1
|
Ichihara Y, Okawa M, Minegishi M, Oizumi H, Yamamoto M, Ohbuchi K, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 14 (HLD14)-Related UFC1 p.Arg23Gln Decreases Cell Morphogenesis: A Phenotype Reversable with Hesperetin. MEDICINES (BASEL, SWITZERLAND) 2025; 12:2. [PMID: 39846712 PMCID: PMC11755592 DOI: 10.3390/medicines12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths. Among these, an amino acid mutation of the ubiquitin-fold modifier conjugating enzyme 1 (UFC1) is associated with HLD14-related disease, characterized by hypomyelination and delayed myelination in the brain. UFC1 is a critical component of the UFMylation system, functioning similarly to E2-conjugating enzymes in the ubiquitin-dependent protein degradation system. METHODOLOGY We describe how a missense mutation in UFC1 (p.Arg23Gln) leads to the aggregation of UFC1 primarily in lysosomes in FBD-102b cells, which are undergoing oligodendroglial cell differentiation. RESULTS Cells with mutated UFC1 exhibit reduced Akt kinase phosphorylation and reduced expression of differentiation and myelination marker proteins. Consistently, these cells exhibit impaired morphological differentiation with a reduced ability to extend widespread membranes. Interestingly, hesperetin, a citrus flavonoid with known neuroprotective properties, was found to restore differentiation abilities in cells with the UFC1 mutation. CONCLUSIONS These findings indicate that the HLD14-related mutation in UFC1 causes its lysosomal aggregation, impairing its morphological differentiation. Furthermore, the study highlights potential therapeutic insights into the pathological molecular and cellular mechanisms underlying HLD14 and suggests hesperetin as a promising candidate for treatment.
Collapse
Affiliation(s)
- Yuri Ichihara
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Minori Minegishi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
2
|
Wang RN, Li L, Zhou J, Ran J. Multifaceted roles of UFMylation in health and disease. Acta Pharmacol Sin 2025:10.1038/s41401-024-01456-9. [PMID: 39775503 DOI: 10.1038/s41401-024-01456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation. This modification is conserved across nearly all eukaryotic organisms, and is associated with diverse biological activities such as hematopoiesis and the endoplasmic reticulum stress response. The disruption of UFMylation results in embryonic lethality in mice and is associated with various human diseases, thus underscoring its essential role in embryonic development, tissue morphogenesis, and organismal homeostasis. In this review, we aim to provide an in-depth overview of the UFMylation system, its importance in disease processes, and its potential as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Ru-Na Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Nankai University, Tianjin, 300071, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
3
|
Jiang M, Zhang C, Zhang Z, Duan Y, Qi S, Zeng Q, Wang J, Zhang J, Jiang Y, Wang Y, Chen Y, Liu J. Systematic Analysis of UFMylation Family Genes in Tissues of Mice with Metabolic Dysfunction-Associated Steatotic Liver Disease. Genes (Basel) 2024; 16:31. [PMID: 39858578 PMCID: PMC11765366 DOI: 10.3390/genes16010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear. This study aimed to determine the expressed patterns of UFMylation components in multiple tissues of leptin-deficient ob/ob mice and high-fat diet (HFD)-fed mice, which are mimicking the conditions of MASLD. METHODS The ob/ob mice and HFD-fed mice were sacrificed to collect tissues indicated in this study. Total RNA and proteins were extracted from tissues to examine the expressed patterns of UFMylation components, including UBA5, UFC1, UFL1, DDRGK1, UFSP1, UFSP2 and UFM1, by real-time PCR and western blot analysis. RESULTS The protein levels of UBA5, UFC1 and UFL1 were down-regulated in liver, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT), whereas the messenger RNA (mRNA) levels of Ufl1 and Ufsp1 were both decreased in skeletal muscle, BAT, iWAT and epididymal white adipose tissue (eWAT) of ob/ob mice. In contrast, the mRNA levels of Ufsp1 in skeletal muscle, BAT, iWAT and heart, and the protein levels of UFL1 were decreased in BAT, iWAT, heart and cerebellum of HFD-fed mice. CONCLUSIONS Our findings established the expressed profiles of UFMylaiton in multiple tissues of mice mimicking MASLD, indicating an important regulation for UFMylation in these tissues' homeostasis maintenance.
Collapse
Affiliation(s)
- Mingdi Jiang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Chenlu Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Zhengyao Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Yingying Duan
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Shuaiyong Qi
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Qingyu Zeng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Jiabao Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Jiawen Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| | - Yu Jiang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China;
| | - Ying Wang
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Yi Chen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (Z.Z.); (Y.W.)
| | - Jiang Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China; (M.J.); (C.Z.); (Y.D.); (S.Q.); (Q.Z.); (J.W.); (J.Z.)
| |
Collapse
|
4
|
Yan T, Heckman MG, Craver EC, Liu CC, Rawlinson BD, Wang X, Murray ME, Dickson DW, Ertekin-Taner N, Lou Z, Bu G, Springer W, Fiesel FC. The UFMylation pathway is impaired in Alzheimer's disease. Mol Neurodegener 2024; 19:97. [PMID: 39696466 DOI: 10.1186/s13024-024-00784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. METHODS Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. RESULTS Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. CONCLUSIONS There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily C Craver
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Present Address: Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA.
| |
Collapse
|
5
|
Gao Y, Tan YS, Lin J, Chew LY, Aung HY, Palliyana B, Gujar MR, Lin KY, Kondo S, Wang H. SUMOylation of Warts kinase promotes neural stem cell reactivation. Nat Commun 2024; 15:8557. [PMID: 39419973 PMCID: PMC11487185 DOI: 10.1038/s41467-024-52569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
A delicate balance between neural stem cell (NSC) quiescence and proliferation is important for adult neurogenesis and homeostasis. Small ubiquitin-related modifier (SUMO)-dependent post-translational modifications cause rapid and reversible changes in protein functions. However, the role of the SUMO pathway during NSC reactivation and brain development is not established. Here, we show that the key components of the SUMO pathway play an important role in NSC reactivation and brain development in Drosophila. Depletion of SUMO/Smt3 or SUMO conjugating enzyme Ubc9 results in notable defects in NSC reactivation and brain development, while their overexpression leads to premature NSC reactivation. Smt3 protein levels increase with NSC reactivation, which is promoted by the Ser/Thr kinase Akt. Warts/Lats, the core protein kinase of the Hippo pathway, can undergo SUMO- and Ubc9-dependent SUMOylation at Lys766. This modification attenuates Wts phosphorylation by Hippo, leading to the inhibition of the Hippo pathway, and consequently, initiation of NSC reactivation. Moreover, inhibiting Hippo pathway effectively restores the NSC reactivation defects induced by SUMO pathway inhibition. Overall, our study uncovered an important role for the SUMO-Hippo pathway during Drosophila NSC reactivation and brain development.
Collapse
Affiliation(s)
- Yang Gao
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Jiaen Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Liang Yuh Chew
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Htet Yamin Aung
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Brinda Palliyana
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Mahekta R Gujar
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Kun-Yang Lin
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Hongyan Wang
- Neuroscience and Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Scheffer IE, Zuberi S, Mefford HC, Guerrini R, McTague A. Developmental and epileptic encephalopathies. Nat Rev Dis Primers 2024; 10:61. [PMID: 39237642 DOI: 10.1038/s41572-024-00546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Developmental and epileptic encephalopathies, the most severe group of epilepsies, are characterized by seizures and frequent epileptiform activity associated with developmental slowing or regression. Onset typically occurs in infancy or childhood and includes many well-defined epilepsy syndromes. Patients have wide-ranging comorbidities including intellectual disability, psychiatric features, such as autism spectrum disorder and behavioural problems, movement and musculoskeletal disorders, gastrointestinal and sleep problems, together with an increased mortality rate. Problems change with age and patients require substantial support throughout life, placing a high psychosocial burden on parents, carers and the community. In many patients, the aetiology can be identified, and a genetic cause is found in >50% of patients using next-generation sequencing technologies. More than 900 genes have been identified as monogenic causes of developmental and epileptic encephalopathies and many cell components and processes have been implicated in their pathophysiology, including ion channels and transporters, synaptic proteins, cell signalling and metabolism and epigenetic regulation. Polygenic risk score analyses have shown that common variants also contribute to phenotypic variability. Holistic management, which encompasses antiseizure therapies and care for multimorbidities, is determined both by epilepsy syndrome and aetiology. Identification of the underlying aetiology enables the development of precision medicines to improve the long-term outcome of patients with these devastating diseases.
Collapse
Affiliation(s)
- Ingrid E Scheffer
- Epilepsy Research Centre, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia.
- Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia.
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | - Sameer Zuberi
- Paediatric Neurosciences Research Group, School of Health & Wellbeing, University of Glasgow, Glasgow, UK
- Paediatric Neurosciences, Royal Hospital for Children, Glasgow, UK
| | - Heather C Mefford
- Center for Paediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Meyer IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
7
|
Liang Z, Ning R, Wang Z, Kong X, Yan Y, Cai Y, He Z, Liu X, Zou Y, Zhou J. The emerging roles of UFMylation in the modulation of immune responses. Clin Transl Med 2024; 14:e70019. [PMID: 39259506 PMCID: PMC11389534 DOI: 10.1002/ctm2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024] Open
Abstract
Post-translational modification is a rite of passage for cellular functional proteins and ultimately regulate almost all aspects of life. Ubiquitin-fold modifier 1 (UFM1) system represents a newly identified ubiquitin-like modification system with indispensable biological functions, and the underlying biological mechanisms remain largely undiscovered. The field has recently experienced a rapid growth of research revealing that UFMylation directly or indirectly regulates multiple immune processes. Here, we summarised important advances that how UFMylation system responds to intrinsic and extrinsic stresses under certain physiological or pathological conditions and safeguards immune homeostasis, providing novel perspectives into the regulatory framework and functions of UFMylation system, and its therapeutic applications in human diseases.
Collapse
Affiliation(s)
- Zhengyan Liang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Rongxuan Ning
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Zhaoxiang Wang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Xia Kong
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yubin Yan
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yafei Cai
- Key Laboratory for Epigenetics of Dongguan City, China‐America Cancer Research InstituteGuangdong Medical UniversityDongguanChina
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| | - Xin‐guang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
| | - Yongkang Zou
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Junzhi Zhou
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular DiagnosticsSchool of Basic MedicineGuangdong Medical UniversityDongguanChina
- Institute of Cancer ResearchShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
8
|
Srivastava S, Koh HY, Smith L, Poduri A. Cerebral Palsy Phenotypes in Genetic Epilepsies. Pediatr Neurol 2024; 157:79-86. [PMID: 38901369 PMCID: PMC11418751 DOI: 10.1016/j.pediatrneurol.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 05/26/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Although there are established connections between genetic epilepsies and neurodevelopmental disorders like intellectual disability, the presence of cerebral palsy (CP) in genetic epilepsies is undercharacterized. We performed a retrospective chart review evaluating the motor phenotype of patients with genetic epilepsies. METHODS Patients were ascertained through a research exome sequencing study to identify genetic causes of epilepsy. We analyzed data from the first 100 individuals with molecular diagnoses. We determined motor phenotype by reviewing medical records for muscle tone and motor function data. We characterized patients according to CP subtypes: spastic diplegic, spastic quadriplegic, spastic hemiplegic, dyskinetic, hypotonic-ataxic. RESULTS Of 100 individuals with genetic epilepsies, 14% had evidence of possible CP, including 5% characterized as hypotonic-ataxic CP, 5% spastic quadriplegic CP, 3% spastic diplegic CP, and 1% hemiplegic CP. Presence of CP did not correlate with seizure onset age (P = 0.63) or seizure control (P = 0.07). CP occurred in 11% (n = 3 of 27) with focal epilepsy, 9% (n = 5 of 54) with generalized epilepsy, and 32% (n = 6 of 19) with combined focal/generalized epilepsy (P = 0.06). CONCLUSIONS In this retrospective analysis of patients with genetic epilepsies, we identified a substantial portion with CP phenotypes, representing an under-recognized comorbidity. These findings underscore the many neurodevelopmental features associated with neurogenetic conditions, regardless of the feature for which they were ascertained for sequencing. Detailed motor phenotyping is needed to determine the prevalence of CP and its subtypes among genetic epilepsies. These motor phenotypes require clinical management and represent important targeted outcomes in trials for patients with genetic epilepsies.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts; Cerebral Palsy and Spasticity Center, Boston Children's Hospital, Boston, Massachusetts
| | - Hyun Yong Koh
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Neurogenetics Program and Epilepsy Genetics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Lacey Smith
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Neurogenetics Program and Epilepsy Genetics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts; Neurogenetics Program and Epilepsy Genetics Program, Boston Children's Hospital, Boston, Massachusetts.
| |
Collapse
|
9
|
Li G, Huang Y, Han W, Wei L, Huang H, Zhu Y, Xiao Q, Wang Z, Huang W, Duan R. Eg5 UFMylation promotes spindle organization during mitosis. Cell Death Dis 2024; 15:544. [PMID: 39085203 PMCID: PMC11291904 DOI: 10.1038/s41419-024-06934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
UFMylation is a highly conserved ubiquitin-like post-translational modification that catalyzes the covalent linkage of UFM1 to its target proteins. This modification plays a critical role in the maintenance of endoplasmic reticulum proteostasis, DNA damage response, autophagy, and transcriptional regulation. Mutations in UFM1, as well as in its specific E1 enzyme UBA5 and E2 enzyme UFC1, have been genetically linked to microcephaly. Our previous research unveiled the important role of UFMylation in regulating mitosis. However, the underlying mechanisms have remained unclear due to the limited identification of substrates. In this study, we identified Eg5, a motor protein crucial for mitotic spindle assembly and maintenance, as a novel substrate for UFMylation and identified Lys564 as the crucial UFMylation site. UFMylation did not alter its transcriptional level, phosphorylation level, or protein stability, but affected the mono-ubiquitination of Eg5. During mitosis, Eg5 and UFM1 co-localize at the centrosome and spindle apparatus, and defective UFMylation leads to diminished spindle localization of Eg5. Notably, the UFMylation-defective Eg5 mutant (K564R) exhibited shorter spindles, metaphase arrest, spindle checkpoint activation, and a failure of cell division in HeLa cells. Overall, Eg5 UFMylation is essential for proper spindle organization, mitotic progression, and cell proliferation.
Collapse
Affiliation(s)
- Guangxu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yuanjiang Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wenbo Han
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Liyi Wei
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Hongjing Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Yingbao Zhu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Qiao Xiao
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Zujia Wang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Wen Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Ranhui Duan
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.
| |
Collapse
|
10
|
Yan T, Heckman MG, Craver EC, Liu CC, Rawlinson BD, Wang X, Murray ME, Dickson DW, Ertekin-Taner N, Lou Z, Bu G, Springer W, Fiesel FC. The UFMylation pathway is impaired in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595755. [PMID: 38903110 PMCID: PMC11188091 DOI: 10.1101/2024.05.24.595755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles made of hyperphosphorylated tau and senile plaques composed of beta-amyloid. These pathognomonic deposits have been implicated in the pathogenesis, although the molecular mechanisms and consequences remain undetermined. UFM1 is an important, but understudied ubiquitin-like protein that is covalently attached to substrates. This UFMylation has recently been identified as major modifier of tau aggregation upon seeding in experimental models. However, potential alterations of the UFM1 pathway in human AD brain have not been investigated yet. Methods Here we used frontal and temporal cortex samples from individuals with or without AD to measure the protein levels of the UFMylation pathway in human brain. We used multivariable regression analyses followed by Bonferroni correction for multiple testing to analyze associations of the UFMylation pathway with neuropathological characteristics, primary biochemical measurements of tau and additional biochemical markers from the same cases. We further studied associations of the UFMylation cascade with cellular stress pathways using Spearman correlations with bulk RNAseq expression data and functionally validated these interactions using gene-edited neurons that were generated by CRISPR-Cas9. Results Compared to controls, human AD brain had increased protein levels of UFM1. Our data further indicates that this increase mainly reflects conjugated UFM1 indicating hyperUFMylation in AD. UFMylation was strongly correlated with pathological tau in both AD-affected brain regions. In addition, we found that the levels of conjugated UFM1 were negatively correlated with soluble levels of the deUFMylation enzyme UFSP2. Functional analysis of UFM1 and/or UFSP2 knockout neurons revealed that the DNA damage response as well as the unfolded protein response are perturbed by changes in neuronal UFM1 signaling. Conclusions There are marked changes in the UFMylation pathway in human AD brain. These changes are significantly associated with pathological tau, supporting the idea that the UFMylation cascade might indeed act as a modifier of tau pathology in human brain. Our study further nominates UFSP2 as an attractive target to reduce the hyperUFMylation observed in AD brain but also underscores the critical need to identify risks and benefits of manipulating the UFMylation pathway as potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Michael G. Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Emily C. Craver
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Xue Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
11
|
Chen H, Wang YD, Blan AW, Almanza-Fuerte EP, Bonkowski ES, Bajpai R, Pruett-Miller SM, Mefford HC. Patient derived model of UBA5-associated encephalopathy identifies defects in neurodevelopment and highlights potential therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577254. [PMID: 38328212 PMCID: PMC10849720 DOI: 10.1101/2024.01.25.577254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
UBA5 encodes for the E1 enzyme of the UFMylation cascade, which plays an essential role in ER homeostasis. The clinical phenotypes of UBA5-associated encephalopathy include developmental delays, epilepsy and intellectual disability. To date, there is no humanized neuronal model to study the cellular and molecular consequences of UBA5 pathogenic variants. We developed and characterized patient-derived cortical organoid cultures and identified defects in GABAergic interneuron development. We demonstrated aberrant neuronal firing and microcephaly phenotypes in patient-derived organoids. Mechanistically, we show that ER homeostasis is perturbed along with exacerbated unfolded protein response pathway in cells and organoids expressing UBA5 pathogenic variants. We also assessed two gene expression modalities that augmented UBA5 expression to rescue aberrant molecular and cellular phenotypes. Our study provides a novel humanized model that allows further investigations of UBA5 variants in the brain and highlights novel systemic approaches to alleviate cellular aberrations for this rare, developmental disorder.
Collapse
Affiliation(s)
- Helen Chen
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Aidan W. Blan
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Edith P. Almanza-Fuerte
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily S. Bonkowski
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis TN, USA
| | - Heather C. Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
12
|
Komatsu M, Inada T, Noda NN. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol Cell 2024; 84:156-169. [PMID: 38141606 DOI: 10.1016/j.molcel.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/25/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through UFMylation, a process similar to ubiquitylation. Growing lines of evidence regarding not only the structural basis of the components essential for UFMylation but also their biological properties shed light on crucial roles of the UFM1 system in the endoplasmic reticulum (ER), such as ER-phagy and ribosome-associated quality control at the ER, although there are some functions unrelated to the ER. Mouse genetics studies also revealed the indispensable roles of this system in hematopoiesis, liver development, neurogenesis, and chondrogenesis. Of critical importance, mutations of genes encoding core components of the UFM1 system in humans cause hereditary developmental epileptic encephalopathy and Schohat-type osteochondrodysplasia of the epiphysis. Here, we provide a multidisciplinary review of our current understanding of the mechanisms and cellular functions of the UFM1 system as well as its pathophysiological roles, and discuss issues that require resolution.
Collapse
Affiliation(s)
- Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan.
| | - Nobuo N Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan; Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan.
| |
Collapse
|
13
|
Zhou X, Mahdizadeh SJ, Le Gallo M, Eriksson LA, Chevet E, Lafont E. UFMylation: a ubiquitin-like modification. Trends Biochem Sci 2024; 49:52-67. [PMID: 37945409 DOI: 10.1016/j.tibs.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Post-translational modifications (PTMs) add a major degree of complexity to the proteome and are essential controllers of protein homeostasis. Amongst the hundreds of PTMs identified, ubiquitin and ubiquitin-like (UBL) modifications are recognized as key regulators of cellular processes through their ability to affect protein-protein interactions, protein stability, and thus the functions of their protein targets. Here, we focus on the most recently identified UBL, ubiquitin-fold modifier 1 (UFM1), and the machinery responsible for its transfer to substrates (UFMylation) or its removal (deUFMylation). We first highlight the biochemical peculiarities of these processes, then we develop on how UFMylation and its machinery control various intertwined cellular processes and we highlight some of the outstanding research questions in this emerging field.
Collapse
Affiliation(s)
- Xingchen Zhou
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Sayyed J Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthieu Le Gallo
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Eric Chevet
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Elodie Lafont
- Inserm U1242, University of Rennes, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
14
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. eLife 2023; 12:RP89891. [PMID: 38079206 PMCID: PMC10712953 DOI: 10.7554/elife.89891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Albert N Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Michael W Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General HospitalBostonUnited States
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for ChildrenBostonUnited States
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science UniversityPortlandUnited States
| | - Ruth J Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
- VA Portland Health Care SystemPortlandUnited States
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science UniversityPortlandUnited States
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science UniversityPortlandUnited States
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
15
|
Serrano RJ, Oorschot V, Palipana D, Calcinotto V, Sonntag C, Ramm G, Bryson-Richardson RJ. Genetic model of UBA5 deficiency highlights the involvement of both peripheral and central nervous systems and identifies widespread mitochondrial abnormalities. Brain Commun 2023; 5:fcad317. [PMID: 38046095 PMCID: PMC10691876 DOI: 10.1093/braincomms/fcad317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 10/10/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023] Open
Abstract
Variants in UBA5 have been reported to cause neurological disease with impaired motor function, developmental delay, intellectual disability and brain pathology as recurrent clinical manifestations. UBA5 encodes a ubiquitin-activating-like enzyme that activates ufmylation, a post-translational ubiquitin-like modification pathway, which has been implicated in neurodevelopment and neuronal survival. The reason behind the variation in severity and clinical manifestations in affected individuals and the signal transduction pathways regulated by ufmylation that compromise the nervous system remains unknown. Zebrafish have emerged as a powerful model to study neurodegenerative disease due to its amenability for in vivo analysis of muscle and neuronal tissues, high-throughput examination of motor function and rapid embryonic development allowing an examination of disease progression. Using clustered regularly interspaced short palindromic repeats-associated protein 9 genome editing, we developed and characterized zebrafish mutant models to investigate disease pathophysiology. uba5 mutant zebrafish showed a significantly impaired motor function accompanied by delayed growth and reduced lifespan, reproducing key phenotypes observed in affected individuals. Our study demonstrates the suitability of zebrafish to study the pathophysiology of UBA5-related disease and as a powerful tool to identify pathways that could reduce disease progression. Furthermore, uba5 mutants exhibited widespread mitochondrial damage in both the nervous system and the skeletal muscle, suggesting that a perturbation of mitochondrial function may contribute to disease pathology.
Collapse
Affiliation(s)
- Rita J Serrano
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne 3800, Australia
| | - Dashika Palipana
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Vanessa Calcinotto
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Carmen Sonntag
- School of Biological Sciences, Monash University, Melbourne 3800, Australia
| | - Georg Ramm
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | | |
Collapse
|
16
|
Runnebohm AM, Indovina CJ, Turk SM, Bailey CG, Orchard CJ, Wade L, Overton DL, Snow BJ, Rubenstein EM. Methionine Restriction Impairs Degradation of a Protein that Aberrantly Engages the Endoplasmic Reticulum Translocon. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001021. [PMID: 38021175 PMCID: PMC10667923 DOI: 10.17912/micropub.biology.001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Proteins that persistently engage endoplasmic reticulum (ER) translocons are degraded by multiple translocon quality control (TQC) mechanisms. In Saccharomyces cerevisiae , the model translocon-associated protein Deg1 -Sec62 is subject to ER-associated degradation (ERAD) by the Hrd1 ubiquitin ligase and, to a lesser extent, proteolysis mediated by the Ste24 protease. In a recent screen, we identified nine methionine-biosynthetic genes as candidate TQC regulators. Here, we found methionine restriction impairs Hrd1-independent Deg1 -Sec62 degradation. Beyond revealing methionine as a novel regulator of TQC, our results urge caution when working with laboratory yeast strains with auxotrophic mutations, often presumed not to influence cellular processes under investigation.
Collapse
Affiliation(s)
- Avery M. Runnebohm
- Department of Biology, Ball State University, Muncie, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | | | - Samantha M. Turk
- Department of Biology, Ball State University, Muncie, Indiana, United States
- St. Jude Graduate School of Biomedical Science, Memphis, Tennessee, United States
| | - Connor G. Bailey
- Department of Biology, Ball State University, Muncie, Indiana, United States
- AllSource PPS, United States
| | - Cade J. Orchard
- Department of Biology, Ball State University, Muncie, Indiana, United States
- Department of Geology, University of Georgia, Athens, Georgia, United States
| | - Lauren Wade
- Department of Biology, Ball State University, Muncie, Indiana, United States
- Flow Cytometry Department, LabCorp, United States
| | - Danielle L. Overton
- Department of Biology, Ball State University, Muncie, Indiana, United States
- Department of Biology, Indiana University – Purdue University Indianapolis, Indianapolis, Indiana, United States
| | - Brian J. Snow
- Department of Biology, Ball State University, Muncie, Indiana, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States
| | - Eric M. Rubenstein
- Department of Biology, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
17
|
Millrine D, Peter JJ, Kulathu Y. A guide to UFMylation, an emerging posttranslational modification. FEBS J 2023; 290:5040-5056. [PMID: 36680403 PMCID: PMC10952357 DOI: 10.1111/febs.16730] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Ubiquitin Fold Modifier-1 (UFM1) is a ubiquitin-like modifier (UBL) that is posttranslationally attached to lysine residues on substrates via a dedicated system of enzymes conserved in most eukaryotes. Despite the structural similarity between UFM1 and ubiquitin, the UFMylation machinery employs unique mechanisms that ensure fidelity. While physiological triggers and consequences of UFMylation are not entirely clear, its biological importance is epitomized by mutations in the UFMylation pathway in human pathophysiology including musculoskeletal and neurodevelopmental diseases. Some of these diseases can be explained by the increased endoplasmic reticulum (ER) stress and disrupted translational homeostasis observed upon loss of UFMylation. The roles of UFM1 in these processes likely stem from its function at the ER where ribosomes are UFMylated in response to translational stalling. In addition, UFMylation has been implicated in other cellular processes including DNA damage response and telomere maintenance. Hence, the study of UFM1 pathway mechanics and its biological function will reveal insights into fundamental cell biology and is likely to afford new therapeutic opportunities for the benefit of human health. To this end, we herein provide a comprehensive guide to the current state of knowledge of UFM1 biogenesis, conjugation, and function with an emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Joshua J. Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC‐PPU), School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
18
|
Wang X, Xu X, Wang Z. The Post-Translational Role of UFMylation in Physiology and Disease. Cells 2023; 12:2543. [PMID: 37947621 PMCID: PMC10648299 DOI: 10.3390/cells12212543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.
Collapse
Affiliation(s)
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| | - Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|
19
|
Pan X, Alvarez AN, Ma M, Lu S, Crawford MW, Briere LC, Kanca O, Yamamoto S, Sweetser DA, Wilson JL, Napier RJ, Pruneda JN, Bellen HJ. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292782. [PMID: 37502976 PMCID: PMC10371176 DOI: 10.1101/2023.07.17.23292782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and ER stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least twelve different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remains to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Albert N. Alvarez
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael W. Crawford
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lauren C. Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A. Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Jenny L. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruth J. Napier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
- VA Portland Health Care System, Portland, OR 97239, USA
- Division of Arthritis & Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan & Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Zaman Z, Straka N, Pinto AL, Srouji R, Tam A, Periasamy U, Stone S, Kleinman M, Northam WT, Ebrahimi-Fakhari D. Deep brain stimulation for medically refractory status dystonicus in UBA5-related disorder. Mov Disord 2023; 38:1757-1759. [PMID: 37130202 PMCID: PMC10525025 DOI: 10.1002/mds.29428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Affiliation(s)
- Zainab Zaman
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nadine Straka
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna L. Pinto
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rasha Srouji
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Tam
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Uvaraj Periasamy
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Scellig Stone
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Monica Kleinman
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Weston T. Northam
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Ishimura R, Ito S, Mao G, Komatsu-Hirota S, Inada T, Noda NN, Komatsu M. Mechanistic insights into the roles of the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. SCIENCE ADVANCES 2023; 9:eadh3635. [PMID: 37595036 PMCID: PMC10438457 DOI: 10.1126/sciadv.adh3635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a ubiquitin-like protein covalently conjugated with intracellular proteins through ufmylation, similar to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control (RQC) at the ER (ER-RQC), and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here, we provide insights into the mechanism of the UFM1 E3 complex in not only ufmylation but also ER-RQC. The E3 complex consisting of UFL1 and UFBP1 interacted with UFC1, UFM1 E2, and, subsequently, CDK5RAP3, an adaptor for ufmylation of ribosomal subunit RPL26. Upon disome formation, the E3 complex associated with ufmylated RPL26 on the 60S subunit through the UFM1-interacting region of UFBP1. Loss of E3 components or disruption of the interaction between UFBP1 and ufmylated RPL26 attenuated ER-RQC. These results provide insights into not only the molecular basis of the ufmylation but also its role in proteostasis.
Collapse
Affiliation(s)
- Ryosuke Ishimura
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sota Ito
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Gaoxin Mao
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoko Komatsu-Hirota
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku 108-8639, Japan
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Microbial Chemistry (Bikaken), Shinagawa-ku, Tokyo 141-0021, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
22
|
Tandra V, Anderson T, Ayala JD, Weintraub NL, Singh N, Li H, Li J. Ufmylation of UFBP1 Is Dispensable for Endoplasmic Reticulum Stress Response, Embryonic Development, and Cardiac and Intestinal Homeostasis. Cells 2023; 12:1923. [PMID: 37566002 PMCID: PMC10416869 DOI: 10.3390/cells12151923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Protein modification by ubiquitin fold modifier 1 (UFM1), termed ufmylation, regulates various physiological and pathological processes. Among emerging UFM1 targets, UFM1 binding protein 1 (UFBP1) is the first identified ufmylation substrate. Recent clinical and animal studies have demonstrated the pivotal roles of UFBP1 in development, hematopoiesis, intestinal homeostasis, chondrogenesis, and neuronal development, which has been linked to its function in maintaining endoplasmic reticulum (ER) homeostasis. However, the importance of UFBP1 ufmylation in these cellular and physiological processes has yet to be determined. It has been proposed that ufmylation of lysine 268 (267 in humans) in UFBP1 plays a critical role in mediating the effects of the ufmylation pathway. In this study, we for the first time probe the pathophysiological significance of UFBP1 ufmylation in vivo by creating and characterizing a mouse UFBP1 knockin (KI) model in which the lysine 268 of UFBP1, the amino acid accepting UFM1, was mutated to arginine. Our results showed that the K268R mutation reduced the total ufmylated proteins without altering the expression levels of individual ufmylation enzymes in mouse embryonic fibroblasts. The K268R mutation did not alter ER stress-stimuli-induced ER stress signaling or cell death in mouse embryonic fibroblasts. The homozygous KI mice were viable and morphologically indistinguishable from their littermate wild-type controls up to one year of age. Serial echocardiography revealed no cardiac functional impairment of the homozygous KI mice. Furthermore, the homozygous KI mice exhibited the same susceptibility to dextran sulfate sodium (DSS) -induced colitis as wild-type mice. Taken together, these results suggest that UFBP1 K268 is dispensable for ER stress response, embryonic development, cardiac homeostasis under physiological conditions, and intestinal homeostasis under pathological conditions. Our studies call for future investigations to understand the biological function of UFBP1 ufmylation and offer a new mouse model to determine the roles of UFBP1 ufmylation in different tissues under stress conditions.
Collapse
Affiliation(s)
- Varsha Tandra
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Travis Anderson
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Juan D. Ayala
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Cardiology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
23
|
Badawi S, Mohamed FE, Varghese DS, Ali BR. Genetic disruption of mammalian endoplasmic reticulum-associated protein degradation: Human phenotypes and animal and cellular disease models. Traffic 2023. [PMID: 37188482 DOI: 10.1111/tra.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
Endoplasmic reticulum-associated protein degradation (ERAD) is a stringent quality control mechanism through which misfolded, unassembled and some native proteins are targeted for degradation to maintain appropriate cellular and organelle homeostasis. Several in vitro and in vivo ERAD-related studies have provided mechanistic insights into ERAD pathway activation and its consequent events; however, a majority of these have investigated the effect of ERAD substrates and their consequent diseases affecting the degradation process. In this review, we present all reported human single-gene disorders caused by genetic variation in genes that encode ERAD components rather than their substrates. Additionally, after extensive literature survey, we present various genetically manipulated higher cellular and mammalian animal models that lack specific components involved in various stages of the ERAD pathway.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Feda E Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya Saro Varghese
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Wang L, Xu Y, Yun S, Yuan Q, Satpute-Krishnan P, Ye Y. SAYSD1 senses UFMylated ribosome to safeguard co-translational protein translocation at the endoplasmic reticulum. Cell Rep 2023; 42:112028. [PMID: 36848233 PMCID: PMC10010011 DOI: 10.1016/j.celrep.2023.112028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Translocon clogging at the endoplasmic reticulum (ER) as a result of translation stalling triggers ribosome UFMylation, activating translocation-associated quality control (TAQC) to degrade clogged substrates. How cells sense ribosome UFMylation to initiate TAQC is unclear. We conduct a genome-wide CRISPR-Cas9 screen to identify an uncharacterized membrane protein named SAYSD1 that facilitates TAQC. SAYSD1 associates with the Sec61 translocon and also recognizes both ribosome and UFM1 directly, engaging a stalled nascent chain to ensure its transport via the TRAPP complex to lysosomes for degradation. Like UFM1 deficiency, SAYSD1 depletion causes the accumulation of translocation-stalled proteins at the ER and triggers ER stress. Importantly, disrupting UFM1- and SAYSD1-dependent TAQC in Drosophila leads to intracellular accumulation of translocation-stalled collagens, defective collagen deposition, abnormal basement membranes, and reduced stress tolerance. Thus, SAYSD1 acts as a UFM1 sensor that collaborates with ribosome UFMylation at the site of clogged translocon, safeguarding ER homeostasis during animal development.
Collapse
Affiliation(s)
- Lihui Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijung Yun
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prasanna Satpute-Krishnan
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Ufmylation reconciles salt stress-induced unfolded protein responses via ER-phagy in Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2208351120. [PMID: 36696447 PMCID: PMC9945950 DOI: 10.1073/pnas.2208351120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In plants, the endomembrane system is tightly regulated in response to environmental stresses for maintaining cellular homeostasis. Autophagosomes, the double membrane organelles forming upon nutrient deprivation or stress induction, degrade bulky cytosolic materials for nutrient turnover. Though abiotic stresses have been reported to induce plant autophagy, few receptors or regulators for selective autophagy have been characterized for specific stresses. Here, we have applied immunoprecipitation followed by tandem mass spectrometry using the autophagosome marker protein ATG8 as bait and have identified the E3 ligase of the ufmylation system Ufl1 as a bona fide ATG8 interactor under salt stress. Notably, core components in the ufmylation cascade, Ufl1 and Ufm1, interact with the autophagy kinase complexes proteins ATG1 and ATG6. Cellular and genetic analysis showed that Ufl1 is important for endoplasmic reticulum (ER)-phagy under persisting salt stress. Loss-of-function mutants of Ufl1 display a salt stress hypersensitive phenotype and abnormal ER morphology. Prolonged ER stress responses are detected in ufl1 mutants that phenocopy the autophagy dysfunction atg5 mutants. Consistently, expression of ufmylation cascade components is up-regulated by salt stress. Taken together, our study demonstrates the role of ufmylation in regulating ER homeostasis under salt stress through ER-phagy.
Collapse
|
26
|
Ahn HW, Worman ZF, Lechsinska A, Payer LM, Wang T, Malik N, Li W, Burns KH, Nath A, Levin HL. Retrotransposon insertions associated with risk of neurologic and psychiatric diseases. EMBO Rep 2023; 24:e55197. [PMID: 36367221 PMCID: PMC9827563 DOI: 10.15252/embr.202255197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022] Open
Abstract
Transposable elements (TEs) are active in neuronal cells raising the question whether TE insertions contribute to risk of neuropsychiatric disease. While genome-wide association studies (GWAS) serve as a tool to discover genetic loci associated with neuropsychiatric diseases, unfortunately GWAS do not directly detect structural variants such as TEs. To examine the role of TEs in psychiatric and neurologic disease, we evaluated 17,000 polymorphic TEs and find 76 are in linkage disequilibrium with disease haplotypes (P < 10-6 ) defined by GWAS. From these 76 polymorphic TEs, we identify potentially causal candidates based on having insertions in genomic regions of regulatory chromatin and on having associations with altered gene expression in brain tissues. We show that lead candidate insertions have regulatory effects on gene expression in human neural stem cells altering the activity of a minimal promoter. Taken together, we identify 10 polymorphic TE insertions that are potential candidates on par with other variants for having a causal role in neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Hyo Won Ahn
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Zelia F Worman
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
- Present address:
Seven BridgesCharlestownMAUSA
| | - Arianna Lechsinska
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| | - Lindsay M Payer
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Tongguang Wang
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Nasir Malik
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Wenxue Li
- Section of Infections of the Nervous SystemNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Kathleen H Burns
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMAUSA
| | - Avindra Nath
- Translational Neuroscience CenterNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
- Section of Infections of the Nervous SystemNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMDUSA
| | - Henry L Levin
- Division of Molecular and Cellular BiologyEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
27
|
Ivanov I, Pacheva I, Yordanova R, Sotkova I, Galabova F, Gaberova K, Panova M, Gheneva I, Tsvetanova T, Noneva K, Dimitrova D, Markov S, Sapundzhiev N, Bichev S, Savov A. Hypomyelination with Atrophy of Basal Ganglia and Cerebellum (HABC) Due to UFM1 Mutation in Roma Patients - Severe Early Encephalopathy with Stridor and Severe Hearing and Visual Impairment. A Single Center Experience. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:207-214. [PMID: 35189806 DOI: 10.2174/1871527321666220221100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) is a neurodegenerative disease with neurodevelopmental delay, motor, and speech regression, pronounced extrapyramidal syndrome, and sensory deficits due to TUBB4A mutation. In 2017, a severe variant was described in 16 Roma infants due to mutation in UFM1. OBJECTIVE The objective of this study is to expand the clinical manifestations of H-ABC due to UFM1 mutation and suggest clues for clinical diagnosis. METHODOLOGY Retrospective analysis of all 9 cases with H-ABC due to c.-273_-271delTCA mutation in UFM1 treated during 2013-2020 in a Neuropediatric Ward in Plovdiv, Bulgaria. RESULTS Presentation is no later than 2 months with inspiratory stridor, impaired sucking, swallowing, vision and hearing, and reduced active movements. By the age of 10 months, a monomorphic disease was observed: microcephaly (6/9), malnutrition (5/9), muscle hypertonia (9/9) and axial hypotonia (4/9), progressing to opisthotonus (6/9), dystonic posturing (5/9), nystagmoid ocular movements (6/9), epileptic seizures (4/9), non-epileptic spells (3/9). Dysphagia (7/9), inspiratory stridor (9/9), dyspnea (5/9), bradypnea (5/9), apnea (2/9) were major signs. Vision and hearing were never achieved or lost by 4-8 mo. Neurodevelopment was absent or minimal with subsequent regression after 2-5 mo. Brain imaging revealed cortical atrophy (7/9), atrophic ventricular dilatation (4/9), macrocisterna magna (5/9), reduced myelination (6/6), corpus callosum atrophy (3/6) and abnormal putamen and caput nuclei caudati. The age at death was between 8 and 18 mo. CONCLUSION Roma patients with severe encephalopathy in early infancy with stridor, opisthotonus, bradypnea, severe hearing and visual impairment should be tested for the Roma founder mutation of H-ABC in UFM1.
Collapse
Affiliation(s)
- Ivan Ivanov
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Iliyana Pacheva
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ralitsa Yordanova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Iglika Sotkova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Fani Galabova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
| | - Katerina Gaberova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Margarita Panova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ina Gheneva
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetelina Tsvetanova
- Department of Pediatrics, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Katerina Noneva
- Department of Pediatrics, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria
| | - Diana Dimitrova
- Department of Radiology, Saint George University Hospital, Plovdiv, Bulgaria
| | - Stoyan Markov
- ENT Clinic, Saint George University Hospital, Plovdiv, Bulgaria
- Department of Otorhinolaryngology Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Nikolay Sapundzhiev
- Department of Otorhinolaryngology, University Hospital "St. Marina", Medical University of Varna, Varna, Bulgaria
| | - Stoyan Bichev
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria
| | - Alexey Savov
- National Genetic Laboratory, Maichin Dom University Hospital, Sofia, Bulgaria
| |
Collapse
|
28
|
Li Y, Gao S, Meng Y. Integrated analysis of endoplasmic reticulum stress regulators' expression identifies distinct subtypes of autism spectrum disorder. Front Psychiatry 2023; 14:1136154. [PMID: 37139330 PMCID: PMC10149679 DOI: 10.3389/fpsyt.2023.1136154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been demonstrated to play important roles in a variety of human diseases. However, their relevance to autism spectrum disorder (ASD) remains largely unknown. Herein, we aimed to investigate the expression patterns and potential roles of the ER stress regulators in ASD. The ASD expression profiles GSE111176 and GSE77103 were compiled from the Gene Expression Omnibus (GEO) database. ER stress score determined by the single sample gene set enrichment analysis (ssGSEA) was significantly higher in ASD patients. Differential analysis revealed that there were 37 ER stress regulators dysregulated in ASD. Based on their expression profile, the random forest and artificial neuron network techniques were applied to build a classifier that can effectively distinguish ASD from control samples among independent datasets. Weighted gene co-expression network analysis (WGCNA) screened out the turquoise module with 774 genes was closely related to the ER stress score. Through the overlapping results of the turquoise module and differential expression ER stress genes, hub regulators were gathered. The TF/miRNA-hub gene interaction networks were created. Furthermore, the consensus clustering algorithm was performed to cluster the ASD patients, and there were two ASD subclusters. Each subcluster has unique expression profiles, biological functions, and immunological characteristics. In ASD subcluster 1, the FAS pathway was more enriched, while subcluster 2 had a higher level of plasma cell infiltration as well as the BCR signaling pathway and interleukin receptor reaction reactivity. Finally, the Connectivity map (CMap) database was used to find prospective compounds that target various ASD subclusters. A total of 136 compounds were significantly enriched. In addition to some specific drugs which can effectively reverse the differential gene expression of each subcluster, we found that the PKC inhibitor BRD-K09991945 that targets Glycogen synthase kinase 3β (GSK3B) might have a therapeutic effect on both ASD subtypes that worth of the experimental validation. Our finding proved that ER stress plays a crucial role in the diversity and complexity of ASD, which may inform both mechanistic and therapeutic assessments of the disorder.
Collapse
|
29
|
Ishimura R, El-Gowily AH, Noshiro D, Komatsu-Hirota S, Ono Y, Shindo M, Hatta T, Abe M, Uemura T, Lee-Okada HC, Mohamed TM, Yokomizo T, Ueno T, Sakimura K, Natsume T, Sorimachi H, Inada T, Waguri S, Noda NN, Komatsu M. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat Commun 2022; 13:7857. [PMID: 36543799 PMCID: PMC9772183 DOI: 10.1038/s41467-022-35501-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Protein modification by ubiquitin-like proteins (UBLs) amplifies limited genome information and regulates diverse cellular processes, including translation, autophagy and antiviral pathways. Ubiquitin-fold modifier 1 (UFM1) is a UBL covalently conjugated with intracellular proteins through ufmylation, a reaction analogous to ubiquitylation. Ufmylation is involved in processes such as endoplasmic reticulum (ER)-associated protein degradation, ribosome-associated protein quality control at the ER and ER-phagy. However, it remains unclear how ufmylation regulates such distinct ER-related functions. Here we identify a UFM1 substrate, NADH-cytochrome b5 reductase 3 (CYB5R3), that localizes on the ER membrane. Ufmylation of CYB5R3 depends on the E3 components UFL1 and UFBP1 on the ER, and converts CYB5R3 into its inactive form. Ufmylated CYB5R3 is recognized by UFBP1 through the UFM1-interacting motif, which plays an important role in the further uyfmylation of CYB5R3. Ufmylated CYB5R3 is degraded in lysosomes, which depends on the autophagy-related protein Atg7- and the autophagy-adaptor protein CDK5RAP3. Mutations of CYB5R3 and genes involved in the UFM1 system cause hereditary developmental disorders, and ufmylation-defective Cyb5r3 knock-in mice exhibit microcephaly. Our results indicate that CYB5R3 ufmylation induces ER-phagy, which is indispensable for brain development.
Collapse
Affiliation(s)
- Ryosuke Ishimura
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Afnan H El-Gowily
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Daisuke Noshiro
- Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Satoko Komatsu-Hirota
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuko Ono
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mayumi Shindo
- Advanced Technical Support Department, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Tomohisa Hatta
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata, 951-8585, Japan
| | - Takefumi Uemura
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukshima, 960-1295, Japan
| | - Hyeon-Cheol Lee-Okada
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata, 951-8585, Japan
| | - Tohru Natsume
- National Institutes of Advanced Industrial Science and Technology, Biological Information Research Center (JBIRC), Kohtoh-ku, Tokyo, 135-0064, Japan
| | - Hiroyuki Sorimachi
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Toshifumi Inada
- Division of RNA and gene regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, 108-8639, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Hikarigaoka, Fukshima, 960-1295, Japan
| | - Nobuo N Noda
- Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
30
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
31
|
Zhang J, Zhu H, Liu S, Quintero M, Zhu T, Xu R, Cai Y, Han Y, Li H. Deficiency of Murine UFM1-Specific E3 Ligase Causes Microcephaly and Inflammation. Mol Neurobiol 2022; 59:6363-6372. [PMID: 35931931 DOI: 10.1007/s12035-022-02979-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
The UFM1 conjugation system is a Ubiquitin (Ub)-like modification system that is essential for animal development and normal physiology of multiple tissues and organs. It consists of UFM1, a Ub-like modifier, and the UFM1-specific enzymes (namely E1 enzyme UBA5, E2 enzyme UFC1 E2, and E3 ligases) that catalyze conjugation of UFM1 to its specific protein targets. Clinical studies have identified rare genetic variants in human UFM1, UBA5 and UFC1 genes that were linked to early-onset encephalopathy and defective brain development, strongly suggesting the critical role of the UFM1 system in the nervous system. Yet, the physiological function of this system in adult brain remains not defined. In this study, we investigated the role of UFM1 E3 ligase in adult mouse and found that both UFL1 and UFBP1 proteins, two components of UFM1 E3 ligase, are essential for survival of mature neurons in adult mouse. Neuron-specific deletion of either UFL1 or UFBP1 led to significant neuronal loss and elevation of inflammatory response. Interestingly, loss of one allele of UFBP1 genes caused the occurrence of seizure-like events. Our study has provided genetic evidence for the indispensable role of UFM1 E3 ligase in mature neurons and further demonstrated the importance of the UFM1 system in the nervous system.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang , Jiangxi, China
| | - Huabin Zhu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Siyang Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Michaela Quintero
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA
| | - Tianyi Zhu
- Greenbrier High School, Evans, GA, 30809, USA
| | - Renshi Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, 1120 15th St., Augusta, GA, 30912, USA.
| |
Collapse
|
32
|
Millrine D, Cummings T, Matthews SP, Peter JJ, Magnussen HM, Lange SM, Macartney T, Lamoliatte F, Knebel A, Kulathu Y. Human UFSP1 is an active protease that regulates UFM1 maturation and UFMylation. Cell Rep 2022; 40:111168. [PMID: 35926457 PMCID: PMC9638016 DOI: 10.1016/j.celrep.2022.111168] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
An essential first step in the post-translational modification of proteins with UFM1, UFMylation, is the proteolytic cleavage of pro-UFM1 to expose a C-terminal glycine. Of the two UFM1-specific proteases (UFSPs) identified in humans, only UFSP2 is reported to be active, since the annotated sequence of UFSP1 lacks critical catalytic residues. Nonetheless, efficient UFM1 maturation occurs in cells lacking UFSP2, suggesting the presence of another active protease. We herein identify UFSP1 translated from a non-canonical start site to be this protease. Cells lacking both UFSPs show complete loss of UFMylation resulting from an absence of mature UFM1. While UFSP2, but not UFSP1, removes UFM1 from the ribosomal subunit RPL26, UFSP1 acts earlier in the pathway to mature UFM1 and cleave a potential autoinhibitory modification on UFC1, thereby controlling activation of UFMylation. In summary, our studies reveal important distinctions in substrate specificity and localization-dependent functions for the two proteases in regulating UFMylation.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Thomas Cummings
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen P Matthews
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joshua J Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Helge M Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sven M Lange
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Thomas Macartney
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Frederic Lamoliatte
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Axel Knebel
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
33
|
Jing Y, Mao Z, Chen F. UFMylation System: An Emerging Player in Tumorigenesis. Cancers (Basel) 2022; 14:3501. [PMID: 35884562 PMCID: PMC9323365 DOI: 10.3390/cancers14143501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1), a newly identified ubiquitin-like molecule (UBLs), is evolutionarily expressed in multiple species except yeast. Similarly to ubiquitin, UFM1 is covalently attached to its substrates through a well-orchestrated three-step enzymatic reaction involving E1, the UFM1-activating enzyme (ubiquitin-like modifier-activating enzyme 5, UBA5); E2, the UFM1-conjugating enzyme 1 (UFC1); and E3, the UFM1-specific ligase 1 (UFL1). To date, numerous studies have shown that UFM1 modification is implicated in various cellular processes, including endoplasmic reticulum (ER) stress, DNA damage response and erythroid development. An abnormal UFM1 cascade is closely related to a variety of diseases, especially tumors. Herein, we summarize the process and functions of UFM1 modification, illustrating the relationship and mechanisms between aberrant UFMylation and diversified tumors, aiming to provide novel diagnostic biomarkers or therapeutic targets for cancer treatments.
Collapse
Affiliation(s)
| | | | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; (Y.J.); (Z.M.)
| |
Collapse
|
34
|
Al-Saady ML, Kaiser CS, Wakasuqui F, Korenke GC, Waisfisz Q, Polstra A, Pouwels PJW, Bugiani M, van der Knaap MS, Lunsing RJ, Liebau E, Wolf NI. Homozygous UBA5 Variant Leads to Hypomyelination with Thalamic Involvement and Axonal Neuropathy. Neuropediatrics 2021; 52:489-494. [PMID: 33853163 DOI: 10.1055/s-0041-1724130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The enzyme ubiquitin-like modifier activating enzyme 5 (UBA5) plays an important role in activating ubiquitin-fold modifier 1 (UFM1) and its associated cascade. UFM1 is widely expressed and known to facilitate the post-translational modification of proteins. Variants in UBA5 and UFM1 are involved in neurodevelopmental disorders with early-onset epileptic encephalopathy as a frequently seen disease manifestation. Using whole exome sequencing, we detected a homozygous UBA5 variant (c.895C > T p. [Pro299Ser]) in a patient with severe global developmental delay and epilepsy, the latter from the age of 4 years. Magnetic resonance imaging showed hypomyelination with atrophy and T2 hyperintensity of the thalamus. Histology of the sural nerve showed axonal neuropathy with decreased myelin. Functional analyses confirmed the effect of the Pro299Ser variant on UBA5 protein function, showing 58% residual protein activity. Our findings indicate that the epilepsy currently associated with UBA5 variants may present later in life than previously thought, and that radiological signs include hypomyelination and thalamic involvement. The data also reinforce recently reported associations between UBA5 variants and peripheral neuropathy.
Collapse
Affiliation(s)
- Murtadha L Al-Saady
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, and Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Charlotte S Kaiser
- Department of Molecular Physiology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Felipe Wakasuqui
- Department of Molecular Physiology, Westfälische Wilhelms-University Münster, Münster, Germany
| | | | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam UMC, VU University Medical Center Amsterdam, The Netherlands
| | - Abeltje Polstra
- Department of Clinical Genetics, Amsterdam UMC, VU University Medical Center Amsterdam, The Netherlands
| | - Petra J W Pouwels
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, VU University Medical Center and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, and Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Roelineke J Lunsing
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eva Liebau
- Department of Molecular Physiology, Westfälische Wilhelms-University Münster, Münster, Germany
| | - Nicole I Wolf
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, and Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Abstract
Ufmylation is a post-translational modification essential for regulating key cellular processes. A three-enzyme cascade involving E1, E2 and E3 is required for UFM1 attachment to target proteins. How UBA5 (E1) and UFC1 (E2) cooperatively activate and transfer UFM1 is still unclear. Here, we present the crystal structure of UFC1 bound to the C-terminus of UBA5, revealing how UBA5 interacts with UFC1 via a short linear sequence, not observed in other E1-E2 complexes. We find that UBA5 has a region outside the adenylation domain that is dispensable for UFC1 binding but critical for UFM1 transfer. This region moves next to UFC1’s active site Cys and compensates for a missing loop in UFC1, which exists in other E2s and is needed for the transfer. Overall, our findings advance the understanding of UFM1’s conjugation machinery and may serve as a basis for the development of ufmylation inhibitors. Ufmylation is a well-established ubiquitin-like protein modification, but its mechanism is largely unclear. Here, the authors present a crystal structure of the ufmylation-specific E1-E2 complex, revealing differences to the ubiquitination machinery and mechanistic details of the ufmylation process.
Collapse
|
36
|
Ebstein F, Küry S, Papendorf JJ, Krüger E. Neurodevelopmental Disorders (NDD) Caused by Genomic Alterations of the Ubiquitin-Proteasome System (UPS): the Possible Contribution of Immune Dysregulation to Disease Pathogenesis. Front Mol Neurosci 2021; 14:733012. [PMID: 34566579 PMCID: PMC8455891 DOI: 10.3389/fnmol.2021.733012] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Over thirty years have passed since the first description of ubiquitin-positive structures in the brain of patients suffering from Alzheimer’s disease. Meanwhile, the intracellular accumulation of ubiquitin-modified insoluble protein aggregates has become an indisputable hallmark of neurodegeneration. However, the role of ubiquitin and a fortiori the ubiquitin-proteasome system (UPS) in the pathogenesis of neurodevelopmental disorders (NDD) is much less described. In this article, we review all reported monogenic forms of NDD caused by lesions in genes coding for any component of the UPS including ubiquitin-activating (E1), -conjugating (E2) enzymes, ubiquitin ligases (E3), ubiquitin hydrolases, and ubiquitin-like modifiers as well as proteasome subunits. Strikingly, our analysis revealed that a vast majority of these proteins have a described function in the negative regulation of the innate immune response. In this work, we hypothesize a possible involvement of autoinflammation in NDD pathogenesis. Herein, we discuss the parallels between immune dysregulation and neurodevelopment with the aim at improving our understanding the biology of NDD and providing knowledge required for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France.,l'Institut du Thorax, CNRS, INSERM, CHU Nantes, Université de Nantes, Nantes, France
| | - Jonas Johannes Papendorf
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
37
|
Wesch N, Löhr F, Rogova N, Dötsch V, Rogov VV. A Concerted Action of UBA5 C-Terminal Unstructured Regions Is Important for Transfer of Activated UFM1 to UFC1. Int J Mol Sci 2021; 22:ijms22147390. [PMID: 34299007 PMCID: PMC8304084 DOI: 10.3390/ijms22147390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.
Collapse
Affiliation(s)
- Nicole Wesch
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (N.W.); (F.L.); (N.R.)
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (N.W.); (F.L.); (N.R.)
| | - Natalia Rogova
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (N.W.); (F.L.); (N.R.)
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (N.W.); (F.L.); (N.R.)
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
- Correspondence: (V.D.); (V.V.R.)
| | - Vladimir V. Rogov
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany; (N.W.); (F.L.); (N.R.)
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
- Correspondence: (V.D.); (V.V.R.)
| |
Collapse
|
38
|
Briere LC, Walker MA, High FA, Cooper C, Rogers CA, Callahan CJ, Ishimura R, Ichimura Y, Caruso PA, Sharma N, Brokamp E, Koziura ME, Mohammad SS, Dale RC, Riley LG, Phillips JA, Komatsu M, Sweetser DA. A description of novel variants and review of phenotypic spectrum in UBA5-related early epileptic encephalopathy. Cold Spring Harb Mol Case Stud 2021; 7:a005827. [PMID: 33811063 PMCID: PMC8208045 DOI: 10.1101/mcs.a005827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/10/2021] [Indexed: 12/22/2022] Open
Abstract
Early infantile epileptic encephalopathy-44 (EIEE44, MIM: 617132) is a previously described condition resulting from biallelic variants in UBA5, a gene involved in a ubiquitin-like post-translational modification system called UFMylation. Here we report five children from four families with biallelic pathogenic variants in UBA5 All five children presented with global developmental delay, epilepsy, axial hypotonia, appendicular hypertonia, and a movement disorder, including dystonia in four. Affected individuals in all four families have compound heterozygous pathogenic variants in UBA5 All have the recurrent mild c.1111G > A (p.Ala371Thr) variant in trans with a second UBA5 variant. One patient has the previously described c.562C > T (p. Arg188*) variant, two other unrelated patients have a novel missense variant, c.907T > C (p.Cys303Arg), and the two siblings have a novel missense variant, c.761T > C (p.Leu254Pro). Functional analyses demonstrate that both the p.Cys303Arg variant and the p.Leu254Pro variants result in a significant decrease in protein function. We also review the phenotypes and genotypes of all 15 previously reported families with biallelic UBA5 variants, of which two families have presented with distinct phenotypes, and we describe evidence for some limited genotype-phenotype correlation. The overlap of motor and developmental phenotypes noted in our cohort and literature review adds to the increasing understanding of genetic syndromes with movement disorders-epilepsy.
Collapse
Affiliation(s)
- Lauren C Briere
- Department of Pediatrics, Division of Medical Genetics and Metabolism, and Center for Genomic Medicine, Massachusetts 02114, USA
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts 02114, USA
| | - Frances A High
- Department of Pediatrics, Division of Medical Genetics and Metabolism, Massachusetts 02114, USA
| | - Cynthia Cooper
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Cassandra A Rogers
- Department of Pediatrics, Division of Medical Genetics and Metabolism, and Center for Genomic Medicine, Massachusetts 02114, USA
| | - Christine J Callahan
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Ryosuke Ishimura
- Department of Biochemistry, Niigata University School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Yoshinobu Ichimura
- Department of Biochemistry, Niigata University School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Paul A Caruso
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Elly Brokamp
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Mary E Koziura
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Shekeeb S Mohammad
- Kids Neuroscience Center & Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Russell C Dale
- Kids Neuroscience Center & Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lisa G Riley
- Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Westmead, New South Wales 2145, Australia
- Discipline of Child & Adolescent Health, University of Sydney, Sydney, New South Wales 2006, Australia
| | - John A Phillips
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
- Department of Physiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - David A Sweetser
- Department of Pediatrics, Division of Medical Genetics and Metabolism, and Center for Genomic Medicine, Massachusetts 02114, USA
| |
Collapse
|
39
|
Zhou Y, Ye X, Zhang C, Wang J, Guan Z, Yan J, Xu L, Wang K, Guan D, Liang Q, Mao J, Zhou J, Zhang Q, Wu X, Wang M, Cong YS, Liu J. Ufl1 deficiency causes kidney atrophy associated with disruption of endoplasmic reticulum homeostasis. J Genet Genomics 2021; 48:403-410. [PMID: 34148841 DOI: 10.1016/j.jgg.2021.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
The UFMylation modification is a novel ubiquitin-like conjugation system, consisting of UBA5 (E1), UFC1 (E2), UFL1 (E3), and the conjugating molecule UFM1. Deficiency in this modification leads to embryonic lethality in mice and diseases in humans. However, the function of UFL1 is poorly characterized. Studies on Ufl1 conditional knockout mice have demonstrated that the deletion of Ufl1 in cardiomyocytes and in intestinal epithelial cells causes heart failure and increases susceptibility to experimentally induced colitis, respectively, suggesting an essential role of UFL1 in the maintenance of the homeostasis in these organs. Yet, its physiological function in other tissues and organs remains completely unknown. In this study, we generate the nephron tubules specific Ufl1 knockout mice and find that the absence of Ufl1 in renal tubular results in kidney atrophy and interstitial fibrosis. In addition, Ufl1 deficiency causes the activation of unfolded protein response and cell apoptosis, which may be responsible for the kidney atrophy and interstitial fibrosis. Collectively, our results have demonstrated the crucial role of UFL1 in regulating kidney function and maintenance of endoplasmic reticulum homeostasis, providing another layer of understanding kidney atrophy.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Xifu Ye
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Chenlu Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Jiabao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Zeyuan Guan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Juzhen Yan
- Department of Nephrology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Lu Xu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Ke Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Di Guan
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Qian Liang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Jian Mao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Junzhi Zhou
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Qian Zhang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Xiaoying Wu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Miao Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| | - Jiang Liu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Cell Biology and Genetics, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China.
| |
Collapse
|
40
|
UFMylation inhibits the proinflammatory capacity of interferon-γ-activated macrophages. Proc Natl Acad Sci U S A 2021; 118:2011763118. [PMID: 33372156 DOI: 10.1073/pnas.2011763118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macrophages activated with interferon-γ (IFN-γ) in combination with other proinflammatory stimuli, such as lipopolysaccharide or tumor necrosis factor-α (TNF-α), respond with transcriptional and cellular changes that enhance clearance of intracellular pathogens at the risk of damaging tissues. IFN-γ effects must therefore be carefully balanced with inhibitory mechanisms to prevent immunopathology. We performed a genome-wide CRISPR knockout screen in a macrophage cell line to identify negative regulators of IFN-γ responses. We discovered an unexpected role of the ubiquitin-fold modifier (Ufm1) conjugation system (herein UFMylation) in inhibiting responses to IFN-γ and lipopolysaccharide. Enhanced IFN-γ activation in UFMylation-deficient cells resulted in increased transcriptional responses to IFN-γ in a manner dependent on endoplasmic reticulum stress responses involving Ern1 and Xbp1. Furthermore, UFMylation in myeloid cells is required for resistance to influenza infection in mice, indicating that this pathway modulates in vivo responses to infection. These findings provide a genetic roadmap for the regulation of responses to a key mediator of cellular immunity and identify a molecular link between the UFMylation pathway and immune responses.
Collapse
|
41
|
Witting KF, Mulder MP. Highly Specialized Ubiquitin-Like Modifications: Shedding Light into the UFM1 Enigma. Biomolecules 2021; 11:biom11020255. [PMID: 33578803 PMCID: PMC7916544 DOI: 10.3390/biom11020255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.
Collapse
|
42
|
Wang L, Ye Y. Clearing Traffic Jams During Protein Translocation Across Membranes. Front Cell Dev Biol 2021; 8:610689. [PMID: 33490075 PMCID: PMC7820333 DOI: 10.3389/fcell.2020.610689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Abstract
Protein translocation across membranes is a critical facet of protein biogenesis in compartmentalized cells as proteins synthesized in the cytoplasm often need to traverse across lipid bilayers via proteinaceous channels to reach their final destinations. It is well established that protein biogenesis is tightly linked to various protein quality control processes, which monitor errors in protein folding, modification, and localization. However, little is known about how cells cope with translocation defective polypeptides that clog translocation channels (translocons) during protein translocation. This review summarizes recent studies, which collectively reveal a set of translocon-associated quality control strategies for eliminating polypeptides stuck in protein-conducting channels in the endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
43
|
Sabaie H, Ahangar NK, Ghafouri-Fard S, Taheri M, Rezazadeh M. Clinical and genetic features of PEHO and PEHO-Like syndromes: A scoping review. Biomed Pharmacother 2020; 131:110793. [PMID: 33152950 DOI: 10.1016/j.biopha.2020.110793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 01/15/2023] Open
Abstract
Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is a genetic neurological condition characterized by extreme cerebellar atrophy. PEHO-Like syndrome is comparable to PEHO syndrome, with the exception that there is no typical neuro-radiologic or neuro-ophthalmic findings. PEHO spectrum disorders are highly clinically and genetically heterogeneous, and this has challenged their diagnosis. This scoping review aims to summarize and discuss common clinical and genetic features of these syndromes to help future researches. This study was performed according to a six-stage methodology structure and PRISMA guideline. A systematic search of seven databases was performed to find eligible publications prior to June 2020. Articles screening and data extraction were independently performed by two reviewers and quantitative and qualitative analyses were conducted. Thirty-eight articles were identified that fulfill the inclusion criteria. Cerebellar atrophy was the main clinical difference between the two groups but data on optic atrophy and infantile spasms/hypsarrhythmia were not consistent with the previously essential diagnostic criteria. Genetic analysis was performed in several studies, leading to identification of pathogenic variants in different genes that caused these conditions due to different mechanisms. Genetic studies could revolutionize the diagnosis process and our understanding of the etiology of this challenging group of patients by providing targeted sequencing panels and exome- or genome-scale studies in the future.
Collapse
Affiliation(s)
- Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Knuutinen O, Pyle A, Suo-Palosaari M, Duff J, Froukh T, Lehesjoki AE, Kangas SM, Cassidy J, Maraqa L, Keski-Filppula R, Kokkonen H, Uusimaa J, Horvath R, Vieira P. Homozygous TAF1C variants are associated with a novel childhood-onset neurological phenotype. Clin Genet 2020; 98:493-498. [PMID: 32779182 DOI: 10.1111/cge.13827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
TATA-box binding protein associated factor, RNA polymerase I subunit C (TAF1C) is a component of selectivity factor 1 belonging to RNA polymerase I (Pol I) transcription machinery. We report two unrelated patients with homozygous TAF1C missense variants and an early onset neurological phenotype with severe global developmental delay. Clinical features included lack of speech and ambulation and epilepsy. MRI of the brain demonstrated widespread cerebral atrophy and frontal periventricular white matter hyperintensity. The phenotype resembled that of a previously described variant of UBTF, which encodes another transcription factor of Pol I. TAF1C variants were located in two conserved amino acid positions and were predicted to be deleterious. In patient-derived fibroblasts, TAF1C mRNA and protein expression levels were substantially reduced compared with healthy controls. We propose that the variants impairing TAF1C expression are likely pathogenic and relate to a novel neurological disease. This study expands the disease spectrum related to Pol I transcription machinery, associating the TAF1C missense variants with a severe neurological phenotype for the first time.
Collapse
Affiliation(s)
- Oula Knuutinen
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu, Finland
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Suo-Palosaari
- Medical Research Center, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Research Unit of Medical Imaging, Physics and Technology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jennifer Duff
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center and Medicum, University of Helsinki, Helsinki, Finland
| | - Salla M Kangas
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - James Cassidy
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Riikka Keski-Filppula
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Hannaleena Kokkonen
- Northern Finland Laboratory Centre NordLab, Oulu University Hospital, Oulu, Finland
| | - Johanna Uusimaa
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu, Finland
- Clinic for Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Päivi Vieira
- PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, University of Oulu, Oulu, Finland
- Clinic for Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
45
|
Banerjee S, Kumar M, Wiener R. Decrypting UFMylation: How Proteins Are Modified with UFM1. Biomolecules 2020; 10:E1442. [PMID: 33066455 PMCID: PMC7602216 DOI: 10.3390/biom10101442] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Besides ubiquitin (Ub), humans have a set of ubiquitin-like proteins (UBLs) that can also covalently modify target proteins. To date, less is known about UBLs than Ub and even less is known about the UBL called ubiquitin-fold modifier 1 (UFM1). Currently, our understanding of protein modification by UFM1 (UFMylation) is like a jigsaw puzzle with many missing pieces, and in some cases it is not even clear whether these pieces of data are in the right place. Here we review the current data on UFM1 from structural biology to biochemistry and cell biology. We believe that the physiological significance of protein modification by UFM1 is currently underestimated and there is more to it than meets the eye.
Collapse
Affiliation(s)
| | | | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (S.B.); (M.K.)
| |
Collapse
|
46
|
Cabrera-Serrano M, Coote DJ, Azmanov D, Goullee H, Andersen E, McLean C, Davis M, Ishimura R, Stark Z, Vallat JM, Komatsu M, Kornberg A, Ryan M, Laing NG, Ravenscroft G. A homozygous UBA5 pathogenic variant causes a fatal congenital neuropathy. J Med Genet 2020; 57:835-842. [PMID: 32179706 DOI: 10.1136/jmedgenet-2019-106496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND UBA5 is the activating enzyme of UFM1 in the ufmylation post-translational modification system. Different neurological phenotypes have been associated with UBA5 pathogenic variants including epilepsy, intellectual disability, movement disorders and ataxia. METHODS AND RESULTS We describe a large multigenerational consanguineous family presenting with a severe congenital neuropathy causing early death in infancy. Whole exome sequencing and linkage analysis identified a novel homozygous UBA5 NM_024818.3 c.31C>T (p.Arg11Trp) mutation. Protein expression assays in mouse tissue showed similar levels of UBA5 in peripheral nerves to the central nervous system. CRISPR-Cas9 edited HEK (human embrionic kidney) cells homozygous for the UBA5 p.Arg11Trp mutation showed reduced levels of UBA5 protein compared with the wild-type. The mutant p.Arg11Trp UBA5 protein shows reduced ability to activate UFM1. CONCLUSION This report expands the phenotypical spectrum of UBA5 mutations to include fatal peripheral neuropathy.
Collapse
Affiliation(s)
- Macarena Cabrera-Serrano
- Department of Neurology, Neuromuscular Unit and Instituto de Biomedicina de Sevilla/CSIC, Hospital Universitario Virgen del Rocío, Sevilla, Spain.,Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia.,Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Joseph Coote
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| | - Dimitar Azmanov
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia.,Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Perth, Western Australia, Australia
| | - Hayley Goullee
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| | - Erik Andersen
- Pediatrics, University of Otago Wellington, Wellington, New Zealand.,Department of Neurology and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Catriona McLean
- Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
| | - Mark Davis
- Department of Diagnostic Genomics, PathWest, QEII Medical Centre, Perth, Western Australia, Australia
| | - Ryosuke Ishimura
- Department of Physiology, Juntendo University School of Medicine Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jean-Michel Vallat
- Reference center for peripheral neuropathies, University Hospital, Limoges, France
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University School of Medicine Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Andrew Kornberg
- Department of Neurology and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Monique Ryan
- Department of Neurology and Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Nigel G Laing
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| | - Gina Ravenscroft
- Centre of Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
47
|
Abstract
Developmental and epileptic encephalopathies (DEEs) can be primarily attributed to genetic causes. The genetic landscape of DEEs has been largely shaped by the rise of high-throughput sequencing, which led to the discovery of new DEE-associated genes and helped identify de novo pathogenic variants. We discuss briefly the contribution of de novo variants to DEE and also focus on alternative inheritance models that contribute to DEE. First, autosomal recessive inheritance in outbred populations may have a larger contribution than previously appreciated, accounting for up to 13% of DEEs. A small subset of genes that typically harbor de novo variants have been associated with recessive inheritance, and often these individuals have more severe clinical presentations. Additionally, pathogenic variants in X-linked genes have been identified in both affected males and females, possibly due to a lack of X-chromosome inactivation skewing. Collectively, exome sequencing has resulted in a molecular diagnosis for many individuals with DEE, but this still leaves many cases unsolved. Multiple factors contribute to the missing etiology, including nonexonic variants, mosaicism, epigenetics, and oligogenic inheritance. Here, we focus on the first 2 factors. We discuss the promises and challenges of genome sequencing, which allows for a more comprehensive analysis of the genome, including interpretation of structural and noncoding variants and also yields a high number of de novo variants for interpretation. We also consider the contribution of genetic mosaicism, both what it means for a molecular diagnosis in mosaic individuals and the important implications for genetic counseling.
Collapse
Affiliation(s)
- Hannah C Happ
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gemma L Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
48
|
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of severe, early onset epilepsies characterized by refractory seizures, developmental delay or regression associated with ongoing epileptic activity, and generally poor prognosis. DEE is genetically and phenotypically heterogeneous, and there is a plethora of genetic testing options to investigate the rapidly growing list of epilepsy genes. However, more than 50% of patients with DEE remain without a genetic diagnosis despite state-of-the-art genetic testing. In this review, we discuss the major advances in epilepsy genomics that have surfaced in recent years. The goal of this review is to reach a larger audience and build a better understanding of pathogenesis and genetic testing options in DEE.
Collapse
Affiliation(s)
- Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
49
|
Huber J, Obata M, Gruber J, Akutsu M, Löhr F, Rogova N, Güntert P, Dikic I, Kirkin V, Komatsu M, Dötsch V, Rogov VV. An atypical LIR motif within UBA5 (ubiquitin like modifier activating enzyme 5) interacts with GABARAP proteins and mediates membrane localization of UBA5. Autophagy 2020; 16:256-270. [PMID: 30990354 PMCID: PMC6984602 DOI: 10.1080/15548627.2019.1606637] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
Abstract
Short linear motifs, known as LC3-interacting regions (LIRs), interact with mactoautophagy/autophagy modifiers (Atg8/LC3/GABARAP proteins) via a conserved universal mechanism. Typically, this includes the occupancy of 2 hydrophobic pockets on the surface of Atg8-family proteins by 2 specific aromatic and hydrophobic residues within the LIR motifs. Here, we describe an alternative mechanism of Atg8-family protein interaction with the non-canonical UBA5 LIR, an E1-like enzyme of the ufmylation pathway that preferentially interacts with GABARAP but not LC3 proteins. By solving the structures of both GABARAP and GABARAPL2 in complex with the UBA5 LIR, we show that in addition to the binding to the 2 canonical hydrophobic pockets (HP1 and HP2), a conserved tryptophan residue N-terminal of the LIR core sequence binds into a novel hydrophobic pocket on the surface of GABARAP proteins, which we term HP0. This mode of action is unique for UBA5 and accompanied by large rearrangements of key residues including the side chains of the gate-keeping K46 and the adjacent K/R47 in GABARAP proteins. Swapping mutations in LC3B and GABARAPL2 revealed that K/R47 is the key residue in the specific binding of GABARAP proteins to UBA5, with synergetic contributions of the composition and dynamics of the loop L3. Finally, we elucidate the physiological relevance of the interaction and show that GABARAP proteins regulate the localization and function of UBA5 on the endoplasmic reticulum membrane in a lipidation-independent manner.Abbreviations: ATG: AuTophaGy-related; EGFP: enhanced green fluorescent protein; GABARAP: GABA-type A receptor-associated protein; ITC: isothermal titration calorimetry; KO: knockout; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NMR: nuclear magnetic resonance; RMSD: root-mean-square deviation of atomic positions; TKO: triple knockout; UBA5: ubiquitin like modifier activating enzyme 5.
Collapse
Affiliation(s)
- Jessica Huber
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Miki Obata
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jens Gruber
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Natalia Rogova
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Ivan Dikic
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
- Institute of Biochemistry II, School of Medicine, Frankfurt am Main, Germany
| | - Vladimir Kirkin
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Vladimir V. Rogov
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
50
|
Papandreou A, Danti FR, Spaull R, Leuzzi V, Mctague A, Kurian MA. The expanding spectrum of movement disorders in genetic epilepsies. Dev Med Child Neurol 2020; 62:178-191. [PMID: 31784983 DOI: 10.1111/dmcn.14407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
An ever-increasing number of neurogenetic conditions presenting with both epilepsy and atypical movements are now recognized. These disorders within the 'genetic epilepsy-dyskinesia' spectrum are clinically and genetically heterogeneous. Increased clinical awareness is therefore necessary for a rational diagnostic approach. Furthermore, careful interpretation of genetic results is key to establishing the correct diagnosis and initiating disease-specific management strategies in a timely fashion. In this review we describe the spectrum of movement disorders associated with genetically determined epilepsies. We also propose diagnostic strategies and putative pathogenic mechanisms causing these complex syndromes associated with both seizures and atypical motor control. WHAT THIS PAPER ADDS: Implicated genes encode proteins with very diverse functions. Pathophysiological mechanisms by which epilepsy and movement disorder phenotypes manifest are often not clear. Early diagnosis of treatable disorders is essential and next generation sequencing may be required.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Federica Rachele Danti
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Robert Spaull
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Amy Mctague
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|