1
|
Buchert R, Burkhalter MD, Huridou C, Sofan L, Roser T, Cremer K, Alvi JR, Efthymiou S, Froukh T, Gulieva S, Guliyeva U, Hamdallah M, Holder-Espinasse M, Kaiyrzhanov R, Klingler D, Koko M, Matthies L, Park J, Sturm M, Velic A, Spranger S, Sultan T, Engels H, Lerche H, Houlden H, Pagnamenta AT, Borggraefe I, Weber Y, Bonnen PE, Maroofian R, Riess O, Weber JJ, Philipp M, Haack TB. Bi-allelic KICS2 mutations impair KICSTOR complex-mediated mTORC1 regulation, causing intellectual disability and epilepsy. Am J Hum Genet 2025:S0002-9297(24)00461-0. [PMID: 39824192 DOI: 10.1016/j.ajhg.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/20/2025] Open
Abstract
Nutrient-dependent mTORC1 regulation upon amino acid deprivation is mediated by the KICSTOR complex, comprising SZT2, KPTN, ITFG2, and KICS2, recruiting GATOR1 to lysosomes. Previously, pathogenic SZT2 and KPTN variants have been associated with autosomal recessive intellectual disability and epileptic encephalopathy. We identified bi-allelic KICS2 variants in eleven affected individuals presenting with intellectual disability and epilepsy. These variants partly affected KICS2 stability, compromised KICSTOR complex formation, and demonstrated a deleterious impact on nutrient-dependent mTORC1 regulation of 4EBP1 and S6K. Phosphoproteome analyses extended these findings to show that KICS2 variants changed the mTORC1 proteome, affecting proteins that function in translation, splicing, and ciliogenesis. Depletion of Kics2 in zebrafish resulted in ciliary dysfunction consistent with a role of mTORC1 in cilia biology. These in vitro and in vivo functional studies confirmed the pathogenicity of identified KICS2 variants. Our genetic and experimental data provide evidence that variants in KICS2 are a factor involved in intellectual disability due to its dysfunction impacting mTORC1 regulation and cilia biology.
Collapse
Affiliation(s)
- Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany
| | - Chrisovalantou Huridou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Linda Sofan
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, Institute of Child Health, Children's Hospital Lahore, Lahore, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | | | | | - Moath Hamdallah
- Pediatrics Department, An-Najah National University Hospital, Nablus, Palestine
| | - Muriel Holder-Espinasse
- Clinical Genetics Department, Guy's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Doreen Klingler
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lars Matthies
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ana Velic
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | | | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, Children's Hospital Lahore, Lahore, Pakistan
| | - Hartmut Engels
- Institute of Human Genetics, School of Medicine & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Alistair T Pagnamenta
- NIHR Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Yvonne Weber
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Penelope E Bonnen
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Center for Rare Disease, University of Tübingen, Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE)
| | - Jonasz J Weber
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Center for Rare Disease, University of Tübingen, Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).
| |
Collapse
|
2
|
Luo S, Wang PY, Zhou P, Zhang WJ, Gu YJ, Liang XY, Zhang JW, Luo JX, Zhang HW, Lan S, Zhang TT, Yang JH, Sun SZ, Guo XY, Wang JL, Deng LF, Xu ZH, Jin L, He YY, Ye ZL, Gu WY, Li BM, Shi YW, Liu XR, Yan HJ, Yi YH, Jiang YW, Mao X, Li WL, Meng H, Liao WP. Variants in EP400, encoding a chromatin remodeler, cause epilepsy with neurodevelopmental disorders. Am J Hum Genet 2025; 112:87-105. [PMID: 39708813 PMCID: PMC11739926 DOI: 10.1016/j.ajhg.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024] Open
Abstract
EP400 encodes a core catalytic ATPase subunit of ATP-dependent chromatin remodeling complexes. The gene-disease association of EP400 is undetermined. In this study, we performed trio-based whole-exome sequencing in a cohort of 402 families with epilepsy and neurodevelopmental disorders (NDDs) and identified compound heterozygous EP400 variants in six unrelated individuals. Six additional EP400 individuals were recruited via the match platform of China, including two de novo heterozygous and four compound heterozygous variants. The individual with a heterozygous de novo frameshift variant presented with NDDs, while the others exhibited epilepsy and NDDs, explained by the damaged genetic dependence quantity. EP400 presented significantly higher excesses of variants in the individuals. Clustering analysis revealed that the majority paralogs of EP400 were associated with NDDs/epilepsy and co-expressed highly with EP400. Analysis of the spatiotemporal expression indicated that EP400 is highly expressed in the developing brain and cells during differentiation, indicating its vital role in neurodevelopment; EP400 is predominantly expressed in inhibitory neurons in the early stage but in excitatory neurons in the mature stage. The development-dependent expression pattern of neuron specificity explained the favorable outcome of epilepsy. Knockdown of EP400 ortholog in Drosophila caused significantly increased susceptibility to seizures and abnormal neuronal firing. The ep400 crispant zebrafish exhibited brain developmental abnormalities, poorer adaptability, lower response to stimulation, epileptic discharges, abnormal cellular apoptosis, and increased susceptibility to seizures. Transcriptome analysis showed that ep400 deficiency caused expressional dysregulation of 84 epilepsy/NDD-associated genes, including 11 highly dose-sensitive genes. This study identified EP400 as a causative gene of epilepsy/NDDs.
Collapse
Affiliation(s)
- Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Jie Gu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Jing-Wen Zhang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jun-Xia Luo
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Hong-Wei Zhang
- Epilepsy Center, Qilu Children's Hospital of Shandong University, Jinan 250000, Shandong, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming 525000, Guangdong, China
| | - Ting-Ting Zhang
- Department of Psychology, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Hua Yang
- Department of Neurology, Second Affiliated Hospital of Shantou University, Shantou 515000, Guangdong, China
| | - Su-Zhen Sun
- Department of Neurology, Hebei Children's Hospital, Shijiazhuang 050000, Hebei, China
| | - Xiang-Yang Guo
- Department of Pediatrics, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Ju-Li Wang
- Epilepsy Center, Jiamusi Central Hospital, Jiamusi 154002, Heilongjiang, China
| | - Lin-Fan Deng
- Department of Pediatrics, Mianyang Central Hospital, Mianyang 621000, Sichuan, China
| | - Ze-Hai Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Zi-Long Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Wei-Yue Gu
- Beijing Chigene Translational Medicine Research Center Co., Ltd., Beijing 100000, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yi-Wu Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou 510440, Guangdong, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Wen-Ling Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Heng Meng
- Department of Neurology, the First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, 613 West Huangpu Avenue, Guangzhou, China.
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China.
| |
Collapse
|
3
|
Qebibo L, Davakan A, Nesson-Dauphin M, Boulali N, Siquier-Pernet K, Afenjar A, Amiel J, Bartholdi D, Barth M, Blondiaux E, Cristian I, Frazier Z, Goldenberg A, Good JM, Salussolia CL, Sahin M, McCullagh H, McDonald K, McRae A, Morrison J, Pinner J, Shinawi M, Toutain A, Vyhnálková E, Wheeler PG, Wilnai Y, Hausman-Kedem M, Coolen M, Cantagrel V, Burglen L, Lory P. The characterization of new de novo CACNA1G variants affecting the intracellular gate of Cav3.1 channel broadens the spectrum of neurodevelopmental phenotypes in SCA42ND. Genet Med 2024; 27:101337. [PMID: 39674904 DOI: 10.1016/j.gim.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
PURPOSE Missense de novo variants in CACNA1G, which encodes the Cav3.1 T-type calcium channel, have been associated with a severe, early-onset form of cerebellar disorder with neurodevelopmental deficits (SCA42ND). We explored a large series of pediatric cases carrying heterozygous variants in CACNA1G to further characterize genotype-phenotype correlations in SCA42ND. METHODS We describe 19 patients with congenital CACNA1G-variants, including 6 new heterozygotes of the recurrent SCA42ND variants, p.(Ala961Thr) and p.(Met1531Val), and 8 unreported variants, including 7 missense variants, mainly de novo. We carried out genetic and structural analyses of all variants. Patch-clamp recordings were performed to measure their channel activity. RESULTS We provide a consolidated clinical description for the patients carrying p.(Ala961Thr) and p.(Met1531Val). The new variants associated with the more severe phenotypes are found in the Cav3.1 channel intracellular gate. Calcium currents of these Cav3.1 variants showed slow inactivation and deactivation kinetics and an increase in window current, supporting a gain of channel activity. On the contrary, the p.(Met197Arg) variant (IS4-S5 loop) resulted in a loss of channel activity. CONCLUSION This detailed description of several de novo missense pathogenic variants in CACNA1G, including 13 previously reported cases, supports a clinical spectrum of congenital CACNA1G syndrome beyond spinocerebellar ataxia.
Collapse
Affiliation(s)
- Leila Qebibo
- Pediatric Neurogenetics Laboratory, Department of Genetics, Armand-Trousseau Hospital, AP-HP. Sorbonne Université, Paris, France; Reference Center for Cerebellar Malformations and Congenital Diseases, Armand-Trousseau Hospital, APHP. Sorbonne Université, Paris, France; Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France
| | - Amaël Davakan
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Mathilde Nesson-Dauphin
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France
| | - Najlae Boulali
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Karine Siquier-Pernet
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France
| | - Alexandra Afenjar
- Reference Center for Cerebellar Malformations and Congenital Diseases, Armand-Trousseau Hospital, APHP. Sorbonne Université, Paris, France
| | - Jeanne Amiel
- Service de Médecine Génomique des Maladies Rares, Necker Enfants Malades University Hospital, APHP, Paris, France
| | - Deborah Bartholdi
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Magalie Barth
- Department of Biochemistry and Genetics, Angers University Hospital, Angers France
| | - Eléonore Blondiaux
- Department of Radiology, Armand-Trousseau Hospital, APHP, Sorbonne University, Paris, France
| | | | - Zoe Frazier
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Alice Goldenberg
- Université Rouen Normandie, INSERM U1245, CHU de Rouen, Department of Genetics and Reference Center for Developmental Disorders, Rouen, France
| | - Jean-Marc Good
- Division of Genetic Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Catherine Lourdes Salussolia
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Kimberly McDonald
- Department of Pediatrics, University of Louisville, Norton Children's Hospital, Louisville, KY
| | - Anne McRae
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | | | - Jason Pinner
- Centre for Clinical Genetics, Sydney Children's Hospitals Network and University of New South Wales, Sydney, Australia
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Annick Toutain
- Unité fonctionnelle de Génétique Médicale, Centre Hospitalier Universitaire, Tours, France
| | - Emílie Vyhnálková
- Charles University, Motol University Hospital, Prague, Czech Republic
| | | | - Yael Wilnai
- Tel Aviv Sourasky Medical Center, Genetic Institute, Tel Aviv, Israel
| | - Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana-Dwek Children's Hospital, Tel Aviv Medical Center and Faculty of Medical and Health Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Marion Coolen
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France
| | - Vincent Cantagrel
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France.
| | - Lydie Burglen
- Pediatric Neurogenetics Laboratory, Department of Genetics, Armand-Trousseau Hospital, AP-HP. Sorbonne Université, Paris, France; Reference Center for Cerebellar Malformations and Congenital Diseases, Armand-Trousseau Hospital, APHP. Sorbonne Université, Paris, France; Université Paris Cité, INSERM UMR1163, Imagine Institute, Developmental Brain Disorders Laboratory, Paris, France.
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France; LabEx "Ion Channel Science and Therapeutics," Montpellier, France.
| |
Collapse
|
4
|
Waris A, Siraj M, Khan A, Lin J, Asim M, Alhumaydh FA. A Comprehensive Overview of the Current Status and Advancements in Various Treatment Strategies against Epilepsy. ACS Pharmacol Transl Sci 2024; 7:3729-3757. [PMID: 39698272 PMCID: PMC11650742 DOI: 10.1021/acsptsci.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy affects more than 70 million individuals of all ages worldwide and remains one of the most severe chronic noncommunicable neurological diseases globally. Several neurotransmitters, membrane protein channels, receptors, enzymes, and, more recently noted, various pathways, such as inflammatory and mTORC complexes, play significant roles in the initiation and propagation of seizures. Over the past two decades, significant developments have been made in the diagnosis and treatment of epilepsy. Various pharmacological drugs with diverse mechanisms of action and other treatment options have been developed to control seizures and treat epilepsy. These options include surgical treatment, nanomedicine, gene therapy, natural products, nervous stimulation, a ketogenic diet, gut microbiota, etc., which are in various developmental stages. Despite a plethora of drugs and other treatment options, one-third of affected individuals are resistant to current medications, while the majority of approved drugs have severe side effects, and significant changes can occur, such as pharmacoresistance, effects on cognition, long-term problems, drug interactions, risks of poor adherence, specific effects for certain medications, and psychological complications. Therefore, the development of new drugs and other treatment options that have no or minimal adverse effects is needed to combat this deadly disease. In this Review, we comprehensively summarize and explain all of the treatment options that have been approved or are in developmental stages for epilepsy as well as their status in clinical trials and advancements.
Collapse
Affiliation(s)
- Abdul Waris
- Department
of Biomedical Science, City University of
Hong Kong, 999077 Hong Kong SAR
| | - Muhammad Siraj
- Department
of Biotechnology, Jeonbuk National University−Iksan
Campus, Jeonju 54896, South Korea
| | - Ayyaz Khan
- Department
of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Junyu Lin
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Muhammad Asim
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Fahad A. Alhumaydh
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Miao Y, Li W, Jeansson M, Mäe MA, Muhl L, He L. Different gene expression patterns between mouse and human brain pericytes revealed by single-cell/nucleus RNA sequencing. Vascul Pharmacol 2024; 157:107434. [PMID: 39423955 DOI: 10.1016/j.vph.2024.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
AIMS Pericytes in the brain play important roles for microvascular physiology and pathology and are affected in neurological disorders and neurodegenerative diseases. Mouse models are often utilized for pathophysiology studies of the role of pericytes in disease; however, the translatability is unclear as brain pericytes from mouse and human have not been systematically compared. In this study, we investigate the similarities and differences of brain pericyte gene expression between mouse and human. Our analysis provides a comprehensive resource for translational studies of brain pericytes. METHODS We integrated and compared four mouse and human adult brain pericyte single-cell/nucleus RNA-sequencing datasets derived using two single-cell RNA sequencing platforms: Smart-seq and 10x. Gene expression abundance and specificity were analyzed. Pericyte-specific/enriched genes were assigned by comparison with endothelial cells present in the same datasets, and mouse and human pericyte transcriptomes were subsequently compared to identify species-specific genes. RESULTS An overall concordance between pericyte transcriptomes was found in both Smart-seq and 10x data. 206 orthologous genes were consistently differentially expressed between human and mouse from both platforms, 91 genes were specific/up-regulated in human and 115 in mouse. Gene ontology analysis revealed differences in transporter categories in mouse and human brain pericytes. Importantly, several genes implicated in human disease were expressed in human but not in mouse brain pericytes, including SLC6A1, CACNA2D3, and SLC20A2. CONCLUSIONS This study provides a systematic illustration of the similarities and differences between mouse and human adult brain pericytes.
Collapse
Affiliation(s)
- Yuyang Miao
- Department of Medicine (Huddinge), Karolinska Institutet, Blickagången 16, SE-141 57 Huddinge, Sweden
| | - Weihan Li
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Marie Jeansson
- Department of Medicine (Huddinge), Karolinska Institutet, Blickagången 16, SE-141 57 Huddinge, Sweden; Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden
| | - Lars Muhl
- Department of Medicine (Huddinge), Karolinska Institutet, Blickagången 16, SE-141 57 Huddinge, Sweden; Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Dag Hammarskjölds väg 20, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
6
|
Gavaz M, Aslan ES, Tekeş S. Clinical application of whole-exome sequencing analysis in childhood epilepsy. J Neurogenet 2024; 38:187-194. [PMID: 39654149 DOI: 10.1080/01677063.2024.2434869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
The swift updates of public databases and advancements in next-generation sequencing (NGS) technologies have enhanced the genetic identification capacities of epilepsy clinics. This study aimed to evaluate the diagnostic efficacy of NGS in pediatric epilepsy patients as a whole and to present the data obtained in the whole exome sequence analysis. We enrolled 40 children with suspected childhood epilepsy in this study. All patients underwent evaluation by a clinical geneticist or pediatric neurologist and the molecular genetic analysis of those children was performed by whole-exome sequencing (WES). Out of the 40 patients, 12 (30%) received a genetic diagnosis, involving 14 mutations across 13 genes. The cumulative positive diagnostic yield was 30%. Twelve of these patients were identified to have 5 variants previously documented as pathogenic, 9 variants classified as likely pathogenic, and 5 novel variants that have not been reported before. The outcomes indicate that whole-exome sequencing offers great benefits in clinical patient diagnosis, particularly in terms of detecting diagnostic variants. This study underscored the significance of whole exome sequencing (WES) studies, where only a broad gene set is examined in epilepsy patients. This approach has the potential to establish gene-specific phenotypic profiles, particularly by uncovering novel candidate genes in epilepsy patients with well-defined phenotypes. Additionally, conducting validation studies on variants of uncertain clinical significance could enhance the outcome yield.
Collapse
Affiliation(s)
- Meral Gavaz
- Department of Molecular and Medical Genetics, Biruni University, Istanbul, Turkey
| | - Elif S Aslan
- Department of Molecular and Medical Genetics, Biruni University, Istanbul, Turkey
| | - Selahattin Tekeş
- Faculty of Medicine, Department of Medical Genetics, Dicle University, Diyarbakir, Turkey
| |
Collapse
|
7
|
Josephson CB, Aronica E, Beniczky S, Boyce D, Cavalleri G, Denaxas S, French J, Jehi L, Koh H, Kwan P, McDonald C, Mitchell JW, Rampp S, Sadleir L, Sisodiya SM, Wang I, Wiebe S, Yasuda C, Youngerman B. Big data research is everyone's research-Making epilepsy data science accessible to the global community: Report of the ILAE big data commission. Epileptic Disord 2024; 26:733-752. [PMID: 39446076 DOI: 10.1002/epd2.20288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Epilepsy care generates multiple sources of high-dimensional data, including clinical, imaging, electroencephalographic, genomic, and neuropsychological information, that are collected routinely to establish the diagnosis and guide management. Thanks to high-performance computing, sophisticated graphics processing units, and advanced analytics, we are now on the cusp of being able to use these data to significantly improve individualized care for people with epilepsy. Despite this, many clinicians, health care providers, and people with epilepsy are apprehensive about implementing Big Data and accompanying technologies such as artificial intelligence (AI). Practical, ethical, privacy, and climate issues represent real and enduring concerns that have yet to be completely resolved. Similarly, Big Data and AI-related biases have the potential to exacerbate local and global disparities. These are highly germane concerns to the field of epilepsy, given its high burden in developing nations and areas of socioeconomic deprivation. This educational paper from the International League Against Epilepsy's (ILAE) Big Data Commission aims to help clinicians caring for people with epilepsy become familiar with how Big Data is collected and processed, how they are applied to studies using AI, and outline the immense potential positive impact Big Data can have on diagnosis and management.
Collapse
Affiliation(s)
- Colin B Josephson
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Centre for Health Informatics, University of Calgary, Calgary, Alberta, Canada
- Institute for Health Informatics, University College London, London, UK
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Sandor Beniczky
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Neurophysiology, Danish Epilepsy Center, Dianalund, Denmark
- Department of Clinical Medicine, Aarhus University and Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Danielle Boyce
- Tufts University School of Medicine, Boston, Massachusetts, USA
- Johns Hopkins University Biomedical Informatics and Data Science Section, Baltimore, Maryland, USA
- West Chester University Department of Public Policy and Administration, West Chester, Pennsylvania, USA
| | - Gianpiero Cavalleri
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Spiros Denaxas
- Institute for Health Informatics, University College London, London, UK
- British Heart Foundation Data Science Center, Health Data Research UK, London, UK
| | - Jacqueline French
- Department of Neurology, Grossman School of Medicine, New York University, New York, New York, USA
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Computational Life Sciences, Cleveland, Ohio, USA
| | - Hyunyong Koh
- Harvard Brain Science Initiative, Harvard University, Boston, Massachusetts, USA
| | - Patrick Kwan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences & Psychiatry, University of California, San Diego, California, USA
| | - James W Mitchell
- Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
- Department of Neurology, The Walton Cetnre NHS Foundation Trust, Liverpool, UK
| | - Stefan Rampp
- Department of Neurosurgery and Department of Neuroradiology, University Hospital Erlangen, Department of Neurosurgery, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Lynette Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG and Chalfont Centre for Epilepsy, London, UK
| | - Irene Wang
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Clarissa Yasuda
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Brett Youngerman
- Department of Neurological Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
8
|
Mossa A, Dierdorff L, Lukin J, Park Y, Fiorenzani C, Akpinar Z, Garcia-Forn M, De Rubeis S. Sex-specific perturbations of neuronal development caused by mutations in the autism risk gene DDX3X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624865. [PMID: 39605424 PMCID: PMC11601590 DOI: 10.1101/2024.11.22.624865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
DDX3X is an X-linked RNA helicases that escapes X chromosome inactivation and is expressed at higher levels in female brains. Mutations in DDX3X are associated with intellectual disability (ID) and autism spectrum disorder (ASD) and are predominantly identified in females. Using cellular and mouse models, we show that Ddx3x mediates sexual dimorphisms in brain development at a molecular, cellular, and behavioral level. During cortical neuronal development, Ddx3x sustains a female-biased signature of enhanced ribosomal biogenesis and mRNA translation. Female neurons display higher levels of ribosomal proteins and larger nucleoli, and these sex dimorphisms are obliterated by Ddx3x loss. Ddx3x regulates dendritic outgrowth in a sex- and dose-dependent manner in both female and male neurons, and dendritic spine development only in female neurons. Further, ablating Ddx3x conditionally in forebrain neurons is sufficient to yield sex-specific changes in developmental outcomes and motor function. Together, these findings pose Ddx3x as a mediator of sexual differentiation during neurodevelopment and open new avenues to understand sex differences in health and disease.
Collapse
|
9
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Shabani K, Krupp J, Lemesre E, Lévy N, Tran H. Voltage-Gated Ion Channel Compensatory Effect in DEE: Implications for Future Therapies. Cells 2024; 13:1763. [PMID: 39513870 PMCID: PMC11544952 DOI: 10.3390/cells13211763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Developmental and Epileptic Encephalopathies (DEEs) represent a clinically and genetically heterogeneous group of rare and severe epilepsies. DEEs commonly begin early in infancy with frequent seizures of various types associated with intellectual disability and leading to a neurodevelopmental delay or regression. Disease-causing genomic variants have been identified in numerous genes and are implicated in over 100 types of DEEs. In this context, genes encoding voltage-gated ion channels (VGCs) play a significant role, and part of the large phenotypic variability observed in DEE patients carrying VGC mutations could be explained by the presence of genetic modifier alleles that can compensate for these mutations. This review will focus on the current knowledge of the compensatory effect of DEE-associated voltage-gated ion channels and their therapeutic implications in DEE. We will enter into detailed considerations regarding the sodium channels SCN1A, SCN2A, and SCN8A; the potassium channels KCNA1, KCNQ2, and KCNT1; and the calcium channels CACNA1A and CACNA1G.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France; (J.K.); (E.L.); (N.L.)
| | | | | | | | - Helene Tran
- Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France; (J.K.); (E.L.); (N.L.)
| |
Collapse
|
11
|
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe PD, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Vito LD, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Silva IFD, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, Vega-Talbott ML, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O’Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, Berkovic SF. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. Nat Neurosci 2024; 27:1864-1879. [PMID: 39363051 PMCID: PMC11646479 DOI: 10.1038/s41593-024-01747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
Identifying genetic risk factors for highly heterogeneous disorders such as epilepsy remains challenging. Here we present, to our knowledge, the largest whole-exome sequencing study of epilepsy to date, with more than 54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies and generalized and focal epilepsies, whereas most other gene discoveries are subtype specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single-nucleotide/short insertion and deletion variants, copy number variants and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
Collapse
|
12
|
Müller P, Draguhn A, Egorov AV. Persistent sodium currents in neurons: potential mechanisms and pharmacological blockers. Pflugers Arch 2024; 476:1445-1473. [PMID: 38967655 PMCID: PMC11381486 DOI: 10.1007/s00424-024-02980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Persistent sodium current (INaP) is an important activity-dependent regulator of neuronal excitability. It is involved in a variety of physiological and pathological processes, including pacemaking, prolongation of sensory potentials, neuronal injury, chronic pain and diseases such as epilepsy and amyotrophic lateral sclerosis. Despite its importance, neither the molecular basis nor the regulation of INaP are sufficiently understood. Of particular significance is a solid knowledge and widely accepted consensus about pharmacological tools for analysing the function of INaP and for developing new therapeutic strategies. However, the literature on INaP is heterogeneous, with varying definitions and methodologies used across studies. To address these issues, we provide a systematic review of the current state of knowledge on INaP, with focus on mechanisms and effects of this current in the central nervous system. We provide an overview of the specificity and efficacy of the most widely used INaP blockers: amiodarone, cannabidiol, carbamazepine, cenobamate, eslicarbazepine, ethosuximide, gabapentin, GS967, lacosamide, lamotrigine, lidocaine, NBI-921352, oxcarbazepine, phenytoine, PRAX-562, propofol, ranolazine, riluzole, rufinamide, topiramate, valproaic acid and zonisamide. We conclude that there is strong variance in the pharmacological effects of these drugs, and in the available information. At present, GS967 and riluzole can be regarded bona fide INaP blockers, while phenytoin and lacosamide are blockers that only act on the slowly inactivating component of sodium currents.
Collapse
Affiliation(s)
- Peter Müller
- Department Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen , Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Alexei V Egorov
- Institute for Physiology and Pathophysiology, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Chen S, Abou-Khalil BW, Afawi Z, Ali QZ, Amadori E, Anderson A, Anderson J, Andrade DM, Annesi G, Arslan M, Auce P, Bahlo M, Baker MD, Balagura G, Balestrini S, Banks E, Barba C, Barboza K, Bartolomei F, Bass N, Baum LW, Baumgartner TH, Baykan B, Bebek N, Becker F, Bennett CA, Beydoun A, Bianchini C, Bisulli F, Blackwood D, Blatt I, Borggräfe I, Bosselmann C, Braatz V, Brand H, Brockmann K, Buono RJ, Busch RM, Caglayan SH, Canafoglia L, Canavati C, Castellotti B, Cavalleri GL, Cerrato F, Chassoux F, Cherian C, Cherny SS, Cheung CL, Chou IJ, Chung SK, Churchhouse C, Ciullo V, Clark PO, Cole AJ, Cosico M, Cossette P, Cotsapas C, Cusick C, Daly MJ, Davis LK, Jonghe PD, Delanty N, Dennig D, Depondt C, Derambure P, Devinsky O, Di Vito L, Dickerson F, Dlugos DJ, Doccini V, Doherty CP, El-Naggar H, Ellis CA, Epstein L, Evans M, Faucon A, Feng YCA, Ferguson L, Ferraro TN, Da Silva IF, Ferri L, Feucht M, Fields MC, Fitzgerald M, Fonferko-Shadrach B, Fortunato F, Franceschetti S, French JA, Freri E, Fu JM, Gabriel S, Gagliardi M, Gambardella A, Gauthier L, Giangregorio T, Gili T, Glauser TA, Goldberg E, Goldman A, Goldstein DB, Granata T, Grant R, Greenberg DA, Guerrini R, Gundogdu-Eken A, Gupta N, Haas K, Hakonarson H, Haryanyan G, Häusler M, Hegde M, Heinzen EL, Helbig I, Hengsbach C, Heyne H, Hirose S, Hirsch E, Ho CJ, Hoeper O, Howrigan DP, Hucks D, Hung PC, Iacomino M, Inoue Y, Inuzuka LM, Ishii A, Jehi L, Johnson MR, Johnstone M, Kälviäinen R, Kanaan M, Kara B, Kariuki SM, Kegele J, Kesim Y, Khoueiry-Zgheib N, Khoury J, King C, Klein KM, Kluger G, Knake S, Kok F, Korczyn AD, Korinthenberg R, Koupparis A, Kousiappa I, Krause R, Krenn M, Krestel H, Krey I, Kunz WS, Kurlemann G, Kuzniecky RI, Kwan P, La Vega-Talbott M, Labate A, Lacey A, Lal D, Laššuthová P, Lauxmann S, Lawthom C, Leech SL, Lehesjoki AE, Lemke JR, Lerche H, Lesca G, Leu C, Lewin N, Lewis-Smith D, Li GHY, Liao C, Licchetta L, Lin CH, Lin KL, Linnankivi T, Lo W, Lowenstein DH, Lowther C, Lubbers L, Lui CHT, Macedo-Souza LI, Madeleyn R, Madia F, Magri S, Maillard L, Marcuse L, Marques P, Marson AG, Matthews AG, May P, Mayer T, McArdle W, McCarroll SM, McGoldrick P, McGraw CM, McIntosh A, McQuillan A, Meador KJ, Mei D, Michel V, Millichap JJ, Minardi R, Montomoli M, Mostacci B, Muccioli L, Muhle H, Müller-Schlüter K, Najm IM, Nasreddine W, Neaves S, Neubauer BA, Newton CRJC, Noebels JL, Northstone K, Novod S, O'Brien TJ, Owusu-Agyei S, Özkara Ç, Palotie A, Papacostas SS, Parrini E, Pato C, Pato M, Pendziwiat M, Pennell PB, Petrovski S, Pickrell WO, Pinsky R, Pinto D, Pippucci T, Piras F, Piras F, Poduri A, Pondrelli F, Posthuma D, Powell RHW, Privitera M, Rademacher A, Ragona F, Ramirez-Hamouz B, Rau S, Raynes HR, Rees MI, Regan BM, Reif A, Reinthaler E, Rheims S, Ring SM, Riva A, Rojas E, Rosenow F, Ryvlin P, Saarela A, Sadleir LG, Salman B, Salmon A, Salpietro V, Sammarra I, Scala M, Schachter S, Schaller A, Schankin CJ, Scheffer IE, Schneider N, Schubert-Bast S, Schulze-Bonhage A, Scudieri P, Sedláčková L, Shain C, Sham PC, Shiedley BR, Siena SA, Sills GJ, Sisodiya SM, Smoller JW, Solomonson M, Spalletta G, Sparks KR, Sperling MR, Stamberger H, Steinhoff BJ, Stephani U, Štěrbová K, Stewart WC, Stipa C, Striano P, Strzelczyk A, Surges R, Suzuki T, Talarico M, Talkowski ME, Taneja RS, Tanteles GA, Timonen O, Timpson NJ, Tinuper P, Todaro M, Topaloglu P, Tsai MH, Tumiene B, Turkdogan D, Uğur-İşeri S, Utkus A, Vaidiswaran P, Valton L, van Baalen A, Vari MS, Vetro A, Vlčková M, von Brauchitsch S, von Spiczak S, Wagner RG, Watts N, Weber YG, Weckhuysen S, Widdess-Walsh P, Wiebe S, Wolf SM, Wolff M, Wolking S, Wong I, von Wrede R, Wu D, Yamakawa K, Yapıcı Z, Yis U, Yolken R, Yücesan E, Zagaglia S, Zahnert F, Zara F, Zimprich F, Zizovic M, Zsurka G, Neale BM, Berkovic SF. Exome sequencing of 20,979 individuals with epilepsy reveals shared and distinct ultra-rare genetic risk across disorder subtypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.02.22.23286310. [PMID: 36865150 PMCID: PMC9980234 DOI: 10.1101/2023.02.22.23286310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance. Genes encoding ion channels show strong association with multiple epilepsy subtypes, including epileptic encephalopathies, generalized and focal epilepsies, while most other gene discoveries are subtype-specific, highlighting distinct genetic contributions to different epilepsies. Combining results from rare single nucleotide/short indel-, copy number-, and common variants, we offer an expanded view of the genetic architecture of epilepsy, with growing evidence of convergence among different genetic risk loci on the same genes. Top candidate genes are enriched for roles in synaptic transmission and neuronal excitability, particularly postnatally and in the neocortex. We also identify shared rare variant risk between epilepsy and other neurodevelopmental disorders. Our data can be accessed via an interactive browser, hopefully facilitating diagnostic efforts and accelerating the development of follow-up studies.
Collapse
Affiliation(s)
- Siwei Chen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Bassel W Abou-Khalil
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zaid Afawi
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
| | | | | | - Alison Anderson
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Joe Anderson
- Neurology Department, Aneurin Bevan University Health Board, Newport, Wales, UK
| | | | - Grazia Annesi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Mutluay Arslan
- Department of Child Neurology, Gülhane Education and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Pauls Auce
- St George's University Hospital NHS Foundation Trust, London, UK
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Biology, University of Melbourne, Parkville 3010, Australia
| | - Mark D Baker
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Ganna Balagura
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Eric Banks
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Karen Barboza
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Fabrice Bartolomei
- Clinical Neurophysiology and Epileptology Department, Timone Hospital, Marseille, France
| | - Nick Bass
- Division of Psychiatry, University College London
| | - Larry W Baum
- Department of Psychiatry, The University of Hong Kong, Pokulam, Hong Kong
| | - Tobias H Baumgartner
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Felicitas Becker
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology, University of Ulm, Ulm 89081, Germany
| | - Caitlin A Bennett
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Ahmad Beydoun
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Claudia Bianchini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Francesca Bisulli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Douglas Blackwood
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ilan Blatt
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel
| | - Ingo Borggräfe
- Department of Pediatric Neurology, Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munchen, Germany
| | - Christian Bosselmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Vera Braatz
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Knut Brockmann
- Children's Hospital, Dept. of Pediatric Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Russell J Buono
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical Sciences, Cooper Medical School of Rowan University Camden, NJ 08103, USA
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Robyn M Busch
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - S Hande Caglayan
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta Milano, Italy
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
| | - Felecia Cerrato
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francine Chassoux
- Epilepsy Unit, Department of Neurosurgery, Centre Hospitalier Sainte-Anne, and University Paris Descartes, Paris, France
| | - Christina Cherian
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stacey S Cherny
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong
| | - I-Jun Chou
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seo-Kyung Chung
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Kids Research, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Brain & Mind Centre, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Claire Churchhouse
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Valentina Ciullo
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Peggy O Clark
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew J Cole
- Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mahgenn Cosico
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Patrick Cossette
- Department of Neurosciences, Université de Montréal, Montréal, CA 26758, Canada
| | | | - Caroline Cusick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark J Daly
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter De Jonghe
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | | | - Chantal Depondt
- Department of Neurology, CUB Erasme Hospital, Hôpital Universitaire de Bruxelles (H.U.B.), Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Philippe Derambure
- Department of Clinical Neurophysiology, Lille University Medical Center, EA 1046, University of Lille
| | - Orrin Devinsky
- Department of Neurology, New York University/Langone Health, New York NY, USA
| | - Lidia Di Vito
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Faith Dickerson
- Sheppard Pratt, 6501 North Charles Street, Baltimore, Maryland, USA
| | - Dennis J Dlugos
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viola Doccini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Colin P Doherty
- The FutureNeuro Research Centre, Dublin, Ireland
- Neurology Department, St. James's Hospital, Dublin D03 VX82, Ireland
| | - Hany El-Naggar
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | - Colin A Ellis
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | - Leon Epstein
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Meghan Evans
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Annika Faucon
- Human Genetics Training Program, Vanderbilt University, Nashville, TN, USA
| | - Yen-Chen Anne Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Biostatistics, Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| | - Lisa Ferguson
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University Camden, NJ 08103, USA
- Department of Pharmacology and Psychiatry, University of Pennsylvania Perlman School of Medicine, Philadelphia, PA 19104, USA
| | - Izabela Ferreira Da Silva
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Lorenzo Ferri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Martha Feucht
- Department of Pediatrics and Neonatology, Medical University of Vienna, Vienna 1090, Austria
| | - Madeline C Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark Fitzgerald
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
| | | | - Francesco Fortunato
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | | | - Jacqueline A French
- Department of Neurology, New York University/Langone Health, New York NY, USA
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Antonio Gambardella
- Institute of Neurology, Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Laura Gauthier
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tania Giangregorio
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Medical Genetics Unit, Bologna, Italy
| | - Tommaso Gili
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Tracy A Glauser
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ethan Goldberg
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riley Grant
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Greenberg
- Department of Pediatrics, Nationwide Children's Hospital, Columbia, Ohio, USA
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Aslı Gundogdu-Eken
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Namrata Gupta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kevin Haas
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakon Hakonarson
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Garen Haryanyan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Martin Häusler
- Division of Neuropediatrics and Social Pediatrics, Department of Pediatrics, University Hospital, RWTH Aachen, Aachen, Germany
| | - Manu Hegde
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
| | - Christian Hengsbach
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Henrike Heyne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Germany
| | - Shinichi Hirose
- General Medical Research Center, School of Medicine, Fukuoka University, Japan
| | - Edouard Hirsch
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Olivia Hoeper
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Daniel P Howrigan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Donald Hucks
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Po-Chen Hung
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Yushi Inoue
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorder, Shizuoka, Japan
| | - Luciana Midori Inuzuka
- Epilepsy Clinic, Hospital Sirio-Libanes, Sao Paulo, Brazil
- Department of Neurology, University of Sao Paulo School of Medicine, Brazil
| | - Atsushi Ishii
- Department of Pediatrics, Fukuoka Sanno Hospital, Japan
| | - Lara Jehi
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mandy Johnstone
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Reetta Kälviäinen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Kuopio 70210, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Moien Kanaan
- Hereditary Research Lab, Bethlehem University, Bethlehem, Palestine
| | - Bulent Kara
- Department of Child Neurology, Medical School, Kocaeli University, Kocaeli, Turkey
| | - Symon M Kariuki
- Neuroscience Unit, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Yeşim Kesim
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nathalie Khoueiry-Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Jean Khoury
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Chontelle King
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Karl Martin Klein
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
| | - Gerhard Kluger
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany
- Research Institute Rehabilitation / Transition, / Palliation, PMU Salzburg, Austria
| | - Susanne Knake
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Fernando Kok
- Department of Neurology, University of Sao Paulo School of Medicine, Brazil
- Mendelics Genomic Analysis, São Paulo, Brazil
| | - Amos D Korczyn
- Tel-Aviv University Sackler Faculty of Medicine, Ramat Aviv 69978, Israel
| | - Rudolf Korinthenberg
- Department of Neuropediatrics and Muscular Disorders, University Medical Center, University of Freiburg, Freiburg, Germany
| | | | | | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Heinz Krestel
- Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Wolfram S Kunz
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerhard Kurlemann
- Bonifatius Hospital Lingen, Neuropediatrics Wilhelmstrasse 13, 49808 Lingen, Germany
| | - Ruben I Kuzniecky
- Department of Neurology, Hofstra-Northwell Medical School, New York, NY, USA
| | - Patrick Kwan
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, China
| | - Maite La Vega-Talbott
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Angelo Labate
- Neurophysiopatology and Movement Disorders Clinic, University of Messina, Messina, Italy
| | - Austin Lacey
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Petra Laššuthová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Charlotte Lawthom
- Neurology Department, Aneurin Bevan University Health Board, Newport, Wales, UK
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Stephanie L Leech
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki 00290, Finland
- Medicum, University of Helsinki, Helsinki 00290, Finland
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Gaetan Lesca
- Department of Medical Genetics, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Costin Leu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naomi Lewin
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - David Lewis-Smith
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, 19104 USA
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Department of Clinical Neurosciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Gloria Hoi-Yee Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hum, Hong Kong
| | - Calwing Liao
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Kuang-Lin Lin
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tarja Linnankivi
- Child Neurology, New Childreńs Hospital, Helsinki, Finland
- Pediatric Research Center, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
| | - Warren Lo
- Department of Pediatrics and Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Chelsea Lowther
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura Lubbers
- Citizens United for Research in Epilepsy, Chicago, Illinois, USA
| | - Colin H T Lui
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong
| | - Lucia Inês Macedo-Souza
- Department of Biology, Institute of Biological Sciences and Center for Study on Human Genome, University of São Paulo, São Paulo, Brazil
| | - Rene Madeleyn
- Department of Pediatrics, Filderklinik, Filderstadt, Germany
| | | | - Stefania Magri
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Louis Maillard
- Neurology Department, University Hospital of Nancy, UMR 7039, CNRS, Lorraine University, Nancy, France
| | - Lara Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paula Marques
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anthony G Marson
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, UK
| | | | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Thomas Mayer
- Epilepsy Center Kleinwachau, Radeberg 01454, Germany
| | - Wendy McArdle
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Steven M McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patricia McGoldrick
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Boston Children's Health Physicians, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, New York, NY 10595, USA
| | | | - Andrew McIntosh
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | | | - Raffaella Minardi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Martino Montomoli
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Barbara Mostacci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Lorenzo Muccioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Hiltrud Muhle
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Karen Müller-Schlüter
- Epilepsy Center for Children, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Imad M Najm
- Cleveland Clinic Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wassim Nasreddine
- Department of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Samuel Neaves
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | | | - Charles R J C Newton
- Neuroscience Unit, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Public Health, Pwani University, Kilifi, Kenya
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Cape Town, South Africa
| | | | - Kate Northstone
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
| | - Sam Novod
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Terence J O'Brien
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
- University of Health and Allied Science in Ho, Ghana
| | - Çiğdem Özkara
- Istanbul University-Cerrahpaşa, Cerrahpaşa Medical Faculty, Department of Neurology, Istanbul, Turkey
| | - Aarno Palotie
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Neurology, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 0014, Finland
| | | | - Elena Parrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Carlos Pato
- Departments of Psychiatry, Rutgers University, Robert Wood Johnson Medical School and New Jersey Medical School, New Brunswick, NJ, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Michele Pato
- Departments of Psychiatry, Rutgers University, Robert Wood Johnson Medical School and New Jersey Medical School, New Brunswick, NJ, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Manuela Pendziwiat
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Slavé Petrovski
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - William O Pickrell
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Department of Neurology, Morriston Hospital, Swansea Bay University Bay Health Board, Swansea, Wales, UK
| | - Rebecca Pinsky
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Dalila Pinto
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Medical Genetics Unit, Bologna, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Federica Pondrelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, the Netherlands
| | - Robert H W Powell
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Department of Neurology, Morriston Hospital, Swansea Bay University Bay Health Board, Swansea, Wales, UK
| | - Michael Privitera
- Department of Neurology, Gardner Neuroscience Institute, University of Cincinnati Medical Center, Cincinnati, OH 45220, USA
| | - Annika Rademacher
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Byron Ramirez-Hamouz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Rau
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - Hillary R Raynes
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mark I Rees
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
- Brain & Mind Centre, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Brigid M Regan
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg
| | - Eva Reinthaler
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, France
- Lyon's Neuroscience Research Center, INSERM U1028 / CNRS UMR 5292, Lyon, France
| | - Susan M Ring
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | - Antonella Riva
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Enrique Rojas
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Centre Hospitalo-Universitaire Vaudois, Lausanne, Switzerland
| | - Anni Saarela
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Kuopio 70210, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Barış Salman
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Salmon
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Ilaria Sammarra
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Marcello Scala
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Steven Schachter
- Departments of Neurology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02215, USA
| | - André Schaller
- Institute of Human Genetics, Bern University Hospital, Bern, Switzerland
| | - Christoph J Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Ingrid E Scheffer
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
- Florey and Murdoch Children's Research Institutes, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Natascha Schneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Department of Neuropediatrics, Children's Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Paolo Scudieri
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Lucie Sedláčková
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Catherine Shain
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Pokulam, Hong Kong
| | - Beth R Shiedley
- Epilepsy Genetics Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - S Anthony Siena
- Medical School, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Matthew Solomonson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Kathryn R Sparks
- Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL USA
| | - Michael R Sperling
- Department of Neurology and Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hannah Stamberger
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | | | - Ulrich Stephani
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Katalin Štěrbová
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - William C Stewart
- Department of Pediatrics, Nationwide Children's Hospital, Columbia, Ohio, USA
| | - Carlotta Stipa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mariagrazia Talarico
- Department of Medical and Surgical Sciences, Neuroscience Research Center, Magna Graecia University, Catanzaro, Italy
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Randip S Taneja
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Oskari Timonen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70210, Finland
| | - Nicholas John Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2BN, UK
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol BS8 2BN, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, (Reference Center for Rare and Complex Epilepsies - EpiCARE), Bologna, Italy
| | - Marian Todaro
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville 3050, Australia
- Department of Neuroscience, The School of Translational Medicine, Alfred Health, Monash University, Melbourne 3004, Australia
| | - Pınar Topaloglu
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Birute Tumiene
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Dilsad Turkdogan
- Department of Child Neurology, Medical School, Marmara University, Istanbul, Turkey
| | - Sibel Uğur-İşeri
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Algirdas Utkus
- Centre for Medical Genetics, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Priya Vaidiswaran
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Luc Valton
- Department of Neurology, UMR 5549, CNRS, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Andreas van Baalen
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | | | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Markéta Vlčková
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol Hospital, Prague, Czech Republic
| | - Sophie von Brauchitsch
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University Frankfurt, Frankfurt, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Sarah von Spiczak
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
- DRK-Northern German Epilepsy Centre for Children and Adolescents, 24223 Schwentinental-Raisdorf, Germany
| | - Ryan G Wagner
- MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Nick Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yvonne G Weber
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University of Aachen, Aachen 52074, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Edegem 2650, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Peter Widdess-Walsh
- School of Pharmacy and Biomolecular Sciences, The Royal College of Surgeons in Ireland, Dublin, Ireland
- The FutureNeuro Research Centre, Dublin, Ireland
- Department of Neurology, Beaumont Hospital, Dublin D09 FT51, Ireland
| | - Samuel Wiebe
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada
- Clinical Research Unit, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven M Wolf
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Boston Children's Health Physicians, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, New York, NY 10595, USA
| | - Markus Wolff
- Department of Pediatric Neurology, Vivantes Hospital Neukölln, 12351 Berlin, Germany
| | - Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
- Department of Neurology and Epileptology, University of Aachen, Aachen 52074, Germany
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Randi von Wrede
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
| | - David Wu
- Human Genetics Training Program, Vanderbilt University, Nashville, TN, USA
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, Japan
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Zuhal Yapıcı
- Department of Child Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Uluc Yis
- Department of Child Neurology, Medical School, Dokuz Eylul University, Izmir, Turkey
| | - Robert Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emrah Yücesan
- Bezmialem Vakif University, Institute of Life Sciences and Biotechnology, Istanbul, Turkey
| | - Sara Zagaglia
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire SL9 0RJ, UK
| | - Felix Zahnert
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Germany
- Epilepsy Center Hessen-Marburg, Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Federico Zara
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Milena Zizovic
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Gábor Zsurka
- Department of Epileptology, University of Bonn Medical Centre, Bonn 53127, Germany
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg 3084, Australia
| |
Collapse
|
14
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
15
|
D’Gama AM, Shao W, Smith L, Koh HY, Davis M, Koh J, Oby BT, Urzua CI, Sheidley BR, Rockowitz S, Poduri A. Utility of Genome Sequencing After Nondiagnostic Exome Sequencing in Unexplained Pediatric Epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24307445. [PMID: 39148850 PMCID: PMC11326351 DOI: 10.1101/2024.08.08.24307445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Importance Epilepsy is the most common neurological disorder of childhood. Identifying genetic diagnoses underlying epilepsy is critical to developing effective therapies and improving outcomes. Most children with non-acquired (unexplained) epilepsy remain genetically unsolved, and the utility of genome sequencing after nondiagnostic exome sequencing is unknown. Objective To determine the diagnostic (primary) and clinical (secondary) utility of genome sequencing after nondiagnostic exome sequencing in individuals with unexplained pediatric epilepsy. Design This cohort study performed genome sequencing and comprehensive analyses for 125 participants and available biological parents enrolled from August 2018 to May 2023, with data analysis through April 2024 and clinical return of diagnostic and likely diagnostic genetic findings. Clinical utility was evaluated. Setting Pediatric referral center. Participants Participants with unexplained pediatric epilepsy and previous nondiagnostic exome sequencing; biological parents when available. Exposures Short-read genome sequencing and analysis. Main Outcomes and Measures Primary outcome measures were the diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding, and the unique diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding that required genome sequencing. The secondary outcome measure was clinical utility of genome sequencing, defined as impact on evaluation, treatment, or prognosis for the participant or their family. Results 125 participants (58 [46%] female) were enrolled with median age at seizure onset 3 [IQR 1.25, 8] years, including 44 (35%) with developmental and epileptic encephalopathies. The diagnostic yield of genome sequencing was 7.2% (9/125), with diagnostic genetic findings in five cases and likely diagnostic genetic findings in four cases. Among the solved cases, 7/9 (78%) required genome sequencing for variant detection (small copy number variant, three noncoding variants, and three difficult to sequence small coding variants), for a unique diagnostic yield of genome sequencing of 5.6% (7/125). Clinical utility was documented for 4/9 solved cases (44%). Conclusions and Relevance These findings suggest that genome sequencing can have diagnostic and clinical utility after nondiagnostic exome sequencing and should be considered for patients with unexplained pediatric epilepsy.
Collapse
Affiliation(s)
- Alissa M. D’Gama
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Children’s Rare Disease Collaborative, Boston Children’s Hospital, Boston, MA
| | - Wanqing Shao
- Children’s Rare Disease Collaborative, Boston Children’s Hospital, Boston, MA
| | - Lacey Smith
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Hyun Yong Koh
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX
| | - Maya Davis
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Julia Koh
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Brandon T. Oby
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Cesar I. Urzua
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Beth R. Sheidley
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
| | - Shira Rockowitz
- Children’s Rare Disease Collaborative, Boston Children’s Hospital, Boston, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA
- Children’s Rare Disease Collaborative, Boston Children’s Hospital, Boston, MA
- Department of Neurology, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
McDonagh EM, Trynka G, McCarthy M, Holzinger ER, Khader S, Nakic N, Hu X, Cornu H, Dunham I, Hulcoop D. Human Genetics and Genomics for Drug Target Identification and Prioritization: Open Targets' Perspective. Annu Rev Biomed Data Sci 2024; 7:59-81. [PMID: 38608311 DOI: 10.1146/annurev-biodatasci-102523-103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Open Targets, a consortium among academic and industry partners, focuses on using human genetics and genomics to provide insights to key questions that build therapeutic hypotheses. Large-scale experiments generate foundational data, and open-source informatic platforms systematically integrate evidence for target-disease relationships and provide dynamic tooling for target prioritization. A locus-to-gene machine learning model uses evidence from genome-wide association studies (GWAS Catalog, UK BioBank, and FinnGen), functional genomic studies, epigenetic studies, and variant effect prediction to predict potential drug targets for complex diseases. These predictions are combined with genetic evidence from gene burden analyses, rare disease genetics, somatic mutations, perturbation assays, pathway analyses, scientific literature, differential expression, and mouse models to systematically build target-disease associations (https://platform.opentargets.org). Scored target attributes such as clinical precedence, tractability, and safety guide target prioritization. Here we provide our perspective on the value and impact of human genetics and genomics for generating therapeutic hypotheses.
Collapse
Affiliation(s)
- Ellen M McDonagh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK;
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK;
| | | | | | - Shameer Khader
- Precision Medicine & Computational Biology, Sanofi, Cambridge, Massachusetts, USA
| | | | - Xinli Hu
- Inflammation and Immunology, Pfizer Research and Development, Inc., Cambridge, Massachusetts, USA
| | - Helena Cornu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK;
| | - Ian Dunham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK;
| | - David Hulcoop
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK;
| |
Collapse
|
17
|
Sajan SA, Gradisch R, Vogel FD, Coffey AJ, Salyakina D, Soler D, Jayakar P, Jayakar A, Bianconi SE, Cooper AH, Liu S, William N, Benkel-Herrenbrück I, Maiwald R, Heller C, Biskup S, Leiz S, Westphal DS, Wagner M, Clarke A, Stockner T, Ernst M, Kesari A, Krenn M. De novo variants in GABRA4 are associated with a neurological phenotype including developmental delay, behavioral abnormalities and epilepsy. Eur J Hum Genet 2024; 32:912-919. [PMID: 38565639 PMCID: PMC11291759 DOI: 10.1038/s41431-024-01600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Nine out of 19 genes encoding GABAA receptor subunits have been linked to monogenic syndromes characterized by seizures and developmental disorders. Previously, we reported the de novo variant p.(Thr300Ile) in GABRA4 in a patient with epilepsy and neurodevelopmental abnormalities. However, no new cases have been reported since then. Through an international collaboration, we collected molecular and phenotype data of individuals carrying de novo variants in GABRA4. Patients and their parents were investigated either by exome or genome sequencing, followed by targeted Sanger sequencing in some cases. All variants within the transmembrane domain, including the previously reported p.(Thr300Ile) variant, were characterized in silico and analyzed by molecular dynamics (MD) simulation studies. We identified three novel de novo missense variants in GABRA4 (NM_000809.4): c.797 C > T, p.(Pro266Leu), c.899 C > A, p.(Thr300Asn), and c.634 G > A, p.(Val212Ile). The p.(Thr300Asn) variant impacts the same codon as the previously reported variant p.(Thr300Ile) and likely arose post-zygotically as evidenced by sequencing oral mucosal cells. Overlapping phenotypes among affected individuals included developmental delay (4/4), epileptiform EEG abnormalities (3/4), attention deficits (3/4), seizures (2/4), autistic features (2/4) and structural brain abnormalities (2/4). MD simulations of the three variants within the transmembrane domain of the receptor indicate that sub-microsecond scale dynamics differ between wild-type and mutated subunits. Taken together, our findings further corroborate an association between GABRA4 and a neurological phenotype including variable neurodevelopmental, behavioral and epileptic abnormalities.
Collapse
Affiliation(s)
- Samin A Sajan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ralph Gradisch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Florian D Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Alison J Coffey
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Daria Salyakina
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Diana Soler
- Personalized Medicine and Health Outcomes Research, Nicklaus Children's Hospital, Miami, FL, USA
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL, USA
| | - Anuj Jayakar
- Department of Neurology, Division of Epilepsy, Nicklaus Children's Hospital, Miami, FL, USA
| | | | | | | | | | | | - Robert Maiwald
- Medizinisches Versorgungszentrum für Gerinnungsdiagnostik und Medizinische Genetik Köln, Köln, Germany
| | | | - Saskia Biskup
- Zentrum für Humangenetik, Tübingen, Germany
- Center for Genomics and Transcriptomics (CeGaT), Tübingen, Germany
| | - Steffen Leiz
- Division of Neuropediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Internal Medicine I, School of Medicine & Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Amy Clarke
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Akanchha Kesari
- lllumina Clinical Services Laboratory, Illumina Inc., San Diego, CA, USA
| | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Heyne HO, Pajuste FD, Wanner J, Daniel Onwuchekwa JI, Mägi R, Palotie A, Kälviainen R, Daly MJ. Polygenic risk scores as a marker for epilepsy risk across lifetime and after unspecified seizure events. Nat Commun 2024; 15:6277. [PMID: 39054313 PMCID: PMC11272783 DOI: 10.1038/s41467-024-50295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 700k Finns and Estonians. We found that a high genetic generalized epilepsy PRS (PRSGGE) increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.73 per PRSGGE standard deviation [SD]) across lifetime and within 10 years after an unspecified seizure event. The effect of PRSGGE was significantly larger on idiopathic generalized epilepsies, in females and for earlier epilepsy onset. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). Here, we outline the potential of epilepsy specific PRSs to serve as biomarkers after a first seizure event.
Collapse
Affiliation(s)
- Henrike O Heyne
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany.
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, NY, US.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Julian Wanner
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jennifer I Daniel Onwuchekwa
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Faculty of Life Sciences, University of Siegen, Siegen, Germany
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reetta Kälviainen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Muthaffar OY, Alazhary NW, Alyazidi AS, Alsubaie MA, Bahowarth SY, Odeh NB, Bamaga AK. Clinical description and evaluation of 30 pediatric patients with ultra-rare diseases: A multicenter study with real-world data from Saudi Arabia. PLoS One 2024; 19:e0307454. [PMID: 39024300 PMCID: PMC11257271 DOI: 10.1371/journal.pone.0307454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND With the advancement of next-generation sequencing, clinicians are now able to detect ultra-rare mutations that are barely encountered by the majority of physicians. Ultra-rare and rare diseases cumulatively acquire a prevalence equivalent to type 2 diabetes with 80% being genetic in origin and more prevalent among high consanguinity communities including Saudi Arabia. The challenge of these diseases is the ability to predict their prevalence and define clear phenotypic features. METHODS This is a non-interventional retrospective multicenter study. We included pediatric patients with a pathogenic variant designated as ultra-rare according to the National Institute for Clinical Excellence's criteria. Demographic, clinical, laboratory, and radiological data of all patients were collected and analyzed using multinomial regression models. RESULTS We included 30 patients. Their mean age of diagnosis was 16.77 months (range 3-96 months) and their current age was 8.83 years (range = 2-15 years). Eleven patients were females and 19 were males. The majority were of Arab ethnicity (96.77%). Twelve patients were West-Saudis and 8 patients were South-Saudis. SCN1A mutation was reported among 19 patients. Other mutations included SZT2, ROGDI, PRF1, ATP1A3, and SHANK3. The heterozygous mutation was reported among 67.86%. Twenty-nine patients experienced seizures with GTC being the most frequently reported semiology. The mean response to ASMs was 45.50% (range 0-100%). CONCLUSION The results suggest that ultra-rare diseases must be viewed as a distinct category from rare diseases with potential demographic and clinical hallmarks. Additional objective and descriptive criteria to detect such cases are needed.
Collapse
Affiliation(s)
- Osama Y Muthaffar
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura W Alazhary
- Department of General Pediatric, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | - Anas S Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Sarah Y Bahowarth
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nour B Odeh
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Silva DB, Trinidad M, Ljungdahl A, Revalde JL, Berguig GY, Wallace W, Patrick CS, Bomba L, Arkin M, Dong S, Estrada K, Hutchinson K, LeBowitz JH, Schlessinger A, Johannesen KM, Møller RS, Giacomini KM, Froelich S, Sanders SJ, Wuster A. Haploinsufficiency underlies the neurodevelopmental consequences of SLC6A1 variants. Am J Hum Genet 2024; 111:1222-1238. [PMID: 38781976 PMCID: PMC11179425 DOI: 10.1016/j.ajhg.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.
Collapse
Affiliation(s)
- Dina Buitrago Silva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Marena Trinidad
- BioMarin Pharmaceutical Inc., Novato, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alicia Ljungdahl
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford OX3 7TY, UK
| | - Jezrael L Revalde
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Cory S Patrick
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Michelle Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Keino Hutchinson
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Katrine M Johannesen
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Rikke S Møller
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark; Department of Epilepsy Genetics and Personalized Medicine, Member of ERN Epicare, Danish Epilepsy Centre, Dianalund, Denmark
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | | | - Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford OX3 7TY, UK.
| | | |
Collapse
|
21
|
Sabnis G, Hession L, Mahoney JM, Mobley A, Santos M, Kumar V. Visual detection of seizures in mice using supervised machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596520. [PMID: 38868170 PMCID: PMC11167691 DOI: 10.1101/2024.05.29.596520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Seizures are caused by abnormally synchronous brain activity that can result in changes in muscle tone, such as twitching, stiffness, limpness, or rhythmic jerking. These behavioral manifestations are clear on visual inspection and the most widely used seizure scoring systems in preclinical models, such as the Racine scale in rodents, use these behavioral patterns in semiquantitative seizure intensity scores. However, visual inspection is time-consuming, low-throughput, and partially subjective, and there is a need for rigorously quantitative approaches that are scalable. In this study, we used supervised machine learning approaches to develop automated classifiers to predict seizure severity directly from noninvasive video data. Using the PTZ-induced seizure model in mice, we trained video-only classifiers to predict ictal events, combined these events to predict an univariate seizure intensity for a recording session, as well as time-varying seizure intensity scores. Our results show, for the first time, that seizure events and overall intensity can be rigorously quantified directly from overhead video of mice in a standard open field using supervised approaches. These results enable high-throughput, noninvasive, and standardized seizure scoring for downstream applications such as neurogenetics and therapeutic discovery.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, ME USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME USA
| |
Collapse
|
22
|
Patowary A, Zhang P, Jops C, Vuong CK, Ge X, Hou K, Kim M, Gong N, Margolis M, Vo D, Wang X, Liu C, Pasaniuc B, Li JJ, Gandal MJ, de la Torre-Ubieta L. Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms. Science 2024; 384:eadh7688. [PMID: 38781356 DOI: 10.1126/science.adh7688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders; yet, the role of cell type-specific splicing and transcript-isoform diversity during human brain development has not been systematically investigated. In this work, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone and cortical plate regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 distinct isoforms, of which 72.6% were novel (not previously annotated in Gencode version 33), and uncovered a substantial contribution of transcript-isoform diversity-regulated by RNA binding proteins-in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to reprioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ashok Patowary
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Connor Jops
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Celine K Vuong
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xinzhou Ge
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Naihua Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Margolis
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Vo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jingyi Jessica Li
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis de la Torre-Ubieta
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Wen C, Margolis M, Dai R, Zhang P, Przytycki PF, Vo DD, Bhattacharya A, Matoba N, Tang M, Jiao C, Kim M, Tsai E, Hoh C, Aygün N, Walker RL, Chatzinakos C, Clarke D, Pratt H, Peters MA, Gerstein M, Daskalakis NP, Weng Z, Jaffe AE, Kleinman JE, Hyde TM, Weinberger DR, Bray NJ, Sestan N, Geschwind DH, Roeder K, Gusev A, Pasaniuc B, Stein JL, Love MI, Pollard KS, Liu C, Gandal MJ. Cross-ancestry atlas of gene, isoform, and splicing regulation in the developing human brain. Science 2024; 384:eadh0829. [PMID: 38781368 DOI: 10.1126/science.adh0829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/07/2024] [Indexed: 05/25/2024]
Abstract
Neuropsychiatric genome-wide association studies (GWASs), including those for autism spectrum disorder and schizophrenia, show strong enrichment for regulatory elements in the developing brain. However, prioritizing risk genes and mechanisms is challenging without a unified regulatory atlas. Across 672 diverse developing human brains, we identified 15,752 genes harboring gene, isoform, and/or splicing quantitative trait loci, mapping 3739 to cellular contexts. Gene expression heritability drops during development, likely reflecting both increasing cellular heterogeneity and the intrinsic properties of neuronal maturation. Isoform-level regulation, particularly in the second trimester, mediated the largest proportion of GWAS heritability. Through colocalization, we prioritized mechanisms for about 60% of GWAS loci across five disorders, exceeding adult brain findings. Finally, we contextualized results within gene and isoform coexpression networks, revealing the comprehensive landscape of transcriptome regulation in development and disease.
Collapse
Affiliation(s)
- Cindy Wen
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Margolis
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rujia Dai
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Pan Zhang
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pawel F Przytycki
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Daniel D Vo
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Miao Tang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chuan Jiao
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Krebs, 75014 Paris, France
| | - Minsoo Kim
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ellen Tsai
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Celine Hoh
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebecca L Walker
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christos Chatzinakos
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Declan Clarke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Henry Pratt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mette A Peters
- CNS Data Coordination Group, Sage Bionetworks, Seattle, WA 98109, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- McLean Hospital, Belmont, MA 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Neumora Therapeutics, Watertown, MA 02472, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas J Bray
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University School of Medicine, Cardiff CF24 4HQ, UK
| | - Nenad Sestan
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Daniel H Geschwind
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathryn Roeder
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alexander Gusev
- Department of Medical Oncology, Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Medical School, Boston, MA 02215, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Bogdan Pasaniuc
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
24
|
Heebner M, Mainali G, Wei S, Kumar A, Naik S, Pradhan S, Kandel P, Tencer J, Carney P, Paudel S. Importance of Genetic Testing in Children With Generalized Epilepsy. Cureus 2024; 16:e59991. [PMID: 38854234 PMCID: PMC11162283 DOI: 10.7759/cureus.59991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Epilepsy is a neurological disorder characterized by the predisposition for recurrent unprovoked seizures. It can broadly be classified as focal, generalized, unclassified, and unknown in its onset. Focal epilepsy originates in and involves networks localized to one region of the brain. Generalized epilepsy engages broader, more diffuse networks. The etiology of epilepsy can be structural, genetic, infectious, metabolic, immune, or unknown. Many generalized epilepsies have presumed genetic etiologies. The aim of this study is to compare the role of genetic testing to brain MRI as diagnostic tools for identifying the underlying causes of idiopathic (genetic) generalized epilepsy (IGE). METHODS We evaluated the diagnostic yield of these two categories in children diagnosed with IGE. Data collection was completed using ICD10 codes filtered by TriNetX to select 982 individual electronic medical records (EMRs) of children in the Penn State Children's Hospital who received a diagnosis of IGE. The diagnosis was confirmed after reviewing the clinical history and electroencephalogram (EEG) data for each patient. RESULTS From this dataset, neuroimaging and genetic testing results were gathered. A retrospective chart review was done on 982 children with epilepsy, of which 143 (14.5%) met the criteria for IGE. Only 18 patients underwent genetic testing. Abnormalities that could be a potential cause for epilepsy were seen in 72.2% (13/18) of patients with IGE and abnormal genetic testing, compared to 30% (37/123) for patients who had a brain MRI with genetic testing. CONCLUSION This study suggests that genetic testing may be more useful than neuroimaging for identifying an etiological diagnosis of pediatric patients with IGE.
Collapse
Affiliation(s)
| | - Gayatra Mainali
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Sharon Wei
- Neurology, Penn State University, Hershey, USA
| | - Ashutosh Kumar
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Sunil Naik
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | | | - Prakash Kandel
- Biostatistics, Penn State College of Medicine, Hershey, USA
| | - Jaclyn Tencer
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| | - Paul Carney
- Pediatrics and Neurology, University of Missouri, Columbia, USA
| | - Sita Paudel
- Pediatric Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, USA
| |
Collapse
|
25
|
Cetica V, Pisano T, Lesca G, Marafi D, Licchetta L, Riccardi F, Mei D, Chung HYB, Bayat A, Balasubramanian M, Lowenstein DH, Endzinienė M, Alotaibi M, Villeneuve N, Jacobs J, Isidor B, Solazzi R, den Hollander NS, Marjanovic D, Rougeot-Jung C, Jung J, Lesieur-Sebellin M, Accogli A, Salpietro V, Saadi NW, Panagiotakaki E, Foiadelli T, Redon S, Tsai MH, Bisulli F, Hammer TB, Lupski JR, Parrini E, Guerrini R. Clinical and molecular characterization of patients with YWHAG-related epilepsy. Epilepsia 2024; 65:1439-1450. [PMID: 38491959 DOI: 10.1111/epi.17939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy. METHODS We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG. We extended the analysis of clinical, electroencephalographic, brain magnetic resonance imaging, and molecular genetic information to 24 previously published patients. RESULTS The phenotypic spectrum of YWHAG-related disorders ranges from mild developmental delay to developmental and epileptic encephalopathy (DEE). Epilepsy onset is in the first 2 years of life. Seizure freedom can be achieved in half of the patients (13/24, 54%). Intellectual disability (23/24, 96%), behavioral disorders (18/24, 75%), neurological signs (13/24, 54%), and dysmorphisms (6/24, 25%) are common. A genotype-phenotype correlation emerged, as DEE is more represented in patients with missense variants located in the ligand-binding domain than in those with truncating or missense variants in other domains (90% vs. 19%, p < .001). SIGNIFICANCE This study suggests that pathogenic YWHAG variants cause a wide range of clinical presentations with variable severity, ranging from mild developmental delay to DEE. In this allelic series, a genotype-phenotype correlation begins to emerge, potentially providing prognostic information for clinical management and genetic counseling.
Collapse
Affiliation(s)
- Valentina Cetica
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Tiziana Pisano
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Gaetan Lesca
- Université Lyon 1, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Physiopathologie et Génétique du Neurone et du Muscle, Institut NeuroMyoGène, Lyon, France
- Department of Genetics, University Hospitals of Lyon, Hospices Civils de Lyon, Lyon, France
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Laura Licchetta
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, Istituto delle Scienze Neurologiche di Bologna, full member of the European Reference Network EpiCARE, Bologna, Italy
| | - Florence Riccardi
- Aix-Marseille University, Institut National de la Santé et de la Recherche Médicale (INSERM), Marseille Medical Genetics, Marseille, France
- Centre Hospitalier Intercommunal Toulon - La Seyne sur Mer (CHITS), Hôpital Ste Musse, Service de Génétique Médicale, Toulon, France
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Hon-Yin B Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Allan Bayat
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Meena Balasubramanian
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Sheffield Clinical Genetics Service, Sheffield Children's National Health Service (NHS) Foundation Trust, Sheffield, UK
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, California, USA
| | - Milda Endzinienė
- Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Nathalie Villeneuve
- Depatment of Pediatric Neurology, Assistance Publique-Hopitaux de Marseille (AP-HM), Hôpital de la Timone Enfants, Marseille, France
| | - Julia Jacobs
- Alberta Children's Research Institute, Hodgekiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Bertrand Isidor
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- Université de Nantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), l'Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | - Julien Jung
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, University Paris Cité, Paris, France
| | - Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Nebal W Saadi
- College of Medicine, University of Baghdad, Baghdad, Iraq
- Children Welfare Teaching Hospital, Baghdad, Iraq
| | - Eleni Panagiotakaki
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Thomas Foiadelli
- Clinica Pediatrica, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sylvia Redon
- Service de Génétique Médicale, Centre Hospitalier et Universitaire de Brest, Brest, France
- Université de Brest, Institut National de la Santé et de la Recherche Médicale (INSERM), Etablissement Français du Sang, UMR 1078, Brest, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Brest, France
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Francesca Bisulli
- Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, Istituto delle Scienze Neurologiche di Bologna, full member of the European Reference Network EpiCARE, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Trine B Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Elena Parrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| |
Collapse
|
26
|
Daquin G, Bonini F. The landscape of drug resistant absence seizures in adolescents and adults: Pathophysiology, electroclinical spectrum and treatment options. Rev Neurol (Paris) 2024; 180:256-270. [PMID: 38413268 DOI: 10.1016/j.neurol.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024]
Abstract
The persistence of typical absence seizures (AS) in adolescence and adulthood may reduce the quality of life of patients with genetic generalized epilepsies (GGEs). The prevalence of drug resistant AS is probably underestimated in this patient population, and treatment options are relatively scarce. Similarly, atypical absence seizures in developmental and epileptic encephalopathies (DEEs) may be unrecognized, and often persist into adulthood despite improvement of more severe seizures. These two seemingly distant conditions, represented by typical AS in GGE and atypical AS in DEE, share at least partially overlapping pathophysiological and genetic mechanisms, which may be the target of drug and neurostimulation therapies. In addition, some patients with drug-resistant typical AS may present electroclinical features that lie in between the two extremes represented by these generalized forms of epilepsy.
Collapse
Affiliation(s)
- G Daquin
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France
| | - F Bonini
- Epileptology and Cerebral Rythmology, AP-HM, Timone hospital, Marseille, France; Aix Marseille Univ, Inserm, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
27
|
Lara MK, Brabec JL, Hernan AE, Scott RC, Tyler AL, Mahoney JM. Network-based analysis predicts interacting genetic modifiers from a meta-mapping study of spike-wave discharge in mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e12879. [PMID: 38444174 PMCID: PMC10915378 DOI: 10.1111/gbb.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 03/07/2024]
Abstract
Absence seizures are characterized by brief lapses in awareness accompanied by a hallmark spike-and-wave discharge (SWD) electroencephalographic pattern and are common to genetic generalized epilepsies (GGEs). While numerous genes have been associated with increased risk, including some Mendelian forms with a single causal allele, most cases of GGE are idiopathic and there are many unknown genetic modifiers of GGE influencing risk and severity. In a previous meta-mapping study, crosses between transgenic C57BL/6 and C3HeB/FeJ strains, each carrying one of three SWD-causing mutations (Gabrg2tm1Spet(R43Q) , Scn8a8j or Gria4spkw1 ), demonstrated an antagonistic epistatic interaction between loci on mouse chromosomes 2 and 7 influencing SWD. These results implicate universal modifiers in the B6 background that mitigate SWD severity through a common pathway, independent of the causal mutation. In this study, we prioritized candidate modifiers in these interacting loci. Our approach integrated human genome-wide association results with gene interaction networks and mouse brain gene expression to prioritize candidate genes and pathways driving variation in SWD outcomes. We considered candidate genes that are functionally associated with human GGE risk genes and genes with evidence for coding or non-coding allele effects between the B6 and C3H backgrounds. Our analyses output a summary ranking of gene pairs, one gene from each locus, as candidates for explaining the epistatic interaction. Our top-ranking gene pairs implicate microtubule function, cytoskeletal stability and cell cycle regulation as novel hypotheses about the source of SWD variation across strain backgrounds, which could clarify underlying mechanisms driving differences in GGE severity in humans.
Collapse
Affiliation(s)
- Montana Kay Lara
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontUSA
| | - Jeffrey L. Brabec
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontUSA
| | - Amanda E. Hernan
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontUSA
- Division of NeuroscienceNemours Children's HealthWilmingtonDelawareUSA
- Department of Psychological and Brain SciencesUniversity of DelawareNewarkDelawareUSA
| | - Rod C. Scott
- Division of NeuroscienceNemours Children's HealthWilmingtonDelawareUSA
- Department of Psychological and Brain SciencesUniversity of DelawareNewarkDelawareUSA
| | | | - J. Matthew Mahoney
- Department of Neurological SciencesUniversity of VermontBurlingtonVermontUSA
- The Jackson LaboratoryBar HarborMaineUSA
| |
Collapse
|
28
|
Çapan ÖY, Türkdoğan D, Atalay S, Çağlayan HS. Developmental and epileptic encephalopathy 82 (DEE82) with novel compound heterozygous mutations of GOT2 gene. Seizure 2024; 116:126-132. [PMID: 37977948 DOI: 10.1016/j.seizure.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Developmental and Epileptic Encephalopathies (DEEs) are rare neurological disorders characterized by early-onset medically resistant epileptic seizures, structural brain malformations, and severe developmental delays. These disorders can arise from mutations in genes involved in vital metabolic pathways, including those within the brain. Recent studies have implicated defects in the mitochondrial malate aspartate shuttle (MAS) as potential contributors to the clinical manifestation of infantile epileptic encephalopathy. Although rare, mutations in MDH1, MDH2, AGC1, or GOT2 genes have been reported in patients exhibiting neurological symptoms such as global developmental delay, epilepsy, and progressive microcephaly. METHOD In this study, we employed exome data analysis of a patient diagnosed with DEE, focusing on the screening of 1896 epilepsy-related genes listed in the HPO and ClinVar databases. Sanger sequencing was subsequently conducted to validate and assess the inheritance pattern of the identified variants within the family. The evolutionary conservation scores of the mutated residues were evaluated using the ConSurf Database. Furthermore, the impacts of the causative variations on protein stability were analyzed through I-Mutant and MuPro bioinformatic tools. Structural comparisons between wild-type and mutant proteins were performed using PyMOL, and the physicochemical effects of the mutations were assessed using Project Hope. RESULTS Exome data analysis unveiled the presence of novel compound heterozygous mutations in the GOT2 gene coding for mitochondrial glutamate aspartate transaminase. Sanger sequencing confirmed the paternal inheritance of the p.Asp257Asn mutation and the maternal inheritance of the p.Arg262Cys mutation. The affected individual exhibited plasma metabolic disturbances, including hyperhomocysteinemia, hyperlactatemia, and reduced levels of methionine and arginine. Detailed bioinformatic analysis indicated that the mutations were located within evolutionarily conserved domains of the enzyme, resulting in disruptions to protein stability and structure. CONCLUSION Herein, we describe a case with DEE82 (MIM: # 618721) with pathologic novel biallelic mutations in the GOT2 gene. Early genetic diagnosis of metabolic epilepsies is crucial for long-term neurodevelopmental improvements and seizure control as targeted treatments can be administered based on the affected metabolic pathways.
Collapse
Affiliation(s)
- Özlem Yalçın Çapan
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
| | - Dilşad Türkdoğan
- Marmara University, Medical Faculty, Department of Pediatric Neurology, Turkey
| | - Sertaç Atalay
- Central Research Laboratory, Tekirdağ Namik Kemal University, Tekirdağ, Turkey
| | - Hande S Çağlayan
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
29
|
Jin L, Li Y, Luo S, Peng Q, Zhai QX, Zhai JX, Gao LD, Guo JJ, Song W, Yi YH, He N, Chen YJ. Reprint of: Recessive APC2 missense variants associated with epilepsies without neurodevelopmental disorders. Seizure 2024; 116:87-92. [PMID: 38523034 DOI: 10.1016/j.seizure.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.
Collapse
Affiliation(s)
- Liang Jin
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Li
- Department of Brain Function and Neuroelectrophysiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan Maternal and Child Health Hospital, Southern Medical University Affiliated, Dongguang, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Xia Zhai
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong-Jun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
30
|
Çapan ÖY, Yapıcı Z, Özbil M, Çağlayan HS. Exome data of developmental and epileptic encephalopathy patients reveals de novo and inherited pathologic variants in epilepsy-associated genes. Seizure 2024; 116:51-64. [PMID: 37353388 DOI: 10.1016/j.seizure.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023] Open
Abstract
PURPOSE In Developmental and Epileptic Encephalopathies (DEEs), identifying the precise genetic factors guides the clinicians to apply the most appropriate treatment for the patient. Due to high locus heterogeneity, WES analysis is a promising approach for the genetic diagnosis of DEE. Therefore, the aim of the present study is to evaluate the utility of WES in the diagnosis and treatment of DEE patients. METHODS The exome data of 29 DEE patients were filtrated for destructive and missense mutations in 1896 epilepsy-related genes to detect the causative variants and examine the genotype-phenotype correlations. We performed Sanger sequencing with the available DNA samples to follow the co-segregation of the variants with the disease phenotype in the families. Also, the structural effects of p.Asn1053Ser, p.Pro120Ser and p.Glu1868Gly mutations on KCNMA1, NPC2, and SCN2A proteins, respectively, were evaluated by molecular dynamics (MD) and molecular docking simulations. RESULTS Out of 29, nine patients (31%) harbor pathological (P) or likely pathological (LP) mutations in SCN2A, KCNQ2, ATP1A2, KCNMA1, and MECP2 genes, and three patients have VUS variants (10%) in SCN1A and SCN2A genes. Sanger sequencing results indicated that three of the patients have de novo mutations while eight of them carry paternally and/or maternally inherited causative variants. MD and molecular docking simulations supported the destructive effects of the mutations on KCNMA1, NPC2, and SCN2A protein structures. CONCLUSION Herein we demonstrated the effectiveness of WES for DEE with high locus heterogeneity. Identification of the genetic etiology guided the clinicians to adjust the proper treatment for the patients.
Collapse
Affiliation(s)
- Özlem Yalçın Çapan
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey; Department of Molecular Biology and Genetics, İstanbul Arel University, İstanbul, Turkey.
| | - Zuhal Yapıcı
- Division of Child Neurology, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Özbil
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkiye
| | - Hande S Çağlayan
- Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey (formerly)
| |
Collapse
|
31
|
Fasaludeen A, McTague A, Jose M, Banerjee M, Sundaram S, Madhusoodanan UK, Radhakrishnan A, Menon RN. Genetic variant interpretation for the neurologist - A pragmatic approach in the next-generation sequencing era in childhood epilepsy. Epilepsy Res 2024; 201:107341. [PMID: 38447235 DOI: 10.1016/j.eplepsyres.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Genetic advances over the past decade have enhanced our understanding of the genetic landscape of childhood epilepsy. However a major challenge for clinicians ha been understanding the rationale and systematic approach towards interpretation of the clinical significance of variant(s) detected in their patients. As the clinical paradigm evolves from gene panels to whole exome or whole genome testing including rapid genome sequencing, the number of patients tested and variants identified per patient will only increase. Each step in the process of variant interpretation has limitations and there is no single criterion which enables the clinician to draw reliable conclusions on a causal relationship between the variant and disease without robust clinical phenotyping. Although many automated online analysis software tools are available, these carry a risk of misinterpretation. This guideline provides a pragmatic, real-world approach to variant interpretation for the child neurologist. The focus will be on ascertaining aspects such as variant frequency, subtype, inheritance pattern, structural and functional consequence with regard to genotype-phenotype correlations, while refraining from mere interpretation of the classification provided in a genetic test report. It will not replace the expert advice of colleagues in clinical genetics, however as genomic investigations become a first-line test for epilepsy, it is vital that neurologists and epileptologists are equipped to navigate this landscape.
Collapse
Affiliation(s)
- Alfiya Fasaludeen
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Manna Jose
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Moinak Banerjee
- Human Molecular Genetics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Soumya Sundaram
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - U K Madhusoodanan
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Ashalatha Radhakrishnan
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India
| | - Ramshekhar N Menon
- Dept of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
32
|
Tian R, Ge T, Kweon H, Rocha DB, Lam M, Liu JZ, Singh K, Levey DF, Gelernter J, Stein MB, Tsai EA, Huang H, Chabris CF, Lencz T, Runz H, Chen CY. Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression. Nat Commun 2024; 15:1755. [PMID: 38409228 PMCID: PMC10897433 DOI: 10.1038/s41467-024-45774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
Nearly two hundred common-variant depression risk loci have been identified by genome-wide association studies (GWAS). However, the impact of rare coding variants on depression remains poorly understood. Here, we present whole-exome sequencing analyses of depression with seven different definitions based on survey, questionnaire, and electronic health records in 320,356 UK Biobank participants. We showed that the burden of rare damaging coding variants in loss-of-function intolerant genes is significantly associated with risk of depression with various definitions. We compared the rare and common genetic architecture across depression definitions by genetic correlation and showed different genetic relationships between definitions across common and rare variants. In addition, we demonstrated that the effects of rare damaging coding variant burden and polygenic risk score on depression risk are additive. The gene set burden analyses revealed overlapping rare genetic variant components with developmental disorder, autism, and schizophrenia. Our study provides insights into the contribution of rare coding variants, separately and in conjunction with common variants, on depression with various definitions and their genetic relationships with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ruoyu Tian
- Biogen Inc, Cambridge, MA, USA
- Dewpoint Therapeutics, Boston, MA, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hyeokmoon Kweon
- Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Autism & Developmental Medicine Institute, Geisinger Health System, Lewisburg, PA, USA
| | - Daniel B Rocha
- Phenomics Analytics and Clinical Data Core, Geisinger Health System, Danville, PA, USA
| | - Max Lam
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- North Region, Institute of Mental Health, Singapore, Singapore
| | - Jimmy Z Liu
- Biogen Inc, Cambridge, MA, USA
- GlaxoSmithKline, Upper Providence, Philadelphia, PA, USA
| | - Kritika Singh
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel F Levey
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- VA Connecticut Healthcare Center, West Haven, CT, USA
- Departments of Psychiatry, Genetics, and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Murray B Stein
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | | | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Christopher F Chabris
- Autism & Developmental Medicine Institute, Geisinger Health System, Lewisburg, PA, USA
| | - Todd Lencz
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | | | | |
Collapse
|
33
|
Gamirova R, Shagimardanova E, Sato T, Kannon T, Gamirova R, Tajima A. Identification of potential disease-associated variants in idiopathic generalized epilepsy using targeted sequencing. J Hum Genet 2024; 69:59-67. [PMID: 37993639 DOI: 10.1038/s10038-023-01208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Many questions remain regarding the genetics of idiopathic generalized epilepsy (IGE), a subset of genetic generalized epilepsy (GGE). We aimed to identify the candidate coding variants of epilepsy panel genes in a cohort of affected individuals, using variant frequency information from a control cohort of the same region. We performed whole-exome sequencing analysis of 121 individuals and 10 affected relatives, focusing on variants of 950 candidate genes associated with epilepsy according to the Genes4Epilepsy curated panel. We identified 168 candidate variants (CVs) in 137 of 950 candidate genes in 88 of 121 affected individuals with IGE, of which 61 were novel variants. Notably, we identified five CVs in known GGE-associated genes (CHD2, GABRA1, RORB, SCN1A, and SCN1B) in five individuals and CVs shared by affected individuals in each of four family cases for other epilepsy candidate genes. The results of this study demonstrate that IGE is a disease with high heterogeneity and provide IGE-associated CVs whose pathogenicity should be proven by future studies, including advanced functional analysis. The low detection rate of CVs in the GGE-associated genes (4.1%) in this study suggests the current incompleteness of the Genes4Epilepsy panel for the diagnosis of IGE in clinical practice.
Collapse
Affiliation(s)
- Regina Gamirova
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | | | - Takehiro Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Japan
| | - Rimma Gamirova
- Department of Neurology with Courses in Psychiatry, Clinical Psychology and Medical Genetics, Kazan Federal University, Kazan, Russia.
- Laboratory of Neurocognitive Investigations, Kazan Federal University, Kazan, Russia.
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
34
|
Lin SXN, Ahring PK, Keramidas A, Liao VWY, Møller RS, Chebib M, Absalom NL. Correlations of receptor desensitization of gain-of-function GABRB3 variants with clinical severity. Brain 2024; 147:224-239. [PMID: 37647766 PMCID: PMC10766243 DOI: 10.1093/brain/awad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/01/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants associated with developmental and epileptic encephalopathies have been identified in the GABRB3 gene that encodes the β3 subunit of GABAA receptors. Typically, variants alter receptor sensitivity to GABA resulting in either gain- or loss-of-function, which correlates with patient phenotypes. However, it is unclear how another important receptor property, desensitization, contributes to the greater clinical severity of gain-of-function variants. Desensitization properties of 20 gain-of-function GABRB3 variant receptors were evaluated using two-electrode voltage-clamp electrophysiology. The parameters measured included current decay rates and steady-state currents. Selected variants with increased or reduced desensitization were also evaluated using whole-cell electrophysiology in transfected mammalian cell lines. Of the 20 gain-of-function variants assessed, 13 were found to alter receptor desensitization properties. Seven variants reduced desensitization at equilibrium, which acts to worsen gain-of-function traits. Six variants accelerated current decay kinetics, which limits gain-of-function traits. All affected patients displayed severe clinical phenotypes with intellectual disability and difficult-to-treat epilepsy. Nevertheless, variants that reduced desensitization at equilibrium were associated with more severe clinical outcomes. This included younger age of first seizure onset (median 0.5 months), movement disorders (dystonia and dyskinesia), epilepsy of infancy with migrating focal seizures (EIMFS) and risk of early mortality. Variants that accelerated current decay kinetics were associated with slightly milder phenotypes with later seizure onset (median 4 months), unclassifiable developmental and epileptic encephalopathies or Lennox-Gastaut syndrome and no movement disorders. Our study reveals that gain-of-function GABRB3 variants can increase or decrease receptor desensitization properties and that there is a correlation with the degree of disease severity. Variants that reduced the desensitization at equilibrium were clustered in the transmembrane regions that constitute the channel pore and correlated with greater disease severity, while variants that accelerated current decay were clustered in the coupling loops responsible for receptor activation and correlated with lesser severity.
Collapse
Affiliation(s)
- Susan X N Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Member of ERN, EpiCare, Danish Epilepsy Centre, Dianalund DK-4293, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense DK-5230, Denmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nathan L Absalom
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Science, University of Western Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
35
|
Tsur A, Spierer R, Cohen R, Blatch D, Eyal S, Honig A, Ekstein D. First unprovoked seizures among soldiers recruited to the Israeli Defense Forces during 10 consecutive years: A population-based study. Epilepsia 2024; 65:127-137. [PMID: 37597251 DOI: 10.1111/epi.17750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
OBJECTIVE The management of patients after a first unprovoked seizure (FUS) can benefit from stratification of the average 50% risk for further seizures. We characterized subjects with FUSs, out of a large generally healthy homogenous population of soldiers recruited by law to the Israeli Defense Forces, to investigate the role of the type of service, as a trigger burden surrogate, in the risk for additional seizures. METHODS Soldiers recruited between 2005 and 2014, who experienced an FUS during their service, were identified from military records. Subjects with a history of epilepsy or lack of documentation of FUS characteristics were excluded from the study. Data on demographics and military service and medical details were extracted for the eligible soldiers. RESULTS Of 816 252 newly recruited soldiers, representing 2 138 000 person-years, 346 had an FUS, indicating an incidence rate of 16.2 per 100 000 person-years. The FUS incidence rate was higher in combat versus noncombat male and female soldiers (p < .0001). Most subjects (75.7%) were prescribed antiseizure medications (ASMs), and 29.2% had additional seizures after the FUS. Service in combat units, abnormal magnetic resonance imaging, and being prescribed ASMs were correlated with a lower risk of having multiple seizures (95% confidence interval [CI] = .48-.97, .09-.86, .15-.28, respectively). On multivariate analysis, service in combat units (odds ratio [OR] = .48 for seizure recurrence, 95% CI = .26-.88) and taking medications (OR = .46, 95% CI = .24-.9) independently predicted not having additional seizures. SIGNIFICANCE FUS incidence rate was higher in combat soldiers, but they had a twofold lower risk of additional seizures than noncombat soldiers, emphasizing the value of strenuous triggers as negative predictors for developing epilepsy. This suggests a shift in the perception of epilepsy from a "yes or no" condition to a continuous trend of predisposition to seizures, warranting changes in the ways etiologies of epilepsy are weighted and treatments are delivered.
Collapse
Affiliation(s)
- Adili Tsur
- Israeli Defense Forces Medical Corps, Tel Aviv, Israel
- Department of Neurology, Sheba Medical Center, Ramat Gan, Israel
| | - Ronen Spierer
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Renana Cohen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Blatch
- International Center for Multimorbidity and Complexity, University of Zurich, Zurich, Switzerland
- Department of Psychosomatic Medicine, University Hospital Basel and Merian Iselin Klinik Basel, Basel, Switzerland
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaf Honig
- Department of Neurology, Soroka Medical Center, Beer Sheva, Israel
| | - Dana Ekstein
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Organization, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
Gjerulfsen CE, Krey I, Klöckner C, Rubboli G, Lemke JR, Møller RS. Spectrum of NMDA Receptor Variants in Neurodevelopmental Disorders and Epilepsy. Methods Mol Biol 2024; 2799:1-11. [PMID: 38727899 DOI: 10.1007/978-1-0716-3830-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
N-methyl-D-aspartate receptors (NMDAR) are ligand-gated ion channels mediating excitatory neurotransmission and are important for normal brain development, cognitive abilities, and motor functions. Pathogenic variants in the Glutamate receptor Ionotropic N-methyl-D-aspartate (GRIN) genes (GRIN1, GRIN2A-D) encoding NMDAR subunits have been associated with a wide spectrum of neurodevelopmental disorders and epilepsies ranging from treatable focal epilepsies to devastating early-onset developmental and epileptic encephalopathies. Genetic variants in NMDA receptor genes can cause a range of complex alterations to receptor properties resulting in various degrees of loss-of-function, gain-of-function, or mixtures thereof. Understanding how genetic variants affect the function of the receptors, therefore, represents an important first step in the ongoing development towards targeted therapies. Currently, targeted treatment options for GRIN-related diseases are limited. However, treatment with memantine has been reported to significantly reduce seizure frequency in a few individuals with developmental and epileptic encephalopathies harboring de novo gain-of-function GRIN2A missense variants, and supplementary treatment with L-serine has been associated with improved motor and cognitive performance as well as reduced seizure frequency in patients with GRIN2B loss-of-function missense variants as well as GRIN2A and GRIN2B null variants.
Collapse
Affiliation(s)
- Cathrine E Gjerulfsen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark.
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
37
|
De Wachter M, Schoonjans AS, Weckhuysen S, Van Schil K, Löfgren A, Meuwissen M, Jansen A, Ceulemans B. From diagnosis to treatment in genetic epilepsies: Implementation of precision medicine in real-world clinical practice. Eur J Paediatr Neurol 2024; 48:46-60. [PMID: 38039826 DOI: 10.1016/j.ejpn.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/20/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
The implementation of whole exome sequencing (WES) has had a major impact on the diagnostic yield of genetic testing in individuals with epilepsy. The identification of a genetic etiology paves the way to precision medicine: an individualized treatment approach, based on the disease pathophysiology. The aim of this retrospective cohort study was to: (1) determine the diagnostic yield of WES in a heterogeneous cohort of individuals with epilepsy referred for genetic testing in a real-world clinical setting, (2) investigate the influence of epilepsy characteristics on the diagnostic yield, (3) determine the theoretical yield of treatment changes based on genetic diagnosis and (4) explore the barriers to implementation of precision medicine. WES was performed in 247 individuals with epilepsy, aged between 7 months and 68 years. In 34/247 (14 %) a (likely) pathogenic variant was identified. In 7/34 (21 %) of these individuals the variant was found using a HPO-based filtering. Diagnostic yield was highest for individuals with an early onset of epilepsy (39 %) or in those with a developmental and epileptic encephalopathy (34 %). Precision medicine was a theoretical possibility in 20/34 (59 %) of the individuals with a (likely) pathogenic variant but implemented in only 11/34 (32 %). The major barrier to implementation of precision treatment was the limited availability or reimbursement of a given drug. These results confirm the potential impact of genetic analysis on treatment choices, but also highlight the hurdles to the implementation of precision medicine. To optimize precision medicine in real-world practice, additional endeavors are needed: unifying definitions of precision medicine, establishment of publicly accessible databases that include data on the functional effect of gene variants, increasing availability and reimbursement of precision therapeutics, and broadening access to innovative clinical trials.
Collapse
Affiliation(s)
- Matthias De Wachter
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium.
| | - An-Sofie Schoonjans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Sarah Weckhuysen
- Department of Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium; Applied&Translational Neurogenomics Group, VIB-CMN, VIB, UAntwerpen, Universiteitsplein 1, 2610, Wilrijk, Belgium; Translational Neurosciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kristof Van Schil
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Ann Löfgren
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| | - Anna Jansen
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium; Translational Neurosciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Drie eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
38
|
Thami PK, Choga WT, Dandara C, O’Brien SJ, Essex M, Gaseitsiwe S, Chimusa ER. Whole genome sequencing reveals population diversity and variation in HIV-1 specific host genes. Front Genet 2023; 14:1290624. [PMID: 38179408 PMCID: PMC10765519 DOI: 10.3389/fgene.2023.1290624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
HIV infection continues to be a major global public health issue. The population heterogeneity in susceptibility or resistance to HIV-1 and progression upon infection is attributable to, among other factors, host genetic variation. Therefore, identifying population-specific variation and genetic modifiers of HIV infectivity can catapult the invention of effective strategies against HIV-1 in African populations. Here, we investigated whole genome sequences of 390 unrelated HIV-positive and -negative individuals from Botswana. We report 27.7 million single nucleotide variations (SNVs) in the complete genomes of Botswana nationals, of which 2.8 million were missing in public databases. Our population structure analysis revealed a largely homogenous structure in the Botswana population. Admixture analysis showed elevated components shared between the Botswana population and the Niger-Congo (65.9%), Khoe-San (32.9%), and Europeans (1.1%) ancestries in the population of Botswana. Statistical significance of the mutational burden of deleterious and loss-of-function variants per gene against a null model was estimated. The most deleterious variants were enriched in five genes: ACTRT2 (the Actin Related Protein T2), HOXD12 (homeobox D12), ABCB5 (ATP binding cassette subfamily B member 5), ATP8B4 (ATPase phospholipid transporting 8B4) and ABCC12 (ATP Binding Cassette Subfamily C Member 12). These genes are enriched in the glycolysis and gluconeogenesis (p < 2.84e-6) pathways and therefore, may contribute to the emerging field of immunometabolism in which therapy against HIV-1 infection is being evaluated. Published transcriptomic evidence supports the role of the glycolysis/gluconeogenesis pathways in the regulation of susceptibility to HIV, and that cumulative effects of genetic modifiers in glycolysis/gluconeogenesis pathways may potentially have effects on the expression and clinical variability of HIV-1. Identified genes and pathways provide novel avenues for other interventions, with the potential for informing the design of new therapeutics.
Collapse
Affiliation(s)
- Prisca K. Thami
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wonderful T. Choga
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- UCT/SAMRC Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council, Cape Town, South Africa
| | - Stephen J. O’Brien
- Laboratory of Genomics Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
- Guy Harvey Oceanographic Center Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Myron Essex
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health AIDS Initiative, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health AIDS Initiative, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Emile R. Chimusa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
| |
Collapse
|
39
|
Johannesen KM, Tümer Z, Weckhuysen S, Barakat TS, Bayat A. Solving the unsolved genetic epilepsies: Current and future perspectives. Epilepsia 2023; 64:3143-3154. [PMID: 37750451 DOI: 10.1111/epi.17780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Many patients with epilepsy undergo exome or genome sequencing as part of a diagnostic workup; however, many remain genetically unsolved. There are various factors that account for negative results in exome/genome sequencing for patients with epilepsy: (1) the underlying cause is not genetic; (2) there is a complex polygenic explanation; (3) the illness is monogenic but the causative gene remains to be linked to a human disorder; (4) family segregation with reduced penetrance; (5) somatic mosaicism or the complexity of, for example, a structural rearrangement; or (6) limited knowledge or diagnostic tools that hinder the proper classification of a variant, resulting in its designation as a variant of unknown significance. The objective of this review is to outline some of the diagnostic options that lie beyond the exome/genome, and that might become clinically relevant within the foreseeable future. These options include: (1) re-analysis of older exome/genome data as knowledge increases or symptoms change; (2) looking for somatic mosaicism or long-read sequencing to detect low-complexity repeat variants or specific structural variants missed by traditional exome/genome sequencing; (3) exploration of the non-coding genome including disruption of topologically associated domains, long range non-coding RNA, or other regulatory elements; and finally (4) transcriptomics, DNA methylation signatures, and metabolomics as complementary diagnostic methods that may be used in the assessment of variants of unknown significance. Some of these tools are currently not integrated into standard diagnostic workup. However, it is reasonable to expect that they will become increasingly available and improve current diagnostic capabilities, thereby enabling precision diagnosis in patients who are currently undiagnosed.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
| | - Zeynep Tümer
- Department of Genetics, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Ünalp A, Güzin Y, Ünay B, Tosun A, Çavuşoğlu D, Tekin HG, Kurul SH, Arhan E, Edizer S, Öztürk G, Yiş U, Yılmaz Ü. Retracted: Clinical and genetic evaluations of rare childhood epilepsies in Turkey's national cohort. Epileptic Disord 2023; 25:924. [PMID: 37584621 DOI: 10.1002/epd2.20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 12/25/2022] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Aycan Ünalp, Yiğithan Güzin, Bülent Ünay, Ayşe Tosun, Dilek Çavuşoğlu, Hande Gazeteci Tekin, Semra Hız Kurul, Ebru Arhan, Selvinaz Edizer, Gülten Öztürk, Uluç Yiş, Ünsal Yılmaz, Turkish Rare Epilepsies Study Group, Clinical and genetic evaluations of rare childhood epilepsies in Turkey's national cohort, Epileptic Disorders, 2023, (https://doi.org/10.1002/epd2.20150) The above article, published online on 16 August 2023 on Wiley Online Library (www.onlinelibrary.wiley.com), has been retracted by agreement between the authors, the Editor-in-Chief, Sándor Beniczky, and John Wiley & Sons Ltd. The authors asked for a retraction based on an experimental error which would alter the results of the study if corrected.
Collapse
|
41
|
Stefanski A, Pérez-Palma E, Brünger T, Montanucci L, Gati C, Klöckner C, Johannesen KM, Goodspeed K, Macnee M, Deng AT, Aledo-Serrano Á, Borovikov A, Kava M, Bouman AM, Hajianpour MJ, Pal DK, Engelen M, Hagebeuk EEO, Shinawi M, Heidlebaugh AR, Oetjens K, Hoffman TL, Striano P, Freed AS, Futtrup L, Balslev T, Abulí A, Danvoye L, Lederer D, Balci T, Nouri MN, Butler E, Drewes S, van Engelen K, Howell KB, Khoury J, May P, Trinidad M, Froelich S, Lemke JR, Tiller J, Freed AN, Kang JQ, Wuster A, Møller RS, Lal D. SLC6A1 variant pathogenicity, molecular function and phenotype: a genetic and clinical analysis. Brain 2023; 146:5198-5208. [PMID: 37647852 PMCID: PMC10689929 DOI: 10.1093/brain/awad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/05/2023] [Accepted: 07/08/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic variants in the SLC6A1 gene can cause a broad phenotypic disease spectrum by altering the protein function. Thus, systematically curated clinically relevant genotype-phenotype associations are needed to understand the disease mechanism and improve therapeutic decision-making. We aggregated genetic and clinical data from 172 individuals with likely pathogenic/pathogenic (lp/p) SLC6A1 variants and functional data for 184 variants (14.1% lp/p). Clinical and functional data were available for a subset of 126 individuals. We explored the potential associations of variant positions on the GAT1 3D structure with variant pathogenicity, altered molecular function and phenotype severity using bioinformatic approaches. The GAT1 transmembrane domains 1, 6 and extracellular loop 4 (EL4) were enriched for patient over population variants. Across functionally tested missense variants (n = 156), the spatial proximity from the ligand was associated with loss-of-function in the GAT1 transporter activity. For variants with complete loss of in vitro GABA uptake, we found a 4.6-fold enrichment in patients having severe disease versus non-severe disease (P = 2.9 × 10-3, 95% confidence interval: 1.5-15.3). In summary, we delineated associations between the 3D structure and variant pathogenicity, variant function and phenotype in SLC6A1-related disorders. This knowledge supports biology-informed variant interpretation and research on GAT1 function. All our data can be interactively explored in the SLC6A1 portal (https://slc6a1-portal.broadinstitute.org/).
Collapse
Affiliation(s)
- Arthur Stefanski
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eduardo Pérez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago de Chile 7610658, Chile
| | - Tobias Brünger
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, Cologne 50931, Germany
| | - Ludovica Montanucci
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Cornelius Gati
- Department of Biological Sciences, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Genetics, University Hospital of Copenhagen, Rigshispitalet, Copenhagen 2100, Denmark
| | - Kimberly Goodspeed
- Children’s Health, Medical Center, Dallas, TX 75235, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marie Macnee
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, Cologne 50931, Germany
| | - Alexander T Deng
- Clinical Genetics, Guys and St Thomas NHS Trust, London SE19RT, UK
| | - Ángel Aledo-Serrano
- Epilepsy Program, Neurology Department, Hospital Ruber Internacional, Madrid 28034, Spain
| | - Artem Borovikov
- Research and Counseling Department, Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Maina Kava
- Department of Neurology and Metabolic Medicine, Perth Children’s Hospital, Perth 6009, Australia
- School of Paediatrics and Child Health, UWA Medical School, University of Western Australia, Perth 6009, Australia
| | - Arjan M Bouman
- Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam 3015GD, The Netherlands
| | - M J Hajianpour
- Department of Pediatrics, Division of Medical Genetics and Genomics, Albany Medical College, Albany Med Health System, Albany, NY 12208, USA
| | - Deb K Pal
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London SE58AF, UK
- Department of Basic and Clinical Neurosciences, King’s College Hospital, London SE59RS, UK
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam 1081HV, The Netherlands
| | - Eveline E O Hagebeuk
- Department of Pediatric Neurology, Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede and Zwolle 2103SW, The Netherlands
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, St.Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Kathryn Oetjens
- Autism and Developmental Medicine Institute, Geisinger, Danville, PA 17837, USA
| | - Trevor L Hoffman
- Department of Regional Genetics, Anaheim, Southern California Kaiser Permanente Medical Group, CA 92806, USA
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy
| | - Amanda S Freed
- Department of Clinical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| | - Line Futtrup
- Department of Paediatrics, Regional Hospital of Central Jutland, Viborg 8800, Denmark
| | - Thomas Balslev
- Department of Paediatrics, Regional Hospital of Central Jutland, Viborg 8800, Denmark
- Centre for Educational Development, Aarhus University, Aarhus 8200, Denmark
| | - Anna Abulí
- Department of Clinical and Molecular Genetics and Medicine Genetics Group, VHIR, University Hospital Vall d’Hebron, Barcelona 08035, Spain
| | - Leslie Danvoye
- Department of Neurology, Université catholique de Louvain, Cliniques universitaires Saint-Luc, Brussels 1200, Belgium
| | - Damien Lederer
- Centre for Human Genetics, Institute for Pathology and Genetics, Gosselies 6041, Belgium
| | - Tugce Balci
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A3K7, Canada
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5A5, Canada
| | - Maryam Nabavi Nouri
- Department of Paediatrics, Division of Pediatric Neurology, London Health Sciences Centre, London, ON N6A5W9, Canada
| | | | - Sarah Drewes
- Department of Medical Genetics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kalene van Engelen
- Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre, London, ON N6A5W9, Canada
| | - Katherine B Howell
- Department of Neurology, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Jean Khoury
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Marena Trinidad
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Steven Froelich
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | | | | | - Jing-Qiong Kang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37235, USA
- Department of Neurology, Vanderbilt Brain Institute, Nashville, TN 37235, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Kennedy Center of Human Development, Nashville, TN 37203, USA
| | - Arthur Wuster
- Translational Genomics, BioMarin Pharmaceutical Inc., Novato, CA 94949, USA
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, The Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5000, Denmark
| | - Dennis Lal
- Genomic Medicine Institute and Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
- Stanley Center of Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
42
|
Heyne HO, Pajuste FD, Wanner J, Onwuchekwa JID, Mägi R, Palotie A, Kälviainen R, Daly MJ. Polygenic risk scores as a marker for epilepsy risk across lifetime and after unspecified seizure events. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23297542. [PMID: 38076931 PMCID: PMC10705659 DOI: 10.1101/2023.11.27.23297542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A diagnosis of epilepsy has significant consequences for an individual but is often challenging in clinical practice. Novel biomarkers are thus greatly needed. Here, we investigated how common genetic factors (epilepsy polygenic risk scores, [PRSs]) influence epilepsy risk in detailed longitudinal electronic health records (EHRs) of > 360k Finns spanning up to 50 years of individuals' lifetimes. Individuals with a high genetic generalized epilepsy PRS (PRSGGE) in FinnGen had an increased risk for genetic generalized epilepsy (GGE) (hazard ratio [HR] 1.55 per PRSGGE standard deviation [SD]) across their lifetime and after unspecified seizure events. Effect sizes of epilepsy PRSs were comparable to effect sizes in clinically curated data supporting our EHR-derived epilepsy diagnoses. Within 10 years after an unspecified seizure, the GGE rate was 37% when PRSGGE > 2 SD compared to 5.6% when PRSGGE < -2 SD. The effect of PRSGGE was even larger on GGE subtypes of idiopathic generalized epilepsy (IGE) (HR 2.1 per SD PRSGGE). We further report significantly larger effects of PRSGGE on epilepsy in females and in younger age groups. Analogously, we found significant but more modest focal epilepsy PRS burden associated with non-acquired focal epilepsy (NAFE). We found PRSGGE specifically associated with GGE in comparison with >2000 independent diseases while PRSNAFE was also associated with other diseases than NAFE such as back pain. Here, we show that epilepsy specific PRSs have good discriminative ability after a first seizure event i.e. in circumstances where the prior probability of epilepsy is high outlining a potential to serve as biomarkers for an epilepsy diagnosis.
Collapse
Affiliation(s)
- Henrike O Heyne
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, NY, US
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fanny-Dhelia Pajuste
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Julian Wanner
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Jennifer I Daniel Onwuchekwa
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
- Faculty of Life Sciences, University of Siegen, Germany
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Aarno Palotie
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Reetta Kälviainen
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Member of ERN EpiCARE, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mark J Daly
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Program for Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
43
|
Fonferko-Shadrach B, Lacey AS, Strafford H, Jones C, Baker M, Powell R, Akbari A, Lyons RA, Ford D, Thompson S, Jones KH, Chung SK, Pickrell WO, Rees MI. Genetic influences on epilepsy outcomes: A whole-exome sequencing and health care records data linkage study. Epilepsia 2023; 64:3099-3108. [PMID: 37643892 DOI: 10.1111/epi.17766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE This study was undertaken to develop a novel pathway linking genetic data with routinely collected data for people with epilepsy, and to analyze the influence of rare, deleterious genetic variants on epilepsy outcomes. METHODS We linked whole-exome sequencing (WES) data with routinely collected primary and secondary care data and natural language processing (NLP)-derived seizure frequency information for people with epilepsy within the Secure Anonymised Information Linkage Databank. The study participants were adults who had consented to participate in the Swansea Neurology Biobank, Wales, between 2016 and 2018. DNA sequencing was carried out as part of the Epi25 collaboration. For each individual, we calculated the total number and cumulative burden of rare and predicted deleterious genetic variants and the total of rare and deleterious variants in epilepsy and drug metabolism genes. We compared these measures with the following outcomes: (1) no unscheduled hospital admissions versus unscheduled admissions for epilepsy, (2) antiseizure medication (ASM) monotherapy versus polytherapy, and (3) at least 1 year of seizure freedom versus <1 year of seizure freedom. RESULTS We linked genetic data for 107 individuals with epilepsy (52% female) to electronic health records. Twenty-six percent had unscheduled hospital admissions, and 70% were prescribed ASM polytherapy. Seizure frequency information was linked for 100 individuals, and 10 were seizure-free. There was no significant difference between the outcome groups in terms of the exome-wide and gene-based burden of rare and deleterious genetic variants. SIGNIFICANCE We successfully uploaded, annotated, and linked genetic sequence data and NLP-derived seizure frequency data to anonymized health care records in this proof-of-concept study. We did not detect a genetic influence on real-world epilepsy outcomes, but our study was limited by a small sample size. Future studies will require larger (WES) data to establish genetic variant contribution to epilepsy outcomes.
Collapse
Affiliation(s)
| | - Arron S Lacey
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
| | - Huw Strafford
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
| | - Carys Jones
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
| | - Mark Baker
- Swansea Bay University Health Board, Swansea, UK
| | - Robert Powell
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
- Swansea Bay University Health Board, Swansea, UK
| | - Ashley Akbari
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
| | - Ronan A Lyons
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
| | - David Ford
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
| | - Simon Thompson
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
| | - Kerina H Jones
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
| | - Seo-Kyung Chung
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
- Brain & Mind Centre, University of Sydney, Camperdown, New South Wales, Australia
- Kids Research, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - William O Pickrell
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
- Swansea Bay University Health Board, Swansea, UK
| | - Mark I Rees
- Faculty of Medicine, Health, & Life Science, Swansea University Medical School, Swansea, UK
- Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
44
|
Kadam SD. Open Sesame: Door to Enriched Somatic Variants Underlying Sporadic mTLE. Epilepsy Curr 2023; 23:383-385. [PMID: 38269352 PMCID: PMC10805092 DOI: 10.1177/15357597231201127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Contribution of Somatic Ras/Raf/Mitogen-Activated Protein Kinase Variants in the Hippocampus in Drug-Resistant Mesial Temporal Lobe Epilepsy Khoshkhoo S, Wang Y, Chahine Y, Erson-Omay EZ, Robert SM, Kiziltug E, Damisah EC, Nelson-Williams C, Zhu G, Kong W, Huang AY, Stronge E, Phillips HW, Chhouk BH, Bizzotto S, Chen MH, Adikari TN, Ye Z, Witkowski T, Lai D, Lee N, Lokan J, Scheffer IE, Berkovic SF, Haider S, Hildebrand MS, Yang E, Gunel M, Lifton RP, Richardson RM, Blümcke I, Alexandrescu S, Huttner A, Heinzen EL, Zhu J, Poduri A, DeLanerolle N, Spencer DD, Lee EA, Walsh CA, Kahle KT. JAMA Neurol . 2023;80(6):578-587. doi:10.1001/jamaneurol.2023.0473 Importance: Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy subtype and is often refractory to antiseizure medications. While most patients with MTLE do not have pathogenic germline genetic variants, the contribution of postzygotic (i.e., somatic) variants in the brain is unknown. Objective: To test the association between pathogenic somatic variants in the hippocampus and MTLE. Design, Setting, and Participants: This case-control genetic association study analyzed the DNA derived from hippocampal tissue of neurosurgically treated patients with MTLE and age-matched and sex-matched neurotypical controls. Participants treated at level 4 epilepsy centers were enrolled from 1988 through 2019, and clinical data were collected retrospectively. Whole-exome and gene-panel sequencing (each genomic region sequenced more than 500 times on average) were used to identify candidate pathogenic somatic variants. A subset of novel variants was functionally evaluated using cellular and molecular assays. Patients with nonlesional and lesional (mesial temporal sclerosis, focal cortical dysplasia, and low-grade epilepsy–associated tumors) drug-resistant MTLE who underwent anterior medial temporal lobectomy were eligible. All patients with available frozen tissue and appropriate consent were included. Control brain tissue was obtained from neurotypical donors at brain banks. Data were analyzed from June 2020 to August 2022. Exposures: Drug-resistant MTLE. Main Outcomes and Measures: Presence and abundance of pathogenic somatic variants in the hippocampus vs the unaffected temporal neocortex. Results: Of 105 included patients with MTLE, 53 (50.5%) were female, and the median (IQR) age was 32 (26-44) years; of 30 neurotypical controls, 11 (36.7%) were female, and the median (IQR) age was 37 (18-53) years. Eleven pathogenic somatic variants enriched in the hippocampus relative to the unaffected temporal neocortex (median [IQR] variant allele frequency, 1.92 [1.5-2.7] vs 0.3 [0-0.9]; P = .01) were detected in patients with MTLE but not in controls. Ten of these variants were in PTPN11, SOS1, KRAS, BRAF, and NF1, all predicted to constitutively activate Ras/Raf/mitogen-activated protein kinase (MAPK) signaling. Immunohistochemical studies of variant-positive hippocampal tissue demonstrated increased Erk1/2 phosphorylation, indicative of Ras/Raf/MAPK activation, predominantly in glial cells. Molecular assays showed abnormal liquid-liquid phase separation for the PTPN11 variants as a possible dominant gain-of-function mechanism. Conclusions and Relevance: Hippocampal somatic variants, particularly those activating Ras/Raf/MAPK signaling, may contribute to the pathogenesis of sporadic, drug-resistant MTLE. These findings may provide a novel genetic mechanism and highlight new therapeutic targets for this common indication for epilepsy surgery.
Collapse
|
45
|
Patowary A, Zhang P, Jops C, Vuong CK, Ge X, Hou K, Kim M, Gong N, Margolis M, Vo D, Wang X, Liu C, Pasaniuc B, Li JJ, Gandal MJ, de la Torre-Ubieta L. Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534016. [PMID: 36993726 PMCID: PMC10055310 DOI: 10.1101/2023.03.25.534016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders, yet the role of cell-type-specific splicing or transcript-isoform diversity during human brain development has not been systematically investigated. Here, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 unique isoforms, of which 72.6% are novel (unannotated in Gencode-v33), and uncovered a substantial contribution of transcript-isoform diversity, regulated by RNA binding proteins, in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to re-prioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders. One-Sentence Summary A cell-specific atlas of gene isoform expression helps shape our understanding of brain development and disease. Structured Abstract INTRODUCTION: The development of the human brain is regulated by precise molecular and genetic mechanisms driving spatio-temporal and cell-type-specific transcript expression programs. Alternative splicing, a major mechanism increasing transcript diversity, is highly prevalent in the human brain, influences many aspects of brain development, and has strong links to neuropsychiatric disorders. Despite this, the cell-type-specific transcript-isoform diversity of the developing human brain has not been systematically investigated.RATIONALE: Understanding splicing patterns and isoform diversity across the developing neocortex has translational relevance and can elucidate genetic risk mechanisms in neurodevelopmental disorders. However, short-read sequencing, the prevalent technology for transcriptome profiling, is not well suited to capturing alternative splicing and isoform diversity. To address this, we employed third-generation long-read sequencing, which enables capture and sequencing of complete individual RNA molecules, to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution.RESULTS: We profiled microdissected GZ and CP regions of post-conception week (PCW) 15-17 human neocortex in bulk and at single-cell resolution across six subjects using high-fidelity long-read sequencing (PacBio IsoSeq). We identified 214,516 unique isoforms, of which 72.6% were novel (unannotated in Gencode), and >7,000 novel exons, expanding the proteome by 92,422 putative proteoforms. We uncovered thousands of isoform switches during cortical neurogenesis predicted to impact RNA regulatory domains or protein structure and implicating previously uncharacterized RNA-binding proteins in cellular identity and neuropsychiatric disease. At the single-cell level, early-stage excitatory neurons exhibited the greatest isoform diversity, and isoform-centric single-cell clustering led to the identification of previously uncharacterized cell states. We systematically assessed the contribution of transcriptomic features, and localized cell and spatio-temporal transcript expression signatures across neuropsychiatric disorders, revealing predominant enrichments in dynamic isoform expression and utilization patterns and that the number and complexity of isoforms per gene is strongly predictive of disease. Leveraging this resource, we re-prioritized thousands of rare de novo risk variants associated with autism spectrum disorders (ASD), intellectual disability (ID), and neurodevelopmental disorders (NDDs), more broadly, to potentially more severe consequences and revealed a larger proportion of cryptic splice variants with the expanded transcriptome annotation provided in this study.CONCLUSION: Our study offers a comprehensive landscape of isoform diversity in the human neocortex during development. This extensive cataloging of novel isoforms and splicing events sheds light on the underlying mechanisms of neurodevelopmental disorders and presents an opportunity to explore rare genetic variants linked to these conditions. The implications of our findings extend beyond fundamental neuroscience, as they provide crucial insights into the molecular basis of developmental brain disorders and pave the way for targeted therapeutic interventions. To facilitate exploration of this dataset we developed an online portal ( https://sciso.gandallab.org/ ).
Collapse
|
46
|
Dugger SA, Dhindsa RS, Sampaio GDA, Ressler AK, Rafikian EE, Petri S, Letts VA, Teoh J, Ye J, Colombo S, Peng Y, Yang M, Boland MJ, Frankel WN, Goldstein DB. Neurodevelopmental deficits and cell-type-specific transcriptomic perturbations in a mouse model of HNRNPU haploinsufficiency. PLoS Genet 2023; 19:e1010952. [PMID: 37782669 PMCID: PMC10569524 DOI: 10.1371/journal.pgen.1010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/12/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Heterozygous de novo loss-of-function mutations in the gene expression regulator HNRNPU cause an early-onset developmental and epileptic encephalopathy. To gain insight into pathological mechanisms and lay the potential groundwork for developing targeted therapies, we characterized the neurophysiologic and cell-type-specific transcriptomic consequences of a mouse model of HNRNPU haploinsufficiency. Heterozygous mutants demonstrated global developmental delay, impaired ultrasonic vocalizations, cognitive dysfunction and increased seizure susceptibility, thus modeling aspects of the human disease. Single-cell RNA-sequencing of hippocampal and neocortical cells revealed widespread, yet modest, dysregulation of gene expression across mutant neuronal subtypes. We observed an increased burden of differentially-expressed genes in mutant excitatory neurons of the subiculum-a region of the hippocampus implicated in temporal lobe epilepsy. Evaluation of transcriptomic signature reversal as a therapeutic strategy highlights the potential importance of generating cell-type-specific signatures. Overall, this work provides insight into HNRNPU-mediated disease mechanisms and provides a framework for using single-cell RNA-sequencing to study transcriptional regulators implicated in disease.
Collapse
Affiliation(s)
- Sarah A. Dugger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, Texas, United States of America
| | - Gabriela De Almeida Sampaio
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Andrew K. Ressler
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Elizabeth E. Rafikian
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Verity A. Letts
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - JiaJie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Junqiang Ye
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York, United States of America
- Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Mu Yang
- Mouse Neurobehavioral Core Facility, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
47
|
Jin L, Li Y, Luo S, Peng Q, Zhai QX, Zhai JX, Gao LD, Guo JJ, Song W, Yi YH, He N, Chen YJ. Recessive APC2 missense variants associated with epilepsies without neurodevelopmental disorders. Seizure 2023; 111:172-177. [PMID: 37657306 DOI: 10.1016/j.seizure.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
OBJECTIVES The APC2 gene, encoding adenomatous polyposis coli protein-2, is involved in cytoskeletal regulation in neurons responding to endogenous extracellular signals and plays an important role in brain development. Previously, the APC2 variants have been reported to be associated with cortical dysplasia and intellectual disability. This study aims to explore the association between APC2 variants and epilepsy. METHODS Whole-exome sequencing (WES) was performed in cases (trios) with epilepsies of unknown causes. The damaging effects of variants were predicted by protein modeling and in silico tools. Previously reported APC2 variants were reviewed to analyze the genotype-phenotype correlations. RESULTS Four pairs of compound heterozygous missense variants were identified in four unrelated patients with epilepsy without brain malformation/intellectual disability. All variants presented no or low allele frequencies in the controls. The missense variants were predicted to be damaging by silico tools, and affect hydrogen bonding with surrounding amino acids or decreased protein stability. Patients with variants that resulted in significant changes in protein stability exhibited more severe and intractable epilepsy, whereas patients with variants that had minor effect on protein stability exhibited relatively mild phenotypes. The previously reported APC2 variants in patients with complex cortical dysplasia with other brain malformations-10 (CDCBM10; MIM: 618677) were all truncating variants; in contrast, the variants identified in epilepsy in this study were all missense variants, suggesting a potential genotype-phenotype correlation. SIGNIFICANCE This study suggests that APC2 is potentially associated with epilepsy without brain malformation/intellectual disability. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic heterogeneity.
Collapse
Affiliation(s)
- Liang Jin
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yun Li
- Department of Brain Function and Neuroelectrophysiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Peng
- Department of Pediatrics, Dongguan Maternal and Child Health Hospital, Southern Medical University Affiliated, Dongguang, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Xia Zhai
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang-Di Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yong-Jun Chen
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
48
|
Girard A, Moreau C, Michaud JL, Minassian B, Cossette P, Girard SL. Unraveling the role of non-coding rare variants in epilepsy. PLoS One 2023; 18:e0291935. [PMID: 37756314 PMCID: PMC10529579 DOI: 10.1371/journal.pone.0291935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of new variants has leveled off in recent years in epilepsy studies, despite the use of very large cohorts. Consequently, most of the heritability is still unexplained. Rare non-coding variants have been largely ignored in studies on epilepsy, although non-coding single nucleotide variants can have a significant impact on gene expression. We had access to whole genome sequencing (WGS) from 247 epilepsy patients and 377 controls. To assess the functional impact of non-coding variants, ExPecto, a deep learning algorithm was used to predict expression change in brain tissues. We compared the burden of rare non-coding deleterious variants between cases and controls. Rare non-coding highly deleterious variants were significantly enriched in Genetic Generalized Epilepsy (GGE), but not in Non-Acquired Focal Epilepsy (NAFE) or all epilepsy cases when compared with controls. In this study we showed that rare non-coding deleterious variants are associated with epilepsy, specifically with GGE. Larger WGS epilepsy cohort will be needed to investigate those effects at a greater resolution. Nevertheless, we demonstrated the importance of studying non-coding regions in epilepsy, a disease where new discoveries are scarce.
Collapse
Affiliation(s)
- Alexandre Girard
- Centre Intersectoriel en Santé Durable, University of Quebec in Chicoutimi, Saguenay, Canada
| | - Claudia Moreau
- Centre Intersectoriel en Santé Durable, University of Quebec in Chicoutimi, Saguenay, Canada
| | - Jacques L. Michaud
- CHU Sainte-Justine, Montréal, Canada
- Department of Neurosciences and Department of Pediatrics, University of Montreal, Montréal, Canada
| | - Berge Minassian
- The Hospital for Sick Children, Department of Pediatrics, Toronto, Canada
- Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Patrick Cossette
- CHUM Research Center, Montréal, Canada
- Department of Neurosciences, University of Montreal, Montréal, Canada
| | - Simon L. Girard
- Centre Intersectoriel en Santé Durable, University of Quebec in Chicoutimi, Saguenay, Canada
- CERVO Research Center, Laval University, Québec, Canada
| |
Collapse
|
49
|
Martins Custodio H, Clayton LM, Bellampalli R, Pagni S, Silvennoinen K, Caswell R, Brunklaus A, Guerrini R, Koeleman BPC, Lemke JR, Møller RS, Scheffer IE, Weckhuysen S, Zara F, Zuberi S, Kuchenbaecker K, Balestrini S, Mills JD, Sisodiya SM. Widespread genomic influences on phenotype in Dravet syndrome, a 'monogenic' condition. Brain 2023; 146:3885-3897. [PMID: 37006128 PMCID: PMC10473570 DOI: 10.1093/brain/awad111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/01/2023] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
Dravet syndrome is an archetypal rare severe epilepsy, considered 'monogenic', typically caused by loss-of-function SCN1A variants. Despite a recognizable core phenotype, its marked phenotypic heterogeneity is incompletely explained by differences in the causal SCN1A variant or clinical factors. In 34 adults with SCN1A-related Dravet syndrome, we show additional genomic variation beyond SCN1A contributes to phenotype and its diversity, with an excess of rare variants in epilepsy-related genes as a set and examples of blended phenotypes, including one individual with an ultra-rare DEPDC5 variant and focal cortical dysplasia. The polygenic risk score for intelligence was lower, and for longevity, higher, in Dravet syndrome than in epilepsy controls. The causal, major-effect, SCN1A variant may need to act against a broadly compromised genomic background to generate the full Dravet syndrome phenotype, whilst genomic resilience may help to ameliorate the risk of premature mortality in adult Dravet syndrome survivors.
Collapse
Affiliation(s)
- Helena Martins Custodio
- University College London Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Lisa M Clayton
- University College London Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Ravishankara Bellampalli
- University College London Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Susanna Pagni
- University College London Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| | - Katri Silvennoinen
- University College London Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Kuopio Epilepsy Center, Neurocenter, Kuopio University Hospital, Kuopio 70210, Finland
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Andreas Brunklaus
- Paediatric Neuroscience Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, UK
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children’s Hospital IRCSS, University of Florence, 50139 Florence, Italy
| | - Bobby P C Koeleman
- Department of Genetics, University Medical Centre Utrecht, 3584CX Utrecht, The Netherlands
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, DK-4293 Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, DK-5230 Odense, Denmark
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Florey Institute, University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, VIC 3084, Australia
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Centre for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2650, Belgium
- Department of Neurology, University Hospital Antwerp, Antwerp 2650, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
- Department of Neurosciences Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy
| | - Sameer Zuberi
- Paediatric Neuroscience Research Group, Royal Hospital for Children, Glasgow G51 4TF, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow G12 8TB, UK
| | | | - Simona Balestrini
- University College London Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Neuroscience Department, Meyer Children’s Hospital IRCSS, University of Florence, 50139 Florence, Italy
| | - James D Mills
- University College London Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, 1105 AZ Amsterdam, The Netherlands
| | - Sanjay M Sisodiya
- University College London Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, London, WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
| |
Collapse
|
50
|
D'Gama AM, Mulhern S, Sheidley BR, Boodhoo F, Buts S, Chandler NJ, Cobb J, Curtis M, Higginbotham EJ, Holland J, Khan T, Koh J, Liang NSY, McRae L, Nesbitt SE, Oby BT, Paternoster B, Patton A, Rose G, Scotchman E, Valentine R, Wiltrout KN, Hayeems RZ, Jain P, Lunke S, Marshall CR, Rockowitz S, Sebire NJ, Stark Z, White SM, Chitty LS, Cross JH, Scheffer IE, Chau V, Costain G, Poduri A, Howell KB, McTague A. Evaluation of the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in infantile epilepsy (Gene-STEPS): an international, multicentre, pilot cohort study. Lancet Neurol 2023; 22:812-825. [PMID: 37596007 DOI: 10.1016/s1474-4422(23)00246-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.
Collapse
Affiliation(s)
- Alissa M D'Gama
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sarah Mulhern
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Fadil Boodhoo
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Sarah Buts
- Department of Paediatric Neurology, Aachen University Hospital, Germany
| | - Natalie J Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Joanna Cobb
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Meredith Curtis
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jonathon Holland
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Tayyaba Khan
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Julia Koh
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Nicole S Y Liang
- Department of Genetic Counselling, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lyndsey McRae
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah E Nesbitt
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Brandon T Oby
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Ben Paternoster
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Alistair Patton
- Department of Paediatrics, Frimley Park Hospital, Frimley Health NHS Foundation Trust, Frimley, UK
| | - Graham Rose
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Elizabeth Scotchman
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK
| | - Rozalia Valentine
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Kimberly N Wiltrout
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Robin Z Hayeems
- Program in Child Health Evaluative Sciences, SickKids Research Institute, Toronto, ON, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sebastian Lunke
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Christian R Marshall
- Division of Genome Diagnostics, Hospital for Sick Children, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shira Rockowitz
- The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Research Computing, Boston Children's Hospital, Boston, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Neil J Sebire
- DRIVE Centre, Great Ormond Street Hospital for Children, London, UK
| | - Zornitza Stark
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Susan M White
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, UK; Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - J Helen Cross
- Department of Neurology, Great Ormond Street Hospital, London, UK; Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ingrid E Scheffer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; Austin Health, and Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Vann Chau
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gregory Costain
- Program in Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Clinical and Metabolic Genetics, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Katherine B Howell
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital, London, UK; Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|