1
|
Hiraoka T, Tamura M, Mino T, Moriguchi Y, Akiba M, Sugiura Y, Mihashi T, Oshika T. Choroidal thickness in macular, nasal midperiphery, and temporal midperiphery regions and its relationship with axial length and refractive error. Jpn J Ophthalmol 2024:10.1007/s10384-024-01128-5. [PMID: 39487872 DOI: 10.1007/s10384-024-01128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE This study aimed to investigate the choroidal thickness (ChT) distribution in adult myopic eyes, focusing on the macular, nasal midperiphery, and temporal midperiphery regions, and to explore its relationship with axial length (AL) and refractive error. STUDY DESIGN A cross-sectional, observational study. METHODS Twenty-nine eyes of 29 adult volunteers were examined. ChT was measured using high-speed swept-source optical coherence tomography covering an area of 50 degrees in three different regions: centered at macular, nasal side at 33 degrees, and temporal side at 33 degrees. Statistical analyses were performed to assess differences in ChT between regions and correlations with AL and spherical equivalent (SE). RESULTS ChT was found to be thickest in the macular region, followed by the nasal and temporal midperiphery regions. Significant correlations were observed between AL/SE and ChT in the macular and temporal regions, but not in the nasal region. The temporal midperiphery showed the strongest correlation with AL and SE. CONCLUSION This study revealed a nasal-temporal asymmetry in ChT distribution in myopic eyes, with the temporal midperiphery showing the thinnest ChT. The strong correlations between ChT in the temporal midperiphery and AL/SE suggest a role for the temporal choroid in axial elongation and myopia progression. These findings highlight the importance of considering peripheral ChT in understanding ocular growth and myopia management.
Collapse
Affiliation(s)
- Takahiro Hiraoka
- Institute of Medicine, Department of Ophthalmology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Masato Tamura
- Research and Development Division, Topcon Corporation, Tokyo, Japan
| | - Toshihiro Mino
- Research and Development Division, Topcon Corporation, Tokyo, Japan
| | | | - Masahiro Akiba
- Research and Development Division, Topcon Corporation, Tokyo, Japan
| | - Yoshimi Sugiura
- Institute of Medicine, Department of Ophthalmology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toshifumi Mihashi
- Department of Orthoptics, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Tetsuro Oshika
- Institute of Medicine, Department of Ophthalmology, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
2
|
Zhang J, Zhong M, Fan S, Wang Y, Li X, Chen H, Bao J, Huang Y. Differential impact of combined therapy and monotherapy with 0.05% atropine eyedrops and dual focus contact lenses on choroid. Cont Lens Anterior Eye 2024:102320. [PMID: 39467722 DOI: 10.1016/j.clae.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE To investigate changes in the choroid and axial length (AL) during one month of combined therapy and monotherapy with 0.05% atropine and dual-focus soft contact lens (DFCL), and the impact after discontinuation. METHODS Myopic adults randomly received three interventions: 0.05 % atropine, DFCL, and 0.05 % atropine combined with DFCL. Choroidal thickness (ChT), choroidal vascularity index (CVI) and AL were measured at baseline, 3, 7, 14, and 30 days after intervention, and 1, 2, 7, 14, and 30 days after discontinuation. RESULTS The ChT thickened and AL decreased after one month of combination therapy (24.19 ± 4.13 μm, P = 0.001; -40.35 ± 9.55 μm, P = 0.024) or 0.05 % atropine (20.52 ± 4.35 μm, P = 0.008; -8.07 ± 7.22 μm, P = 0.002) but not DFCL (8.95 ± 4.25 μm, P > 0.999; -14.89 ± 7.28 μm, P > 0.999). The increase in ChT and decrease in AL persisted for 2 days after 0.05 % atropine was discontinued, persisted for 7 days and 14 days after combination therapy was discontinued. There was no significant change in the CVI after one month use or withdrawal of any intervention (P > 0.999). After one month of combination therapy, significant correlations were observed between the baseline CVI and changes in ChT (r = 0.485, P = 0.035) or AL (r = -0.589, P = 0.008). CONCLUSION Monotherapy involving 0.05% atropine or the combination of 0.05% atropine with DFCL significantly affected ChT thickening and AL shortening. These changes were maintained for a longer duration post combination intervention. The baseline CVI was associated with changes in ChT and AL during combination treatment.
Collapse
Affiliation(s)
- Jiali Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Muhan Zhong
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuqi Fan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yanqing Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xue Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinhua Bao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Yingying Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Hansen NC, Hvid-Hansen A, Bek T, Møller F, Jacobsen N, Kessel L. The Macular Choroidal Thickness in Danish Children with Myopia After Two-Year Low-Dose Atropine and One-Year Wash-Out: A Placebo-Controlled, Randomized Clinical Trial. Ophthalmol Ther 2024:10.1007/s40123-024-01051-5. [PMID: 39422837 DOI: 10.1007/s40123-024-01051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Our aim in this work was to investigate the macular choroidal thickness (ChT) changes in 6-12-year-old Danish children with myopia during 2 years of low-dose atropine treatment and 1-year wash-out vs. placebo in an investigator-initiated, placebo-controlled, double-blind randomized clinical trial. METHODS Ninety-seven participants were randomized to either 0.01% for 2 years, 0.1% loading dose for 6 months followed by 0.01% for 18 months, or placebo, then a 1-year wash-out. The primary outcome was ChT in the sub-foveal and inner and outer superior, nasal, inferior, and temporal sectors. The secondary outcome was axial length (AL). Outcomes were measured at baseline and 6, 12, 24, and 36 months. One-way analysis of variance was used to detect baseline ChT differences between AL-stratified groups (< 24 mm, 24-25 mm, or > 25 mm). To determine the longitudinal changes in ChT and its effect on AL, all eyes were included in linear mixed modeling with individual eyes nested in the study ID as a random effect. RESULTS Longer eyes had significantly thinner ChT in all choroidal sectors (adj-P < 0.01) at baseline. There was no statistically significant change in any ChT sector after 3 years in the placebo group. Sub-foveal and nasal ChT in the 0.1% loading dose and 0.01% group were not significantly different from placebo after 2-year treatment. In the placebo group, a 1-mm increase in AL was significantly associated with a 47-µm thinner nasal ChT after 3 years (95% confidence interval (CI): - 55; - 38, adj-P < 0.001). A 10-µm thicker nasal choroid at baseline was associated with 0.13 mm (95% CI: 0.009; 0.017, adj-P < 0.001) less 3-year axial elongation. CONCLUSIONS The ChT in Danish children with myopia remained stable over the 3-year follow-up. A thinner choroid at myopia onset might predispose to increased axial elongation. Treatment with 0.01% atropine did not change the ChT. We speculate that low-dose atropine does not primarily reduce myopia progression via a choroidal mechanism. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT03911271.
Collapse
Affiliation(s)
- Niklas C Hansen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600, Glostrup, Denmark.
| | - Anders Hvid-Hansen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600, Glostrup, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Flemming Møller
- Department of Ophthalmology, University Hospital of Southern Denmark, Vejle Hospital, 7100, Vejle, Denmark
| | - Nina Jacobsen
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B 33.5., 2200, Copenhagen, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 1-23, 2600, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B 33.5., 2200, Copenhagen, Denmark
| |
Collapse
|
4
|
Roth A, Breher K, Gisbert S, Arias A, Clement SP, Wahl S. Peripheral Contrast Reduction Optically Induced by Scattering Lenses Thickens Peripheral Choroid. Transl Vis Sci Technol 2024; 13:32. [PMID: 39436671 PMCID: PMC11498638 DOI: 10.1167/tvst.13.10.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose The mechanisms underlying a myopia control strategy using scattering lenses are unclear. Therefore, this study investigates the short-term effects of scatter lenses on central and peripheral choroidal thickness and axial length, which serve as a biomarker in myopia progression research. Methods In total, 23 participants underwent a 60-minute lens wear phase each to five lens conditions: medium peripheral scattering, high peripheral scattering, medium full-field scattering, high full-field scattering and control (clear lens). Central and peripheral choroidal thickness, foveal axial length, and central visual acuity were measured before and after each lens wear condition. Results Peripheral choroidal thickening was found after the lens wear phase of the medium peripheral scattering condition (+3.91 ± 5.37 µm, P = 0.04), revealing a significant difference to the control lens condition (P = 0.004), most pronounced in the superior peripheral retina (+1.95 ± 10.74 µm, P = 0.02). In the central retina, significant choroidal thickening was only found in the nasal part after exposure to medium full-field scattering (+3.91 ± 11.72 µm) compared to the control condition (P = 0.001). High peripheral and full-field scattering conditions did not significantly affect central or peripheral choroidal thickness. Visual acuity was significantly reduced in the full-field scattering conditions compared to control and peripheral scattering lenses, with no improvement after 60-minute lens wear. Axial length did not differ significantly after 60-minute exposure to any scattering lens condition or when compared to the control lens. Conclusions The results indicate a local retinal contrast detection mechanism signals the choroid to thicken peripherally after adaptation to medium peripheral scattering but not high peripheral scattering or full-field scattering at all, while central thickening was only significant nasally after exposure to medium full-field scattering. This emphasizes the importance of the peripheral retina and the level of contrast reduction in the context of myopia research. Translational Relevance This finding gives insight into the mechanism behind the myopia control strategy inducing peripheral scattering.
Collapse
Affiliation(s)
- Antonia Roth
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | | | - Augusto Arias
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Siegfried Wahl
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| |
Collapse
|
5
|
Xiong Y, Liao Y, Zhou W, Sun Y, Zhu M, Wang X. Effectiveness of low-level red light for controlling progression of Myopia in children and adolescents. Photodiagnosis Photodyn Ther 2024; 49:104267. [PMID: 39009205 DOI: 10.1016/j.pdpdt.2024.104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE To evaluate the effectiveness of low-level red light (LRL) in controlling the progression of myopia in children and adolescents. METHODS A randomized controlled trial was conducted from March 2022 to June 2022 at the Xuzhou First People's Hospital. A total of 73 children and adolescents with myopia, between the ages of 6 and 14, and meeting the inclusion criteria, were randomly divided into two groups. The experimental group wore single vision spectacles with LRL intervention, while the control group wore single vision spectacles alone. Spherical equivalent refraction (SER), axial length (AL), subfoveal choroidal thickness (SFCT), and best-corrected visual acuity (BCVA) were measured for the participants. Data analysis was performed using chi-square test, independent samples t-test, and Mann-Whitney U test. To compare the changes in SER and AL between groups, we utilized the Generalized Estimating Equations (GEE) model. RESULTS The experimental group was composed of 36 individuals, while the control group had 37. The mean age of the participants was 8.9 ± 2.0 years. No statistically significant distinctions in SER, AL and SFCT were observed between the two groups at baseline (P > 0.05). After 6 months of intervention, the experimental group's increase in SER (-0.01D; 95 % CI: -0.09, 0.06) was higher than that of the control group (-0.41D; 95 % CI: -0.51, -0.32), with a significance level of P < 0.001. Furthermore, the changes over time revealed significant differences between the two groups (Wald χ2group×time: 31.576, P < 0.001). The experimental group's AL increase (-0.02 mm; 95 % CI: -0.07, 0.03) was less than the control group's (0.22 mm; 95 % CI: 0.19, 0.25) (P < 0.001), with a significant difference over time between them (wald χ2group×time: 62.305, P < 0.001). SFCT change after 6 months in the experimental group was significantly greater (29.19 μm; 95 % CI: 18.48, 39.91) compared to that of the control group (-6.59 μm; 95 % CI: -14.28, 1.09) (P < 0.001). No adverse events were observed, and there was no evidence of fundus structural damage on OCT imaging. CONCLUSIONS The findings suggest that low-level red light can effectively control myopia progression in children and adolescents within 6 months. No adverse reactions were observed.
Collapse
Affiliation(s)
- Yinghui Xiong
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Ya Liao
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Wen Zhou
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; First School of Clinical Medicine of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yanmei Sun
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Mingming Zhu
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Xiaojuan Wang
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
6
|
Kong X, Yang G, Cao Y, Han R, Wang X, Yang Y, Hong J, Zhou X, Ma X. Short-Term Effect of Stimulating the Pterygopalatine Ganglion Via Electroacupuncture on Choroidal Structure in Human Subjects. Transl Vis Sci Technol 2024; 13:26. [PMID: 39412767 PMCID: PMC11486082 DOI: 10.1167/tvst.13.10.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose Choroidal dysfunction is implicated in various ocular pathologies. The parasympathetic pterygopalatine ganglion (PPG) innervates orbital vessels supplying the choroid. While PPG stimulation has been shown to dilate cerebral blood flow, its effects on the choroid, particularly in human subjects, require further elucidation. This study aimed to investigate the short-term influence of PPG stimulation via electroacupuncture on choroidal structure. Methods In this crossover study, 22 healthy adults received PPG electrical stimulation and sham stimulation for one session each on two separate days in a randomized order. Measurements including choroidal thickness (ChT), choroidal vascularity index (ChVI), central subfield thickness, axial length, anterior chamber depth, and lens thickness were recorded before and at intervals (0, 15, 30, 45, and 60 minutes) postintervention. Results The ChT on the side receiving PPG stimulation demonstrated a sustained increase, peaking at 15 minutes poststimulation (17.2 µm, P < 0.001) and persisting for up to 60 minutes. Conversely, the ChVI exhibited a more immediate response, with a peak increase immediately poststimulation (3.8%, P = 0.003), followed by a gradual return to baseline. ChT and ChVI in the contralateral eye showed a nonsignificant trend to decrease. Additionally, a notable reduction in ipsilateral axial length was observed at specific time points poststimulation. Conclusions PPG activation via electroacupuncture elicited a short-term increase in ChT and ChVI in the ipsilateral eye compared to sham stimulation, with ChT increases trailing those of ChVI but displaying greater persistence. Translational Relevance Electrical stimulation of the PPG can produce a short-term increase in ipsilateral ChT and ChVI.
Collapse
Affiliation(s)
- Xiehe Kong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaojiani Cao
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Rong Han
- Shanghai Qigong Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuejun Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yanting Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Hong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingtao Zhou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Wan B, Zhang X, Qi Y, She H, Wang Z, Jin ZB. Parallel comparison of ocular metrics in non-human primates with high myopia by LS900, ultrasonography and MRI-based 3D reconstruction. Exp Eye Res 2024; 246:110007. [PMID: 39029552 DOI: 10.1016/j.exer.2024.110007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
We investigate the ocular dimensions and shape by using Lenstar900 (LS900), A-scan ultrasonography, and Magnetic Resonance Imaging (MRI) in highly myopic Macaca fascicularis. The ocular dimensions data of LS900, A-scan ultrasonography and MRI was assessed from 8 eyes (4 adult male cynomolgus macaque) with extremely high myopia (≤-1000DS) and compared by means of coefficients of concordance and 95% limits of agreement. Multiple regression analysis was performed to explore the associations between ocular biometry, volume, refraction and inter-instrument discrepancies. Test-retest reliability of three measurements of ocular parameters at two time points was almost equal (intraclass correlation = 0.831 to 1.000). The parallel-forms reliability of three measurements was strong for vitreous chamber depth (VCD) (coefficient of concordance = 0.919 to 0.981), moderate for axial length (AL) (coefficient of concordance = 0.486 to 0.981), and weak for anterior chamber depth (ACD) (coefficient of concordance = 0.267 to 0.621) and lens thickness (LT) (coefficient of concordance = 0.035 to 0.631). The LS900 and MRI systematically underestimated the ACD and LT comparing to A-scan ultrasonography (P < 0.05). Notably, the average AL on LS900 displayed a significant correlation with those on MRI (r = 0.978, P < 0.001) and A-scan ultrasonography (r = 0.990, P < 0.001). Almost 4/5 eyeballs were prolate. The mean eyeball volume positively correlated with AL (r = 0.782, P = 0.022), the width (r = 0.945, P = 0.000), and the length (r = 0.782, P = 0.022) of eyeball, while negatively correlated with SER (r = -0.901, P = 0.000). In conclusion, there was a high inter-instrument concordance for VCD with LS900, A-scan ultrasonography and MRI, while ACD and LT were underestimated with LS900 compared to A-scan ultrasonography, and the LS900 and A-scan ultrasonography could reliably measure the AL. MRI further revealed an equatorial globe shape in extremely myopic non-human primates.
Collapse
Affiliation(s)
- Bo Wan
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Department of Ophthalmology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Qi
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Haicheng She
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhaoyang Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Zhang XJ, Zhang Y, Yip BHK, Kam KW, Tang F, Ling X, Ng MPH, Young AL, Wu PC, Tham CC, Chen LJ, Pang CP, Yam JC. Five-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 4 Report. Ophthalmology 2024; 131:1011-1020. [PMID: 38494130 DOI: 10.1016/j.ophtha.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE To evaluate (1) the long-term efficacy of low-concentration atropine over 5 years, (2) the proportion of children requiring re-treatment and associated factors, and (3) the efficacy of pro re nata (PRN) re-treatment using 0.05% atropine from years 3 to 5. DESIGN Randomized, double-masked extended trial. PARTICIPANTS Children 4 to 12 years of age originally from the Low-Concentration Atropine for Myopia Progression (LAMP) study. METHODS Children 4 to 12 years of age originally from the LAMP study were followed up for 5 years. During the third year, children in each group originally receiving 0.05%, 0.025%, and 0.01% atropine were randomized to continued treatment and treatment cessation. During years 4 and 5, all continued treatment subgroups were switched to 0.05% atropine for continued treatment, whereas all treatment cessation subgroups followed a PRN re-treatment protocol to resume 0.05% atropine for children with myopic progressions of 0.5 diopter (D) or more over 1 year. Generalized estimating equations were used to compare the changes in spherical equivalent (SE) progression and axial length (AL) elongation among groups. MAIN OUTCOMES MEASURES (1) Changes in SE and AL in different groups over 5 years, (2) the proportion of children who needed re-treatment, and (3) changes in SE and AL in the continued treatment and PRN re-treatment groups from years 3 to 5. RESULTS Two hundred seventy (82.8%) of 326 children (82.5%) from the third year completed 5 years of follow-up. Over 5 years, the cumulative mean SE progressions were -1.34 ± 1.40 D, -1.97 ± 1.03 D, and -2.34 ± 1.71 D for the continued treatment groups with initial 0.05%, 0.025%, and 0.01% atropine, respectively (P = 0.02). Similar trends were observed in AL elongation (P = 0.01). Among the PRN re-treatment group, 87.9% of children (94/107) needed re-treatment. The proportion of re-treatment across all studied concentrations was similar (P = 0.76). The SE progressions for continued treatment and PRN re-treatment groups from years 3 to 5 were -0.97 ± 0.82 D and -1.00 ± 0.74 D (P = 0.55) and the AL elongations were 0.51 ± 0.34 mm and 0.49 ± 0.32 mm (P = 0.84), respectively. CONCLUSIONS Over 5 years, the continued 0.05% atropine treatment demonstrated good efficacy for myopia control. Most children needed to restart treatment after atropine cessation at year 3. Restarted treatment with 0.05% atropine achieved similar efficacy as continued treatment. Children should be considered for re-treatment if myopia progresses after treatment cessation. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Benjamin H K Yip
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong
| | - Fangyao Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiangtian Ling
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Mandy P H Ng
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong; Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong; Hong Kong Eye Hospital, Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong; Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong; Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China.
| |
Collapse
|
9
|
Du L, Ding L, Chen J, Wang J, Yang J, Liu S, Xu X, He X, Huang J, Zhu M. Efficacy of weekly dose of 1% atropine for myopia control in Chinese children. Br J Ophthalmol 2024:bjo-2023-324615. [PMID: 39122352 DOI: 10.1136/bjo-2023-324615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE To assess the effect of weekly 1% atropine use on children's myopia progression and whether the effect is sustainable. METHODS Medical records of myopic children aged 3-15 years receiving weekly 1% atropine for more than 1 year were retrospectively reviewed. Axial length (AL) and spherical equivalent refraction (SER) at every visit were collected. The changes in AL or SER over time were analysed using generalised estimating equation. The related factors of myopic progression were performed by multiple linear regression. The performance of short-term AL change to predict atropine-poor responders (AL change >0.2 mm/year) was assessed using receiver operating characteristic analysis. RESULTS A total of 694 participants with a mean age of 8.83 years were included. The participants with follow-up time reached 1, 2, 3 and 4 years were 256 (36.9%), 250 (36.0%), 143 (20.6%) and 45 (6.5%) separately. The cumulative change in AL was 0.05 mm, 0.24 mm, 0.47 mm, 0.56 mm separately for 1-year, 2-year, 3-year and 4- year treatment. Approximate 0.20 mm elongation per year was observed since the second-year of the treatment. Older age and lower initial myopic refraction were independently associated with less myopic progression. A decrease in AL of more than 0.04 mm during the initial 2 months could serve as an indicator for identifying fast progressors (AL change >0.2 mm/year) over a 2-year period, with sensitivity and specificity rates of 0.78 and 0.73, respectively. CONCLUSION Weekly 1% atropine may be a potentially effective treatment with longer lasting effects for children with myopia control especially in those with older age and lower myopia.
Collapse
Affiliation(s)
- Linlin Du
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Li Ding
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Jun Chen
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Jingjing Wang
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Jinliuxing Yang
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Sichen Liu
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Xun Xu
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangui He
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiannan Huang
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Mengjun Zhu
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Yang Y, Xue M, Hao J, Lin Z, Xi X, Wu H, Wen L, Xu Q, Luo Z, Ran G, Artal P, Lan W, Li X, Yang Z. Frequency-dependent effects of 0.05% atropine eyedrops on myopia progression and peripheral defocus: a prospective study. EYE AND VISION (LONDON, ENGLAND) 2024; 11:26. [PMID: 39085950 PMCID: PMC11293060 DOI: 10.1186/s40662-024-00395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Atropine, specifically 0.05% eyedrops, has proven effective in slowing myopia progression. This study aims to investigate peripheral refraction (PR) characteristics in myopic children treated with 0.05% atropine eyedrops at different frequencies. METHODS One hundred thirty-eight myopic children completed this one-year prospective study, randomly assigned to once daily (7/7), twice per week (2/7), or once per week (1/7) groups. Spherical equivalent (SE) and axial length (AL) were measured. PR was assessed using a custom-made Hartmann-Shack wavefront peripheral sensor, covering a visual field of horizontal 60° and vertical 36°. Relative peripheral refraction (RPR) was calculated by subtracting central from peripheral measurements. RESULTS After one year, SE increased more significantly in the 1/7 group compared to the 7/7 group (P < 0.001) and 2/7 group (P = 0.004); AL elongation was also greater in the 1/7 group compared to the 7/7 group (P < 0.001). In comparison with higher frequency groups, 1/7 group exhibited more myopic PR in the fovea and its vertical superior, inferior, and nasal retina; and less myopic RPR in the periphery retina after one-year (P < 0.05). Additionally, RPR in the 7/7 group demonstrated myopic shift across the entire retina, the 2/7 group in temporal and inferior retina, while the 1/7 group showed a hyperopic shift in the superior retina (P < 0.05). Moreover, myopic shift of RPR in the temporal retina is related to less myopia progression, notably in the 7/7 group (P < 0.05). CONCLUSIONS Atropine inhibits myopia progression in a frequency-dependent manner. The once-daily group showed the slowest myopia progression but exhibited more myopic shifts in RPR. Additionally, RPR in the temporal retina was related to myopia progression in all groups. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2100043506. Registered 21 February 2021, https://www.chictr.org.cn/showproj.html?proj=122214.
Collapse
Affiliation(s)
- Yuanfang Yang
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China
| | - Minsong Xue
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China
| | - Jiangdong Hao
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China
| | - Zhenghua Lin
- Aier Institute of Optometry and Vision Science, Changsha, 410015, China
- Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Xiaoyun Xi
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China
| | - Haoran Wu
- Aier Institute of Optometry and Vision Science, Changsha, 410015, China
| | - Longbo Wen
- Aier Institute of Optometry and Vision Science, Changsha, 410015, China
| | - Qinglin Xu
- Aier Institute of Optometry and Vision Science, Changsha, 410015, China
| | - Zhiwei Luo
- Aier Institute of Optometry and Vision Science, Changsha, 410015, China
| | - Guangyao Ran
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China
| | - Pablo Artal
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China
- Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Weizhong Lan
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China
- Aier Institute of Optometry and Vision Science, Changsha, 410015, China
| | - Xiaoning Li
- Changsha Aier Eye Hospital, Changsha, 410015, China.
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437000, China.
- Aier Institute of Optometry and Vision Science, Changsha, 410015, China.
- Hunan Province Optometry Engineering and Technology Research Center, Changsha, 410015, China.
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha, 410015, China.
| | - Zhikuan Yang
- Aier School of Ophthalmology, Central South University, Changsha, 410015, China.
- Aier Institute of Optometry and Vision Science, Changsha, 410015, China.
- Hunan Province Optometry Engineering and Technology Research Center, Changsha, 410015, China.
- Hunan Province International Cooperation Base for Optometry Science and Technology, Changsha, 410015, China.
| |
Collapse
|
11
|
Lee SSY, Lingham G, Clark A, Read SA, Alonso-Caneiro D, Mackey DA. Choroidal Changes During and After Discontinuing Long-Term 0.01% Atropine Treatment for Myopia Control. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 39136629 PMCID: PMC11323994 DOI: 10.1167/iovs.65.10.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose Few studies have explored choroidal changes after cessation of myopia control. This study evaluated the choroidal thickness (ChT) and choroidal vascularity index (CVI) during and after discontinuing long-term low-concentration atropine eye drops use for myopia control. Methods Children with progressive myopia (6-16 years; n = 153) were randomized to receive 0.01% atropine eye drops or a placebo (2:1 ratio) instilled daily over 2 years, followed by a 1-year washout (no eye drop use). Optical coherence tomography imaging of the choroid was conducted at the baseline, 2-year (end of treatment phase), and 3-year (end of washout phase) visits. The main outcome measure was the subfoveal ChT. Secondary measures include the CVI. Results During the treatment phase, the subfoveal choroids in both treatment and control groups thickened by 12-14 µm (group difference P = 0.56). During the washout phase, the subfoveal choroids in the placebo group continued to thicken by 6.6 µm (95% confidence interval [CI] = 1.7 to 11.6), but those in the atropine group did not change (estimate = -0.04 µm; 95% CI = -3.2 to 3.1). Participants with good axial eye growth control had greater choroidal thickening than the fast-progressors during the treatment phase regardless of the treatment group (P < 0.001), but choroidal thickening in the atropine group's fast-progressors was not sustained after stopping eye drops. CVI decreased in both groups during the treatment phase, but increased in the placebo group after treatment cessation. Conclusions On average, compared to placebo, 0.01% atropine eye drop treatment did not cause a differential rate of change in ChT during treatment, but abrupt cessation of long-term 0.01% atropine eye drops may disrupt normal choroidal thickening in children.
Collapse
Affiliation(s)
- Samantha Sze-Yee Lee
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia
- https://orcid.org/0000-0001-6635-1098
| | - Gareth Lingham
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia
- Centre for Eye Research Ireland, Environmental, Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
- https://orcid.org/0000-0002-8957-0733
| | - Antony Clark
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia
- Perth Children's Hospital, Perth, Western Australia, Australia
- https://orcid.org/0000-0001-8393-9870
| | - Scott A Read
- Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Kelvin Grove, Queensland, Australia
- https://orcid.org/0000-0002-1595-673X
| | - David Alonso-Caneiro
- Queensland University of Technology, Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Kelvin Grove, Queensland, Australia
- School of Science, Technology, and Engineering, University of Sunshine Coast, Petrie, Queensland, Australia
- https://orcid.org/0000-0002-7754-6592
| | - David A Mackey
- University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia
- School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- https://orcid.org/0000-0001-7914-4709
| |
Collapse
|
12
|
Schaeffel F, Swiatczak B. Mechanisms of emmetropization and what might go wrong in myopia. Vision Res 2024; 220:108402. [PMID: 38705024 DOI: 10.1016/j.visres.2024.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Studies in animal models and humans have shown that refractive state is optimized during postnatal development by a closed-loop negative feedback system that uses retinal image defocus as an error signal, a mechanism called emmetropization. The sensor to detect defocus and its sign resides in the retina itself. The retina and/or the retinal pigment epithelium (RPE) presumably releases biochemical messengers to change choroidal thickness and modulate the growth rates of the underlying sclera. A central question arises: if emmetropization operates as a closed-loop system, why does it not stop myopia development? Recent experiments in young human subjects have shown that (1) the emmetropic retina can perfectly distinguish between real positive defocus and simulated defocus, and trigger transient axial eye shortening or elongation, respectively. (2) Strikingly, the myopic retina has reduced ability to inhibit eye growth when positive defocus is imposed. (3) The bi-directional response of the emmetropic retina is elicited with low spatial frequency information below 8 cyc/deg, which makes it unlikely that optical higher-order aberrations play a role. (4) The retinal mechanism for the detection of the sign of defocus involves a comparison of defocus blur in the blue (S-cone) and red end of the spectrum (L + M-cones) but, again, the myopic retina is not responsive, at least not in short-term experiments. This suggests that it cannot fully trigger the inhibitory arm of the emmetropization feedback loop. As a result, with an open feedback loop, myopia development becomes "open-loop".
Collapse
Affiliation(s)
- Frank Schaeffel
- Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland; Section Neurobiology of the Eye, Institute of Ophthalmic Research, University of Tübingen, Germany; Zeiss Vision Lab, Institute of Ophthalmic Research, University of Tübingen, Germany.
| | - Barbara Swiatczak
- Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| |
Collapse
|
13
|
Chen Y, Yang S, Liu R, Xiong R, Wang Y, Li C, Zheng Y, He M, Wang W. Forecasting Myopic Maculopathy Risk Over a Decade: Development and Validation of an Interpretable Machine Learning Algorithm. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 38935031 PMCID: PMC11216278 DOI: 10.1167/iovs.65.6.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Purpose The purpose of this study was to develop and validate prediction model for myopic macular degeneration (MMD) progression in patients with high myopia. Methods The Zhongshan High Myopia Cohort for model development included 660 patients aged 7 to 70 years with a bilateral sphere of ≤-6.00 diopters (D). Two hundred twelve participants with an axial length (AL) ≥25.5 mm from the Chinese Ocular Imaging Project were used for external validation. Thirty-four clinical variables, including demographics, lifestyle, myopia history, and swept source optical coherence tomography data, were analyzed. Sequential forward selection was used for predictor selection, and binary classification models were created using five machine learning algorithms to forecast the risk of MMD progression over 10 years. Results Over a median follow-up of 10.9 years, 133 patients (20.2%) showed MMD progression in the development cohort. Among them, 69 (51.9%) developed newly-onset MMD, 11 (8.3%) developed patchy atrophy from diffuse atrophy, 54 (40.6%) showed an enlargement of lesions, and 9 (6.8%) developed plus signs. Top six predictors for MMD progression included thinner subfoveal choroidal thickness, longer AL, worse best-corrected visual acuity, older age, female gender, and shallower anterior chamber depth. The eXtreme Gradient Boosting algorithm yielded the best discriminative performance (area under the receiver operating characteristic curve [AUROC] = 0.87 ± 0.02) with good calibration in the training cohort. In a less myopic external validation group (median -5.38 D), 48 patients (22.6%) developed MMD progression over 4 years, with the model's AUROC validated at 0.80 ± 0.008. Conclusions Machine learning model effectively predicts MMD progression a decade ahead using clinical and imaging indicators. This tool shows promise for identifying "at-risk" high myopes for timely intervention and vision protection.
Collapse
Affiliation(s)
- Yanping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Shaopeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Riqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yueye Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Cong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, Hainan Province, China
| |
Collapse
|
14
|
Cao K, Tian L, Ma DL, Zhao SQ, Li A, Jin ZB, Jie Y. Daily Low-Level Red Light for Spherical Equivalent Error and Axial Length in Children With Myopia: A Randomized Clinical Trial. JAMA Ophthalmol 2024; 142:560-567. [PMID: 38662345 PMCID: PMC11046409 DOI: 10.1001/jamaophthalmol.2024.0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/19/2024] [Indexed: 04/26/2024]
Abstract
Importance Treatments are needed to slow progression of or reduce incidence of myopia. Objective To evaluate the efficacy and safety of daily 650-nm low-level red light (LLRL) for myopia treatment. Design, Setting, and Participants Single-masked, randomized clinical trial at 1 site in China. Baseline measurements were completed from August to September 2021. Participants were children aged 6 to 12 years with spherical equivalent error (SER) of -6 diopters (D) to 3 D. Data were analyzed from March to July 2023. Interventions Irradiation daily with 650-nm LLRL for 3 minutes twice daily 4 or more hours apart or no intervention. Main Outcomes and Measures Primary outcomes were changes in cycloplegia SER and axial length (AL) at 6- and 12-month follow-up visits. Safety was assessed on masked fundus photograph evaluations. Results A total of 336 children were randomly allocated into the LLRL group or control group in a 1:1 ratio. The control group contained 86 female patients (51.2%), and the treatment group contained 90 female patients (53.6%). The mean (SD) age, SER, and AL were 9.0 (1.9) years, -1.3 (1.5) D, and 23.8 (1.0) mm for all patients. A total of 161 (95.8%) in the LLRL group and 159 (94.6%) in the control group returned for the 6-month follow-up. A total of 157 (93.5%) in the LLRL group and 152 (90.5%) in the control group returned for the 12-month follow-up. Mean (SD) changes in SER were 0.15 (0.16) D and -0.26 (0.21) D for the LLRL group and the control group, respectively (difference, -0.41 D; 95% CI, -0.48 to -0.34 D; P < .001), at 6 months and 0.24 (0.27) D and -0.65 (0.33) D for the LLRL group and the control group, respectively (difference, -0.89 D; 95% CI, -0.95 to -0.83 D; P < .001), at 12 months. Mean (SD) changes in AL were -0.06 (0.08) mm and 0.13 (0.12) mm for the LLRL group and control group, respectively (difference, 0.19 mm; 95% CI, 0.16 to 0.22 mm; P < .001), at 6 months and -0.11 (0.10) mm and 0.26 (0.16) mm for the LLRL group and control group, respectively (difference, 0.37 mm; 95% CI, 0.34 to 0.40 mm; P < .001). Masked fundus photograph review did not identify retinal changes in either group. Conclusions and relevance These findings suggest daily use of 650-nm LLRL for 1 year can slow progression of SER and AL without safety concerns identified. Confirmation of these findings at independent sites seems warranted, as well as determining whether these effects can be sustained with or without continued treatment and whether LLRL has any effect on pathological myopia. Trial Registration ChiCTR2200058963.
Collapse
Affiliation(s)
- Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong-Li Ma
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shi-Qiang Zhao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ao Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Zhang XJ, Zaabaar E, French AN, Tang FY, Kam KW, Tham CC, Chen LJ, Pang CP, Yam JC. Advances in myopia control strategies for children. Br J Ophthalmol 2024:bjo-2023-323887. [PMID: 38777389 DOI: 10.1136/bjo-2023-323887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
Myopia has long been a global threat to public health. Timely interventions are likely to reduce the risk of vision-threatening complications. There are both established and rapidly evolving therapeutic approaches to slow myopia progression and/or delay its onset. The effective methods for slowing myopia progression include atropine eye-drops, defocus incorporated multiple segments (DIMS) spectacle lenses, spectacle lenses with highly aspherical lenslets target (HALT), diffusion optics technology (DOT) spectacle lenses, red light therapy (RLT), multifocal soft contact lenses and orthokeratology. Among these, 0.05% atropine, HALT lenses, RLT and +3.00 peripheral addition soft contact lenses yield over 60% reduction in myopia progression, whereas DIMS, DOT and MiSight contact lenses demonstrate at least 50% myopia control efficacy. 0.05% atropine demonstrates a more optimal balance of efficacy and safety than 0.01%. The efficacy of 0.01% atropine has not been consistent and requires further validation across diverse ethnicities. Combining atropine 0.01% with orthokeratology or DIMS spectacles yields better outcomes than using these interventions as monotherapies. Increased outdoor time is an effective public health strategy for myopia prevention while recent studies suggest that 0.05% low-concentration atropine and RLT therapy have promising potential as clinical myopia prevention interventions for high-risk groups. Myopia control spectacle lenses, being the least invasive, are safe for long-term use. However, when considering other approaches, it is essential to ensure proper instruction and regular follow-ups to maintain safety and monitor any potential complications. Ultimately, significant advances have been made in myopia control strategies, many of which have shown meaningful clinical outcomes. However, regular use and adequate safety monitoring over extended durations are imperative to foster confidence that can only come from extensive clinical experience.
Collapse
Affiliation(s)
- Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ebenezer Zaabaar
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Amanda Nicole French
- Discipline of Orthoptics, University of Sydney, Sydney, New South Wales, Australia
| | - Fang Yao Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology, Hong Kong Children Hospital, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Department of Ophthalmology, Hong Kong Children Hospital, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Lorrai R, Cavaterra D, Giammaria S, Sbardella D, Tundo GR, Boccaccini A. Eye Diseases: When the Solution Comes from Plant Alkaloids. PLANTA MEDICA 2024; 90:426-439. [PMID: 38452806 DOI: 10.1055/a-2283-2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Plants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases. This review deals with providing an overview of the alkaloids used to treat eye diseases, describing the historical outline, the plants from which they are extracted, and the clinical and molecular data supporting their therapeutic activity. Among the different alkaloids that have found application in medicine so far, atropine and pilocarpine are the most characterized ones. Conversely, caffeine and berberine have been proposed for the treatment of different eye disorders, but further studies are still necessary to fully understand their clinical value. Lastly, the alkaloid used for managing hypertension, reserpine, has been recently identified as a potential drug for ameliorating retinal disorders. Other important aspects discussed in this review are different solutions for alkaloid production. Given that the industrial production of many of the plant-derived alkaloids still relies on extraction from plants, and the chemical synthesis can be highly expensive and poorly efficient, alternative methods need to be found. Biotechnologies offer a multitude of possibilities to overcome these issues, spanning from genetic engineering to synthetic biology for microorganisms and bioreactors for plant cell cultures. However, further efforts are needed to completely satisfy the pharmaceutical demand.
Collapse
Affiliation(s)
- Riccardo Lorrai
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, Italy
| | - Dario Cavaterra
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Tor Vergata, Rome, Italy
| | | | | | - Grazia Raffaella Tundo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università di Roma Tor Vergata, Rome, Italy
| | | |
Collapse
|
17
|
Huang Y, Li X, Zhuo Z, Zhang J, Que T, Yang A, Drobe B, Chen H, Bao J. Effect of spectacle lenses with aspherical lenslets on choroidal thickness in myopic children: a 3-year follow-up study. EYE AND VISION (LONDON, ENGLAND) 2024; 11:16. [PMID: 38659078 PMCID: PMC11044302 DOI: 10.1186/s40662-024-00383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND To investigate the impact of wearing spectacle lenses with highly aspherical lenslets (HAL) for 3 years and the impact of switching from single-vision lenses (SVL) to HAL on choroidal thickness (ChT). METHODS Fifty-one participants who had already worn HAL for 2 years continued wearing them for an additional year (HAL group). Further, 50 and 41 participants who had worn spectacle lenses with slightly aspherical lenslets (SAL) and SVL for 2 years, respectively, switched to wearing HAL for another year (SAL-HAL and SVL-HAL groups). Additionally, 48 new participants aged 10-15 years were enrolled to wear SVL at the third year (new-SVL group). ChT was measured every 6 months throughout the study. RESULTS Significant differences were observed in the changes in ChT among the four groups at the third year (all P < 0.05 except for the outer nasal region: P = 0.09), with the new-SVL group showing larger reductions compared with the other three groups. However, none of the three HAL-wearing groups showed significant changes in ChT at the third year (all P > 0.05). When comparing the changes in ChT for 3 years among the HAL, SAL-HAL, and SVL-HAL groups, significant differences were found before switching to HAL, but these differences were abolished after all participants switched to HAL. CONCLUSIONS Compared to those in the SVL group, choroid thinning was significantly inhibited in all the HAL groups. Wearing HAL for 3 years no longer had a choroidal thickening effect but could still inhibit choroidal thinning compared to wearing SVL. TRIAL REGISTRATION The study was registered at the Chinese Clinical Trial Registry (ChiCTR1800017683), http://www.chictr.org.cn/showproj.aspx?proj=29789 .
Collapse
Affiliation(s)
- Yingying Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuopao Zhuo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiali Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Tianxing Que
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Adeline Yang
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
- R&D Singapore, Essilor International, Singapore, Singapore
| | - Björn Drobe
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
- R&D Singapore, Essilor International, Singapore, Singapore
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China.
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jinhua Bao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
18
|
Shahsuvaryan ML. Atropine: Updates on myopia pharmacotherapy. Taiwan J Ophthalmol 2024; 14:225-229. [PMID: 39027061 PMCID: PMC11253994 DOI: 10.4103/tjo.tjo-d-22-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/02/2022] [Indexed: 07/20/2024] Open
Abstract
The prevalence of myopia has rapidly increased over the last 30 years, with the World Health Organization estimating a worldwide incidence of 23%, projected to increase to 50% by 2050. The myopia epidemic has prompted a reincarnation in efforts to overcome this challenge. The exploration of atropine use in myopia was a result due to a lack of treatment in effect. This study aimed at reviewing the role of atropine in the management of myopia worldwide based on currently available findings. A literature search was conducted using PubMed/MEDLINE and Google Scholar for studies published up to April 2022 inclusive. Articles with high or medium clinical relevance were selected for this review. Multiple studies have demonstrated the relevance and efficacy rates of different concentrations of atropine, despite still insufficiently explained the exact site and mechanism of action of atropine in slowing myopia progression. Currently available findings highlight that topical atropine opened a new page in pharmacotherapy of myopia and have shown a high therapeutic effect on myopia progression in Asian and European child population, irrespective of ethnicity. There is potential for myopia control with fewer side effects using lower concentrations but still exists a room for improvement, underscoring the requirement of modified atropine topical preparations with increased bioavailability, potentially with nanoparticle formulations, to enable the effective management of myopia.
Collapse
|
19
|
Lee SH, Tseng BY, Wang JH, Chiu CJ. Efficacy and Safety of Low-Dose Atropine on Myopia Prevention in Premyopic Children: Systematic Review and Meta-Analysis. J Clin Med 2024; 13:1506. [PMID: 38592670 PMCID: PMC10932201 DOI: 10.3390/jcm13051506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Early-onset myopia increases the risk of irreversible high myopia. Methods: This study systematically evaluated the efficacy and safety of low-dose atropine for myopia control in children with premyopia through meta-analysis using random-effects models. Effect sizes were calculated using risk ratios (RRs) with 95% confidence intervals (CIs). Comprehensive searches of PubMed, EMBASE, Cochrane CENTRAL, and ClinicalTrials.gov were conducted until 20 December 2023, without language restrictions. Results: Four studies involving 644 children with premyopia aged 4-12 years were identified, with atropine concentrations ranging from 0.01% to 0.05%. The analysis focused on myopia incidence and atropine-related adverse events. Lower myopia incidence (RR, 0.62; 95% CI, 0.40-0.97 D/y; p = 0.03) and reduction in rapid myopia shift (≥0.5 D/1y) (RR, 0.50; 95% CI, 0.26-0.96 D/y; p < 0.01) were observed in the 12-24-month period. Spherical equivalent and axial length exhibited attenuated progression in the atropine group. No major adverse events were detected in either group, whereas the incidence of photophobia and allergic conjunctivitis did not vary in the 12-24-month period. Conclusions: Our meta-analysis supports atropine's efficacy and safety for delaying myopia incidence and controlling progression in children with premyopia. However, further investigation is warranted due to limited studies.
Collapse
Affiliation(s)
- Ssu-Hsien Lee
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (S.-H.L.); (B.-Y.T.)
| | - Bor-Yuan Tseng
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (S.-H.L.); (B.-Y.T.)
| | - Jen-Hung Wang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
| | - Cheng-Jen Chiu
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien 970, Taiwan
- Department of Ophthalmology, Hualien Tzu Chi Hospital, the Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| |
Collapse
|
20
|
Shen M, Han X, Yang Y, Huang H, Hou J, Jin L, Yu X, Zeng Y, He M. Longitudinal Changes in Choroidal Thickness Varied With Refractive Progression in Myopic and Non-Myopic Children: A Two-Year Cohort Study. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 38470328 PMCID: PMC10939140 DOI: 10.1167/iovs.65.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Purpose To evaluate the longitudinal changes in subfoveal choroidal thickness (SFCT) in children with different refractive status. Methods A total of 2290 children 3 to 14 years old who attended the first year of kindergarten (G0), first year of primary school (G1), fourth year of primary school (G4), or first year of junior high school (G7) in Guangzhou, China, were recruited and followed up for 2 years. All participants received cycloplegic autorefraction, axial length measurement and SFCT measurement using a CIRRUS HD-OCT device. Children were divided into groups of persistent non-myopia (PNM), persistent myopia (PM), or newly developed myopia (NDM). Children in the PNM and PM groups were further divided into subgroups of stable refraction (absolute mean annual spherical equivalent refraction [SER] change < 0.5 D) and refractive progression (absolute mean annual SER change ≥ 0.5 D). Results The mean ± SD ages for the G1 to G7 cohorts were 3.89 ± 0.30, 6.79 ± 0.47, 9.71 ± 0.34, and 12.54 ± 0.38, years, respectively. SFCT consistently decreased in the NDM group across the G1 to G7 cohorts (all P < 0.001) and exhibited variability across different age cohorts in the PNM and PM groups. Further subgroup analysis revealed significant thickening of SFCT in the PNM-stable group among the G0, G1, and G7 cohorts (all P < 0.05), whereas it remained stable among all cohorts in the PM-stable group (all P > 0.05). Conversely, SFCT exhibited thinning in the G4 and G7 cohorts in the PM-progressive group (both P < 0.01) and for the entire cohort of children in the PNM-progressive group (P = 0.012). Conclusions SFCT increased in nonmyopic children with stable refraction, remained stable in myopic children maintained stable refraction, and decreased in those with refractive progression, whether they were myopic or not.
Collapse
Affiliation(s)
- Menglu Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xiaotong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Hailu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Jinen Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Ling Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Xinping Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yangfa Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Youssef MA, Shehata AR, Adly AM, Ahmed MR, Abo-Bakr HF, Fawzy RM, Gouda AT. Efficacy of Repeated Low-Level Red Light (RLRL) therapy on myopia outcomes in children: a systematic review and meta-analysis. BMC Ophthalmol 2024; 24:78. [PMID: 38378527 PMCID: PMC10877869 DOI: 10.1186/s12886-024-03337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Myopia is the most prevalent form of refractive error that has a major negative impact on visual function and causes blurring of vision. We aimed to determine if Repeated Low-Level Red Light (RLRL) treatment is beneficial in treating childhood myopia in terms of axial length (AL), spherical equivalent refraction (SER), and sub foveal choroidal thickness (SFCT). METHODS This systematic review was performed on RLRL for treatment of myopia in children compared to single vision spectacles (SVS). We employed the search strategy with key terms myopia and low-level light therapy then we searched PubMed, Scopus, Cochrane, and Web of Science databases. The mean differences (MD) were used to evaluate the treatment effects. Heterogeneity was quantified using I2 statistics and explored by sensitivity analysis. RESULTS Five randomized controlled trials (RCTs) were included in our meta-analysis with a total of 833 patients, 407 in treatment group and 426 in control group. At a 3 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.16; 95% CI [-0.19, -0.12], SER (MD = 0.33; 95% CI [0.27, 0.38]), and SFCT (MD = 43.65; 95% CI [23.72, 45.58]). At a 6 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.21; 95% CI [-0.28, -0.15]), SER (MD = 0.46; 95% CI [0.26, 0.65]), and SFCT (MD = 25.07; 95% CI [18.18, 31.95]). At a 12 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.31; 95% CI [-0.42, -0.19]) and SER (MD = 0.63; 95% CI [0.52, 0.73]). CONCLUSION This is the first systematic review and meta-analysis investigating only RCTs evidence supporting the efficacy of 650 nm RLRL for myopia control in the short term of 3, 6, and 12 months follow up. The present review revealed the clinical significance of RLRL as a new alternative treatment for myopia control with good user acceptability and no documented functional or structural damage. However, the effect of long-term RLRL treatment and the rebound effect after cessation require further investigations.
Collapse
Affiliation(s)
| | | | - Ahmed Moataz Adly
- Faculty of Medicine, Beni Suef University, Beni Suef city, Beni Suef, Egypt
| | | | | | | | - Ahmed Taha Gouda
- Faculty of Medicine, Beni Suef University, Beni Suef city, Beni Suef, Egypt
| |
Collapse
|
22
|
Jawaid I, Saunders K, Hammond CJ, Dahlmann-Noor A, Bullimore MA. Low concentration atropine and myopia: a narrative review of the evidence for United Kingdom based practitioners. Eye (Lond) 2024; 38:434-441. [PMID: 37717107 PMCID: PMC10858250 DOI: 10.1038/s41433-023-02718-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/05/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023] Open
Abstract
The prevalence of myopia is increasing across the world. Controlling myopia progression would be beneficial to reduce adverse outcomes such as retinal detachment and myopic maculopathy which are associated with increased axial length. Pharmacological control of myopia progression with atropine has been investigated since the 19th century and the benefits of slowing myopia progression are considered against the side-effects of near blur and photophobia. More recently, randomised trials have focused on determining the optimum concentration of atropine leading to low-concentration atropine being used to manage myopia progression by practitioners across the world. Currently, in the United Kingdom, there is no licensed pharmacological intervention for myopia management. The aim of this review is to interpret the available data to inform clinical practice. We conducted a narrative review of the literature and identified peer-reviewed randomised controlled trials using the search terms 'myopia' and 'atropine', limited to the English language. We identified two key studies, which were the Atropine in the Treatment Of Myopia (ATOM) and Low-concentration Atropine for Myopia Progression (LAMP). Further studies were identified using the above search terms and the references from the identified literature. Atropine 0.01% has a modest effect on controlling axial length progression. Atropine 0.05% appears to be superior to atropine 0.01% in managing myopia progression. There is a dose-dependent rebound effect when treatment is stopped. Atropine is a well-tolerated, safe, and effective intervention. Treatment would be needed for several years and into adolescence, until axial length progression is stable.
Collapse
Affiliation(s)
- Imran Jawaid
- Nottingham University Hospitals NHS Trust, Derby Road, Nottingham, UK.
| | - Kathryn Saunders
- School of Biomedical Sciences, Ulster University, Northern Ireland, UK
| | - Christopher J Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, UK
| | | | | |
Collapse
|
23
|
Lee SH, Tsai PC, Chiu YC, Wang JH, Chiu CJ. Myopia progression after cessation of atropine in children: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1343698. [PMID: 38318144 PMCID: PMC10838978 DOI: 10.3389/fphar.2024.1343698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose: To comprehensively assess rebound effects by comparing myopia progression during atropine treatment and after discontinuation. Methods: A systematic search of PubMed, EMBASE, Cochrane CENTRAL, and ClinicalTrials.gov was conducted up to 20 September 2023, using the keywords "myopia," "rebound," and "discontinue." Language restrictions were not applied, and reference lists were scrutinized for relevant studies. Our study selection criteria focused on randomized control trials and interventional studies involving children with myopia, specifically those treated with atropine or combination therapies for a minimum of 6 months, followed by a cessation period of at least 1 month. The analysis centered on reporting annual rates of myopia progression, considering changes in spherical equivalent (SE) or axial length (AL). Data extraction was performed by three independent reviewers, and heterogeneity was assessed using I2 statistics. A random-effects model was applied, and effect sizes were determined through weighted mean differences with 95% confidence intervals Our primary outcome was the evaluation of rebound effects on spherical equivalent or axial length. Subgroup analyses were conducted based on cessation and treatment durations, dosage levels, age, and baseline SE to provide a nuanced understanding of the data. Results: The analysis included 13 studies involving 2060 children. Rebound effects on SE were significantly higher at 6 months (WMD, 0.926 D/y; 95%CI, 0.288-1.563 D/y; p = .004) compared to 12 months (WMD, 0.268 D/y; 95%CI, 0.077-0.460 D/y; p = .006) after discontinuation of atropine. AL showed similar trends, with higher rebound effects at 6 months (WMD, 0.328 mm/y; 95%CI, 0.165-0.492 mm/y; p < .001) compared to 12 months (WMD, 0.121 mm/y; 95%CI, 0.02-0.217 mm/y; p = .014). Sensitivity analyses confirmed consistent results. Shorter treatment durations, younger age, and higher baseline SE levels were associated with more pronounced rebound effects. Transitioning or stepwise cessation still caused rebound effects but combining optical therapy with atropine seemed to prevent the rebound effects. Conclusion: Our meta-analysis highlights the temporal and dose-dependent rebound effects after discontinuing atropine. Individuals with shorter treatment durations, younger age, and higher baseline SE tend to experience more significant rebound effects. Further research on the rebound effect is warranted. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=463093], identifier [registration number].
Collapse
Affiliation(s)
- Ssu-Hsien Lee
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | | | - Yu-Chieh Chiu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Cheng-Jen Chiu
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien, Taiwan
- Department of Ophthalmology, Hualien Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
24
|
Erdinest N, Atar-Vardi M, London N, Landau D, Smadja D, Pras E, Lavy I, Morad Y. Treatment of Rapid Progression of Myopia: Topical Atropine 0.05% and MF60 Contact Lenses. Vision (Basel) 2024; 8:3. [PMID: 38391084 PMCID: PMC10885127 DOI: 10.3390/vision8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/24/2024] Open
Abstract
This retrospective study evaluates the effectiveness of combining 0.05% atropine with MF60 contact lenses in managing rapid myopia progression in children over one year. The study involved three groups: the treatment group (TG) with 15 children (53% male, average age 12.9 ± 1.04), the MF group (MF) with 12 children (50% male, average age 12.8 ± 0.8) using only MF60 lenses, and the control group (CG) with 14 children (43% male, average age 12.1 ± 0.76). Baseline myopia and axial length (AL) were similar across groups, with the TG, MF, and CG showing -4.02 ± 0.70 D, -4.18 ± 0.89 D, -3.86 ± 0.99 D, and 24.72 ± 0.73 mm, 24.98 ± 0.70 mm, 24.59 ± 1.02 mm, respectively. Prior to the study, all groups exhibited significant myopia and AL progression, with no previous myopia control management. The treatment involved daily 0.05% atropine instillation, the use of MF60 lenses and increased outdoor activity. Biannual cycloplegic refraction and slit lamp evaluations confirmed no adverse reactions. After one year, the TG showed a significant reduction in myopia and AL progression (-0.43 ± 0.46 D, p < 0.01; 0.22 ± 0.23 mm, p < 0.01), whereas the CG showed minimal change (-1.30 ± 0.43 D, p = 0.36; 0.65 ± 0.35 mm, p = 0.533). The MF group also exhibited a notable decrease (-0.74 ± 0.45 D, p < 0.01; 0.36 ± 0.23 mm). Increased outdoor activity during the treatment year did not significantly impact myopia control, suggesting its limited additional effect in this cohort. The study concludes that the combination of 0.05% atropine and peripheral defocus soft contact lenses effectively controls myopia progression in children.
Collapse
Affiliation(s)
- Nir Erdinest
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
- The Myopia Center, Petach Tikva 4900519, Israel
| | - Maya Atar-Vardi
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin 7033001, Israel
| | - Naomi London
- Private Practice, 5 Even Israel, Jerusalem 9422805, Israel
| | - David Landau
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - David Smadja
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Eran Pras
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin 7033001, Israel
| | - Itay Lavy
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9190500, Israel
| | - Yair Morad
- The Myopia Center, Petach Tikva 4900519, Israel
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin 7033001, Israel
| |
Collapse
|
25
|
Che D, Qiao D, Cao Y, Zhang Y, Zhou Q, Tong S, Miao P, Zhou J. Changes in choroidal hemodynamics of form-deprivation myopia in Guinea pigs. Biochem Biophys Res Commun 2024; 692:149348. [PMID: 38064999 DOI: 10.1016/j.bbrc.2023.149348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE We studied changes in the choroid, particularly variation in blood flow, during the development of myopia. The hemodynamic mechanism in play remains unclear. We evaluated blood flow by quantitating indocyanine green (ICG) fluorescence in a guinea pig model of form-deprivation myopia. METHODS Guinea pigs were divided into form-deprivation myopia (FDM) and normal control (NC) groups. Ocular biometric and choroidal hemodynamics parameters were quantitatively derived via ICG imaging, and included the maximal ICG fluorescence intensity (Imax), rising time (Trising), blood flow index (BFI), and mean transit time (MTT). RESULTS Form deprivation was associated with significant interocular differences in terms of both refractive error and axial length. ICG fluorescence hemodynamic maps of fundal blood flow and vasculature density were evident. In deprived eyes, the fluorescence signals exhibited significantly longer Trising and MTT but lower Imax and BFI than fellow eyes and NC group. The interocular differences in terms of the ocular biometric and hemodynamic parameters were significantly correlated. Hemodynamic analysis of choriocapillaris lobules revealed weakened fluorescence intensity and prolonged arrival and filling times in deprived eyes. Form deprivation reduced the number of lobulated choriocapillaris structures. CONCLUSION Form-deprivation myopia triggered changes in the hemodynamic and vascular network structures of the choroid and choriocapillaris. The ICG fluorescence imaging/analysis method provides a unique tool for further myopia research.
Collapse
Affiliation(s)
- Danyang Che
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danlei Qiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Cao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Miao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jibo Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Nilsen NG, Gilson SJ, Pedersen HR, Hagen LA, Wildsoet CF, Baraas RC. The effect of topical 1 % atropine on ocular dimensions and diurnal rhythms of the human eye. Vision Res 2024; 214:108341. [PMID: 38065032 DOI: 10.1016/j.visres.2023.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The effect of topical 1 % atropine on the diurnal rhythms of the human eye was investigated. Participants wore an activity monitor on Days 1-7. A set of measures (epochs) encompassing intraocular pressure (IOP), ocular biometry, and retinal imaging were obtained on Day 7 (baseline), followed by eight epochs on Day 8, and one on Day 9 from both eyes of healthy participants (n = 22, 19-25 years). The sleep time of participants (collected via actigraphy) was used as a reference in scheduling epochs. Topical 1 % atropine was instilled in the dominant eye on Day 8, 2 h after habitual wake time, using the fellow eye as control (paired-eye design). Sinusoids with a 24-h period were fitted to the data, and a non-linear mixed-effects model was used to estimate rhythmic statistics. There were no interocular differences in any of the measured parameters at baseline. Comparing pre- versus post-atropine in treated eyes revealed lower IOP, deeper anterior chamber (ACD), decreased crystalline lens thickness and shorter axial length (AL). The same trends were observed when comparing atropine-treated versus fellow control eyes, except for IOP and AL (no differences). Both atropine-treated and fellow control eyes showed significant diurnal variations in all ocular parameters, with atropine-treated eyes revealing larger AL and retinal thickness amplitudes, smaller vitreous chamber depth (VCD) amplitudes, and a significant phase advancement for ACD and VCD. There were no interocular differences in choroidal thickness rhythms. In conclusion, while ocular diurnal rhythms persisted after instillation of 1 % atropine, many rhythmic parameters were altered.
Collapse
Affiliation(s)
- Nickolai G Nilsen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Stuart J Gilson
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Hilde R Pedersen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Lene A Hagen
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| | - Christine F Wildsoet
- Herbert Wertheim School of Optometry & Vision Science, University of California Berkeley, USA
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway.
| |
Collapse
|
27
|
Tian L, Cao K, Ma DL, Lu LX, Zhao SQ, Li A, Chen CX, Ma ZF, Jin ZB, Ma CR, Jie Y. Six-month repeated irradiation of 650 nm low-level red light reduces the risk of myopia in children: a randomized controlled trial. Int Ophthalmol 2023; 43:3549-3558. [PMID: 37318667 DOI: 10.1007/s10792-023-02762-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE To evaluate whether the six-month repeated irradiation of 650 nm low-level red light (LLRL) decreases the risk of myopia onset in children. METHODS This was a single-masked, randomized controlled trial. A total of 112 children (aged 6-12 years) were enrolled and randomized to the treatment group or control group in a 1:1 ratio. The cycloplegic spherical equivalent error (SER) of children at baseline was -0.5 diopter (D) to 3D. Children in the treatment group were irradiated with the 650 nm LLRL for 6 min daily. No intervention was given to the control. The primary outcomes are myopia incidence, change in cycloplegic SER, and change in axial length (AL). RESULTS For the treatment group and control group, the six-month myopia incidence rates were 1.8% (95% confidence interval, CI: 0.2-4.9%) and 12.5% (95% CI: 5.5-21.9%), respectively. The difference was significant (p = 0.028). The median changes in AL for the treatment group and control group were -0.02 (interquartile range, IQR: -0.12 to 0.06) mm, and 0.09 (IQR: 0-0.18) mm, respectively. The difference was significant (p < 0.001). The median changes in cycloplegic SER for the treatment group and control group were 0 (IQR: 0-0.25) D, and -0.125 (IQR: -0.375 to 0) D, respectively. The difference was significant (p < 0.001). There was no adverse event. CONCLUSION The repeated irradiation of 650 nm LLRL may have a strong effect for myopia prevention in children, without risk of adverse events. TRIAL REGISTRATION this trial is retrospectively registered in the Chinese Clinical Trial Registry ( http://www.chictr.org.cn/ ), the registration number is ChiCTR2200058963.
Collapse
Affiliation(s)
- Lei Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Alley, Dongcheng District, Beijing, 100730, China
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Alley, Dongcheng District, Beijing, 100730, China
| | - Dong-Li Ma
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li-Xin Lu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Shi-Qiang Zhao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ao Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Chang-Xi Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Alley, Dongcheng District, Beijing, 100730, China
| | - Zhang-Fang Ma
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Alley, Dongcheng District, Beijing, 100730, China
| | - Chun-Rong Ma
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ying Jie
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, No. 17, Hougou Alley, Dongcheng District, Beijing, 100730, China.
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
28
|
Chun RKM, Zhang H, Liu Z, Tse DYY, Zhou Y, Lam CSY, To CH. Defocus incorporated multiple segments (DIMS) spectacle lenses increase the choroidal thickness: a two-year randomized clinical trial. EYE AND VISION (LONDON, ENGLAND) 2023; 10:39. [PMID: 37715201 PMCID: PMC10502972 DOI: 10.1186/s40662-023-00356-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Myopia control interventions, such as defocus incorporated multiple segments (DIMS) spectacle lenses, have been adopted in school-aged children to reduce the prevalence of myopia and its complications. This study aimed to investigate the effect of DIMS spectacle lenses on subfoveal choroidal thickness (SfChT) over a period of two years, as the choroidal response to myopic control is a crucial factor in exploring its potential effect on predicting myopia progression. METHODS This study involved a secondary analysis of our previous randomized clinical trial. Myopic school-aged children aged 8-13 years were recruited in a two-year study investigating the effect of DIMS spectacle lenses on myopia progression. The treated group received DIMS spectacle lenses (n = 78), while the control group was treated with a pair of single vision (SV) spectacle lenses (n = 80). SfChT was monitored at 1 week, 1, 3, 6, 12, 18 and 24 months post lens wear using spectral-domain optical coherence tomography and a custom made auto-segmentation algorithm utilizing convolutional neural networks. RESULTS SfChT increased significantly after one week of DIMS spectacle lens wear compared to those wearing SV spectacle lenses (adjusted mean change relative to baseline ± SEM at one week; DIMS vs. SV, 6.75 ± 1.52 µm vs. - 3.17 ± 1.48 µm; P < 0.0001, general linear model). The thickness of choroid increased to 13.64 ± 2.62 µm after 12 months of DIMS lens wear while the choroid thinned in SV group (- 9.46 ± 2.55 µm). Choroidal changes demonstrated a significant negative association with axial elongation over two years in both the DIMS and SV groups. Choroidal change at three months significantly predicted the changes in AL at 12 months after controlling the effect of age and gender. CONCLUSIONS Our study demonstrated a significant choroidal thickening in response to myopic defocus incorporated in a spectacle lens after one week of lens wear, sustained over the two-year study period. The results suggested that choroidal changes at three months may help predict changes in axial length after one year. Trial registration ClinicalTrials.gov. Myopia control with the multi-segment lens. NCT02206217. Registered 29 July 2014, https://clinicaltrials.gov/ct2/show/study/NCT02206217.
Collapse
Affiliation(s)
- Rachel Ka Man Chun
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, China.
| | - Hanyu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Zhengji Liu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Dennis Yan Yin Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, China
| | - Yongjin Zhou
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- School of Biomedical Engineering, Department of Medical Electronics, Shenzhen University, Shenzhen, China
| | - Carly Siu Yin Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, China
| | - Chi Ho To
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Shatin, Hong Kong, China
| |
Collapse
|
29
|
Hieda O, Hiraoka T, Fujikado T, Ishiko S, Hasebe S, Torii H, Takahashi H, Tanaka S, Kinoshita S. Assessment of myopic rebound effect after discontinuation of treatment with 0.01% atropine eye drops in Japanese school-age children. Jpn J Ophthalmol 2023; 67:602-611. [PMID: 37548816 DOI: 10.1007/s10384-023-01012-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE Having previously demonstrated the efficacy of 0.01% atropine eye drops for inhibiting progression of childhood myopia, we conducted additional analyses to assess post-treatment changes in myopia progression. STUDY DESIGN Analysis of follow-up data from a previously reported randomized controlled trial METHODS: A mixed-effects model was used to compare intergroup changes in spherical equivalent (SE) and axial length (AL) at 1 month and 12 months after discontinuation of 2-year treatment with atropine or placebo in 167 school-age children. RESULTS Follow-up measurements were available for 149 participants at 1 month after discontinuation of treatment and for 51 participants at 12 months after discontinuation. At 1 month post-treatment, differences between the atropine and placebo groups in least squares (LS) mean changes in SE and AL, respectively, from 24 months were -0.06 diopters (D) (95% CI: -0.21, 0.08; P = .39) and 0.02 mm (95% CI: -0.05, 0.08; P = .60). At 12 months post-treatment, intergroup differences (atropine vs placebo) in LS mean changes in SE and AL, respectively, were -0.13 D (95% CI: -0.35, 0.10; P = .26) and -0.02 mm (95% CI: -0.12, 0.09; P = .75). LS mean changes in SE and AL from treatment discontinuation did not differ between the groups at 1 or 12 months post-treatment. CONCLUSION Axial elongation was significantly less in the atropine group than in the placebo group. The suppression effect obtained at 2 years was maintained after 12 months. The absence of intergroup differences in myopia progression since treatment cessation suggests that myopic rebound did not occur.
Collapse
Affiliation(s)
- Osamu Hieda
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Kyoto, 602-8566, Japan.
| | - Takahiro Hiraoka
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Fujikado
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Satoshi Ishiko
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoshi Hasebe
- Department of Ophthalmology 2, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hidemasa Torii
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Takahashi
- Department of Ophthalmology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Shiro Tanaka
- Clinical Biostatistics Course, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
30
|
Xuan M, Zhu Z, Jiang Y, Wang W, Zhang J, Xiong R, Shi D, Bulloch G, Zeng J, He M. Longitudinal Changes in Choroidal Structure Following Repeated Low-Level Red-Light Therapy for Myopia Control: Secondary Analysis of a Randomized Controlled Trial. Asia Pac J Ophthalmol (Phila) 2023; 12:377-383. [PMID: 37523429 DOI: 10.1097/apo.0000000000000618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 08/02/2023] Open
Abstract
PURPOSE Repeated low-level red-light (RLRL) therapy has been confirmed as a novel intervention for myopia control in children. This study aims to investigate longitudinal changes in choroidal structure in myopic children following 12-month RLRL treatment. MATERIALS AND METHODS The current study is a secondary analysis from a multicenter, randomized controlled trial (NCT04073238). Choroidal parameters were derived from baseline and follow-up swept-source optical coherence tomography scans taken at 1, 3, 6, and 12 months. These parameters included the luminal area (LA), stromal area (SA), total choroidal area (TCA; a combination of LA and SA), and choroidal vascularity index (CVI; ratio of LA to TCA), which were automatically measured by a validated custom choroidal structure assessment tool. RESULTS A total of 143 children (88.3% of all participants) with sufficient image quality were included in the analysis (n=67 in the RLRL and n=76 in the control groups). At the 12-month visit, all choroidal parameters increased in the RLRL group, with changes from baseline of 11.70×10 3 μm 2 (95% CI: 4.14-19.26×10 3 μm 2 ), 3.92×10 3 μm 2 (95% CI: 0.56-7.27×10 3 μm 2 ), 15.61×10 3 μm 2 (95% CI: 5.02-26.20×10 3 μm 2 ), and 0.21% (95% CI: -0.09% to 0.51%) for LA, SA, TCA, and CVI, respectively, whereas these parameters reduced in the control group. CONCLUSIONS Following RLRL therapy, the choroidal thickening was found to be accompanied by increases in both the vessel LA and SA, with the increase in LA being greater than that of SA. In the control group, with myopia progression, both the LA and SA decreased over time.
Collapse
Affiliation(s)
- Meng Xuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Yu Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Danli Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Gabriella Bulloch
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Faculty of Science, Medicine and Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Zhang W, Hou X, Li C, Wang S, Liu N, Zhang Y, Li Z. Influencing factors associated with high myopia in Chinese college students. Front Med (Lausanne) 2023; 10:1146291. [PMID: 37425324 PMCID: PMC10326280 DOI: 10.3389/fmed.2023.1146291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Background High myopia (HM) may elicit irreversible pathological changes in the fundus and severely impair visual quality, thereby becoming a major public health issue in China. However, the influencing factors associated with HM remain unknown in Chinese college students, whose visual quality is crucial to country development. Methods This is a cross-sectional observational study. Two thousand three hundred and fifteen undergraduate and graduate students were initially recruited from various majors in 3 universities in Tianjin, China. Under the principle of voluntary participation and informed consent, simple random sampling was conducted in the recruited subjects while maintaining balanced number of subjects from each major. After screening with inclusion and exclusion criteria, 96 undergraduate and graduate students (186 eyes) were finally included and divided into non-HM and HM groups. The eyes of subjects were examined by optical coherence tomography angiography (OCTA) for vessel density and structure thickness at the macula and optic disc, and the subjects were surveyed by an itemized questionnaire on lifestyles and study habits. Results The OCTA and questionnaire results revealed 10 factors, including hemodynamic and anatomic parameters and lifestyle metrics, with statistical significance between the non-HM and HM groups. Receiver operating characteristic curve analysis showed that vessel density of the inner retina at the macula, vessel density of the radial peripapillary capillary at the optic disc, smartphone usage time, continuous near work time, and sleeping after midnight had superior values of area under the curve (AUC > 0.700). Therefore, these 5 factors were selected for univariant and multivariant logistic regression analyses. A prediction model comprising the 5 influencing factors had an AUC of 0.940 and 95% CI of 0.908-0.972. Conclusion This study for the first time identified the vessel density of the inner retina at the macula, the vessel density of the radial peripapillary capillary at the optic disc, smartphone usage time, continuous near work time, and sleeping after midnight as influencing factors associated with HM in Chinese college students. A prediction model comprising the 5 influencing factors was proposed for calculating likelihood of a Chinese college student developing HM, based on which lifestyle improvement and medical intervention might be recommended.
Collapse
|
32
|
Ostrin LA, Harb E, Nickla DL, Read SA, Alonso-Caneiro D, Schroedl F, Kaser-Eichberger A, Zhou X, Wildsoet CF. IMI-The Dynamic Choroid: New Insights, Challenges, and Potential Significance for Human Myopia. Invest Ophthalmol Vis Sci 2023; 64:4. [PMID: 37126359 PMCID: PMC10153586 DOI: 10.1167/iovs.64.6.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
The choroid is the richly vascular layer of the eye located between the sclera and Bruch's membrane. Early studies in animals, as well as more recent studies in humans, have demonstrated that the choroid is a dynamic, multifunctional structure, with its thickness directly and indirectly subject to modulation by a variety of physiologic and visual stimuli. In this review, the anatomy and function of the choroid are summarized and links between the choroid, eye growth regulation, and myopia, as demonstrated in animal models, discussed. Methods for quantifying choroidal thickness in the human eye and associated challenges are described, the literature examining choroidal changes in response to various visual stimuli and refractive error-related differences are summarized, and the potential implications of the latter for myopia are considered. This review also allowed for the reexamination of the hypothesis that short-term changes in choroidal thickness induced by pharmacologic, optical, or environmental stimuli are predictive of future long-term changes in axial elongation, and the speculation that short-term choroidal thickening can be used as a biomarker of treatment efficacy for myopia control therapies, with the general conclusion that current evidence is not sufficient.
Collapse
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas, United States
| | - Elise Harb
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Debora L Nickla
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology-Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology-Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Xiangtian Zhou
- Eye Hospital and School of Optometry and Ophthalmology, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Christine F Wildsoet
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Wu J, Gong H, Li H, Liang J, Zhang X, Yang H, Liu X, Zhang G, Cheng G, Bai G, Zhang H. Changes in choroidal thickness in myopic children with 0.01% atropine: Evidence from a 12-month follow-up. Photodiagnosis Photodyn Ther 2023; 42:103528. [PMID: 36966864 DOI: 10.1016/j.pdpdt.2023.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE To investigate the changes of low-dose atropine (0.01%) on the choroidal thickness (ChT) of young children with low myopia. METHODS A total of 25 eyes of 25 low myopic children were included. All subjects were prescribed 0.01% atropine eye drops to be applied once per night before bedtime in involving eyes. The ChT and ocular biometry parameters were measured before and after 1 month, 3 months, 6 months and 12 months. The children were followed up for 12 months. RESULTS At 3 months, the ChT under the fovea significantly increased (309.96±70.82 μm) in comparison with the baseline (297.92±66.31 μm, P<0.0001) and was continuous thickening till 12 months after treatments with 0.01% atropine. Similarly, the changes of ChT under the fovea significantly increased from baseline to 3 months in comparison with the baseline to 1 month after treatments (P<0.0001). There was a significant relationship between changes in subfoveal ChT and central cornea thickness (CCT, beta=-1.76, 95% confidence intervals: -3.49 to -0.04, P = 0.045). CONCLUSIONS Using low dose atropine eye drops significantly increased subfoveal ChT after 3 months in eyes of myopic children. In addition, the changes in subfoveal ChT may be associated with the changes of CCT.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China
| | - Hui Gong
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China
| | - Huixia Li
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China
| | - Junfeng Liang
- Department of Ophthalmology, Siziwang Banner People's Hospital, 011800 Ulanqab, China
| | - Xiaoguang Zhang
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China
| | - Hailong Yang
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China
| | - Xiaolin Liu
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China
| | - Guisen Zhang
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China
| | - Gongyuan Cheng
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China
| | - Gang Bai
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China.
| | - Han Zhang
- Department of Ophthalmology, Inner Mongolia Chaoju Eye Hospital, 010050 Hohhot, China.
| |
Collapse
|
34
|
Xiong R, Zhu Z, Jiang Y, Wang W, Zhang J, Chen Y, Bulloch G, Yuan Y, Zhang S, Xuan M, Zeng J, He M. Longitudinal Changes and Predictive Value of Choroidal Thickness for Myopia Control after Repeated Low-Level Red-Light Therapy. Ophthalmology 2023; 130:286-296. [PMID: 36240954 DOI: 10.1016/j.ophtha.2022.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To evaluate longitudinal changes in macular choroidal thickness (mCT) in myopic children treated for 1 year with repeated low-level red-light (RLRL) therapy and their predictive value for treatment efficacy on myopia control. DESIGN A secondary analysis of data from a multicenter, randomized controlled trial (RCT; NCT04073238). PARTICIPANTS Myopic children aged 8-13 years who participated in the RCT at 2 of 5 sites where mCT measurements were available. METHODS Repeated low-level red-light therapy was delivered using a home-use desktop light device that emitted red-light at 650 nm. Choroidal thickness was measured by SS-OCT at baseline and 1-, 3-, 6-, and 12-month follow-ups. Visual acuity, axial length (AL), cycloplegic spherical equivalent refraction (SER), and treatment compliance were measured. MAIN OUTCOME MEASURES Changes in mCT at 1, 3, 6, and 12 months relative to baseline, and their associations with myopia control. RESULTS A total of 120 children were included in the analysis (RLRL group: n = 60; single-vision spectacle [SVS] group: n = 60). Baseline characteristics were well balanced between the 2 groups. In the RLRL group, changes in mCT from baseline remained positive over 1 year, with a maximal increase of 14.755 μm at 1 month and gradually decreasing from 5.286 μm at 3 months to 1.543 μm at 6 months, finally reaching 9.089 μm at 12 months. In the SVS group, mCT thinning was observed, with changes from baseline of -1.111, -8.212, -10.190, and -10.407 μm at 1, 3, 6, and 12 months, respectively. Satisfactory myopia control was defined as annual progression rates of less than 0, 0.05, or 0.10 mm for AL and less than 0, 0.25, or 0.50 diopters for SER. Models that included mCT changes at 3 months alone had acceptable predictive discrimination of satisfactory myopia control over 12 months, with areas under the curve of 0.710-0.786. The predictive performance of the models did not significantly improve after adding age, gender, and baseline AL or SER. CONCLUSIONS This analysis from a multicenter RCT found RLRL induced sustained choroidal thickening over the full course of treatment. Macular choroidal thickness changes at 3 months alone can predict 12-month myopia control efficacy with reasonable accuracy. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Yu Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Yanping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Gabriella Bulloch
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Yixiong Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Shiran Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Meng Xuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong, China; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
35
|
Yam JC, Zhang XJ, Kam KW, Chen LJ, Tham CC, Pang CP. Myopia control and prevention: From lifestyle to low-concentration atropine. The 2022 Josh Wallman Memorial Lecture. Ophthalmic Physiol Opt 2023; 43:299-310. [PMID: 36857025 DOI: 10.1111/opo.13118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
The purpose of this study was to explore the findings from the Hong Kong Children Eye Study and the Low Concentration Atropine for Myopia Progression (LAMP-1) Study. The incidence of myopia among schoolchildren in Hong Kong more than doubled during the COVID-19 pandemic, with outdoor time decreased significantly and screen time increased. The change in lifestyle during the COVID-19 pandemic aggravated myopia development. Low-concentration atropine (0.05%, 0.025% and 0.01%) is effective in reducing myopia progression with a concentration-related response. This concentration-dependent response was maintained throughout a 3-year follow-up period, and all low concentrations were well tolerated. An age-dependent effect was observed in each treatment group with 0.05%, 0.025% and 0.01% atropine. Younger age was associated with a poor treatment response to low-concentration atropine. Additionally, low-concentration atropine induced choroidal thickening along a concentration-dependent response throughout the treatment period. During the third year, continued atropine treatment achieved a better effect across all concentrations compared with the washout regimen. Stopping treatment at an older age and receiving lower concentration were associated with a smaller rebound effect. However, differences in the rebound effect were clinically small across all the three concentrations studied.
Collapse
Affiliation(s)
- Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong, China.,Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Eye Hospital, Hong Kong, China.,Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Hong Kong Children's Hospital, Hong Kong, China.,Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| |
Collapse
|
36
|
Hvid-Hansen A, Jacobsen N, Hjortdal J, Møller F, Ozenne B, Kessel L. Low-Dose Atropine Induces Changes in Ocular Biometrics in Myopic Children: Exploring Temporal Changes by Linear Mixed Models and Contribution to Treatment Effect by Mediation Analyses. J Clin Med 2023; 12:jcm12041605. [PMID: 36836139 PMCID: PMC9966043 DOI: 10.3390/jcm12041605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
This study aimed to investigate changes in non-cycloplegic ocular biometrics during the initial six months of treatment with a 0.1% atropine loading dose and 0.01% atropine compared with a placebo and analyze their contribution to the treatment effect on cycloplegic spherical equivalent (SE) progression. The study was based on a randomized, double-masked, placebo-controlled, multicenter trial evaluating a 0.1% atropine six-month loading dose and 0.01% atropine in reducing myopic progression in Danish children. The treatment phase was 24 months, and the washout phase was 12 months. Parameters measured included changes in axial length (AL), anterior chamber depth (ACD), lens thickness (LT), vitreous chamber depth (VCD), and choroidal thickness (ChT), while cycloplegic SE and lens power were calculated. Longitudinal changes and contributions to treatment effects were analyzed using constrained linear mixed models and mediation analyses, respectively. After six months, AL was 0.13 mm shorter (95% confidence interval [CI], -0.18 to -0.07 [adjusted p < 0.001]) and 0.06 mm shorter (95% CI, -0.11 to -0.01 [adjusted p = 0.060]) with a 0.1% atropine loading dose and 0.01% atropine, respectively, compared to the placebo group. Similar concentration-dependent changes were found with ACD, LT, VCD, ChT, and cycloplegic SE. Although the treatment effects trended toward concentration-dependent responses, only the treatment effect mediated by AL at three months differed significantly between 0.01% atropine and a 0.1% atropine loading dose (adjusted p = 0.023). Several ocular biometrics, including AL, ACD, and LT, changed dose-dependently during low-dose atropine treatment. Moreover, the treatment effect of atropine on SE progression was mediated by a subset of ocular biometrics, mainly AL, with trends toward concentration dependency and distributional shifts over time.
Collapse
Affiliation(s)
- Anders Hvid-Hansen
- Department of Ophthalmology, Copenhagen University Hospital—Rigshospitalet-Glostrup, DK-2600 Glostrup, Denmark
- Correspondence:
| | - Nina Jacobsen
- Department of Ophthalmology, Copenhagen University Hospital—Rigshospitalet-Glostrup, DK-2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2200 København N, Denmark
| | - Jesper Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Flemming Møller
- Department of Ophthalmology, University Hospital of Southern Denmark—Vejle Hospital, DK-7100 Vejle, Denmark
| | - Brice Ozenne
- Department of Public Health, Section of Biostatistics, University of Copenhagen, DK-1014 København K, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital—Rigshospitalet, DK-2200 København N, Denmark
| | - Line Kessel
- Department of Ophthalmology, Copenhagen University Hospital—Rigshospitalet-Glostrup, DK-2600 Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, DK-2200 København N, Denmark
| |
Collapse
|
37
|
Lawrenson JG, Shah R, Huntjens B, Downie LE, Virgili G, Dhakal R, Verkicharla PK, Li D, Mavi S, Kernohan A, Li T, Walline JJ. Interventions for myopia control in children: a living systematic review and network meta-analysis. Cochrane Database Syst Rev 2023; 2:CD014758. [PMID: 36809645 PMCID: PMC9933422 DOI: 10.1002/14651858.cd014758.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Myopia is a common refractive error, where elongation of the eyeball causes distant objects to appear blurred. The increasing prevalence of myopia is a growing global public health problem, in terms of rates of uncorrected refractive error and significantly, an increased risk of visual impairment due to myopia-related ocular morbidity. Since myopia is usually detected in children before 10 years of age and can progress rapidly, interventions to slow its progression need to be delivered in childhood. OBJECTIVES To assess the comparative efficacy of optical, pharmacological and environmental interventions for slowing myopia progression in children using network meta-analysis (NMA). To generate a relative ranking of myopia control interventions according to their efficacy. To produce a brief economic commentary, summarising the economic evaluations assessing myopia control interventions in children. To maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register), MEDLINE; Embase; and three trials registers. The search date was 26 February 2022. SELECTION CRITERIA: We included randomised controlled trials (RCTs) of optical, pharmacological and environmental interventions for slowing myopia progression in children aged 18 years or younger. Critical outcomes were progression of myopia (defined as the difference in the change in spherical equivalent refraction (SER, dioptres (D)) and axial length (mm) in the intervention and control groups at one year or longer) and difference in the change in SER and axial length following cessation of treatment ('rebound'). DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods. We assessed bias using RoB 2 for parallel RCTs. We rated the certainty of evidence using the GRADE approach for the outcomes: change in SER and axial length at one and two years. Most comparisons were with inactive controls. MAIN RESULTS We included 64 studies that randomised 11,617 children, aged 4 to 18 years. Studies were mostly conducted in China or other Asian countries (39 studies, 60.9%) and North America (13 studies, 20.3%). Fifty-seven studies (89%) compared myopia control interventions (multifocal spectacles, peripheral plus spectacles (PPSL), undercorrected single vision spectacles (SVLs), multifocal soft contact lenses (MFSCL), orthokeratology, rigid gas-permeable contact lenses (RGP); or pharmacological interventions (including high- (HDA), moderate- (MDA) and low-dose (LDA) atropine, pirenzipine or 7-methylxanthine) against an inactive control. Study duration was 12 to 36 months. The overall certainty of the evidence ranged from very low to moderate. Since the networks in the NMA were poorly connected, most estimates versus control were as, or more, imprecise than the corresponding direct estimates. Consequently, we mostly report estimates based on direct (pairwise) comparisons below. At one year, in 38 studies (6525 participants analysed), the median change in SER for controls was -0.65 D. The following interventions may reduce SER progression compared to controls: HDA (mean difference (MD) 0.90 D, 95% confidence interval (CI) 0.62 to 1.18), MDA (MD 0.65 D, 95% CI 0.27 to 1.03), LDA (MD 0.38 D, 95% CI 0.10 to 0.66), pirenzipine (MD 0.32 D, 95% CI 0.15 to 0.49), MFSCL (MD 0.26 D, 95% CI 0.17 to 0.35), PPSLs (MD 0.51 D, 95% CI 0.19 to 0.82), and multifocal spectacles (MD 0.14 D, 95% CI 0.08 to 0.21). By contrast, there was little or no evidence that RGP (MD 0.02 D, 95% CI -0.05 to 0.10), 7-methylxanthine (MD 0.07 D, 95% CI -0.09 to 0.24) or undercorrected SVLs (MD -0.15 D, 95% CI -0.29 to 0.00) reduce progression. At two years, in 26 studies (4949 participants), the median change in SER for controls was -1.02 D. The following interventions may reduce SER progression compared to controls: HDA (MD 1.26 D, 95% CI 1.17 to 1.36), MDA (MD 0.45 D, 95% CI 0.08 to 0.83), LDA (MD 0.24 D, 95% CI 0.17 to 0.31), pirenzipine (MD 0.41 D, 95% CI 0.13 to 0.69), MFSCL (MD 0.30 D, 95% CI 0.19 to 0.41), and multifocal spectacles (MD 0.19 D, 95% CI 0.08 to 0.30). PPSLs (MD 0.34 D, 95% CI -0.08 to 0.76) may also reduce progression, but the results were inconsistent. For RGP, one study found a benefit and another found no difference with control. We found no difference in SER change for undercorrected SVLs (MD 0.02 D, 95% CI -0.05 to 0.09). At one year, in 36 studies (6263 participants), the median change in axial length for controls was 0.31 mm. The following interventions may reduce axial elongation compared to controls: HDA (MD -0.33 mm, 95% CI -0.35 to 0.30), MDA (MD -0.28 mm, 95% CI -0.38 to -0.17), LDA (MD -0.13 mm, 95% CI -0.21 to -0.05), orthokeratology (MD -0.19 mm, 95% CI -0.23 to -0.15), MFSCL (MD -0.11 mm, 95% CI -0.13 to -0.09), pirenzipine (MD -0.10 mm, 95% CI -0.18 to -0.02), PPSLs (MD -0.13 mm, 95% CI -0.24 to -0.03), and multifocal spectacles (MD -0.06 mm, 95% CI -0.09 to -0.04). We found little or no evidence that RGP (MD 0.02 mm, 95% CI -0.05 to 0.10), 7-methylxanthine (MD 0.03 mm, 95% CI -0.10 to 0.03) or undercorrected SVLs (MD 0.05 mm, 95% CI -0.01 to 0.11) reduce axial length. At two years, in 21 studies (4169 participants), the median change in axial length for controls was 0.56 mm. The following interventions may reduce axial elongation compared to controls: HDA (MD -0.47mm, 95% CI -0.61 to -0.34), MDA (MD -0.33 mm, 95% CI -0.46 to -0.20), orthokeratology (MD -0.28 mm, (95% CI -0.38 to -0.19), LDA (MD -0.16 mm, 95% CI -0.20 to -0.12), MFSCL (MD -0.15 mm, 95% CI -0.19 to -0.12), and multifocal spectacles (MD -0.07 mm, 95% CI -0.12 to -0.03). PPSL may reduce progression (MD -0.20 mm, 95% CI -0.45 to 0.05) but results were inconsistent. We found little or no evidence that undercorrected SVLs (MD -0.01 mm, 95% CI -0.06 to 0.03) or RGP (MD 0.03 mm, 95% CI -0.05 to 0.12) reduce axial length. There was inconclusive evidence on whether treatment cessation increases myopia progression. Adverse events and treatment adherence were not consistently reported, and only one study reported quality of life. No studies reported environmental interventions reporting progression in children with myopia, and no economic evaluations assessed interventions for myopia control in children. AUTHORS' CONCLUSIONS Studies mostly compared pharmacological and optical treatments to slow the progression of myopia with an inactive comparator. Effects at one year provided evidence that these interventions may slow refractive change and reduce axial elongation, although results were often heterogeneous. A smaller body of evidence is available at two or three years, and uncertainty remains about the sustained effect of these interventions. Longer-term and better-quality studies comparing myopia control interventions used alone or in combination are needed, and improved methods for monitoring and reporting adverse effects.
Collapse
Affiliation(s)
- John G Lawrenson
- Centre for Applied Vision Research, School of Health & Psychological Sciences , City, University of London, London, UK
| | - Rakhee Shah
- Centre for Applied Vision Research, School of Health & Psychological Sciences , City, University of London, London, UK
| | - Byki Huntjens
- Centre for Applied Vision Research, School of Health & Psychological Sciences , City, University of London, London, UK
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Rohit Dhakal
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Pavan K Verkicharla
- Myopia Research Lab, Prof. Brien Holden Eye Research Centre, L V Prasad Eye Institute, Hyderabad, India
| | - Dongfeng Li
- Centre for Public Health, Queen's University Belfast, Belfast, UK
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sonia Mavi
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tianjing Li
- Department of Ophthalmology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey J Walline
- College of Optometry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
38
|
Huang Y, Zhang N, Bulloch G, Zhang S, Shang X, Chen Y, Liao H, Zhu Z, Wang W. Rates of Choroidal and Neurodegenerative Changes Over Time in Diabetic Patients Without Retinopathy: A 3-Year Prospective Study. Am J Ophthalmol 2023; 246:10-19. [PMID: 35870490 DOI: 10.1016/j.ajo.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE To evaluate the longitudinal changes of retinal neurodegeneration and choroidal thickness in diabetic patients with and without diabetic retinopathy (DR). DESIGN Prospective observational cohort study. METHODS This prospective observational cohort study recruited type 2 diabetic patients from a community registry in Guangzhou. All participants underwent annual ocular examinations via swept-source optical coherence tomography that obtained choroid thickness (CT), retinal thickness (RT), and ganglion cell-inner plexiform layer (GC-IPL) thickness. The changes in GC-IPL, CT, and RT between patients who developed incident DR (IDR) or remained non-DR (NDR) were compared during a 3-year follow-up. RESULTS Among 924 patients, 159 (17.2%) patients developed IDR within the 3-year follow-up. A reduction in GC-IPL, RT, and CT was observed in NDR and IDR; however, CT thinning in patients with IDR was significantly accelerated, with an average CT reduction of -6.98 (95% CI: -8.26, -5.71) μm/y in patients with IDR and -3.98 (95% CI: -4.60, -3.36) μm/y in NDR patients (P < .001). Reductions in average GC-IPL thickness over 3 years were -0.97 (95% CI: -1.24, -0.70) μm/y in patients with IDR and -0.76 (95% CI: -0.82, -0.70) μm/y in NDR patients (P = .025). After adjusting for confounding factors, the average CT and GC-IPL thinning were significantly faster in patients with IDR compared with those who remained NDR by 2.09 μm/y (95% CI: 1.01, 3.16; P = .004) and -0.29 μm/y (95% CI: -0.49, -0.09; P = .004), respectively. The RT in the IDR group increased, whereas the RT in the NDR group decreased over time, with the adjusted difference of 2.09 μm/y (95% CI: 1.01, 3.16; P < .001) for central field RT. CONCLUSIONS The rate of retinal neurodegeneration and CT thinning were significantly different between the eyes that developed IDR and remained NDR during the 3-year follow-up, but both groups observed thickness reduction. This indicates that GC-IPL and CTs may decrease before the clinical manifestations of DR.
Collapse
Affiliation(s)
- Yining Huang
- From the Nanshan School, Guangzhou Medical University (Y.H.), Guangzhou, China
| | - Nuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (N.Z., S.Z., W.W.), Guangzhou, China
| | - Gabriella Bulloch
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia (G.B., X.S., Z.Z.)
| | - Shiran Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (N.Z., S.Z., W.W.), Guangzhou, China
| | - Xianwen Shang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia (G.B., X.S., Z.Z.)
| | - Yifan Chen
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK (Y.C.)
| | - Huan Liao
- and Epigenetics and Neural Plasticity Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (H.L.)
| | - Zhuoting Zhu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia (G.B., X.S., Z.Z.).
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases (N.Z., S.Z., W.W.), Guangzhou, China.
| |
Collapse
|
39
|
Cho H, Seo Y, Han SH, Han J. Factors Related to Axial Length Elongation in Myopic Children Who Received 0.05% Atropine Treatment. J Ocul Pharmacol Ther 2022; 38:703-708. [PMID: 36269657 DOI: 10.1089/jop.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose: To evaluate the longitudinal changes of axial length (AL) and factors associated with AL growth in myopic children receiving 0.05% atropine. Methods: This single-center retrospective study included children aged 4-13 years with myopia of at least -0.5 diopters (D) treated with 0.05% atropine eye drops from November 2016 to May 2021. Predictive factors for AL change were evaluated using linear mixed models. Results: Among 109 patients (218 eyes), 58 (53.2%) were male and the mean age at treatment was 8.5 ± 2.0 years. At baseline measurement, the mean spherical equivalent was -4.05 ± 2.34 diopters (D), and AL was 25.00 ± 0.97 mm. The mean follow-up duration was 25.4 (12-58) months, and the mean AL elongation was 0.23 ± 0.17 mm/year during the follow-up periods. AL shortening of ≥0.05 mm at subsequent visit occurred in 18 patients (26 eyes). The mean AL change in the group without initial AL shortening was statistically larger than that in the group with initial AL shortening (0.26 ± 0.16 mm/year vs. 0.02 ± 0.17 mm/year, P < 0.001). In linear mixed model, the age at atropine treatment and initial AL shortening were significantly associated with respect to AL growth (beta coefficient: -0.032 and -0.122, respectively, P < 0.001 for both). Conclusions: Our study found that older age and initial AL shortening are predictors of favorable response after 0.05% atropine treatment. Children with AL shortening at initial subsequent visit may be associated with good long-term response, and younger children may require higher concentration of atropine for optimal response.
Collapse
Affiliation(s)
- Hyuna Cho
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yuri Seo
- Institute of Vision Research, Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Sueng-Han Han
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
40
|
Zhou Y, Zhu Y, Huang XB, Xiong YJ, Guo YL, Cai Q, Wang M, Gong YX, Cao X, Li JJ, Cai JR, Song Y, Sun ZM. Changes of Choroidal Thickness in Children after Short-Term Application of 1% Atropine Gel. Ophthalmic Res 2022; 66:421-430. [PMID: 36412621 DOI: 10.1159/000526448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The aim of the study was to assess changes in choroidal thickness (ChT) after administration of 1% atropine for 1 week in myopic, emmetropic, and hyperopic children. METHODS A total of 235 children aged 4-8 years, which included 46 myopia, 34 emmetropia, and 155 hyperopia patients, were recruited and divided into three groups according to the spherical equivalent with the use of 1% atropine twice a day for 1 week. The ChT was measured at baseline and 1 week. RESULTS In the myopia and emmetropia groups, following administration of 1% atropine gel, the ChT thickened significantly under the fovea (i.e., from 278.29 ± 53.01 μm to 308.24 ± 57.3 μm, p < 0.05; from 336.10 ± 78.60 μm to 353.46 ± 70.22 μm, p < 0.05, respectively), and at all intervals from the fovea, while in the hyperopia group, there was no significant difference in the ChT except the nasal side (p < 0.05). CONCLUSION Topical administration of 1% atropine gel for 1 week significantly increased the subfoveal and parafoveal ChT in children with myopia and emmetropia. Atropine did not increase the ChT in hyperopic children, except on the nasal side.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Zhu
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiao Bo Huang
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yao Jia Xiong
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ya Li Guo
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Cai
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Min Wang
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Xun Gong
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Cao
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Jie Li
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Ru Cai
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Song
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhi Min Sun
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
41
|
Li WL, Tong SG, Yang ZY, Xiao YQ, Lv XC, Weng Q, Yu K, Liu GR, Luo XQ, Wei T, Han JZ, Ai LZ, Ni L. The dynamics of microbial community and flavor metabolites during the acetic acid fermentation of Hongqu aromatic vinegar. Curr Res Food Sci 2022; 5:1720-1731. [PMID: 36238813 PMCID: PMC9550536 DOI: 10.1016/j.crfs.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/02/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
In this study, we investigated the dynamics of microbial community and flavor metabolites during the traditional fermentation of Hongqu aromatic vinegar (HAV) and subsequently explored the potential relationship between microbiota and flavor metabolites. The microbiome analysis based on high-throughput sequencing (HTS) of amplicons demonstrated that Lactobacillus, Acetobacter and Clostridium were the dominant bacterial genera, while Alternaria, Candida, Aspergillus and Issatchenkia were the dominant fungal genera during the acetic acid fermentation (AAF) of HAV. A total of 101 volatile flavor compounds were identified through gas chromatography-mass spectrometry (GC-MS) during HAV fermentation, including esters (35), alcohols (17), aldehydes (11), acids (11), ketones (7), phenols (10), and others (10). Redundancy analysis (RDA) was used to reveal the correlation between microbiota and volatile flavor compounds. Lactobacillus and Acetobacter were the two bacterial genera that have the great influence on the production of volatile flavor components in HAV. Among them, Lactobacillus was positively correlated with a variety of ethyl esters, while Acetobacter positively contributed to the formation of several organic acids. Furthermore, the non-volatile metabolites were detected by ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). A total of 41 dipeptides were identified during HAV fermentation, and most of them may have sensory characteristics and biological activities. RDA showed that Aspergillus, Epicoccum, Issatchenkia, Candida and Malassezia were the most influential fungal genera on non-volatile metabolites. In particular, Epicoccum was first reported in Hongqu vinegar and showed a positive correlation with the production of various organic acids. In conclusion, this study provides a scientific basis for understanding the flavor generation mechanism of HAV, and may be valuable for developing effective techniques to select suitable strains to improve the flavor quality of HAV.
Collapse
Affiliation(s)
- Wen-Long Li
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Shan-Gong Tong
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Zi-Yi Yang
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yan-Qin Xiao
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Xu-Cong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Qi Weng
- Fujian Salt Industry Group Co., Ltd., Fuzhou, Fujian, 350001, PR China
| | - Kui Yu
- Fujian Salt Industry Group Co., Ltd., Fuzhou, Fujian, 350001, PR China
| | - Gui-Rong Liu
- Fujian Minyan Food Technology Co., Ltd., Sanming, Fujian, 365500, PR China
| | - Xiao-Qing Luo
- Fujian Salt Industry Group Co., Ltd., Fuzhou, Fujian, 350001, PR China
| | - Tao Wei
- Fujian Salt Industry Group Co., Ltd., Fuzhou, Fujian, 350001, PR China
| | - Jin-Zhi Han
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Lian-Zhong Ai
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Li Ni
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| |
Collapse
|
42
|
Prieto-Garrido FL, Villa-Collar C, Hernandez-Verdejo JL, Alvarez-Peregrina C, Ruiz-Pomeda A. Changes in the Choroidal Thickness of Children Wearing MiSight to Control Myopia. J Clin Med 2022; 11:jcm11133833. [PMID: 35807117 PMCID: PMC9267297 DOI: 10.3390/jcm11133833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Due to the importance of choroidal thickness in the development of myopia, this study examined the effect of MiSight contact lenses (CLs) on the choroidal thickness of myopic children and the differences between responders and non-responders to the treatment with these CLs. Methods: A total of 41 myopic children were fitted with MiSight CLs and 33 with single-vision spectacles. They were followed up for two years. Subfoveal choroidal thickness and choroidal thickness 1 and 3 mm temporal and nasal to the fovea were measured by OCT at baseline and one and two years after the treatment. Differences in all the choroidal thickness parameters were assessed in each group over time. Patients from the MiSight group were classified based on a specific range of changes in axial length at the end of the second year of treatment as “responders” (AL change < 0.22 mm/per year) and “non-responders”, and the choroidal thickness of both groups was analyzed. Results: The subfoveal choroidal thickness of the MiSight and single-vision spectacle groups did not show any changes over time. Wearing MiSight CLs induced relative choroidal thickening in the responder group in the first year of treatment. Conclusion: Choroidal thickness might work as a predictor of the effectiveness of MiSight in myopia treatment.
Collapse
Affiliation(s)
- Francisco Luis Prieto-Garrido
- Hospital Universitario del Henares, Fundación para la Investigación e Innovación Biomédica, FIIB HUIS HHEN, 28822 Madrid, Spain;
- Faculty of Optics and Optometry, Complutense University of Madrid, 28037 Madrid, Spain;
| | - Cesar Villa-Collar
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain;
| | | | | | - Alicia Ruiz-Pomeda
- Ophthalmology Department, Hospital Universitario de Móstoles, 28935 Madrid, Spain;
| |
Collapse
|
43
|
Tsai HR, Wang JH, Huang HK, Chen TL, Chen PW, Chiu CJ. Efficacy of atropine, orthokeratology, and combined atropine with orthokeratology for childhood myopia: A systematic review and network meta-analysis. J Formos Med Assoc 2022; 121:2490-2500. [DOI: 10.1016/j.jfma.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022] Open
|
44
|
Zhang XJ, Zhang Y, Yam JC. Reply to Comment on: The Association of Choroidal Thickening by Atropine with Treatment Effects for Myopia: Two-Year Clinical Trial of the LAMP Study. Am J Ophthalmol 2022; 241:291-292. [PMID: 35660424 DOI: 10.1016/j.ajo.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; 4/F, Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; 4/F, Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; 4/F, Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong
| |
Collapse
|
45
|
Uzun S, Uzun F. nComment on The Association of Choroidal Thickening by Atropine With Treatment Effects for Myopia: Two-Year Clinical Trial of the Low-concentration Atropine for Myopia Progression (LAMP) Study. Am J Ophthalmol 2022; 241:290. [PMID: 35660422 DOI: 10.1016/j.ajo.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/26/2022]
|
46
|
Lee SSY, Alonso-Caneiro D, Lingham G, Chen FK, Sanfilippo PG, Yazar S, Mackey DA. Choroidal Thickening During Young Adulthood and Baseline Choroidal Thickness Predicts Refractive Error Change. Invest Ophthalmol Vis Sci 2022; 63:34. [PMID: 35616928 PMCID: PMC9150825 DOI: 10.1167/iovs.63.5.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose The purpose of this study was to explore the age-related change in choroidal thickness (ChT) and test the hypothesis that baseline ChT is predictive of refractive error change in healthy young adults. Methods Participants underwent spectral-domain optical coherence tomography (SD-OCT) imaging and autorefraction at 20 (baseline) and 28 years old. The enhanced depth imaging mode on the SD-OCT was used to obtain images of the choroid. Scans were exported from the SD-OCT and analyzed with a custom software that automatically measures the central ChT. The longitudinal change in subfoveal ChT and association between baseline subfoveal ChT and 8-year change in refractive error (spherical equivalent) were determined using linear mixed models. Results In total, 395 eyes of 198 participants (44% men; 18-22 years at baseline) were included. Over 8 years, mean spherical equivalent decreased by 0.25 diopters (D) and axial length increased by 0.09 mm. Subfoveal choroid thickened by 1.3 µm/year (95% confidence interval [CI] = 0.6-2.0), but this was reduced by 0.9 µm/year (95% CI = 1.6-0.2) for every 1 mm increase in axial length. For every 10 µm increase in baseline ChT, average annual change in spherical equivalent and axial length reduced by 0.006 D/year and 0.003 mm/year, respectively. Conclusions In a community-based cohort of young adults, the choroid continued to change during early adulthood. Choroidal thickening was less in eyes that were longer at baseline, and the choroid thinned in eyes that showed myopia progression. The association between baseline ChT and longitudinal changes in spherical equivalent and axial length supports the hypothesis that ChT may be predictive of refractive error development and/or myopia progression.
Collapse
Affiliation(s)
- Samantha Sze-Yee Lee
- The University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optic Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gareth Lingham
- The University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia.,Centre for Eye Research Ireland, School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Ireland, Dublin, Ireland
| | - Fred K Chen
- The University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia.,Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Paul G Sanfilippo
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - David A Mackey
- The University of Western Australia, Centre for Ophthalmology and Visual Science (incorporating the Lions Eye Institute), Perth, Western Australia, Australia.,Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,School of Medicine, Menzies Research Institute Tasmania, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
47
|
Shahsuvaryan M. Atropine: Updates on myopia pharmacotherapy. Taiwan J Ophthalmol 2022. [DOI: 10.4103/2211-5056.354535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|