1
|
Ikenouchi T, Nitta J, Inaba O, Negishi M, Amemiya M, Kono T, Yamamoto T, Murata K, Kawamura I, Goto K, Nishimura T, Takamiya T, Inamura Y, Ihara K, Tao S, Sato A, Takigawa M, Ebana Y, Miyazaki S, Sasano T, Furukawa T. Embryological Classification of Arrhythmogenic Triggers Initiating Atrial Fibrillation. J Am Coll Cardiol 2024; 84:2116-2128. [PMID: 39453361 DOI: 10.1016/j.jacc.2024.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent multifactorial arrhythmia associated with specific single-nucleotide polymorphisms (SNPs). Pulmonary vein (PV) isolation is an established treatment for AF; however, recurrence risk remains caused by AF triggers beyond the PVs. Understanding the embryological origins of these triggers could improve treatment outcomes. OBJECTIVES This study aimed to investigate the association between embryologically categorized AF triggers, clinical and genetic backgrounds, and postablation prognosis. METHODS In cohort 1, comprising 3,067 patients with AF undergoing PV isolation, the clinical characteristics and outcomes were analyzed. Among them, 815 patients underwent genetic analysis using AF-associated SNPs (cohort 2). Patients were delineated based on the developmental origin of the AF triggers: common PV, sinus venosus (SV), and primitive atrium (PA). RESULTS SV-origin extra-PV AF triggers occurred in 20.3% (n = 622) of patients, whereas PA-origin triggers occurred in 11.9% (n = 365) of patients in cohort 1. Multivariate analysis of cohort 2 revealed that female sex, lower body mass index, absence of hypertension, rs2634073 near PITX2, and rs6584555 in NEURL1 were associated with SV-AF, whereas nonparoxysmal AF and rs2634073 near PITX2 were predictors of PA-AF. The PA group had a significantly higher arrhythmia recurrence rate after repeated procedures than the common PV (HR: 1.75; 95% CI: 1.34-2.29; P < 0.001) and SV-AF (HR: 1.31; 95% CI: 1.19-1.45; P < 0.001) groups with more de novo AF triggers. However, the incidence of adverse events did not differ significantly among the 3 groups. CONCLUSIONS SV-derived AF triggers may have hereditary factors with a favorable postablation prognosis, whereas PA-derived triggers are linked to AF persistence and poor ablation response. Variants near PITX2 may play a pivotal role in extra-PV triggers.
Collapse
Affiliation(s)
- Takashi Ikenouchi
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan; Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Junichi Nitta
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Osamu Inaba
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Miho Negishi
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miki Amemiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikazu Kono
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Tasuku Yamamoto
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuya Murata
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Iwanari Kawamura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Goto
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuro Nishimura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomasa Takamiya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yukihiro Inamura
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Tao
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Sato
- Department of Cardiology, Japanese Red Cross Saitama Hospital, Saitama City, Japan
| | - Masateru Takigawa
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Ebana
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinsuke Miyazaki
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Reis LM, Seese SE, Costakos D, Semina EV. Congenital anterior segment ocular disorders: Genotype-phenotype correlations and emerging novel mechanisms. Prog Retin Eye Res 2024; 102:101288. [PMID: 39097141 PMCID: PMC11392650 DOI: 10.1016/j.preteyeres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Development of the anterior segment of the eye requires reciprocal sequential interactions between the arising tissues, facilitated by numerous genetic factors. Disruption of any of these processes results in congenital anomalies in the affected tissue(s) leading to anterior segment disorders (ASD) including aniridia, Axenfeld-Rieger anomaly, congenital corneal opacities (Peters anomaly, cornea plana, congenital primary aphakia), and primary congenital glaucoma. Current understanding of the genetic factors involved in ASD remains incomplete, with approximately 50% overall receiving a genetic diagnosis. While some genes are strongly associated with a specific clinical diagnosis, the majority of known factors are linked with highly variable phenotypic presentations, with pathogenic variants in FOXC1, CYP1B1, and PITX2 associated with the broadest spectrum of ASD conditions. This review discusses typical clinical presentations including associated systemic features of various forms of ASD; the latest functional data and genotype-phenotype correlations related to 25 ASD factors including newly identified genes; promising novel candidates; and current and emerging treatments for these complex conditions. Recent developments of interest in the genetics of ASD include identification of phenotypic expansions for several factors, discovery of multiple modes of inheritance for some genes, and novel mechanisms including a growing number of non-coding variants and alleles affecting specific domains/residues and requiring further studies.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Sarah E Seese
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Deborah Costakos
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
3
|
Lin AE, Bapat AC, Xiao L, Niroula A, Ye J, Wong WJ, Agrawal M, Farady CJ, Boettcher A, Hergott CB, McConkey M, Flores-Bringas P, Shkolnik V, Bick AG, Milan D, Natarajan P, Libby P, Ellinor PT, Ebert BL. Clonal Hematopoiesis of Indeterminate Potential With Loss of Tet2 Enhances Risk for Atrial Fibrillation Through Nlrp3 Inflammasome Activation. Circulation 2024; 149:1419-1434. [PMID: 38357791 PMCID: PMC11058018 DOI: 10.1161/circulationaha.123.065597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP), a common age-associated phenomenon, associates with increased risk of both hematological malignancy and cardiovascular disease. Although CHIP is known to increase the risk of myocardial infarction and heart failure, the influence of CHIP in cardiac arrhythmias, such as atrial fibrillation (AF), is less explored. METHODS CHIP prevalence was determined in the UK Biobank, and incident AF analysis was stratified by CHIP status and clone size using Cox proportional hazard models. Lethally irradiated mice were transplanted with hematopoietic-specific loss of Tet2, hematopoietic-specific loss of Tet2 and Nlrp3, or wild-type control and fed a Western diet, compounded with or without NLRP3 (NLR [NACHT, LRR {leucine rich repeat}] family pyrin domain containing protein 3) inhibitor, NP3-361, for 6 to 9 weeks. Mice underwent in vivo invasive electrophysiology studies and ex vivo optical mapping. Cardiomyocytes from Ldlr-/- mice with hematopoietic-specific loss of Tet2 or wild-type control and fed a Western diet were isolated to evaluate calcium signaling dynamics and analysis. Cocultures of pluripotent stem cell-derived atrial cardiomyocytes were incubated with Tet2-deficient bone marrow-derived macrophages, wild-type control, or cytokines IL-1β (interleukin 1β) or IL-6 (interleukin 6). RESULTS Analysis of the UK Biobank showed individuals with CHIP, in particular TET2 CHIP, have increased incident AF. Hematopoietic-specific inactivation of Tet2 increases AF propensity in atherogenic and nonatherogenic mouse models and is associated with increased Nlrp3 expression and CaMKII (Ca2+/calmodulin-dependent protein kinase II) activation, with AF susceptibility prevented by inactivation of Nlrp3. Cardiomyocytes isolated from Ldlr-/- mice with hematopoietic inactivation of Tet2 and fed a Western diet have impaired calcium release from the sarcoplasmic reticulum into the cytosol, contributing to atrial arrhythmogenesis. Abnormal sarcoplasmic reticulum calcium release was recapitulated in cocultures of cardiomyocytes with the addition of Tet2-deficient macrophages or cytokines IL-1β or IL-6. CONCLUSIONS We identified a modest association between CHIP, particularly TET2 CHIP, and incident AF in the UK Biobank population. In a mouse model of AF resulting from hematopoietic-specific inactivation of Tet2, we propose altered calcium handling as an arrhythmogenic mechanism, dependent on Nlrp3 inflammasome activation. Our data are in keeping with previous studies of CHIP in cardiovascular disease, and further studies into the therapeutic potential of NLRP3 inhibition for individuals with TET2 CHIP may be warranted.
Collapse
Affiliation(s)
- Amy Erica Lin
- Division of Cardiovascular Medicine, Department of Medicine (A.E.L., P.L.), Brigham and Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Aneesh C. Bapat
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Demoulas Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine (A.C.B., P.T.E.), Massachusetts General Hospital, Boston
| | - Ling Xiao
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Abhishek Niroula
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
- Department of Laboratory Medicine, Lund University, Sweden (A.N.)
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Sweden (A.N.)
| | - Jiangchuan Ye
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Waihay J. Wong
- Department of Pathology (W.J.W., C.B.H.), Brigham and Women’s Hospital, Boston, MA
| | - Mridul Agrawal
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Christopher J. Farady
- Novartis Institutes for BioMedical Research Forum 1, Basel, Switzerland (C.J.F., A.B.)
| | - Andreas Boettcher
- Novartis Institutes for BioMedical Research Forum 1, Basel, Switzerland (C.J.F., A.B.)
| | - Christopher B. Hergott
- Department of Pathology (W.J.W., C.B.H.), Brigham and Women’s Hospital, Boston, MA
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Marie McConkey
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Patricio Flores-Bringas
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Veronica Shkolnik
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (A.G.B.)
| | - David Milan
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Leducq Foundation, Boston, MA (D.M.)
| | - Pradeep Natarajan
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine (A.E.L., P.L.), Brigham and Women’s Hospital, Boston, MA
| | - Patrick T. Ellinor
- Cardiovascular Research Center (A.C.B., L.X., J.Y., D.M., P.N., P.T.E.), Massachusetts General Hospital, Boston
- Demoulas Cardiac Arrhythmia Service, Division of Cardiovascular Medicine, Department of Medicine (A.C.B., P.T.E.), Massachusetts General Hospital, Boston
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA (A.E.L., A.N., M.A., C.B.H., M.M.C., V.S., B.L.E.)
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge (L.X., A.N., J.Y., P.F.-B., P.N., P.T.E., B.L.E.)
- Howard Hughes Medical Institute, Boston, MA (B.L.E.)
| |
Collapse
|
4
|
Roberts JD, Chalazan B, Andrade JG, Macle L, Nattel S, Tadros R. Clinical Genetic Testing for Atrial Fibrillation: Are We There Yet? Can J Cardiol 2024; 40:540-553. [PMID: 38551553 DOI: 10.1016/j.cjca.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/19/2023] [Indexed: 04/13/2024] Open
Abstract
Important progress has been made toward unravelling the complex genetics underlying atrial fibrillation (AF). Initial studies were aimed to identify monogenic causes; however, it has become increasingly clear that the most common predisposing genetic substrate for AF is polygenic. Despite intensive investigations, there is robust evidence for rare variants for only a limited number of genes and cases. Although the current yield for genetic testing in early onset AF might be modest, there is an increasing appreciation that genetic culprits for potentially life-threatening ventricular cardiomyopathies and channelopathies might initially present with AF. The potential clinical significance of this recognition is highlighted by evidence that suggests that identification of a pathogenic or likely pathogenic rare variant in a patient with early onset AF is associated with an increased risk of death. These findings suggest that it might be warranted to screen patients with early onset AF for these potentially more sinister cardiac conditions. Beyond facilitating the early identification of genetic culprits associated with potentially malignant phenotypes, insight into underlying AF genetic substrates might improve the selection of patients for existing therapies and guide the development of novel ones. Herein, we review the evidence that links genetic factors to AF, then discuss an approach to using genetic testing for early onset AF patients in the present context, and finally consider the potential value of genetic testing in the foreseeable future. Although further work might be necessary before recommending uniform integration of genetic testing in cases of early onset AF, ongoing research increasingly highlights its potential contributions to clinical care.
Collapse
Affiliation(s)
- Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Brandon Chalazan
- Division of Biochemical Genetics, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason G Andrade
- Centre for Cardiovascular Innovation and Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurent Macle
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Rafik Tadros
- Cardiovascular Genetics Center, Montreal Heart Institute, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
5
|
Punetha M, Saini S, Chaudhary S, Yadav PS, Whitworth K, Green J, Kumar D, Kues WA. Induced Pluripotent Stem Cells in the Era of Precise Genome Editing. Curr Stem Cell Res Ther 2024; 19:307-315. [PMID: 36880183 DOI: 10.2174/1574888x18666230307115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023]
Abstract
Genome editing has enhanced our ability to understand the role of genetics in a number of diseases by facilitating the development of more precise cellular and animal models to study pathophysiological processes. These advances have shown extraordinary promise in a multitude of areas, from basic research to applied bioengineering and biomedical research. Induced pluripotent stem cells (iPSCs) are known for their high replicative capacity and are excellent targets for genetic manipulation as they can be clonally expanded from a single cell without compromising their pluripotency. Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR/Cas RNA-guided nucleases have rapidly become the method of choice for gene editing due to their high specificity, simplicity, low cost, and versatility. Coupling the cellular versatility of iPSCs differentiation with CRISPR/Cas9-mediated genome editing technology can be an effective experimental technique for providing new insights into the therapeutic use of this technology. However, before using these techniques for gene therapy, their therapeutic safety and efficacy following models need to be assessed. In this review, we cover the remarkable progress that has been made in the use of genome editing tools in iPSCs, their applications in disease research and gene therapy as well as the hurdles that remain in the actual implementation of CRISPR/Cas systems.
Collapse
Affiliation(s)
- Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Suman Chaudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Prem Singh Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Kristin Whitworth
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jonathan Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Höltystr 10, 31535, Neustadt, Germany
| |
Collapse
|
6
|
Jonker T, Barnett P, Boink GJJ, Christoffels VM. Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm. Cells 2023; 13:4. [PMID: 38201209 PMCID: PMC10777909 DOI: 10.3390/cells13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.
Collapse
Affiliation(s)
- Timo Jonker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| | - Gerard J. J. Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands; (T.J.); (P.B.); (G.J.J.B.)
| |
Collapse
|
7
|
Jameson HS, Hanley A, Hill MC, Xiao L, Ye J, Bapat A, Ronzier E, Hall AW, Hucker WJ, Clauss S, Barazza M, Silber E, Mina J, Tucker NR, Mills RW, Dong JT, Milan DJ, Ellinor PT. Loss of the Atrial Fibrillation-Related Gene, Zfhx3, Results in Atrial Dilation and Arrhythmias. Circ Res 2023; 133:313-329. [PMID: 37449401 PMCID: PMC10527554 DOI: 10.1161/circresaha.123.323029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND ZFHX3 (zinc finger homeobox 3), a gene that encodes a large transcription factor, is at the second-most significantly associated locus with atrial fibrillation (AF), but its function in the heart is unknown. This study aims to identify causative genetic variation related to AF at the ZFHX3 locus and examine the impact of Zfhx3 loss on cardiac function in mice. METHODS CRISPR-Cas9 genome editing, chromatin immunoprecipitation, and luciferase assays in pluripotent stem cell-derived cardiomyocytes were used to identify causative genetic variation related to AF at the ZFHX3 locus. Cardiac function was assessed by echocardiography, magnetic resonance imaging, electrophysiology studies, calcium imaging, and RNA sequencing in mice with heterozygous and homozygous cardiomyocyte-restricted Zfhx3 loss (Zfhx3 Het and knockout, respectively). Human cardiac single-nucleus ATAC (assay for transposase-accessible chromatin)-sequencing data was analyzed to determine which genes in atrial cardiomyocytes are directly regulated by ZFHX3. RESULTS We found single-nucleotide polymorphism (SNP) rs12931021 modulates an enhancer regulating ZFHX3 expression, and the AF risk allele is associated with decreased ZFHX3 transcription. We observed a gene-dose response in AF susceptibility with Zfhx3 knockout mice having higher incidence, frequency, and burden of AF than Zfhx3 Het and wild-type mice, with alterations in conduction velocity, atrial action potential duration, calcium handling and the development of atrial enlargement and thrombus, and dilated cardiomyopathy. Zfhx3 loss results in atrial-specific differential effects on genes and signaling pathways involved in cardiac pathophysiology and AF. CONCLUSIONS Our findings implicate ZFHX3 as the causative gene at the 16q22 locus for AF, and cardiac abnormalities caused by loss of cardiac Zfhx3 are due to atrial-specific dysregulation of pathways involved in AF susceptibility. Together, these data reveal a novel and important role for Zfhx3 in the control of cardiac genes and signaling pathways essential for normal atrial function.
Collapse
Affiliation(s)
- Heather S. Jameson
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alan Hanley
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew C. Hill
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jiangchuan Ye
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Elsa Ronzier
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amelia Weber Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| | - William J. Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastian Clauss
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine I, University Hospital Munich, Campus Grosshadern, Ludwig-Maximilians University Munich (LMU), 81377 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site: Munich Heart Alliance, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Germany
| | - Miranda Barazza
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Silber
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Julie Mina
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Robert W. Mills
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
8
|
Tarifa C, Serra SA, Herraiz-Martínez A, Lozano-Velasco E, Benítez R, Aranega A, Franco D, Hove-Madsen L. Pitx2c deficiency confers cellular electrophysiological hallmarks of atrial fibrillation to isolated atrial myocytes. Biomed Pharmacother 2023; 162:114577. [PMID: 37001181 DOI: 10.1016/j.biopha.2023.114577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
AIMS Atrial fibrillation (AF) has been associated with altered expression of the transcription factor Pitx2c and a high incidence of calcium release-induced afterdepolarizations. However, the relationship between Pitx2c expression and defective calcium homeostasis remains unclear and we here aimed to determine how Pitx2c expression affects calcium release from the sarcoplasmic reticulum (SR) and its impact on electrical activity in isolated atrial myocytes. METHODS To address this issue, we applied confocal calcium imaging and patch-clamp techniques to atrial myocytes isolated from a mouse model with conditional atrial-specific deletion of Pitx2c. RESULTS Our findings demonstrate that heterozygous deletion of Pitx2c doubles the calcium spark frequency, increases the frequency of sparks/site 1.5-fold, the calcium spark decay constant from 36 to 42 ms and the wave frequency from none to 3.2 min-1. Additionally, the cell capacitance increased by 30% and both the SR calcium load and the transient inward current (ITI) frequency were doubled. Furthermore, the fraction of cells with spontaneous action potentials increased from none to 44%. These effects of Pitx2c deficiency were comparable in right and left atrial myocytes, and homozygous deletion of Pitx2c did not induce any further effects on sparks, SR calcium load, ITI frequency or spontaneous action potentials. CONCLUSION Our findings demonstrate that heterozygous Pitx2c deletion induces defects in calcium homeostasis and electrical activity that mimic derangements observed in right atrial myocytes from patients with AF and suggest that Pitx2c deficiency confers cellular electrophysiological hallmarks of AF to isolated atrial myocytes.
Collapse
Affiliation(s)
- Carmen Tarifa
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | - Selma A Serra
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | - Adela Herraiz-Martínez
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain
| | | | - Raul Benítez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaén, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaén, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona (IIBB-CSIC), Spain; IIB Sant Pau, Barcelona, Spain; CIBERCV, Spain.
| |
Collapse
|
9
|
Jiang L, Wang X, Ma F, Wang X, Shi M, Yan Q, Liu M, Chen J, Shi C, Guan XY. PITX2C increases the stemness features of hepatocellular carcinoma cells by up-regulating key developmental factors in liver progenitor. J Exp Clin Cancer Res 2022; 41:211. [PMID: 35765089 PMCID: PMC9238105 DOI: 10.1186/s13046-022-02424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumor cells exhibited phenotypic and molecular characteristics similar to their lineage progenitor cells. Liver developmental signaling pathways are showed to be associated with HCC development and oncogenesis. The similarities of expression profiling between liver progenitors (LPs) and HCC suggest that understanding the molecular mechanism during liver development could provide insights into HCC.
Methods
To profile the dynamic gene expression during liver development, cells from an in vitro liver differentiation model and two paired hepatocellular carcinoma (HCC) samples were analyzed using deep RNA sequencing. The expression levels of selected genes were analyzed by qRT-PCR. Moreover, the role of a key transcription factor, pituitary homeobox 2 (PITX2), was characterized via in vitro and vivo functional assays. Furthermore, molecular mechanism studies were performed to unveil how PITX2C regulate the key developmental factors in LPs, thereby increasing the stemness of HCC.
Results
PITX2 was found to exhibit a similar expression pattern to specific markers of LPs. PITX2 consists of three isoforms (PITX2A/B/C). The expression of PITX2 is associated with tumor size and overall survival rate, whereas only PITX2C expression is associated with AFP and differentiation in clinical patients. PITX2A/B/C has distinct functions in HCC tumorigenicity. PITX2C promotes HCC metastasis, self-renewal and chemoresistance. Molecular mechanism studies showed that PITX2C could up-regulate RALYL which could enhance HCC stemness via the TGF-β pathway. Furthermore, ChIP assays confirmed the role of PITX2C in regulating key developmental factors in LP.
Conclusion
PITX2C is a newly discovered transcription factor involved in hepatic differentiation and could increase HCC stemness by upregulating key transcriptional factors related to liver development.
Collapse
|
10
|
Dong M, Liu J, Liu C, Wang H, Sun W, Liu B. CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacol Res 2022; 185:106480. [PMID: 36191879 DOI: 10.1016/j.phrs.2022.106480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
Abstract
The development of gene-editing technology has been one of the biggest advances in biomedicine over the past two decades. Not only can it be used as a research tool to build a variety of disease models for the exploration of disease pathogenesis at the genetic level, it can also be used for prevention and treatment. This is done by intervening with the expression of target genes and carrying out precise molecular targeted therapy for diseases. The simple and flexible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing technology overcomes the limitations of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). For this reason, it has rapidly become a preferred method for gene editing. As a new gene intervention method, CRISPR/Cas9 has been widely used in the clinical treatment of tumours and rare diseases; however, its application in the field of cardiovascular diseases is currently limited. This article reviews the application of the CRISPR/Cas9 editing technology in cardiovascular disease research and treatment, and discusses the limitations and prospects of this technology.
Collapse
Affiliation(s)
- Mengying Dong
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Jiangen Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People's Hospital, 33 Wenyi Road, ShenYang, China, 110016
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| |
Collapse
|
11
|
Chen R, Yang Z, Liu J, Cai X, Huo Y, Zhang Z, Li M, Chang H, Luo XJ. Functional genomic analysis delineates regulatory mechanisms of GWAS-identified bipolar disorder risk variants. Genome Med 2022; 14:53. [PMID: 35590387 PMCID: PMC9121601 DOI: 10.1186/s13073-022-01057-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/11/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified multiple risk loci for bipolar disorder (BD). However, pinpointing functional (or causal) variants in the reported risk loci and elucidating their regulatory mechanisms remain challenging. METHODS We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) data from human brain tissues (or neuronal cell lines) and position weight matrix (PWM) data to identify functional single-nucleotide polymorphisms (SNPs). Then, we verified the regulatory effects of these transcription factor (TF) binding-disrupting SNPs (hereafter referred to as "functional SNPs") through a series of experiments, including reporter gene assays, allele-specific expression (ASE) analysis, TF knockdown, CRISPR/Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. Finally, we overexpressed PACS1 (whose expression was most significantly associated with the identified functional SNPs rs10896081 and rs3862386) in mouse primary cortical neurons to investigate if PACS1 affects dendritic spine density. RESULTS We identified 16 functional SNPs (in 9 risk loci); these functional SNPs disrupted the binding of 7 TFs, for example, CTCF and REST binding was frequently disrupted. We then identified the potential target genes whose expression in the human brain was regulated by these functional SNPs through eQTL analysis. Of note, we showed dysregulation of some target genes of the identified TF binding-disrupting SNPs in BD patients compared with controls, and overexpression of PACS1 reduced the density of dendritic spines, revealing the possible biological mechanisms of these functional SNPs in BD. CONCLUSIONS Our study identifies functional SNPs in some reported risk loci and sheds light on the regulatory mechanisms of BD risk variants. Further functional characterization and mechanistic studies of these functional SNPs and candidate genes will help to elucidate BD pathogenesis and develop new therapeutic approaches and drugs.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Zhihui Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210096, China
- Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Department of Neurology, Affiliated Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210096, China.
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
12
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
13
|
Bowley G, Kugler E, Wilkinson R, Lawrie A, van Eeden F, Chico TJA, Evans PC, Noël ES, Serbanovic-Canic J. Zebrafish as a tractable model of human cardiovascular disease. Br J Pharmacol 2022; 179:900-917. [PMID: 33788282 DOI: 10.1111/bph.15473] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
Mammalian models including non-human primates, pigs and rodents have been used extensively to study the mechanisms of cardiovascular disease. However, there is an increasing desire for alternative model systems that provide excellent scientific value while replacing or reducing the use of mammals. Here, we review the use of zebrafish, Danio rerio, to study cardiovascular development and disease. The anatomy and physiology of zebrafish and mammalian cardiovascular systems are compared, and we describe the use of zebrafish models in studying the mechanisms of cardiac (e.g. congenital heart defects, cardiomyopathy, conduction disorders and regeneration) and vascular (endothelial dysfunction and atherosclerosis, lipid metabolism, vascular ageing, neurovascular physiology and stroke) pathologies. We also review the use of zebrafish for studying pharmacological responses to cardiovascular drugs and describe several features of zebrafish that make them a compelling model for in vivo screening of compounds for the treatment cardiovascular disease. LINKED ARTICLES: This article is part of a themed issue on Preclinical Models for Cardiovascular disease research (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.5/issuetoc.
Collapse
Affiliation(s)
- George Bowley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Elizabeth Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, UK
| | - Rob Wilkinson
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Freek van Eeden
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emily S Noël
- Bateson Centre, University of Sheffield, Sheffield, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Chen R, Liu J, Li S, Li X, Huo Y, Yao YG, Xiao X, Li M, Luo XJ. Functional genomics elucidates regulatory mechanisms of Parkinson's disease-associated variants. BMC Med 2022; 20:68. [PMID: 35168626 PMCID: PMC8848643 DOI: 10.1186/s12916-022-02264-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWASs) have identified multiple risk loci for Parkinson's disease (PD). However, identifying the functional (or potential causal) variants in the reported risk loci and elucidating their roles in PD pathogenesis remain major challenges. To identify the potential causal (or functional) variants in the reported PD risk loci and to elucidate their regulatory mechanisms, we report a functional genomics study of PD. METHODS We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) (from neuronal cells and human brain tissues) data and GWAS-identified single-nucleotide polymorphisms (SNPs) in PD risk loci. We then conducted a series of experiments and analyses to validate the regulatory effects of these (i.e., functional) SNPs, including reporter gene assays, allele-specific expression (ASE), transcription factor (TF) knockdown, CRISPR-Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. RESULTS We identified 44 SNPs (from 11 risk loci) affecting the binding of 12 TFs and we validated the regulatory effects of 15 TF binding-disrupting SNPs. In addition, we also identified the potential target genes regulated by these TF binding-disrupting SNPs through eQTL analysis. Finally, we showed that 4 eQTL genes of these TF binding-disrupting SNPs were dysregulated in PD cases compared with controls. CONCLUSION Our study systematically reveals the gene regulatory mechanisms of PD risk variants (including widespread disruption of CTCF binding), generates the landscape of potential PD causal variants, and pinpoints promising candidate genes for further functional characterization and drug development.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, Jiangsu, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
15
|
Abstract
The Human Genome Project marked a major milestone in the scientific community as it unravelled the ~3 billion bases that are central to crucial aspects of human life. Despite this achievement, it only scratched the surface of understanding how each nucleotide matters, both individually and as part of a larger unit. Beyond the coding genome, which comprises only ~2% of the whole genome, scientists have realized that large portions of the genome, not known to code for any protein, were crucial for regulating the coding genes. These large portions of the genome comprise the 'non-coding genome'. The history of gene regulation mediated by proteins that bind to the regulatory non-coding genome dates back many decades to the 1960s. However, the original definition of 'enhancers' was first used in the early 1980s. In this Review, we summarize benchmark studies that have mapped the role of cardiac enhancers in disease and development. We highlight instances in which enhancer-localized genetic variants explain the missing link to cardiac pathogenesis. Finally, we inspire readers to consider the next phase of exploring enhancer-based gene therapy for cardiovascular disease.
Collapse
|
16
|
Novel PITX2 Homeodomain-Contained Mutations from ATRIAL Fibrillation Patients Deteriorate Calcium Homeostasis. HEARTS 2021. [DOI: 10.3390/hearts2020020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in the human population, with an estimated incidence of 1–2% in young adults but increasing to more than 10% in 80+ years patients. Pituitary Homeobox 2, Paired Like Homeodomain 2 (PITX2c) loss-of-function in mice revealed that this homeodomain (HD)-containing transcription factor plays a pivotal role in atrial electrophysiology and calcium homeostasis and point to PITX2 as a candidate gene for AF. To address this issue, we recruited 31 AF patients for genetic analyses of both the known risk alleles and PITX2c open reading frame (ORF) re-sequencing. We found two-point mutations in the homedomain of PITX2 and three other variants in the 5’untranslated region. A 65 years old male patient without 4q25 risk variants but with recurrent AF displayed two distinct HD-mutations, NM_000325.5:c.309G>C (Gln103His) and NM_000325.5:c.370G>A (Glu124Lys), which both resulted in a change within a highly conserved amino acid position. To address the functional impact of the PITX2 HD mutations, we generated plasmid constructs with mutated version of each nucleotide variant (MD4 and MD5, respectively) as well as a dominant negative control construct in which the PITX2 HD was lacking (DN). Functional analyses demonstrated PITX2c MD4 and PITX2c MD5 decreased Nppa-luciferase transactivation by 50% and 40%, respectively, similar to the PITX2c DN (50%), while Shox2 promoter repression was also impaired. Co-transactivation with other cardiac-enriched co-factors, such as Gata4 and Nkx2.5, was similarly impaired, further supporting the pivotal role of these mutations for correct PITX2c function. Furthermore, when expressed in HL1 cardiomyocyte cultures, the PITX2 mutants impaired endogenous expression of calcium regulatory proteins and induced alterations in sarcoplasmic reticulum (SR) calcium accumulation. This favored alternating and irregular calcium transient amplitudes, causing deterioration of the beat-to-beat stability upon elevation of the stimulation frequency. Overall this data demonstrate that these novel PITX2c HD-mutations might be causative of atrial fibrillation in the carrier.
Collapse
|
17
|
Victorino J, Alvarez-Franco A, Manzanares M. Functional genomics and epigenomics of atrial fibrillation. J Mol Cell Cardiol 2021; 157:45-55. [PMID: 33887329 DOI: 10.1016/j.yjmcc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. Despite years of study, we still do not have a full comprehension of the molecular mechanism responsible for the disease. The recent implementation of large-scale approaches in both patient samples, population studies and animal models has helped us to broaden our knowledge on the molecular drivers responsible for AF and on the mechanisms behind disease progression. Understanding genomic and epigenomic changes that take place during chronification of AF will prove essential to design novel treatments leading to improved patient care.
Collapse
Affiliation(s)
- Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Spain
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
18
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
19
|
Atrial resting membrane potential confers sodium current sensitivity to propafenone, flecainide and dronedarone. Heart Rhythm 2021; 18:1212-1220. [PMID: 33737232 PMCID: PMC8259123 DOI: 10.1016/j.hrthm.2021.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although atrial fibrillation ablation is increasingly used for rhythm control therapy, antiarrhythmic drugs (AADs) are commonly used, either alone or in combination with ablation. The effectiveness of AADs is highly variable. Previous work from our group suggests that alterations in atrial resting membrane potential (RMP) induced by low Pitx2 expression could explain the variable effect of flecainide. OBJECTIVE The purpose of this study was to assess whether alterations in atrial/cardiac RMP modify the effectiveness of multiple clinically used AADs. METHODS The sodium channel blocking effects of propafenone (300 nM, 1 μM), flecainide (1 μM), and dronedarone (5 μM, 10 μM) were measured in human stem cell-derived cardiac myocytes, HEK293 expressing human NaV1.5, primary murine atrial cardiac myocytes, and murine hearts with reduced Pitx2c. RESULTS A more positive atrial RMP delayed INa recovery, slowed channel inactivation, and decreased peak action potential (AP) upstroke velocity. All 3 AADs displayed enhanced sodium channel block at more positive atrial RMPs. Dronedarone was the most sensitive to changes in atrial RMP. Dronedarone caused greater reductions in AP amplitude and peak AP upstroke velocity at more positive RMPs. Dronedarone evoked greater prolongation of the atrial effective refractory period and postrepolarization refractoriness in murine Langendorff-perfused Pitx2c+/- hearts, which have a more positive RMP compared to wild type. CONCLUSION Atrial RMP modifies the effectiveness of several clinically used AADs. Dronedarone is more sensitive to changes in atrial RMP than flecainide or propafenone. Identifying and modifying atrial RMP may offer a novel approach to enhancing the effectiveness of AADs or personalizing AAD selection.
Collapse
|
20
|
Zhang P, Hou Q, Yue Q. MiR-204-5p/TFAP2A feedback loop positively regulates the proliferation, migration, invasion and EMT process in cervical cancer. Cancer Biomark 2021; 28:381-390. [PMID: 32474464 DOI: 10.3233/cbm-191064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MicroRNAs (MiRNAs) have been clarified as crucial regulators of the pathological processes in various carcinomas in the past years. Interestingly, existing evidence has manifested that microRNA-204-5p (miR-204-5p) is engaged in the initiation and progression of multiple carcinomas. However, the potential of miR-204-5p in cervical cancer remains to be disentombed. This study focused on unraveling the detailed role of miR-204-5p in cervical cancer. MiR-204-5p exhibited a low level in cervical cancer cells. The functional assays demonstrated that miR-204-5p upregulation exerted suppressive impact on the functions of cervical cancer cells, including proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) process. Moreover, transcription factor AP-2 alpha (TFAP2A) was screened to be the most affected target gene by miR-204-5p, and TFAP2A was discovered to transcriptionally repress miR-204-5p in cervical cancer. The mutual regulation between TFAP2A and miR-204-5p was testified through molecular mechanism assays. Final rescued-function assays demonstrated that overexpression of TFAP2A could recover the suppressed cellular process caused by miR-204-5p upregulation. In conclusion, miR-204-5p/TFAP2A feedback loop promoted the proliferative and motorial capacities of cervical cancer cells. This finding suggested a novel modulatory loop of miR-204-5p/TFAP2A in cervical cancer, offering promising biomarkers for cervical cancer therapy.
Collapse
|
21
|
Bai J, Zhu Y, Lo A, Gao M, Lu Y, Zhao J, Zhang H. In Silico Assessment of Class I Antiarrhythmic Drug Effects on Pitx2-Induced Atrial Fibrillation: Insights from Populations of Electrophysiological Models of Human Atrial Cells and Tissues. Int J Mol Sci 2021; 22:1265. [PMID: 33514068 PMCID: PMC7866025 DOI: 10.3390/ijms22031265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology. Experimentally calibrated populations of human atrial action po-tential (AP) models in both sinus rhythm (SR) and Pitx2-induced AF conditions were constructed by using two distinct models to represent morphological subtypes of AP. Multi-channel pharmaco-logical effects of disopyramide, quinidine, and propafenone on ionic currents were considered. Simulated results showed that Pitx2-induced remodelling increased maximum upstroke velocity (dVdtmax), and decreased AP duration (APD), conduction velocity (CV), and wavelength (WL). At the concentrations tested in this study, these AADs decreased dVdtmax and CV and prolonged APD in the setting of Pitx2-induced AF. Our findings of alterations in WL indicated that disopyramide may be more effective against Pitx2-induced AF than propafenone and quinidine by prolonging WL.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Meng Gao
- Department of Computer Science and Technology, College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand; (A.L.); (J.Z.)
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
22
|
Zhang J, Johnsen SP, Guo Y, Lip GYH. Epidemiology of Atrial Fibrillation: Geographic/Ecological Risk Factors, Age, Sex, Genetics. Card Electrophysiol Clin 2021; 13:1-23. [PMID: 33516388 DOI: 10.1016/j.ccep.2020.10.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atrial fibrillation is the most common arrhythmia globally. The global prevalence of atrial fibrillation is positively correlated with the sociodemographic index of different regions. Advancing age, male sex, and Caucasian race are risk factors; female sex is correlated with higher atrial fibrillation mortality worldwide likely owing to thromboembolic risk. African American ethnicity is associated with lower atrial fibrillation risk, same as Asian and Hispanic/Latino ethnicities compared with Caucasians. Atrial fibrillation may be heritable, and more than 100 genetic loci have been identified. A polygenic risk score and clinical risk factors are feasible and effective in risk stratification of incident disease.
Collapse
Affiliation(s)
- Juqian Zhang
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK
| | - Søren Paaske Johnsen
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Aalborg 9000, Denmark
| | - Yutao Guo
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK; Department of Cardiology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, L14 3PE, UK; Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, Aalborg, Aalborg 9000, Denmark; Department of Cardiology, Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
23
|
Enhancer polymorphisms at the IKZF1 susceptibility locus for acute lymphoblastic leukemia impact B-cell proliferation and differentiation in both Down syndrome and non-Down syndrome genetic backgrounds. PLoS One 2021; 16:e0244863. [PMID: 33411777 PMCID: PMC7790404 DOI: 10.1371/journal.pone.0244863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/17/2020] [Indexed: 12/26/2022] Open
Abstract
Children with Down syndrome have an approximately 10-fold increased risk of developing acute lymphoblastic leukemia and this risk is influenced by inherited genetic variation. Genome-wide association studies have identified IKZF1 as a strong acute lymphoblastic leukemia susceptibility locus in children both with and without Down syndrome, with association signals reported at rs4132601 in non-Down syndrome and rs58923657 in individuals with Down syndrome (r2 = 0.98 for these two loci). Expression quantitative trait locus analysis in non-Down syndrome lymphoblastoid cell lines has demonstrated an association between the rs4132601 risk allele and decreased IKZF1 mRNA levels. In this study, we provide further mechanistic evidence linking the region encompassing IKZF1-associated polymorphisms to pro-leukemogenic effects in both human lymphoblastoid cell lines and murine hematopoietic stem cells. CRISPR/Cas9-mediated deletion of the region encompassing the rs17133807 major allele (r2 with rs58923657 = 0.97) resulted in significant reduction of IKZF1 mRNA levels in lymphoblastoid cell lines, with a greater effect in Down syndrome versus non-Down syndrome cells. Since rs17133807 is highly conserved in mammals, we also evaluated the orthologous murine locus at rs263378223, in hematopoietic stem cells from the Dp16(1)Yey mouse model of Down syndrome as well as non-Down syndrome control mice. Homozygous deletion of the region encompassing rs263378223 resulted in significantly reduced Ikzf1 mRNA, confirming that this polymorphism maps to a strong murine Ikzf1 enhancer, and resulted in increased B-lymphoid colony growth and decreased B-lineage differentiation. Our results suggest that both the region encompassing rs17133807 and its conserved orthologous mouse locus have functional effects that may mediate increased leukemia susceptibility in both the Down syndrome and non-Down syndrome genetic backgrounds.
Collapse
|
24
|
Oltra E. Epigenetics of muscle disorders. MEDICAL EPIGENETICS 2021:279-308. [DOI: 10.1016/b978-0-12-823928-5.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Yin Z, Zhao Y, Du H, Nie X, Li H, Fan J, He M, Dai B, Zhang X, Yuan S, Wen Z, Chen C, Wang DW. A Key GWAS-Identified Genetic Variant Contributes to Hyperlipidemia by Upregulating miR-320a. iScience 2020; 23:101788. [PMID: 33294796 PMCID: PMC7689551 DOI: 10.1016/j.isci.2020.101788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 12/23/2022] Open
Abstract
It has been unclear whether the elevated levels of the circulating miR-320a in patients with coronary artery disease is due to environmental influence or genetic basis. By recombinant adeno-associated virus (rAAV)-mediated loss- and gain-of-function studies in the mouse liver, we revealed that elevated miR-320a is sufficient to aggravate diet-induced hyperlipidemia and hepatic steatosis. Then, we analyzed the data from published genome-wide association studies and identified the rs12541335 associated with hyperlipidemia. We demonstrated that the rs13282783 T allele indeed obligated the silencer activity by preventing the repressor ZFP161 and co-repressor HDAC2 from binding to DNA that led to miR-320a upregulation. We further confirmed this genetic connection on an independent population and through direct genome editing in liver cells. Besides environmental (diet) influence, we established a genetic component in the regulation of miR-320a expression, which suggest a potential therapeutic avenue to treat coronary artery disease by blocking miR-320a in patient liver. Hepatic miR-320a overexpression led to hyperlipidemia, not vice versa A hyperlipidemia-associated SNP rs13282783 distally regulated miR-320a expression miR-320a promoted TG accumulation and repressed LDL-C uptake in hepatocytes
Collapse
Affiliation(s)
- Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hengzhi Du
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengying He
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Beibei Dai
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xudong Zhang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Yuan
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
26
|
Correction to: Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:e143-e146. [DOI: 10.1161/res.0000000000000429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Reyat JS, Chua W, Cardoso VR, Witten A, Kastner PM, Kabir SN, Sinner MF, Wesselink R, Holmes AP, Pavlovic D, Stoll M, Kääb S, Gkoutos GV, de Groot JR, Kirchhof P, Fabritz L. Reduced left atrial cardiomyocyte PITX2 and elevated circulating BMP10 predict atrial fibrillation after ablation. JCI Insight 2020; 5:139179. [PMID: 32814717 PMCID: PMC7455124 DOI: 10.1172/jci.insight.139179] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDGenomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). To assess if this association is relevant for recurrent AF in patients, we tested whether left atrial PITX2 affects recurrent AF after AF ablation.METHODSmRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left atrial appendages (LAAs) from patients undergoing thoracoscopic AF ablation, either in whole LAA tissue (n = 83) or in LAA cardiomyocytes (n = 52), and combined with clinical parameters to predict AF recurrence. Literature suggests that BMP10 is a PITX2-repressed, atrial-specific, secreted protein. BMP10 plasma concentrations were combined with 11 cardiovascular biomarkers and clinical parameters to predict recurrent AF after catheter ablation in 359 patients.RESULTSReduced concentrations of cardiomyocyte PITX2, but not whole LAA tissue PITX2, were associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2-(ΔΔCt) increase in PITX2). RNA sequencing, quantitative PCR, and Western blotting confirmed that BMP10 is one of the most PITX2-repressed atrial genes. Left atrial size (HR per mm increase [95% CI], 1.055 [1.028, 1.082]); nonparoxysmal AF (HR 1.672 [1.206, 2.318]), and elevated BMP10 (HR 1.339 [CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed 11 other cardiovascular biomarkers in predicting recurrent AF.CONCLUSIONSReduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of the PITX2-repressed, secreted atrial protein BMP10 identify patients at risk of recurrent AF after ablation.TRIAL REGISTRATIONClinicalTrials.gov NCT01091389, NL50069.018.14, Dutch National Registry of Clinical Research Projects EK494-16.FUNDINGBritish Heart Foundation, European Union (H2020), Leducq Foundation.
Collapse
Affiliation(s)
| | | | - Victor R. Cardoso
- Institute of Cardiovascular Sciences and
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Anika Witten
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Münster, Germany
| | | | | | - Moritz F. Sinner
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Robin Wesselink
- Department of Cardiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Heart Center, Amsterdam, Netherlands
| | | | | | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Münster, Germany
- Cardiovascular Research Institute Maastricht, Genetic Epidemiology and Statistical Genetics, Maastricht University, Maastricht, Netherlands
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Munich, Germany
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
| | - Georgios V. Gkoutos
- Institute of Cardiovascular Sciences and
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Health Data Research Midlands, Birmingham, United Kingdom
| | - Joris R. de Groot
- Department of Cardiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Heart Center, Amsterdam, Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences and
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Hospitals Birmingham (UHB) and Sandwell and West Birmingham (SWBH) NHS Trusts, Birmingham, United Kingdom
- University Heart and Vascular Center, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences and
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Hospitals Birmingham (UHB) and Sandwell and West Birmingham (SWBH) NHS Trusts, Birmingham, United Kingdom
| |
Collapse
|
28
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
29
|
Huang X, Li Y, Zhang J, Wang X, Li Z, Li G. The molecular genetic basis of atrial fibrillation. Hum Genet 2020; 139:1485-1498. [PMID: 32617797 DOI: 10.1007/s00439-020-02203-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
As the most common cardiac arrhythmia, atrial fibrillation (AF) is a major risk factor for stroke, heart failure, and premature death with considerable associated costs. However, no available treatment options have optimal benefit-harm profiles currently, reflecting an incomplete understanding of the biological mechanisms underlying this complex arrhythmia. Recently, molecular epidemiological studies, especially genome-wide association studies, have emphasized the substantial genetic component of AF etiology. A comprehensive mapping of the genetic underpinnings for AF can expand our knowledge of AF mechanism and further facilitate the process of locating novel therapeutics for AF. Here we provide a state-of-the-art review of the molecular genetics of AF incorporating evidence from linkage analysis and candidate gene, as well as genome-wide association studies of common variations and rare copy number variations; potential epigenetic modifications (e.g., DNA methylation, histone modification, and non-coding RNAs) are also involved. We also outline the challenges in mechanism investigation and potential future directions in this article.
Collapse
Affiliation(s)
- Xin Huang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Yuhui Li
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Junguo Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Xiaojie Wang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Ziyi Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, 466 Newport Middle Road, Haizhu District, Guangzhou, 510317, Guangdong, China. .,Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University Hamilton, 1280 Main St West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
30
|
Villar D, Frost S, Deloukas P, Tinker A. The contribution of non-coding regulatory elements to cardiovascular disease. Open Biol 2020; 10:200088. [PMID: 32603637 PMCID: PMC7574544 DOI: 10.1098/rsob.200088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease collectively accounts for a quarter of deaths worldwide. Genome-wide association studies across a range of cardiovascular traits and pathologies have highlighted the prevalence of common non-coding genetic variants within candidate loci. Here, we review genetic, epigenomic and molecular approaches to investigate the contribution of non-coding regulatory elements in cardiovascular biology. We then discuss recent insights on the emerging role of non-coding variation in predisposition to cardiovascular disease, with a focus on novel mechanistic examples from functional genomics studies. Lastly, we consider the clinical significance of these findings at present, and some of the current challenges facing the field.
Collapse
Affiliation(s)
- Diego Villar
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Stephanie Frost
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Panos Deloukas
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Tinker
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
31
|
van Ouwerkerk AF, Hall AW, Kadow ZA, Lazarevic S, Reyat JS, Tucker NR, Nadadur RD, Bosada FM, Bianchi V, Ellinor PT, Fabritz L, Martin J, de Laat W, Kirchhof P, Moskowitz I, Christoffels VM. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ Res 2020; 127:34-50. [PMID: 32717170 PMCID: PMC8315291 DOI: 10.1161/circresaha.120.316574] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genome-wide association studies have uncovered over a 100 genetic loci associated with atrial fibrillation (AF), the most common arrhythmia. Many of the top AF-associated loci harbor key cardiac transcription factors, including PITX2, TBX5, PRRX1, and ZFHX3. Moreover, the vast majority of the AF-associated variants lie within noncoding regions of the genome where causal variants affect gene expression by altering the activity of transcription factors and the epigenetic state of chromatin. In this review, we discuss a transcriptional regulatory network model for AF defined by effector genes in Genome-wide association studies loci. We describe the current state of the field regarding the identification and function of AF-relevant gene regulatory networks, including variant regulatory elements, dose-sensitive transcription factor functionality, target genes, and epigenetic states. We illustrate how altered transcriptional networks may impact cardiomyocyte function and ionic currents that impact AF risk. Last, we identify the need for improved tools to identify and functionally test transcriptional components to define the links between genetic variation, epigenetic gene regulation, and atrial function.
Collapse
Affiliation(s)
- Antoinette F. van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Amelia W. Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zachary A. Kadow
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Nathan R. Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Masonic Medical Research Institute, Utica, NY, USA
| | - Rangarajan D. Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Fernanda M. Bosada
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick T. Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
| | - Jim Martin
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, 77030
- Texas Heart Institute, Houston, Texas, 77030
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- SWBH and UHB NHS Trusts, Birmingham, UK
- University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Ivan Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centers, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
32
|
Zhang M, Hill MC, Kadow ZA, Suh JH, Tucker NR, Hall AW, Tran TT, Swinton PS, Leach JP, Margulies KB, Ellinor PT, Li N, Martin JF. Long-range Pitx2c enhancer-promoter interactions prevent predisposition to atrial fibrillation. Proc Natl Acad Sci U S A 2019; 116:22692-22698. [PMID: 31636200 PMCID: PMC6842642 DOI: 10.1073/pnas.1907418116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Genome-wide association studies found that increased risk for atrial fibrillation (AF), the most common human heart arrhythmia, is associated with noncoding sequence variants located in proximity to PITX2 Cardiomyocyte-specific epigenomic and comparative genomics uncovered 2 AF-associated enhancers neighboring PITX2 with varying conservation in mice. Chromosome conformation capture experiments in mice revealed that the Pitx2c promoter directly contacted the AF-associated enhancer regions. CRISPR/Cas9-mediated deletion of a 20-kb topologically engaged enhancer led to reduced Pitx2c transcription and AF predisposition. Allele-specific chromatin immunoprecipitation sequencing on hybrid heterozygous enhancer knockout mice revealed that long-range interaction of an AF-associated region with the Pitx2c promoter was required for maintenance of the Pitx2c promoter chromatin state. Long-range looping was mediated by CCCTC-binding factor (CTCF), since genetic disruption of the intronic CTCF-binding site caused reduced Pitx2c expression, AF predisposition, and diminished active chromatin marks on Pitx2 AF risk variants located at 4q25 reside in genomic regions possessing long-range transcriptional regulatory functions directed at PITX2.
Collapse
Affiliation(s)
- Min Zhang
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 200127 Shanghai, China
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Zachary A Kadow
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ji Ho Suh
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - Nathan R Tucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Amelia W Hall
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Tien T Tran
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Paul S Swinton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
- Texas Heart Institute, Houston, TX 77030
| | - John P Leach
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02129
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Na Li
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030;
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030
- Texas Heart Institute, Houston, TX 77030
| |
Collapse
|
33
|
Nishizaki SS, Ng N, Dong S, Porter RS, Morterud C, Williams C, Asman C, Switzenberg JA, Boyle AP. Predicting the effects of SNPs on transcription factor binding affinity. Bioinformatics 2019; 36:364-372. [PMID: 31373606 PMCID: PMC7999143 DOI: 10.1093/bioinformatics/btz612] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Genome-wide association studies have revealed that 88% of disease-associated single-nucleotide polymorphisms (SNPs) reside in noncoding regions. However, noncoding SNPs remain understudied, partly because they are challenging to prioritize for experimental validation. To address this deficiency, we developed the SNP effect matrix pipeline (SEMpl). RESULTS SEMpl estimates transcription factor-binding affinity by observing differences in chromatin immunoprecipitation followed by deep sequencing signal intensity for SNPs within functional transcription factor-binding sites (TFBSs) genome-wide. By cataloging the effects of every possible mutation within the TFBS motif, SEMpl can predict the consequences of SNPs to transcription factor binding. This knowledge can be used to identify potential disease-causing regulatory loci. AVAILABILITY AND IMPLEMENTATION SEMpl is available from https://github.com/Boyle-Lab/SEM_CPP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sierra S Nishizaki
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie Ng
- Department of Human Genetics, Stanford University, Stanford, CA 94305, USA
| | - Shengcheng Dong
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert S Porter
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cody Morterud
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colten Williams
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Courtney Asman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
34
|
Ebana Y, Sun Y, Yang X, Watanabe T, Makita S, Ozaki K, Tanaka T, Arai H, Furukawa T. Pathway analysis with genome-wide association study (GWAS) data detected the association of atrial fibrillation with the mTOR signaling pathway. IJC HEART & VASCULATURE 2019; 24:100383. [PMID: 31321287 PMCID: PMC6612921 DOI: 10.1016/j.ijcha.2019.100383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/20/2022]
Abstract
Background Genome-wide association studies (GWAS) have identified numerous loci associated with diseases and traits. However, the elucidation of disease mechanisms followed by drug development has remained a challenge owing to complex gene interactions. We performed pathway analysis with MAGENTA (Meta-Analysis Geneset Enrichment of variaNT Associations) to clarify the pathways in genetic background of AF. Methods The existing GWAS data were analyzed using MAGENTA. A microarray analysis was then performed for the identified pathways with human atrial tissues, followed by Gene-Set Enrichment Analysis (GSEA). Results MAGENTA identified two novel candidate pathways for AF pathogenesis, the CTCF (CCCTC-binding factor, p = 1.00 × 10−4, FDR q = 1.64 × 10−2) and mTOR pathways (mammalian target of rapamycin, p = 3.00 × 10−4, FDR q = 3.13 × 10−2). The microarray analysis with human atrial tissue using the GSEA indicated that the mTOR pathway was suppressed in AF cases compared with non-AF cases, validating the MAGENTA results, but not CTCF pathway. Conclusions MAGENTA identified a novel pathway, mTOR, followed by GSEA with human atrial tissue samples. mTOR pathway is a key interface that adapts the change of environments by pressure overload and metabolic perturbation. Our results indicate that the MTOR pathway is involved in the pathogenesis of AF, although the details of the basic mechanism remain unknown and further analysis for causal-relationship of mTOR pathway to AF is required. CTCF pathway is essential for construction of chromatin structure and transcriptional process. The gene-set components of CTCF overlap with those of mTOR in Biocarta.
Collapse
Affiliation(s)
- Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Yihan Sun
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Xiaoxi Yang
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Taiju Watanabe
- Department of Cardiovascular Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Satoru Makita
- Department of Cardiovascular Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Kouichi Ozaki
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan.,Division for Genomic Medicine, Medical Genome Center, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu City, Aichi, Japan
| | - Toshihiro Tanaka
- Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, Japan.,Department of Human Genetics and Disease Diversity, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hirokuni Arai
- Department of Cardiovascular Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
35
|
Szirák K, Soltész B, Hajas O, Urbancsek R, Nagy-Baló E, Penyige A, Csanádi Z, Nagy B. PITX2 and NEURL1 SNP polymorphisms in Hungarian atrial fibrillation patients determined by quantitative real-time PCR and melting curve analysis. J Biotechnol 2019; 299:44-49. [PMID: 31039368 DOI: 10.1016/j.jbiotec.2019.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia affecting 1-2% of the general population. Some common variants located in or next to PITX2 and NEURL1 genes are proved to play role in the occurrence of AF. The aim of our study was to investigate whether rs2595104 in the 4q25 chromosome region and rs6584555 SNP in the NEURL1 gene on chromosome 10 is associated with AF in a Caucasian population. We genotyped DNA samples of 76 AF patients and 77 healthy controls using quantitative real-time PCR followed by melting curve analysis. The minor A allele frequency of rs2595104 in PITX2 was 0.38 and 0.44 in the control group and in AF patients, respectively. There was no significant difference in allele and genotype distribution between the two groups (p = 0.52). The allele frequency based log additive odds ratio is 1.22 (C.I. = 0.76-1.94; p = 0.42). The frequency of minor rs6584555 C allele in NEURL1 was 0.22 in the control group and 0.23 in AF patients. Again there were no significant differences in allele and genotype frequencies between AF patients and controls (p = 0.92). The log additive odds ratio is 1,15 (C.I. = 0.66-2.01; p = 0,63). The heterozygous genotype of rs2595104 had the highest frequency compared to the other genotypes in both groups. In case of the rs6584555 SNP the homozygous genotype of the major allele (TT) had the highest frequency in both groups (0.59). The frequency of homozygous genotype for risk allele had the lowest frequency for both SNPs [rs2595104 (AA): 0.19 in patients, 0.12 in controls; rs6584555 (CC): 0.05 in patients, 0.03 in controls]. We did not find significant association between SNP rs2595104 and rs6584555 andAF. We performed a protein-protein network analysis to assess functional connection among the protein products. The proteins coded by PITX2 and NEURL1 are connected indirectly via CTNNB1 and either JAG1 or DLL4 proteins. These interactive proteins are components of two major channels of cell communication pathways, the Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Krisztina Szirák
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Orsolya Hajas
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Réka Urbancsek
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Nagy-Baló
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Csanádi
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
36
|
Yang H, Chen R, Wang Q, Wei Q, Ji Y, Zheng G, Zhong X, Cox NJ, Li B. De novo pattern discovery enables robust assessment of functional consequences of non-coding variants. Bioinformatics 2019; 35:1453-1460. [PMID: 30256891 PMCID: PMC6499232 DOI: 10.1093/bioinformatics/bty826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION Given the complexity of genome regions, prioritize the functional effects of non-coding variants remains a challenge. Although several frameworks have been proposed for the evaluation of the functionality of non-coding variants, most of them used 'black boxes' methods that simplify the task as the pathogenicity/benign classification problem, which ignores the distinct regulatory mechanisms of variants and leads to less desirable performance. In this study, we developed DVAR, an unsupervised framework that leverage various biochemical and evolutionary evidence to distinguish the gene regulatory categories of variants and assess their comprehensive functional impact simultaneously. RESULTS DVAR performed de novo pattern discovery in high-dimensional data and identified five regulatory clusters of non-coding variants. Leveraging the new insights into the multiple functional patterns, it measures both the between-class and the within-class functional implication of the variants to achieve accurate prioritization. Compared to other two-class learning methods, it showed improved performance in identification of clinically significant variants, fine-mapped GWAS variants, eQTLs and expression-modulating variants. Moreover, it has superior performance on disease causal variants verified by genome-editing (like CRISPR-Cas9), which could provide a pre-selection strategy for genome-editing technologies across the whole genome. Finally, evaluated in BioVU and UK Biobank, two large-scale DNA biobanks linked to complete electronic health records, DVAR demonstrated its effectiveness in prioritizing non-coding variants associated with medical phenotypes. AVAILABILITY AND IMPLEMENTATION The C++ and Python source codes, the pre-computed DVAR-cluster labels and DVAR-scores across the whole genome are available at https://www.vumc.org/cgg/dvar. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hai Yang
- Department of Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Rui Chen
- Department of Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Quan Wang
- Department of Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Qiang Wei
- Department of Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Ying Ji
- Department of Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Guangze Zheng
- Department of Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Xue Zhong
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
37
|
Lozano-Velasco E, Garcia-Padilla C, Aránega AE, Franco D. Genetics of Atrial Fibrilation: In Search of Novel Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2019; 19:183-194. [PMID: 30727926 DOI: 10.2174/1871529x19666190206150349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 01/16/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Atrial fibrillation (AF) is the most frequent arrhythmogenic disease in humans, ranging from 2% in the general population and rising up to 10-12% in 80+ years. Genetic analyses of AF familiar cases have identified a series of point mutations in distinct ion channels, supporting a causative link. However, these genetic defects only explain a minority of AF patients. Genomewide association studies identified single nucleotide polymorphisms (SNPs), close to PITX2 on 4q25 chromosome, that are highly associated to AF. Subsequent GWAS studies have identified several new loci, involving additional transcription and growth factors. Furthermore, these risk 4q25 SNPs serve as surrogate biomarkers to identify AF recurrence in distinct surgical and pharmacological interventions. Experimental studies have demonstrated an intricate signalling pathway supporting a key role of the homeobox transcription factor PITX2 as a transcriptional regulator. Furthermore, cardiovascular risk factors such as hyperthyroidism, hypertension and redox homeostasis have been identified to modulate PITX2 driven gene regulatory networks. We provide herein a state-of-the-art review of the genetic bases of atrial fibrillation, our current understanding of the genetic regulatory networks involved in AF and its plausible usage for searching novel therapeutic targets.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia E Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
38
|
Atrial Structural Remodeling Gene Variants in Patients with Atrial Fibrillation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4862480. [PMID: 30276209 PMCID: PMC6151856 DOI: 10.1155/2018/4862480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/30/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is a common arrhythmia for which the genetic studies mainly focused on the genes involved in electrical remodeling, rather than left atrial muscle remodeling. To identify rare variants involved in atrial myopathy using mutational screening, a high-throughput next-generation sequencing (NGS) workflow was developed based on a custom AmpliSeq™ panel of 55 genes potentially involved in atrial myopathy. This workflow was applied to a cohort of 94 patients with AF, 76 with atrial dilatation and 18 without. Bioinformatic analyses used NextGENe® software and in silico tools for variant interpretation. The AmpliSeq custom-made panel efficiently explored 96.58% of the targeted sequences. Based on in silico analysis, 11 potentially pathogenic missense variants were identified that were not previously associated with AF. These variants were located in genes involved in atrial tissue structural remodeling. Three patients were also carriers of potential variants in prevalent arrhythmia-causing genes, usually associated with AF. Most of the variants were found in patients with atrial dilatation (n=9, 82%). This NGS approach was a sensitive and specific method that identified 11 potentially pathogenic variants, which are likely to play roles in the predisposition to left atrial myopathy. Functional studies are needed to confirm their pathogenicity.
Collapse
|
39
|
Scherer WJ. Corneal endothelial cell density and cardiovascular mortality: A Global Survey and Correlative Meta-Analysis. Clin Anat 2018; 31:927-936. [PMID: 30168608 DOI: 10.1002/ca.23230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
Based on embryological commonalities between eye and heart development, a global, country-specific meta-analysis of normal, adult corneal endothelial cell density (ECD) was performed and correlated against mortality rates secondary to diseases affecting cardiac neural crest cell (CNCC)-derived cardiovascular structures. A country-specific survey of ECD was performed by searching PubMed for studies reporting ECD datasets from normal adults. All eligible datasets were assigned a country of origin. Country-specific weighted mean ECD were calculated based on dataset n. Country-specific disease mortality rates were obtained from the World Health Organization. The correlations between weighted mean ECD and mortality rates secondary to diseases affecting CNCC-derived cardiovascular structures were calculated. As controls, correlations between ECD and noncardiovascular disease mortality were examined. Pearson correlation coefficients (r) corresponding to P-value < 0.05 were considered significant. Three hundred ninety-two datasets (39,762 eyes) from 267 source-studies were assigned to 42 countries. Significant correlations were found between ECD and mortality due to coronary heart disease (r = -0.39, P = 0.011), hypertension (r = -0.33, P = 0.033), and all-cause cardiac disease (r = -0.36, P = 0.019). No significant correlations were found between ECD and mortality secondary to the control conditions: inflammatory heart disease (mesoderm-derived tissues) (r = -0.12, P = 0.45), diabetes (r = -0.13, P = 0.41), lung disease (r = -0.21, P = 0.18), liver disease (r = -0.13, P = 0.41), renal disease (r = -0.10, P = 0.53), lung cancer (r = 0.02, P = 0.90), pancreatic cancer (r = 0.24, P = 0.13), malnutrition (r = -0.07, P = 0.66), or all-cause mortality (r = 0.04, P = 0.81). Negative correlations exist between ECD and mortality due to coronary artery disease and hypertension. On a population-based level, adult ECD is correlated to mortality from certain cardiovascular diseases. Clin. Anat. 31:927-936, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Warren J Scherer
- Envision Eye Specialists, 1250 Belcher Rd. South, Largo, Florida 33771
| |
Collapse
|
40
|
Tucker NR, McLellan MA, Hu D, Ye J, Parsons VA, Mills RW, Clauss S, Dolmatova E, Shea MA, Milan DJ, Scott NS, Lindsay M, Lubitz SA, Domian IJ, Stone JR, Lin H, Ellinor PT. Novel Mutation in FLNC (Filamin C) Causes Familial Restrictive Cardiomyopathy. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001780. [PMID: 29212899 DOI: 10.1161/circgenetics.117.001780] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Restrictive cardiomyopathy (RCM) is a rare cardiomyopathy characterized by impaired diastolic ventricular function resulting in a poor clinical prognosis. Rarely, heritable forms of RCM have been reported, and mutations underlying RCM have been identified in genes that govern the contractile function of the cardiomyocytes. METHODS AND RESULTS We evaluated 8 family members across 4 generations by history, physical examination, electrocardiography, and echocardiography. Affected individuals presented with a pleitropic syndrome of progressive RCM, atrioventricular septal defects, and a high prevalence of atrial fibrillation. Exome sequencing of 5 affected members identified a single novel missense variant in a highly conserved residue of FLNC (filamin C; p.V2297M). FLNC encodes filamin C-a protein that acts as both a scaffold for the assembly and organization of the central contractile unit of striated muscle and also as a mechanosensitive signaling molecule during cell migration and shear stress. Immunohistochemical analysis of FLNC localization in cardiac tissue from an affected family member revealed a diminished localization at the z disk, whereas traditional localization at the intercalated disk was preserved. Stem cell-derived cardiomyocytes mutated to carry the effect allele had diminished contractile activity when compared with controls. CONCLUSION We have identified a novel variant in FLNC as pathogenic variant for familial RCM-a finding that further expands on the genetic basis of this rare and morbid cardiomyopathy.
Collapse
Affiliation(s)
- Nathan R Tucker
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Micheal A McLellan
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Dongjian Hu
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Jiangchuan Ye
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Victoria A Parsons
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Robert W Mills
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Sebastian Clauss
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Elena Dolmatova
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Marisa A Shea
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - David J Milan
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Nandita S Scott
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Mark Lindsay
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Steven A Lubitz
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Ibrahim J Domian
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - James R Stone
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Honghuang Lin
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Patrick T Ellinor
- From the Cardiovascular Research Center, Massachusetts General Hospital, Charlestown (N.R.T., M.A.M., D.H., J.Y., V.A.P., R.W.M., S.C., E.D., D.J.M., M.L., S.A.L., I.J.D., P.T.E.); Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA (N.R.T., J.Y., V.A.P., S.A.L., H.L., P.T.E.); Department of Medicine I, Klinikum Grosshadern, University of Munich (LMU), Germany (S.C.); German Centre for Cardiovascular Research, Partner site Munich, Germany (S.C.); Division of Cardiology (M.A.S., D.J.M., N.S.S., M.L., S.A.L., I.J.D., P.T.E.) and Department of Pathology, Center for Systems Biology (J.R.S.), Massachusetts General Hospital, Boston; and Computational Biomedicine Section, Department of Medicine, Boston University School of Medicine, MA (H.L.).
| |
Collapse
|
41
|
Gourraud JB, Khairy P, Abadir S, Tadros R, Cadrin-Tourigny J, Macle L, Dyrda K, Mondesert B, Dubuc M, Guerra PG, Thibault B, Roy D, Talajic M, Rivard L. Atrial fibrillation in young patients. Expert Rev Cardiovasc Ther 2018; 16:489-500. [DOI: 10.1080/14779072.2018.1490644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jean-Baptiste Gourraud
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Paul Khairy
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
- Department of Pediatric Cardiology, Sainte-Justine Hospital, Université de Montréal, Montreal Canada
| | - Sylvia Abadir
- Department of Pediatric Cardiology, Sainte-Justine Hospital, Université de Montréal, Montreal Canada
| | - Rafik Tadros
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Julia Cadrin-Tourigny
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Laurent Macle
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Blandine Mondesert
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Marc Dubuc
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Peter G. Guerra
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Bernard Thibault
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Denis Roy
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Mario Talajic
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Lena Rivard
- Electrophysiology Service, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| |
Collapse
|
42
|
Roman TS, Mohlke KL. Functional genomics and assays of regulatory activity detect mechanisms at loci for lipid traits and coronary artery disease. Curr Opin Genet Dev 2018; 50:52-59. [PMID: 29471259 PMCID: PMC6089635 DOI: 10.1016/j.gde.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022]
Abstract
Many genome-wide association studies (GWAS) have identified signals located in non-coding regions, and an increasing number of functional genomics annotations of regulatory elements and assays of regulatory activity have been used to investigate mechanisms. Genome-wide datasets that characterize chromatin structure help detect potential regulatory elements. Assays to experimentally assess candidate variants include transcriptional reporter assays, and recently, massively parallel reporter assays (MPRAs). Additionally, the effect of candidate regulatory elements and variants on gene expression and function can be evaluated using genomic editing with the CRISPR-Cas9 technology. We highlight some recent studies that employed these strategies to identify variant effects and elucidate molecular and/or biological mechanisms at GWAS loci for lipid traits and coronary artery disease.
Collapse
Affiliation(s)
- Tamara S Roman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
43
|
Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation. J Mol Med (Berl) 2018; 96:601-610. [DOI: 10.1007/s00109-018-1647-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
|
44
|
Abstract
PURPOSE OF REVIEW Atrial fibrillation is a common cardiac arrhythmia with a high morbidity and mortality affecting 34 million worldwide. Current therapies are inadequate and often fail to directly address molecular mechanisms of the disease. In this review, we will provide an overview of recent advances in our understanding of the genetic underpinnings of atrial fibrillation. RECENT FINDINGS Large-scale genetic association studies have more than doubled the number of genetic loci associated with atrial fibrillation during the last year. Studies examining how genes at or near these loci can affect the pathogenesis of atrial fibrillation are ongoing in cellular, animal, and computational models. In addition, several recent clinical studies have also demonstrated that variants at these loci can aid in risk stratification of patients. SUMMARY There are now over 30 genetic loci associated with atrial fibrillation. A better understanding of how these loci relate to disease pathogenesis may provide insight into novel therapeutic targets and ultimately lead to improved clinical care.
Collapse
|
45
|
CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control. Mamm Genome 2018; 29:205-228. [PMID: 29196861 PMCID: PMC9881389 DOI: 10.1007/s00335-017-9727-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023]
Abstract
The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.
Collapse
|
46
|
Li N, Wang ZS, Wang XH, Xu YJ, Qiao Q, Li XM, Di RM, Guo XJ, Li RG, Zhang M, Qiu XB, Yang YQ. A SHOX2 loss-of-function mutation underlying familial atrial fibrillation. Int J Med Sci 2018; 15:1564-1572. [PMID: 30443179 PMCID: PMC6216059 DOI: 10.7150/ijms.27424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023] Open
Abstract
Atrial fibrillation (AF), as the most common sustained cardiac arrhythmia, is associated with substantially increased morbidity and mortality. Aggregating evidence demonstrates that genetic defects play a crucial role in the pathogenesis of AF, especially in familial AF. Nevertheless, AF is of pronounced genetic heterogeneity, and in an overwhelming majority of cases the genetic determinants underlying AF remain elusive. In the current study, 162 unrelated patients with familial AF and 238 unrelated healthy individuals served as controls were recruited. The coding exons and splicing junction sites of the SHOX2 gene, which encodes a homeobox-containing transcription factor essential for proper development and function of the cardiac conduction system, were sequenced in all study participants. The functional effect of the mutant SHOX2 protein was characterized with a dual-luciferase reporter assay system. As a result, a novel heterozygous SHOX2 mutation, c.580C>T or p.R194X, was identified in an index patient, which was absent from the 476 control chromosomes. Genetic analysis of the proband's pedigree revealed that the nonsense mutation co-segregated with AF in the family with complete penetrance. Functional assays demonstrated that the mutant SHOX2 protein had no transcriptional activity compared with its wild-type counterpart. In conclusion, this is the first report on the association of SHOX2 loss-of-function mutation with enhanced susceptibility to familial AF, which provides novel insight into the molecular mechanism underpinning AF, suggesting potential implications for genetic counseling and individualized management of AF patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Zhang-Sheng Wang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Xin-Hua Wang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Qi Qiao
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Xiu-Mei Li
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Ruo-Min Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Xiao-Juan Guo
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China.,Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China.,Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China.,Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, 801 Heqing Road, Shanghai 200240, China
| |
Collapse
|
47
|
Multiple Roles of Pitx2 in Cardiac Development and Disease. J Cardiovasc Dev Dis 2017; 4:jcdd4040016. [PMID: 29367545 PMCID: PMC5753117 DOI: 10.3390/jcdd4040016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022] Open
Abstract
Cardiac development is a complex morphogenetic process initiated as bilateral cardiogenic mesoderm is specified at both sides of the gastrulating embryo. Soon thereafter, these cardiogenic cells fuse at the embryonic midline configuring a symmetrical linear cardiac tube. Left/right bilateral asymmetry is first detected in the forming heart as the cardiac tube bends to the right, and subsequently, atrial and ventricular chambers develop. Molecular signals emanating from the node confer distinct left/right signalling pathways that ultimately lead to activation of the homeobox transcription factor Pitx2 in the left side of distinct embryonic organ anlagen, including the developing heart. Asymmetric expression of Pitx2 has therefore been reported during different cardiac developmental stages, and genetic deletion of Pitx2 provided evidence of key regulatory roles of this transcription factor during cardiogenesis and thus congenital heart diseases. More recently, impaired Pitx2 function has also been linked to arrhythmogenic processes, providing novel roles in the adult heart. In this manuscript, we provide a state-of-the-art review of the fundamental roles of Pitx2 during cardiogenesis, arrhythmogenesis and its contribution to congenital heart diseases.
Collapse
|
48
|
Bapat A, Anderson CD, Ellinor PT, Lubitz SA. Genomic basis of atrial fibrillation. Heart 2017; 104:201-206. [PMID: 28893835 DOI: 10.1136/heartjnl-2016-311027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 01/24/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia associated with substantial morbidity, mortality and costs. Available management strategies generally have limited efficacy and are associated with potential adverse effects. In part, the limited efficacy of approaches to managing AF reflect an incomplete understanding of the biological mechanisms underlying the arrhythmia, and only a partial understanding of how best to individualise management. Over the last several decades, a greater understanding of genome biology has led to recognition of a widespread genetic susceptibility to AF. Through genome-wide association studies, at least 30 genetic loci have been identified in association with AF, most of which implicate mechanisms not previously appreciated to be involved in the development of AF. We now recognise that AF is a polygenic condition, yet a great deal of work lies ahead to better understand the precise mechanisms by which genomic variation causes AF. Understanding the genetic basis of AF could provide a better understanding of AF mechanisms and cardiovascular biology, inform the management of patients through risk-guided approaches and facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Aneesh Bapat
- Cardiology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christopher D Anderson
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick T Ellinor
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Steven A Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
49
|
Fatkin D, Santiago CF, Huttner IG, Lubitz SA, Ellinor PT. Genetics of Atrial Fibrillation: State of the Art in 2017. Heart Lung Circ 2017; 26:894-901. [DOI: 10.1016/j.hlc.2017.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022]
|
50
|
Syeda F, Kirchhof P, Fabritz L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol 2017; 595:4019-4026. [PMID: 28217939 PMCID: PMC5471504 DOI: 10.1113/jp273123] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2017] [Indexed: 01/15/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. There are several major mechanisms that cause AF in patients, including a genetic predisposition to develop AF. Genome-wide association studies have identified genetic variants associated with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription factor PITX2. The effect of these common gene variants on cardiac PITX2 mRNA is currently under study. PITX2 protein regulates right-left differentiation of the embryonic heart, thorax and aorta. PITX2 is expressed in the adult left atrium, but much less so in other heart chambers. Pitx2 deficiency results in electrical and structural remodelling, and impaired repair of the heart in murine models, all of which may influence AF through divergent mechanisms. PITX2 levels and single nucleotide polymorphisms on chromosome 4q25 may also be a predictor of the effectiveness of anti-arrhythmic drug therapy.
Collapse
Affiliation(s)
- Fahima Syeda
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | - Paulus Kirchhof
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUHB NHS TrustBirminghamUK
- Department of CardiologySWBTBirminghamUK
| | - Larissa Fabritz
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUHB NHS TrustBirminghamUK
- Department of Cardiovascular Medicine, Division of RhythmologyUniversity Hospital MünsterMünsterGermany
| |
Collapse
|