mutations have been identified in some craniosynostosis syndromes, the cause of sagittal nonsyndromic craniosynostosis remains largely unknown. METHODS To screen for candidate genes for sagittal nonsyndromic craniosynostosis, the authors sequenced DNA of 93 sagittal nonsyndromic craniosynostosis patients from a population-based study conducted in Iowa and New York states. FGFR1-3 mutational hotspots and the entire TWIST1, RAB23, and BMP2 coding regions were screened because of their known roles in human nonsyndromic or syndromic sagittal craniosynostosis, expression patterns, and/or animal model studies. RESULTS The authors identified two rare variants in their cohort. A FGFR1 insertion c.730_731insG, which led to a premature stop codon, was predicted to abolish the entire immunoglobulin-like III domain, including the ligand-binding region. A c.439C>G variant was observed in TWIST1 at its highly conserved loop domain in another patient. The patient's mother harbored the same variant and was reported with jaw abnormalities. These two variants were not detected in 116 alleles from unaffected controls or seen in the several databases; however, TWIST1 variant was found in a low frequency of 0.000831 percent in Exome Aggregation Consortium database. CONCLUSIONS The low mutation detection rate indicates that these genes account for only a small proportion of sagittal nonsyndromic craniosynostosis patients. The authors' results add to the perception that sagittal nonsyndromic craniosynostosis is a complex developmental defect with considerable genetic heterogeneity. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, II.
Collapse
|
49
|
Allou L, Julia S, Amsallem D, El Chehadeh S, Lambert L, Thevenon J, Duffourd Y, Saunier A, Bouquet P, Pere S, Moustaïne A, Ruaud L, Roth V, Jonveaux P, Philippe C. Rett‐like phenotypes: expanding the genetic heterogeneity to the
KCNA2
gene and first familial case of
CDKL5
‐related disease. Clin Genet 2016; 91:431-440. [DOI: 10.1111/cge.12784] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/22/2016] [Accepted: 04/03/2016] [Indexed: 01/07/2023]
Affiliation(s)
- L. Allou
- Laboratoire de génétique médicaleCHU de Nancy – Hôpital de Brabois Nancy France
- Development and Disease GroupMax Planck Institute for Molecular Genetics Berlin Germany
| | - S. Julia
- Service de génétique médicale, Pôle de biologieCHU de Toulouse – Hôpital Purpan Toulouse France
| | - D. Amsallem
- Service de pédiatrie 1CHRU de Besançon – Hôpital Jean Minjoz Besançon France
| | - S. El Chehadeh
- Service de génétique médicaleCHU de Strasbourg – Hôpital de Hautepierre Strasbourg France
| | - L. Lambert
- UF de génétique médicaleCHU de Nancy – Maternité régionale Nancy France
- Service de Médecine Infantile et Génétique Clinique – Hôpital d'EnfantsCHU de Nancy – Hôpital de Brabois Nancy France
| | - J. Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Inter région Est, Pôle PédiatrieCHU de Dijon – Complexe du Bocage Dijon France
- Equipe d'Accueil 4271, Génétique des Anomalies du DéveloppementUniversité de Bourgogne Dijon France
| | - Y. Duffourd
- Equipe d'Accueil 4271, Génétique des Anomalies du DéveloppementUniversité de Bourgogne Dijon France
| | - A. Saunier
- Laboratoire de génétique médicaleCHU de Nancy – Hôpital de Brabois Nancy France
| | - P. Bouquet
- Laboratoire de génétique médicaleCHU de Nancy – Hôpital de Brabois Nancy France
| | - S. Pere
- Laboratoire de génétique médicaleCHU de Nancy – Hôpital de Brabois Nancy France
| | - A. Moustaïne
- Laboratoire de génétique médicaleCHU de Nancy – Hôpital de Brabois Nancy France
| | - L. Ruaud
- Service de pédiatrie 1CHRU de Besançon – Hôpital Jean Minjoz Besançon France
| | - V. Roth
- Laboratoire de génétique médicaleCHU de Nancy – Hôpital de Brabois Nancy France
| | - P. Jonveaux
- Laboratoire de génétique médicaleCHU de Nancy – Hôpital de Brabois Nancy France
- Inserm U954 Nutrition‐Genetics‐Environmental Risk Exposure, Medical FacultyUniversité de Lorraine Nancy France
| | - C. Philippe
- Laboratoire de génétique médicaleCHU de Nancy – Hôpital de Brabois Nancy France
- Inserm U954 Nutrition‐Genetics‐Environmental Risk Exposure, Medical FacultyUniversité de Lorraine Nancy France
| |
Collapse
|
50
|
Yadav S, Rawal G. Shprintzen-Goldberg syndrome: a rare disorder. Pan Afr Med J 2016; 23:227. [PMID: 27761171 PMCID: PMC5052323 DOI: 10.11604/pamj.2016.23.227.7482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 04/03/2016] [Indexed: 12/18/2022] Open
Abstract
Shprintzen-Goldberg Syndrome is an extremely infrequent disorder of connective tissue, characterized by craniosynostosis and marfanoid features, also known as Marfanoid Craniosynostosis syndrome. The syndrome was first introduced by Sugarman and Vogel’ (1981) however, Shprintzen and Goldberg established this as a separate clinical entity in the year 1982. Since then, approximately sixty such cases have been set down in writing in the medical literature. Herein, we present a short review of literature of this rare connective disorder, in order to create awareness about this condition, as the magnitude of this disorder is not measured properly due to the paucity of literature.
Collapse
Affiliation(s)
- Sankalp Yadav
- General Duty Medical Officer-II, Chest Clinic Moti Nagar, North Delhi Municipal Corporation, New Delhi, India
| | - Gautam Rawal
- Critical Care Department, Rockland Hospital, Qutab Institutional Area, New Delhi, India
| |
Collapse
|