1
|
Liyanage W, Kale N, Kannan S, Kannan RM. Journey from lab to clinic: Design, preclinical, and clinical development of systemic, targeted dendrimer-N-acetylcysteine (D-NAC) nanomedicines. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:119-155. [PMID: 39034050 DOI: 10.1016/bs.apha.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Drug discovery is challenging task with numerous obstacles in translating drug candidates into clinical products. Dendrimers are highly adaptable nanostructured polymers with significant potential to improve the chances of clinical success for drugs. Yet, dendrimer-based drug products are still in their infancy. However, Hydroxyl polyamidoamine (PAMAM) dendrimers showed significant promise in drug discovery efforts, owning their remarkable potential to selectively target and deliver drugs specifically to activated microglia and astrocytes at the site of brain injury in several preclinical models. After a decade's worth of academic research and pre-clinical efforts, the hydroxyl PAMAM dendrimer-N-acetyl cysteine conjugate (OP-101) nanomedicine has made a significant advancement in the field of nanomedicine and targeted delivery. The OP-101 conjugate, primarily developed and validated in academic labs, has now entered clinical trials as a potential treatment for hyperinflammation in hospitalized adults with severe COVID-19 through Ashvattha Therapeutics. This chapter, we delve into the journey of the hydroxyl PAMAM dendrimer-N-acetylcysteine (NAC) OP-101 formulation from the laboratory to the clinic. It will specifically focus on the design, synthesis, preclinical, and clinical development of OP-101, highlighting the potential it holds for the future of medicine and the positive Phase 2a results for treating severe COVID-19.
Collapse
Affiliation(s)
- Wathsala Liyanage
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Narendra Kale
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, United States; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD, United States
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Hugo W. Moser Research Institute, Kennedy Krieger, Inc., Baltimore, MD, United States; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD, United States; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
2
|
Devaraju M, Li A, Ha S, Li M, Shivakumar M, Li H, Nishiguchi EP, Gérardin P, Waldorf KA, Al-Haddad BJS. Beyond TORCH: A narrative review of the impact of antenatal and perinatal infections on the risk of disability. Neurosci Biobehav Rev 2023; 153:105390. [PMID: 37708918 PMCID: PMC10617835 DOI: 10.1016/j.neubiorev.2023.105390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Infections and inflammation during pregnancy or early life can alter child neurodevelopment and increase the risk for structural brain abnormalities and mental health disorders. There is strong evidence that TORCH infections (i.e., Treponema pallidum, Toxoplasma gondii, rubella virus, cytomegalovirus, herpes virus) alter fetal neurodevelopment across multiple developmental domains and contribute to motor and cognitive disabilities. However, the impact of a broader range of viral and bacterial infections on fetal development and disability is less well understood. We performed a literature review of human studies to identify gaps in the link between maternal infections, inflammation, and several neurodevelopmental domains. We found strong and moderate evidence respectively for a higher risk of motor and cognitive delays and disabilities in offspring exposed to a range of non-TORCH pathogens during fetal life. In contrast, there is little evidence for an increased risk of language and sensory disabilities. While guidelines for TORCH infection prevention during pregnancy are common, further consideration for prevention of non-TORCH infections during pregnancy for fetal neuroprotection may be warranted.
Collapse
Affiliation(s)
- Monica Devaraju
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Amanda Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA; Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA
| | - Sandy Ha
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Miranda Li
- University of Washington, School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA; University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Megana Shivakumar
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Hanning Li
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Erika Phelps Nishiguchi
- University of Hawaii, Department of Pediatrics, Division of Community Pediatrics, 1319 Punahou St, Honolulu, HI, USA
| | - Patrick Gérardin
- INSERM CIC1410, Centre Hospitalier Universitaire de la Réunion, Saint Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire, Saint Pierre, Réunion, France
| | - Kristina Adams Waldorf
- University of Washington, Department of Obstetrics, 1959 NE Pacific St, Seattle, WA 98195, USA.
| | - Benjamin J S Al-Haddad
- University of Minnesota, Department of Pediatrics, Division of Neonatology, Academic Office Building, 2450 Riverside Ave S AO-401, Minneapolis, MN 55454, USA; Masonic Institute for the Developing Brain, 2025 E River Pkwy, Minneapolis, MN 55414, USA.
| |
Collapse
|
3
|
Zhang F, Zhang Z, Alt J, Kambhampati SP, Sharma A, Singh S, Nance E, Thomas AG, Rojas C, Rais R, Slusher BS, Kannan RM, Kannan S. Dendrimer-enabled targeted delivery attenuates glutamate excitotoxicity and improves motor function in a rabbit model of cerebral palsy. J Control Release 2023; 358:27-42. [PMID: 37054778 PMCID: PMC10330216 DOI: 10.1016/j.jconrel.2023.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Glutamate carboxypeptidase II (GCPII), localized on the surface of astrocytes and activated microglia, regulates extracellular glutamate concentration in the central nervous system (CNS). We have previously shown that GCPII is upregulated in activated microglia in the presence of inflammation. Inhibition of GCPII activity could reduce glutamate excitotoxicity, which may decrease inflammation and promote a 'normal' microglial phenotype. 2-(3-Mercaptopropyl) pentanedioic acid (2-MPPA) is the first GCPII inhibitor that underwent clinical trials. Unfortunately, immunological toxicities have hindered 2-MPPA clinical translation. Targeted delivery of 2-MPPA specifically to activated microglia and astrocytes that over-express GCPII has the potential to mitigate glutamate excitotoxicity and attenuate neuroinflammation. In this study, we demonstrate that 2-MPPA when conjugated to generation-4, hydroxyl-terminated polyamidoamine (PAMAM) dendrimers (D-2MPPA) localize specifically in activated microglia and astrocytes only in newborn rabbits with cerebral palsy (CP), not in controls. D-2MPPA treatment led to higher 2-MPPA levels in the injured brain regions compared to 2-MPPA treatment, and the extent of D-2MPPA uptake correlated with the injury severity. D-2MPPA was more efficacious than 2-MPPA in decreasing extracellular glutamate level in ex vivo brain slices of CP kits, and in increasing transforming growth factor beta 1 (TGF-β1) level in primary mixed glial cell cultures. A single systemic intravenous dose of D-2MPPA on postnatal day 1 (PND1) decreased microglial activation and resulted in a change in microglial morphology to a more ramified form along with amelioration of motor deficits by PND5. These results indicate that targeted dendrimer-based delivery specifically to activated microglia and astrocytes can improve the efficacy of 2-MPPA by attenuating glutamate excitotoxicity and microglial activation.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Zhi Zhang
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Siva P Kambhampati
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anjali Sharma
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sarabdeep Singh
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Nance
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Sujatha Kannan
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
4
|
Shi Z, Luo K, Jani S, February M, Fernandes N, Venkatesh N, Sharif N, Tan S. Mimicking partial to total placental insufficiency in a rabbit model of cerebral palsy. J Neurosci Res 2022; 100:2138-2153. [PMID: 34173261 PMCID: PMC8709884 DOI: 10.1002/jnr.24901] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/07/2023]
Abstract
All placental abruptions begin as partial abruptions, which sometimes manifest as fetal bradycardia. The progression from partial to total abruption was mimicked by a new rabbit model of placental insufficiency, and we compared it, with sufficient statistical power, with the previous model mimicking total placental abruption. The previous model uses total uterine ischemia at E22 or E25 (70% or 79% term, respectively), in pregnant New Zealand white rabbits for 40 min (Full H-I). The new model, Partial+Full H-I, added a 30-min partial ischemia before the 40-min total ischemia. Fetuses were delivered either at E31.5 (full term) vaginally for neurobehavior testing, or by C-section at E25 for ex vivo brain cell viability evaluation. The onset of fetal bradycardia was within the first 2 min of either H-I protocol. There was no difference between Full H-I (n = 442 for E22, 312 for E25) and Partial+Full H-I (n = 154 and 80) groups in death or severely affected kits at E22 (76% vs. 79%) or at E25 (66% vs. 64%), or normal kits at E22 or E25, or any of the individual newborn neurobehavioral tests at any age. No sex differences were found. Partial+Full H-I (n = 6) showed less cell viability than Full H-I (n = 8) at 72-hr ex vivo in the brain regions studied. Partial+Full H-I insult produced similar cerebral palsy phenotype as our previous Full H-I model in a sufficiently powered study and may be more suitable for testing of potential neuroprotectants.
Collapse
Affiliation(s)
- Zhongjie Shi
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Kehuan Luo
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Sanket Jani
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Melissa February
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | - Nithi Fernandes
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| | | | | | - Sidhartha Tan
- Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI
| |
Collapse
|
5
|
Jain VG, Kline JE, He L, Kline-Fath BM, Altaye M, Muglia LJ, DeFranco EA, Ambalavanan N, Parikh NA. Acute histologic chorioamnionitis independently and directly increases the risk for brain abnormalities seen on magnetic resonance imaging in very preterm infants. Am J Obstet Gynecol 2022; 227:623.e1-623.e13. [PMID: 35644247 PMCID: PMC10008527 DOI: 10.1016/j.ajog.2022.05.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The independent risk for neurodevelopmental impairments attributed to chorioamnionitis in premature infants remains controversial. Delayed brain maturation or injury identified on magnetic resonance imaging at term-equivalent age can be used as a surrogate measure of neurodevelopmental impairments that is less confounded by postdelivery neonatal intensive care unit environmental factors to investigate this relationship more clearly. OBJECTIVE This study aimed to determine whether preterm infants born with moderate to severe acute histologic chorioamnionitis would have a higher magnetic resonance imaging-determined global brain abnormality score, independent of early premature birth, when compared with preterm infants with no or mild chorioamnionitis. STUDY DESIGN This was a prospective, multicenter cohort study involving infants born very prematurely ≤32 weeks' gestational age with acute moderate to severe histologic chorioamnionitis, graded using standard histologic criteria. Brain abnormalities were diagnosed and scored using a well-characterized, standardized scoring system captured using a high-resolution 3 Tesla magnetic resonance imaging research magnet. In secondary analyses, total brain volume and 4 magnetic resonance imaging metrics of cortical maturation (cortical surface area, sulcal depth, gyral index, and inner cortical curvature) were calculated using an automated algorithm and correlated with chorioamnionitis. The association of funisitis (any grade) with brain abnormalities was also explored. We investigated if premature birth mediated the relationship between histologic chorioamnionitis and brain abnormality score using mediation analysis. RESULTS Of 353 very preterm infants, 297 infants had mild or no chorioamnionitis (controls), and 56 were diagnosed with moderate to severe acute histologic chorioamnionitis. The primary outcome brain abnormality score was significantly higher in histologic chorioamnionitis-exposed infants than in the controls (median, 4 vs 7; P<.001). Infants with acute histologic chorioamnionitis had significantly lower brain tissue volume (P=.03) and sulcal depth (P=.04), whereas other morphometric indices did not differ statistically. In the multiple regression analysis, we observed persistent significant relationships between moderate to severe acute histologic chorioamnionitis and brain abnormality scores (β=2.84; 1.51-4.16; P<.001), total brain volume (P=.03), and sulcal depth (P=.02). Funisitis was also significantly associated with brain abnormality score after adjustment for clinical confounders (P=.005). Mediation analyses demonstrated that 50% of brain abnormalities was an indirect consequence of premature birth, and the remaining 50% was a direct effect of moderate to severe acute histologic chorioamnionitis when compared with preterm infants with no or mild chorioamnionitis exposure. Examining gestational age as a mediator, funisitis did not exert a significant direct effect on brain abnormalities after the significant indirect effects of preterm birth were accounted for. CONCLUSION Acute histologic chorioamnionitis increases the risk for brain injury and delayed maturation, both directly and indirectly, by inducing premature birth.
Collapse
Affiliation(s)
- Viral G Jain
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL; Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Julia E Kline
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Lili He
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Beth M Kline-Fath
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Louis J Muglia
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Burroughs Wellcome Fund, Research Triangle Park, NC; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Emily A DeFranco
- Department of Obstetrics & Gynecology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Center for Prevention of Neurodevelopmental Disorders, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
6
|
Massrali A, Adhya D, Srivastava DP, Baron-Cohen S, Kotter MR. Virus-Induced Maternal Immune Activation as an Environmental Factor in the Etiology of Autism and Schizophrenia. Front Neurosci 2022; 16:834058. [PMID: 35495047 PMCID: PMC9039720 DOI: 10.3389/fnins.2022.834058] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022] Open
Abstract
Maternal immune activation (MIA) is mediated by activation of inflammatory pathways resulting in increased levels of cytokines and chemokines that cross the placental and blood-brain barriers altering fetal neural development. Maternal viral infection is one of the most well-known causes for immune activation in pregnant women. MIA and immune abnormalities are key players in the etiology of developmental conditions such as autism, schizophrenia, ADHD, and depression. Experimental evidence implicating MIA in with different effects in the offspring is complex. For decades, scientists have relied on either MIA models or human epidemiological data or a combination of both. MIA models are generated using infection/pathogenic agents to induce an immunological reaction in rodents and monitor the effects. Human epidemiological studies investigate a link between maternal infection and/or high levels of cytokines in pregnant mothers and the likelihood of developing conditions. In this review, we discuss the importance of understanding the relationship between virus-mediated MIA and neurodevelopmental conditions, focusing on autism and schizophrenia. We further discuss the different methods of studying MIA and their limitations and focus on the different factors contributing to MIA heterogeneity.
Collapse
Affiliation(s)
- Aïcha Massrali
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Transgenerational epigenetic impacts of parental infection on offspring health and disease susceptibility. Trends Genet 2022; 38:662-675. [PMID: 35410793 PMCID: PMC8992946 DOI: 10.1016/j.tig.2022.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Maternal immune activation (MIA) and infection during pregnancy are known to reprogramme offspring phenotypes. However, the epigenetic effects of preconceptual paternal infection and paternal immune activation (PIA) are not currently well understood. Recent reports show that paternal infection and immune activation can affect offspring phenotypes, particularly brain function, behaviour, and immune system functioning, across multiple generations without re-exposure to infection. Evidence from other environmental exposures indicates that epigenetic inheritance also occurs in humans. Given the growing impact of the coronavirus disease 2019 (COVID-19) pandemic, it is imperative that we investigate all of the potential epigenetic mechanisms and multigenerational phenotypes that may arise from both maternal and paternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as well as associated MIA, PIA, and inflammation. This will allow us to understand and, if necessary, mitigate any potential changes in disease susceptibility in the children, and grandchildren, of affected parents.
Collapse
|
8
|
Animal Models of Chorioamnionitis: Considerations for Translational Medicine. Biomedicines 2022; 10:biomedicines10040811. [PMID: 35453561 PMCID: PMC9032938 DOI: 10.3390/biomedicines10040811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth is defined as any birth occurring before 37 completed weeks of gestation by the World Health Organization. Preterm birth is responsible for perinatal mortality and long-term neurological morbidity. Acute chorioamnionitis is observed in 70% of premature labor and is associated with a heavy burden of multiorgan morbidities in the offspring. Unfortunately, chorioamnionitis is still missing effective biomarkers and early placento- as well as feto-protective and curative treatments. This review summarizes recent advances in the understanding of the underlying mechanisms of chorioamnionitis and subsequent impacts on the pregnancy outcome, both during and beyond gestation. This review also describes relevant and current animal models of chorioamnionitis used to decipher associated mechanisms and develop much needed therapies. Improved knowledge of the pathophysiological mechanisms underpinning chorioamnionitis based on preclinical models is a mandatory step to identify early in utero diagnostic biomarkers and design novel anti-inflammatory interventions to improve both maternal and fetal outcomes.
Collapse
|
9
|
Ruiz-Bedoya CA, Mota F, Tucker EW, Mahmud FJ, Reyes-Mantilla MI, Erice C, Bahr M, Flavahan K, De Jesus P, Kim J, Foss CA, Peloquin CA, Hammoud DA, Ordonez AA, Pardo CA, Jain SK. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J Clin Invest 2022; 132:155851. [PMID: 35085105 PMCID: PMC8920328 DOI: 10.1172/jci155851] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculous meningitis (TB meningitis) is the most severe form of tuberculosis (TB), requiring 12 months of multidrug treatment for cure, and is associated with high morbidity and mortality. High-dose rifampin (35 mg/kg/d) is safe and improves the bactericidal activity of the standard-dose (10 mg/kg/d) rifampin-containing TB regimen in pulmonary TB. However, there are conflicting clinical data regarding its benefit for TB meningitis, where outcomes may also be associated with intracerebral inflammation. We conducted cross-species studies in mice and rabbits, demonstrating that an intensified high-dose rifampin-containing regimen has significantly improved bactericidal activity for TB meningitis over the first-line, standard-dose rifampin regimen, without an increase in intracerebral inflammation. Positron emission tomography in live animals demonstrated spatially compartmentalized, lesion-specific pathology, with postmortem analyses showing discordant brain tissue and cerebrospinal fluid rifampin levels and inflammatory markers. Longitudinal multimodal imaging in the same cohort of animals during TB treatment as well as imaging studies in two cohorts of TB patients demonstrated that spatiotemporal changes in localized blood-brain barrier disruption in TB meningitis are an important driver of rifampin brain exposure. These data provide unique insights into the mechanisms underlying high-dose rifampin in TB meningitis with important implications for developing new antibiotic treatments for infections.
Collapse
Affiliation(s)
- Camilo A Ruiz-Bedoya
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Filipa Mota
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Elizabeth W Tucker
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Farina J Mahmud
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Maria I Reyes-Mantilla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Clara Erice
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Melissa Bahr
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Kelly Flavahan
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Patricia De Jesus
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - John Kim
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Catherine A Foss
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, University of Florida College of Pharmacy, Gainesville, United States of America
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, NIH, Bethesda, United States of America
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
10
|
de Morais-Pinto L, da Veiga ML, Almeida da Anunciação AR. Central nervous system development of cats (Felis catus L. 1758). Res Vet Sci 2021; 141:81-94. [PMID: 34700148 DOI: 10.1016/j.rvsc.2021.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
The morphological similarities of vertebrates' embryonic development are used as a criterion for choosing animal models that can be used in biomedical research. This study describes the embryonic and fetal development of the domestic cat's central nervous system from 15 days after conception until birth. In total, fifty-seven samples of embryos and fetuses were carefully dissected and analyzed microscopically. The closure of the neural tube was observed between 14-15th days of gestation. The differentiation of the primordial cerebral vesicles was observed from the 17th day of gestation. On the 19th day of gestation, the formation of the choroid plexus began, and on the 20th day of gestation, the brain and brainstem were well-identified macroscopically. On the 24th day of gestation, four layers of cells from the cerebral cortex were described, and on the 60th day, six layers of cells were present. The cerebellar cortex had the three classic cortical layers at this stage. The morphological aspects of embryonic and fetal development in cats were very similar to the stages of development of the human nervous system. As such, this study provided relevant information that highlights the domestic cat as an animal model option for preclinical research on infectious and non-infectious neurological diseases in humans.
Collapse
Affiliation(s)
- Luciano de Morais-Pinto
- Laboratório de Design Anatômico/LabDA, Departamento de Morfologia, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil.
| | - Marcelo Leite da Veiga
- Laboratório de Morfofisiologia Experimental e Comparada/LABITEX, Departamento de Morfologia, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | | |
Collapse
|
11
|
Ogawa S, Hagiwara M, Misumi S, Tajiri N, Shimizu T, Ishida A, Suzumori N, Sugiura-Ogasawara M, Hida H. Transplanted Oligodendrocyte Progenitor Cells Survive in the Brain of a Rat Neonatal White Matter Injury Model but Less Mature in Comparison with the Normal Brain. Cell Transplant 2021; 29:963689720946092. [PMID: 32757665 PMCID: PMC7563029 DOI: 10.1177/0963689720946092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Preterm infants have a high risk of neonatal white matter injury (WMI) caused by hypoxia-ischemia. Cell-based therapies are promising strategies for neonatal WMI by providing trophic substances and replacing lost cells. Using a rat model of neonatal WMI in which oligodendrocyte progenitors (OPCs) are predominantly damaged, we investigated whether insulin-like growth factor 2 (IGF2) has trophic effects on OPCs in vitro and whether OPC transplantation has potential as a cell replacement therapy. Enhanced expression of Igf2 mRNA was first confirmed in the brain of P5 model rats by real-time polymerase chain reaction. Immunostaining for IGF2 and its receptor IGF2 R revealed that both proteins were co-expressed in OLIG2-positive and GFAP-positive cells in the corpus callosum (CC), indicating autocrine and paracrine effects of IGF2. To investigate the in vitro effect of IGF2 on OPCs, IGF2 (100 ng/ml) was added to the differentiation medium containing ciliary neurotrophic factor (10 ng/ml) and triiodothyronine (20 ng/ml), and IGF2 promoted the differentiation of OPCs into mature oligodendrocytes. We next transplanted rat-derived OPCs that express green fluorescent protein into the CC of neonatal WMI model rats without immunosuppression and investigated the survival of grafted cells for 8 weeks. Although many OPCs survived for at least 8 weeks, the number of mature oligodendrocytes was unexpectedly small in the CC of the model compared with that in the sham-operated control. These findings suggest that the mechanism in the brain that inhibits differentiation should be solved in cell replacement therapy for neonatal WMI as same as trophic support from IGF2.
Collapse
Affiliation(s)
- Shino Ogawa
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mutsumi Hagiwara
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sachiyo Misumi
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Tajiri
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimasa Ishida
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiro Suzumori
- Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Mayumi Sugiura-Ogasawara
- Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hideki Hida
- Departments of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
12
|
da Conceição Pereira S, Manhães-de-Castro R, Visco DB, de Albuquerque GL, da Silva Calado CMS, da Silva Souza V, Toscano AE. Locomotion is impacted differently according to the perinatal brain injury model: Meta-analysis of preclinical studies with implications for cerebral palsy. J Neurosci Methods 2021; 360:109250. [PMID: 34116077 DOI: 10.1016/j.jneumeth.2021.109250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Different approaches to reproduce cerebral palsy (CP) in animals, contribute to the knowledge of the pathophysiological mechanism of this disease and provide a basis for the development of intervention strategies. Locomotion and coordination are the main cause of disability in CP, however, few studies highlight the quantitative differences of CP models, on locomotion parameters, considering the methodologies to cause brain lesions in the perinatal period. METHODS Studies with cerebral palsy animal models that assess locomotion parameters were systematically retrieved from Medline/PubMed, SCOPUS, LILACS, and Web of Science. Methodological evaluation of included studies and quantitative assessment of locomotion parameters were performed after eligibility screening. RESULTS CP models were induced by hypoxia-ischemia (HI), Prenatal ischemia (PI), lipopolysaccharide inflammation (LPS), intraventricular haemorrhage (IVH), anoxia (A), sensorimotor restriction (SR), and a combination of different models. Overall, 63 studies included in qualitative synthesis showed a moderate quality of evidence. 16 studies were included in the quantitative meta-analysis. Significant reduction was observed in models that combined LPS with HI related to distance traveled (SMD -7.24 95 % CI [-8.98, -5.51], Z = 1.18, p < 0.00001) and LPS with HI or anoxia with sensory-motor restriction (SMD -6.01, 95 % CI [-7.67, -4.35], Z = 7.11), or IVH (SMD -4.91, 95 % CI [-5.84, -3.98], Z = 10.31, p < 0.00001) related to motor coordination. CONCLUSION The combination of different approaches to reproduce CP in animals causes greater deficits in locomotion and motor coordination from the early stages of life to adulthood. These findings contribute to methodological refinement, reduction, and replacement in animal experimentation, favoring translational purposes.
Collapse
Affiliation(s)
- Sabrina da Conceição Pereira
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Bulcão Visco
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Vanessa da Silva Souza
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Posgraduate Program in Neuropsychiatry and Behavior Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Postgraduate Program in Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
13
|
Pla L, Illa M, Loreiro C, Lopez MC, Vázquez-Aristizabal P, Kühne BA, Barenys M, Eixarch E, Gratacós E. Structural Brain Changes during the Neonatal Period in a Rabbit Model of Intrauterine Growth Restriction. Dev Neurosci 2021; 42:217-229. [PMID: 33677448 DOI: 10.1159/000512948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is associated with abnormal neurodevelopment, but the associated structural brain changes are poorly documented. The aim of this study was to describe in an animal model the brain changes at the cellular level in the gray and white matter induced by IUGR during the neonatal period. METHODS The IUGR model was surgically induced in pregnant rabbits by ligating 40-50% of the uteroplacental vessels in 1 horn, whereas the uteroplacental vessels of the contralateral horn were not ligated. After 5 days, IUGR animals from the ligated horn and controls from the nonligated were delivered. On the day of delivery, perinatal data and placentas were collected. On postnatal day 1, functional changes were first evaluated, and thereafter, neuronal arborization in the frontal cortex and density of pre-oligodendrocytes, astrocytes, and microglia in the corpus callosum were evaluated. RESULTS Higher stillbirth in IUGR fetuses together with a reduced birth weight as compared to controls was evidenced. IUGR animals showed poorer functional results, an altered neuronal arborization pattern, and a decrease in the pre-oligodendrocytes, with no differences in microglia and astrocyte densities. CONCLUSIONS Overall, in the rabbit model used, IUGR is related to functional and brain changes evidenced already at birth, including changes in the neuronal arborization and abnormal oligodendrocyte maturation.
Collapse
Affiliation(s)
- Laura Pla
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Illa
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain, .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain,
| | - Carla Loreiro
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mari Carmen Lopez
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Paula Vázquez-Aristizabal
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Britta Anna Kühne
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marta Barenys
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
14
|
de Almeida da Anunciação AR, Favaron PO, de Morais-Pinto L, de Carvalho CMF, Dos Santos Martins D, Conei D, Del Sol M, Vásquez B, Miglino MA. Central nervous system development in rabbits (Oryctolagus cuniculus L. 1758). Anat Rec (Hoboken) 2021; 304:1313-1328. [PMID: 33480146 DOI: 10.1002/ar.24586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
The present study describes the embryonic and fetal development of the central nervous system in rabbits from the seventh day after conception until the end of the full-term fetal period. A total of 19 embryonic and fetal samples were carefully dissected and microscopically analyzed. Neural tube closure was observed between 7.5 and 8 days of gestation. Primordial encephalic vesicle differentiation and spinal canal delimitation were observed on the 12th day of gestation. Histologically, on the 15th day of gestation, the brain, cerebellum, and brain stem were delimited. On the 18th day of gestation, the cervical and lumbar intumescences of the spinal cord were visible. On the 28th day of gestation, four-cell layers could be distinguished in the cerebral cortex, while the cerebellar cortex was still differentiating. Overall, the morphological aspects of the embryonic and fetal developmental phases in rabbits were highly similar to those in humans. Thus, the present study provides relevant information highlighting rabbits as an excellent candidate animal model for preclinical research on human neurological diseases given the high adaptability of rabbits to bioterium conditions and the similarity of morphological events between rabbits and humans.
Collapse
Affiliation(s)
| | - Phelipe Oliveira Favaron
- General Biology Department, Biological Science Center, Universidade Estadual de Londrina, Londrina, Brazil
| | - Luciano de Morais-Pinto
- Laboratory of Anatomical Design/LabDA, Department of Morphology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Daniel Conei
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Mariano Del Sol
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Bélgica Vásquez
- Faculty of Health Sciences, Universidad de Tarapacá, Arica, Chile
| | - Maria Angelica Miglino
- Faculty of Veterinary Medicine Animal Sciences, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Zhang Z, Lin YA, Kim SY, Su L, Liu J, Kannan RM, Kannan S. Systemic dendrimer-drug nanomedicines for long-term treatment of mild-moderate cerebral palsy in a rabbit model. J Neuroinflammation 2020; 17:319. [PMID: 33100217 PMCID: PMC7586697 DOI: 10.1186/s12974-020-01984-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neuroinflammation mediated by microglia plays a central role in the pathogenesis of perinatal/neonatal brain injury, including cerebral palsy (CP). Therapeutics mitigating neuroinflammation potentially provide an effective strategy to slow the disease progression and rescue normal brain development. Building on our prior results which showed that a generation-4 hydroxyl poly(amidoamine) (PAMAM) dendrimer could deliver drugs specifically to activated glia from systemic circulation, we evaluated the sustained efficacy of a generation-6 (G6) hydroxyl-terminated PAMAM dendrimer that showed a longer blood circulation time and increased brain accumulation. N-acetyl-L-cysteine (NAC), an antioxidant and anti-inflammatory agent that has high plasma protein binding properties and poor brain penetration, was conjugated to G6-PAMAM dendrimer-NAC (G6D-NAC). The efficacy of microglia-targeted G6D-NAC conjugate was evaluated in a clinically relevant rabbit model of CP, with a mild/moderate CP phenotype to provide a longer survival of untreated CP kits, enabling the assessment of sustained efficacy over 15 days of life. METHODS G6D-NAC was conjugated and characterized. Cytotoxicity and anti-inflammatory assays were performed in BV-2 microglial cells. The efficacy of G6D-NAC was evaluated in a rabbit model of CP. CP kits were randomly divided into 5 groups on postnatal day 1 (PND1) and received an intravenous injection of a single dose of PBS, or G6D-NAC (2 or 5 mg/kg), or NAC (2 or 5 mg/kg). Neurobehavioral tests, microglia morphology, and neuroinflammation were evaluated at postnatal day 5 (PND5) and day 15 (PND15). RESULTS A single dose of systemic 'long circulating' G6D-NAC showed a significant penetration across the impaired blood-brain-barrier (BBB), delivered NAC specifically to activated microglia, and significantly reduced microglia-mediated neuroinflammation in both the cortex and cerebellum white matter areas. Moreover, G6D-NAC treatment significantly improved neonatal rabbit survival rate and rescued motor function to nearly healthy control levels at least up to 15 days after birth (PND15), while CP kits treated with free NAC died before PND9. CONCLUSIONS Targeted delivery of therapeutics to activated microglia in neonatal brain injury can ameliorate pro-inflammatory microglial responses to injury, promote survival rate, and improve neurological outcomes that can be sustained for a long period. Appropriate manipulation of activated microglia enabled by G6D-NAC can impact the injury significantly beyond inflammation.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Present address: Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Yi-An Lin
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA
| | - Soo-Young Kim
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA
| | - Lilly Su
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jinhuan Liu
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Anesthesiology and Critical Care Medicine, Charlotte Bloomberg Children's Center 6318D, 1800 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Jung E, Romero R, Yeo L, Diaz-Primera R, Marin-Concha J, Para R, Lopez AM, Pacora P, Gomez-Lopez N, Yoon BH, Kim CJ, Berry SM, Hsu CD. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med 2020; 25:101146. [PMID: 33164775 PMCID: PMC10580248 DOI: 10.1016/j.siny.2020.101146] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fetus can deploy a local or systemic inflammatory response when exposed to microorganisms or, alternatively, to non-infection-related stimuli (e.g., danger signals or alarmins). The term "Fetal Inflammatory Response Syndrome" (FIRS) was coined to describe a condition characterized by evidence of a systemic inflammatory response, frequently a result of the activation of the innate limb of the immune response. FIRS can be diagnosed by an increased concentration of umbilical cord plasma or serum acute phase reactants such as C-reactive protein or cytokines (e.g., interleukin-6). Pathologic evidence of a systemic fetal inflammatory response indicates the presence of funisitis or chorionic vasculitis. FIRS was first described in patients at risk for intraamniotic infection who presented preterm labor with intact membranes or preterm prelabor rupture of the membranes. However, FIRS can also be observed in patients with sterile intra-amniotic inflammation, alloimmunization (e.g., Rh disease), and active autoimmune disorders. Neonates born with FIRS have a higher rate of complications, such as early-onset neonatal sepsis, intraventricular hemorrhage, periventricular leukomalacia, and death, than those born without FIRS. Survivors are at risk for long-term sequelae that may include bronchopulmonary dysplasia, neurodevelopmental disorders, such as cerebral palsy, retinopathy of prematurity, and sensorineuronal hearing loss. Experimental FIRS can be induced by intra-amniotic administration of bacteria, microbial products (such as endotoxin), or inflammatory cytokines (such as interleukin-1), and animal models have provided important insights about the mechanisms responsible for multiple organ involvement and dysfunction. A systemic fetal inflammatory response is thought to be adaptive, but, on occasion, may become dysregulated whereby a fetal cytokine storm ensues and can lead to multiple organ dysfunction and even fetal death if delivery does not occur ("rescued by birth"). Thus, the onset of preterm labor in this context can be considered to have survival value. The evidence so far suggests that FIRS may compound the effects of immaturity and neonatal inflammation, thus increasing the risk of neonatal complications and long-term morbidity. Modulation of a dysregulated fetal inflammatory response by the administration of antimicrobial agents, anti-inflammatory agents, or cell-based therapy holds promise to reduce infant morbidity and mortality.
Collapse
Affiliation(s)
- Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA.
| | - Lami Yeo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Julio Marin-Concha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashley M Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Stanley M Berry
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
17
|
Chudnovets A, Lei J, Na Q, Dong J, Narasimhan H, Klein SL, Burd I. Dose-dependent structural and immunological changes in the placenta and fetal brain in response to systemic inflammation during pregnancy. Am J Reprod Immunol 2020; 84:e13248. [PMID: 32306461 DOI: 10.1111/aji.13248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
PROBLEM Systemic maternal inflammation is associated with adverse neonatal sequelae. We tested the hypothesis that IL-1β is a key inflammatory regulator of adverse pregnancy outcomes. METHOD OF STUDY Pregnant mice were treated with intraperitoneal injections of IL-1β (0, 0.1, 0.5, or 1 μg) from embryonic day (E)14 to E17. Placenta and fetal brains were harvested and analyzed for morphologic changes and IL-1β signaling markers. RESULTS As compared with non-treated dams, maternal injections with IL-1β resulted in increased p-NF-κB and caspase-1 in placentas and fetal brains, but not consistently in spleens, suggesting induction of intrinsic IL-1β production. These findings were confirmed by increased levels of IL-1β in the placentas of the IL-1β-treated dams. Systemic treatment of dams with IL-1β suppressed Stat1 signaling. Maternal inflammation caused by IL-1β treatment reduced fetal viability to 80.6% and 58.9%, in dams treated with either 0.5 or 1 μg of IL-1β, respectively. In the placentas, there was an IL-1β dose-dependent distortion of the labyrinth structure, decreased numbers of mononuclear trophoblast giant cells, and reduced proportions of endothelial cells as compared to placentas from control dams. In fetal brains collected at E17, there was an IL-1β dose-dependent reduction in cortical neuronal morphology. CONCLUSION This work demonstrates that systemic IL-1β injection causes dose-dependent structural and functional changes in the placenta and fetal brain.
Collapse
Affiliation(s)
- Anna Chudnovets
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Quan Na
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Dong
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harish Narasimhan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Bertrand SJ, Zhang Z, Patel R, O'Ferrell C, Punjabi NM, Kudchadkar SR, Kannan S. Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model. Exp Neurol 2020; 327:113212. [PMID: 31987835 DOI: 10.1016/j.expneurol.2020.113212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 12/29/2022]
Abstract
Sleep fragmentation is an increase in sleep-wake transitions without an overall decrease in total sleep time. Sleep fragmentation is well documented during acute and chronic hospitalization and can result in delirium and memory problems in children. Sleep fragmentation is also often noted in neurodevelopmental disorders. However, it is unclear how sleep fragmentation independent of disease affects brain development and function. We hypothesized that acute sleep fragmentation during the neonatal period in otherwise healthy animals would result in neuroinflammation and would be associated with abnormalities in cognitive development. The orbital shaker method was used to fragment sleep for 72 h in postnatal day 3 New Zealand white rabbit kits (fragmentation group). To control for maternal separation, the sham group was separated from the dam and maintained in the same conditions without undergoing sleep fragmentation. A naïve control group remained with the dam. Kits underwent behavioral testing with novel object recognition and spontaneous alternation T-maze tests at 2-3 weeks post-fragmentation and were sacrificed 3-50 days after fragmentation. Sleep fragmentation resulted in acute and chronic changes in microglial morphology in the hippocampus and cortex, and regional differences in mRNA expression of pro- and anti-inflammatory cytokines at 3, 7 and 50 days post-fragmentation. Impaired novel object recognition and a longer latency in T-maze task completion were noted in the fragmented kits. This was in spite of normalization of sleep architecture noted at 2 months of age in these kits. The results indicate that transient neonatal sleep fragmentation results in short-term and long-term immune alterations in the brain, along with diminished performance in cognitive tasks long-term.
Collapse
Affiliation(s)
- Sarah J Bertrand
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Ruchit Patel
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Caroline O'Ferrell
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Naresh M Punjabi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America
| | - Sapna R Kudchadkar
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America; Department of Pediatrics, Johns Hopkins University School of Medicine, United States of America; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, United States of America.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, United States of America.
| |
Collapse
|
19
|
Van der Veeken L, Grönlund S, Gerdtsson E, Holmqvist B, Deprest J, Ley D, Bruschettini M. Long-term neurological effects of neonatal caffeine treatment in a rabbit model of preterm birth. Pediatr Res 2020; 87:1011-1018. [PMID: 31812154 DOI: 10.1038/s41390-019-0718-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Neonatal caffeine treatment might affect brain development. Long-term studies show conflicting results on brain-related outcomes. Herein we aimed to investigate the long-term effects of neonatal caffeine administration in a rabbit model of preterm birth. METHODS Preterm (born day 29) and term (day 32) pups were raised by wet nurses and allocated to treatment with saline or caffeine for 7 or 17 days. At pre-puberty, neurobehavioral tests were performed and brains were harvested for immunostaining of neurons, synapses, myelin, and astrocytes. RESULTS Survival was lower in preterm saline pups than in controls, whereas caffeine-treated preterm pups did not differ from term control pups. Preterm saline pups covered less distance compared to controls and were more likely to stay in the peripheral zone of the open field. Corresponding differences were not seen in preterm caffeine pups. Preterm animals had lower neuron density compared to controls, which was not influenced by caffeine treatment. Synaptic density, astrocytes, and myelin were not different between groups. CONCLUSION Caffeine appeared to be safe. All preterm rabbits had lower neuron density but anxious behavior seen in preterm saline rabbits was not seen in caffeine-treated preterm pups.
Collapse
Affiliation(s)
- Lennart Van der Veeken
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium
| | - Susanne Grönlund
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | | | | | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven University of Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden.
| |
Collapse
|
20
|
Hendrix P, Tang Z, Silasi M, Racicot KE, Mor G, Abrahams VM, Guller S. Herpesvirus-infected Hofbauer cells activate endothelial cells through an IL-1β-dependent mechanism. Placenta 2020; 91:59-65. [PMID: 32174308 DOI: 10.1016/j.placenta.2020.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Placental viral infections are associated with fetal inflammation and adverse pregnancy outcomes. However, there have been limited studies on how placental macrophages in the villous and adjacent fetal umbilical endothelial cells respond to a viral insult. This study aimed to evaluate the communication between Hofbauer cells (HBCs) and human umbilical vein endothelial cells (HUVECs) during a viral infection. METHODS HBCs were either uninfected or infected with the γ-herpesvirus, MHV-68, and the conditioned medium (CM) collected. HUVECs were exposed to HBC CM and the levels of the pro-neutrophilic response markers: IL-8; E-selectin; intercellular adhesion molecule 1 (ICAM-1); and vascular adhesion molecule 1 (VCAM-1) measured by ELISA and qPCR. The role of HBC-derived IL-1β was investigated using an IL-1β blocking antibody (Ab) or IL-1 receptor antagonist (IL-1Ra). RESULTS MHV-68 infection of HBCs induced a significant increase in IL-1β secretion. CM from infected HBCs induced HUVEC expression of IL-8, E-selectin, VCAM-1, ICAM-1 mRNA, and secretion of IL-8. The HUVEC response to the CM of MHV-infected HBCs was inhibited by a neutralizing IL-1β Ab and by IL-1Ra. DISCUSSION Virally-induced HBC IL-1β activates HUVECs to generate a pro-neutrophilic response. This novel cell-cell communication pathway may play an important role in the genesis of fetal inflammation associated with placental viral infection.
Collapse
Affiliation(s)
- Paul Hendrix
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Zhonghua Tang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Michelle Silasi
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Karen E Racicot
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.
| | - Seth Guller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
McNamara NB, Miron VE. Microglia in developing white matter and perinatal brain injury. Neurosci Lett 2019; 714:134539. [PMID: 31614181 DOI: 10.1016/j.neulet.2019.134539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Perinatal brain injury (PBI) to the developing white matter results in hypomyelination of axons and can cause long-term motor and cognitive deficits e.g. cerebral palsy. There are currently no approved therapies aimed at repairing the white matter following insult, underscoring the need to investigate the mechanisms underlying the pathogenesis of PBI. Microglia have been strongly implicated, but their function and heterogeneity in this context remain poorly understood, posing a barrier to the development of microglia-targeted therapies for white matter repair following PBI. In this review, we discuss the roles of microglia in normal white matter development and in PBI, and potential drug strategies to influence microglial responses in this setting.
Collapse
Affiliation(s)
- Niamh B McNamara
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
22
|
Van der Veeken L, Van der Merwe J, Devroe S, Inversetti A, Galgano A, Bleeser T, Meeusen R, Rex S, Deprest J. Maternal surgery during pregnancy has a transient adverse effect on the developing fetal rabbit brain. Am J Obstet Gynecol 2019; 221:355.e1-355.e19. [PMID: 31336075 DOI: 10.1016/j.ajog.2019.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/22/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recently, the US Food and Drug Administration called for cautious use of anesthetic drugs during pregnancy. In 0.2-2% of pregnancies, nonobstetric surgery is being performed. The consequences of anesthesia during pregnancy on fetal development remain unclear, and preclinical studies in relevant animal models may help to elucidate them. OBJECTIVE To assess the effect of maternal anesthesia and surgery during pregnancy on the developing fetal brain, using a rabbit model. MATERIALS AND METHODS This is a randomized, sham-controlled study in time-mated pregnant does at 28 days of gestation (term = 31 days), which corresponds to the end of the second trimester in humans. Anesthesia was induced in 14 does (155 pups) with propofol and maintained with 4 vol% (equivalent to 1 minimum alveolar concentration) sevoflurane for 2 hours, and a laparotomy with minimal organ manipulation was performed (surgery group). Maternal vital signs (blood pressure, heart rate, peripheral and cerebral oxygen saturation, temperature, end-tidal CO2, pH, lactate) were continuously monitored. Sham controls consisted of 7 does (74 pups) undergoing invasive hemodynamic monitoring for 2 hours without sedation. At term, does underwent cesarean delivery under ketamine-medetomidine sedation and local anesthesia. Pups either underwent motor and sensory neurologic testing followed by euthanasia at day 1 or daily neurodevelopment testing for 2 weeks and extensive neurologic assessment at 5 and 7 weeks (open field and object recognition test, T-maze, and radial-arm maze). Brains were harvested for histologic assessment of neuron density and synaptophysin expression. RESULTS Blood gases and vital parameters were stable in both groups. On postnatal day 1, surgery pups had significant lower motor (25 ± 1 vs 23 ± 3; P = .004) and sensory (16 ± 2 vs 15 ± 2; P = .005) neurobehavioral scores and lower brain-to-body weight ratios (3.7% ± 0.6% vs 3.4% ± 0.6%; P = .001). This was accompanied by lower neuron density in multiple brain regions (eg, hippocampus 2617 ± 410 vs 2053 ± 492 neurons/mm2; P = .004) with lower proliferation rates and less synaptophysin expression. Furthermore, surgery pups had delayed motor development during the first week of life, for example with hopping appearing later (6 ± 5 vs 12 ± 3 days; P = .011). Yet, by 7 weeks of age, neurobehavioral impairment was limited to a reduced digging behavior, and no differences in neuron density or synaptophysin expression were seen. CONCLUSION In rabbits, 2 hours of maternal general anesthesia and laparotomy, with minimal organ and no fetal manipulation, had a measurable impact on neonatal neurologic function and brain morphology. Pups had a slower motoric neurodevelopment, but by 7 weeks the effect became almost undetectable.
Collapse
Affiliation(s)
- Lennart Van der Veeken
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Belgium; Clinical Department Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Johannes Van der Merwe
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Belgium; Clinical Department Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - Sarah Devroe
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Annalisa Inversetti
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Belgium
| | - Angela Galgano
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Belgium
| | - Tom Bleeser
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Belgium; Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Roselien Meeusen
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Steffen Rex
- Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Belgium; Clinical Department Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium; Institute for Women's Health, University College London, London, UK.
| |
Collapse
|
23
|
Brown AG, Maubert ME, Anton L, Heiser LM, Elovitz MA. The tracking of lipopolysaccharide through the feto-maternal compartment and the involvement of maternal TLR4 in inflammation-induced fetal brain injury. Am J Reprod Immunol 2019; 82:e13189. [PMID: 31495009 PMCID: PMC6899932 DOI: 10.1111/aji.13189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 11/28/2022] Open
Abstract
Problem Exposure to intrauterine inflammation (IUI) has been shown to induce fetal brain injury and increase the risk of acquiring a neurobehavioral disorder. The trafficking of the inflammatory mediator, lipopolysaccharide (LPS), in the pregnant female reproductive tract in the setting of IUI and the precise mechanisms by which inflammation induces fetal brain injury are not fully understood. Method of study FITC‐labeled LPS was utilized to induce IUI on E15, tissues were collected, and fluorescence was visualized via the Spectrum IVIS. Embryo transfer was utilized to create divergent maternal and fetal genotypes. Wild‐type (WT) embryos were transferred into TLR4−/− pseudopregnant dams (TLR4−/−mat/WTfet). On E15, TLR4−/−mat/WTfet dams or their WT controls (WTmat/WTfet) received an intrauterine injection of LPS or phosphate‐buffered saline (PBS). Endotoxin and IL‐6 levels were assessed in amniotic fluid, and cytokine expression was measured via QPCR. Results Lipopolysaccharide trafficked to the uterus, fetal membranes, placenta, and the fetus and was undetectable in other tissues. Endotoxin was present in the amniotic fluid of all animals exposed to LPS. However, the immune response was blunted in TLR4−/−mat/WTfet compared with WT controls. Conclusion Intrauterine administered LPS is capable of accessing the entire feto‐placental unit with or without a functional maternal TLR4. Thus, bacteria or bacterial byproducts in the uterus may negatively impact fetal development regardless of the maternal genotype or endotoxin response. Despite the blunted immune response in the TLR4‐deficient dams, an inflammatory response is still ignited in the amniotic cavity and may negatively impact the fetus. IL‐6 protein expression in the amniotic fluid of WTmat/WTfet and TLR4‐/‐mat/WTfet Pregnant females were treated with an intrauterine dose of LPS (250 μg) or PBS on E15. LPS injection resulted in significantly increased IL‐6 protein in WT animals (*, P = 0.0017) compared to controls. LPS did not significantly elevate IL‐6 levels in the TLR4‐/‐mat/WTfet animals. The WTmat/WTfet dams had a significantly higher immune response compared to their TLR4‐/‐mat/WTfet counterparts (#, P = 0.015).
Collapse
Affiliation(s)
- Amy G Brown
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Center for Research on Reproduction and Women's Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Monique E Maubert
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Center for Research on Reproduction and Women's Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Anton
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Center for Research on Reproduction and Women's Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laura M Heiser
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Center for Research on Reproduction and Women's Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Michal A Elovitz
- Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Center for Research on Reproduction and Women's Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Lopez-Tello J, Arias-Alvarez M, Gonzalez-Bulnes A, Sferuzzi-Perri AN. Models of Intrauterine growth restriction and fetal programming in rabbits. Mol Reprod Dev 2019; 86:1781-1809. [PMID: 31538701 DOI: 10.1002/mrd.23271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022]
Abstract
Intrauterine growth restriction (IUGR) affects approximately 10% of human pregnancies globally and has immediate and life-long consequences for offspring health. However, the mechanisms underlying the pathogenesis of IUGR and its association with later health and disease outcomes are poorly understood. To address these knowledge gaps, the use of experimental animals is critically important. Since the 50's different environmental, pharmacological, and surgical manipulations have been performed in the rabbit to improve our knowledge of the control of fetal growth, fetal responses to IUGR, and mechanisms by which offspring may be programmed by an adverse gestational environment. The purpose of this review is therefore to summarize the utility of the rabbit as a model for IUGR research. It first summarizes the knowledge of prenatal and postnatal development in the rabbit and how these events relate to developmental milestones in humans. It then describes the methods used to induce IUGR in rabbits and the knowledge gained about the mechanisms determining prenatal and postnatal outcomes of the offspring. Finally, it discusses the application of state of the art approaches in the rabbit, including high-resolution ultrasound, magnetic resonance imaging, and gene targeting, to gain a deeper integrative understanding of the physiological and molecular events governing the development of IUGR. Overall, we hope to engage and inspire investigators to employ the rabbit as a model organism when studying pregnancy physiology so that we may advance our understanding of mechanisms underlying IUGR and its consequences in humans and other mammalian species.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Maria Arias-Alvarez
- Department of Animal Production. Veterinary Faculty, Complutense University of Madrid, Ciudad Universitaria, Madrid, Spain
| | | | - Amanda N Sferuzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Cavarsan CF, Gorassini MA, Quinlan KA. Animal models of developmental motor disorders: parallels to human motor dysfunction in cerebral palsy. J Neurophysiol 2019; 122:1238-1253. [PMID: 31411933 PMCID: PMC6766736 DOI: 10.1152/jn.00233.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in children. Much of the previous research on CP has focused on reducing the severity of brain injuries, whereas very few researchers have investigated the cause and amelioration of motor symptoms. This research focus has had an impact on the choice of animal models. Many of the commonly used animal models do not display a prominent CP-like motor phenotype. In general, rodent models show anatomically severe injuries in the central nervous system (CNS) in response to insults associated with CP, including hypoxia, ischemia, and neuroinflammation. Unfortunately, most rodent models do not display a prominent motor phenotype that includes the hallmarks of spasticity (muscle stiffness and hyperreflexia) and weakness. To study motor dysfunction related to developmental injuries, a larger animal model is needed, such as rabbit, pig, or nonhuman primate. In this work, we describe and compare various animal models of CP and their potential for translation to the human condition.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| | - Monica A Gorassini
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
26
|
Liu C, Chen Y, Zhao D, Zhang J, Zhang Y. Association Between Funisitis and Childhood Intellectual Development: A Prospective Cohort Study. Front Neurol 2019; 10:612. [PMID: 31263446 PMCID: PMC6584799 DOI: 10.3389/fneur.2019.00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 01/13/2023] Open
Abstract
Background: Previous studies have suggested that prenatal inflammation could damage the immature brain of preterm infants. In this study, we aimed to investigate whether funisitis could affect childhood neurodevelopment. We hypothesized that childhood neurodevelopment would vary across groups with or without funisitis. Material sand Methods: Using data from the U.S. Collaborative Perinatal Project (1959–1976), 29,725 subjects with available intelligence quotient (IQ) were studied. Detailed placental examinations were conducted according to a standard protocol with quality control procedures. Multivariate logistic regression models were applied to evaluate the relationship between funisitis and IQ at age 4 or 7 years after adjusting for confounders. Results: Early preterm birth children with funisitis had a 3.0-fold (95% confidence interval 1.2, 7.3) risk of low full-scale IQ (<70) at age 4 years, which disappeared until age 7 years. Term birth children with funisitis had 1.9-fold (95% confidence interval 1.2, 3.0) risk of low performance IQ at age 7 years, but they did not have increased risk of low full-scale IQ. No difference in IQ score was found in late preterm birth children. Conclusion: Funisitis may injure the developmental brain of infants, leading to the relative low IQ in childhood at age 4, but the negative effect is only existed in performance IQ at age of 7.
Collapse
Affiliation(s)
- Chengbo Liu
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongying Zhao
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Cerebellar injury and impaired function in a rabbit model of maternal inflammation induced neonatal brain injury. Neurobiol Learn Mem 2018; 165:106901. [PMID: 30016703 DOI: 10.1016/j.nlm.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
Abstract
Cerebellum is involved in higher cognitive functions and plays important roles in neurological disorders. Cerebellar injury has been detected frequently in patients with preterm birth resulting in cognitive dysfunction later in life. Maternal infection and inflammation is associated with preterm birth and in neonatal brain injury. We have previously shown that intrauterine lipopolysaccharide (LPS) exposure induces white matter injury and microglial activation in the cerebral white matter tracts of neonatal rabbits, resulting in motor deficits consistent with the clinical findings of cerebral palsy (CP). Here we investigated whether intrauterine LPS exposure induced cerebellar inflammation and functional impairment. Timed-pregnant New Zealand white rabbits underwent a laparotomy on gestational day 28 (G28) and LPS (3200 EU, endotoxin group) was injected along the wall of the uterus as previously described. Controls did not receive surgical intervention. Kits born to control and endotoxin treated dams were euthanized on postnatal day (PND)1 (3 days post-injury) or PND5 (7 days post-injury) and cerebellum evaluated for presence of inflammation. The microglial morphology in cerebellar white matter areas was analyzed using Neurolucida and Neurolucida Explorer. mRNA expression of inflammatory cytokines was quantified by real-time-PCR. We found that intrauterine exposure to LPS induced intensive microglial activation in cerebellar white matter areas, as evidenced by increased numbers of activated microglia and morphological changes (amoeboid soma and retracted processes) that was accompanied by significant increases in pro-inflammatory cytokines. The Purkinje cell layer was less developed in endotoxin exposed kits than healthy controls. In kits that survived to PND 60, soma size and cell density of Purkinje cells were significantly decreased in endotoxin exposed kits compared to controls. The findings of altered Purkinje cell morphology were consistent with impaired cerebellar function as tested by eye-blink conditioning at 1 month of age. The results indicate that the cerebellum is vulnerable to perinatal insults and that therapies targeting cerebellar inflammation and injury may help in improving outcomes and function.
Collapse
|
28
|
Ueda Y, Bando Y, Misumi S, Ogawa S, Ishida A, Jung CG, Shimizu T, Hida H. Alterations of Both Dendrite Morphology and Weaker Electrical Responsiveness in the Cortex of Hip Area Occur Before Rearrangement of the Motor Map in Neonatal White Matter Injury Model. Front Neurol 2018; 9:443. [PMID: 29971036 PMCID: PMC6018077 DOI: 10.3389/fneur.2018.00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia-ischemia (H-I) in rats at postnatal day 3 causes disorganization of oligodendrocyte development in layers II/III of the sensorimotor cortex without apparent neuronal loss, and shows mild hindlimb dysfunction with imbalanced motor coordination. However, the mechanisms by which mild motor dysfunction is induced without loss of cortical neurons are currently unclear. To reveal the mechanisms underlying mild motor dysfunction in neonatal H-I model, electrical responsiveness and dendrite morphology in the sensorimotor cortex were investigated at 10 weeks of age. Responses to intracortical microstimulation (ICMS) revealed that the cortical motor map was significantly changed in this model. The cortical area related to hip joint movement was reduced, and the area related to trunk movement was increased. Sholl analysis in Golgi staining revealed that layer I–III neurons on the H-I side had more dendrite branches compared with the contralateral side. To investigate whether changes in the motor map and morphology appeared at earlier stages, ICMS and Sholl analysis were also performed at 5 weeks of age. The minimal ICMS current to evoke twitches of the hip area was higher on the H-I side, while the motor map was unchanged. Golgi staining revealed more dendrite branches in layer I–III neurons on the H-I side. These results revealed that alterations of both dendrite morphology and ICMS threshold of the hip area occurred before the rearrangement of the motor map in the neonatal H-I model. They also suggest that altered dendritic morphology and altered ICMS responsiveness may be related to mild motor dysfunction in this model.
Collapse
Affiliation(s)
- Yoshitomo Ueda
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshio Bando
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Sachiyo Misumi
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shino Ogawa
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimasa Ishida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Cha-Gyun Jung
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
29
|
Shi Z, Vasquez-Vivar J, Luo K, Yan Y, Northington F, Mehrmohammadi M, Tan S. Ascending Lipopolysaccharide-Induced Intrauterine Inflammation in Near-Term Rabbits Leading to Newborn Neurobehavioral Deficits. Dev Neurosci 2018; 40:534-546. [PMID: 31163416 PMCID: PMC9873358 DOI: 10.1159/000499960] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/26/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Chorioamnionitis from ascending bacterial infection through the endocervix is a potential risk factor for cerebral palsy. Tetrahydrobiopterin, an essential cofactor for nitric oxide synthase (NOS) and amino acid hydroxylases, when augmented in the fetal brain, prevents some of the cerebral palsy-like deficits in a rabbit hypoxia-ischemia model. OBJECTIVES To study the effect of lipopolysaccharide (LPS)-induced intrauterine inflammation in preterm gestation on motor deficits in the newborn, and whether biosynthesis of tetrahydrobiopterin or inflammatory mediators is affected in the fetal brain. METHODS Pregnant rabbits at 28 days gestation (89% term) were administered either saline or LPS into both endocervical openings. One group underwent spontaneous delivery, and neurobehavioral tests were performed at postnatal day (P) 1 and P11, with some kits being sacrificed at P1 for histological analysis. Another group underwent Cesarean section 24 h after LPS administration. Gene sequences for rabbit biosynthetic enzymes of tetra-hydrobiopterin pathways were determined and analyzed in addition to cytokines, using quantitative real-time polymerase chain reaction. RESULTS Exposure to 200 μg/kg/mL LPS caused a locomotion deficit and mild hypertonia at P1. By P11, most animals turned into normal-appearing kits. There was no difference in neuronal cell death in the caudate between hypertonic and nonhypertonic kits at P1 (n = 3-5 in each group). Fetal brain GTP cyclohydrolase I was increased, whereas sepiapterin reductase and 6-pyruvoyltetrahydropterin synthase were decreased, 24 h after LPS administration. Neuronal NOS was also increased. Regardless of the position in the uterus or the brain region, expression of TNF-α and TGF-β was decreased, whereas that of IL-1β, IL-6, and IL-8 was increased (n = 3-4 in each group). CONCLUSIONS This is the first study using an ascending LPS-induced intrauterine inflammation model in rabbits, showing mostly transient hypertonia and mainly locomotor deficits in the kits. Not all proinflammatory cytokines are increased in the fetal brain following LPS administration. Changes in key tetrahydro-biopterin biosynthetic enzymes possibly indicate different effects of the inflammatory insult.
Collapse
Affiliation(s)
- Zhongjie Shi
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI
| | | | - Kehuan Luo
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI
| | - Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI
| | | | | | - Sidhartha Tan
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI
| |
Collapse
|
30
|
Zhang Z, Jyoti A, Balakrishnan B, Williams M, Singh S, Chugani DC, Kannan S. Trajectory of inflammatory and microglial activation markers in the postnatal rabbit brain following intrauterine endotoxin exposure. Neurobiol Dis 2017; 111:153-162. [PMID: 29274431 DOI: 10.1016/j.nbd.2017.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/17/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Maternal infection is a risk factor for periventricular leukomalacia and cerebral palsy (CP) in neonates. We have previously demonstrated hypomyelination and motor deficits in newborn rabbits, as seen in patients with cerebral palsy, following maternal intrauterine endotoxin administration. This was associated with increased microglial activation, primarily involving the periventricular region (PVR). In this study we hypothesized that maternal intrauterine inflammation leads to a pro-inflammatory environment in the PVR that is associated with microglial activation in the first 2 postnatal weeks. METHODS Timed pregnant New Zealand white rabbits underwent laparotomy on gestational day 28 (G28). They were randomly divided to receive lipopolysaccharide (LPS; 20μg/kg in 1mL saline) (Endotoxin group) or saline (1mL) (control saline, CS group), administrated along the wall of the uterus. The PVR from the CS and Endotoxin kits were harvested at G29 (1day post-injury), postnatal day1 (PND1, 3day post-injury) and PND5 (7days post-injury) for real-time PCR, ELISA and immunohistochemistry. Kits from CS and Endotoxin groups underwent longitudinal MicroPET imaging, with [11C]PK11195, a tracer for microglial activation. RESULTS We found that intrauterine endotoxin exposure resulted in pro-inflammatory microglial activation in the PVR of rabbits in the first postnatal week. This was evidenced by increased TSPO (translocator protein) expression co-localized with microglia/macrophages in the PVR, and changes in the microglial morphology (ameboid soma and retracted processes). In addition, CD11b level significantly increased with a concomitant decline in the CD45 level in the PVR at G29 and PND1. There was a significant elevation of pro-inflammatory cytokines and iNOS, and decreased anti-inflammatory markers in the Endotoxin kits at G29, PND1 and PND5. Increased [11C]PK11195 binding to the TSPO measured in vivo by PET imaging in the brain of Endotoxin kits was present up to PND14-17. CONCLUSIONS Our results indicate that a robust pro-inflammatory microglial phenotype/brain milieu commenced within 24h after LPS exposure and persisted through PND5 and in vivo TSPO binding was found at PND14-17. This suggests that there may be a window of opportunity to treat after birth. Therapies aimed at inducing an anti-inflammatory phenotype in microglia might promote recovery in maternal inflammation induced neonatal brain injury.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, United States
| | - Amar Jyoti
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, United States
| | - Bindu Balakrishnan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, United States
| | - Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, United States
| | - Sarabdeep Singh
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, United States
| | - Diane C Chugani
- Nemours/AI duPont Hospital for Children, Wilmington, DE, United States; Communication Sciences and Disorders Department, University of Delaware, Newark, DE, United States
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, United States.
| |
Collapse
|
31
|
Tucker EW, Pokkali S, Zhang Z, DeMarco VP, Klunk M, Smith ES, Ordonez AA, Penet MF, Bhujwalla Z, Jain SK, Kannan S. Microglia activation in a pediatric rabbit model of tuberculous meningitis. Dis Model Mech 2017; 9:1497-1506. [PMID: 27935825 PMCID: PMC5200899 DOI: 10.1242/dmm.027326] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023] Open
Abstract
Central nervous system (CNS) tuberculosis (TB) is the most severe form of extra-pulmonary TB and disproportionately affects young children where the developing brain has a unique host response. New Zealand white rabbits were infected with Mycobacterium tuberculosis via subarachnoid inoculation at postnatal day 4-8 and evaluated until 4-6 weeks post-infection. Control and infected rabbit kits were assessed for the development of neurological deficits, bacterial burden, and postmortem microbiologic and pathologic changes. The presence of meningitis and tuberculomas was demonstrated histologically and by in vivo magnetic resonance imaging (MRI). The extent of microglial activation was quantified by in vitro immunohistochemistry as well as non-invasive in vivo imaging of activated microglia/macrophages with positron emission tomography (PET). Subarachnoid infection induced characteristic leptomeningeal and perivascular inflammation and TB lesions with central necrosis, a cellular rim and numerous bacilli on pathologic examination. Meningeal and rim enhancement was visible on MRI. An intense microglial activation was noted in M. tuberculosis-infected animals in the white matter and around the TB lesions, as evidenced by a significant increase in uptake of the tracer 124I-DPA-713, which is specific for activated microglia/macrophages, and confirmed by quantification of Iba-1 immunohistochemistry. Neurobehavioral analyses demonstrated signs similar to those noted in children with delayed maturation and development of neurological deficits resulting in significantly worse composite behavior scores in M. tuberculosis-infected animals. We have established a rabbit model that mimics features of TB meningitis in young children. This model could provide a platform for evaluating novel therapies, including host-directed therapies, against TB meningitis relevant to a young child's developing brain.
Collapse
Affiliation(s)
- Elizabeth W Tucker
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA
| | - Supriya Pokkali
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vincent P DeMarco
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariah Klunk
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth S Smith
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zaver Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA .,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Division of Pediatric Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA .,Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
32
|
Sharma R, Kim SY, Sharma A, Zhang Z, Kambhampati SP, Kannan S, Kannan RM. Activated Microglia Targeting Dendrimer-Minocycline Conjugate as Therapeutics for Neuroinflammation. Bioconjug Chem 2017; 28:2874-2886. [PMID: 29028353 PMCID: PMC6023550 DOI: 10.1021/acs.bioconjchem.7b00569] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Brain-related disorders have outmatched cancer and cardiovascular diseases worldwide as the leading cause of morbidity and mortality. The lack of effective therapies and the relatively dry central nervous system (CNS) drug pipeline pose formidable challenge. Superior, targeted delivery of current clinically approved drugs may offer significant potential. Minocycline has shown promise for the treatment of neurological diseases owing to its ability to penetrate the blood-brain barrier (BBB) and potency. Despite its potential in the clinic and in preclinical models, the high doses needed to affect a positive therapeutic response have led to side effects. Targeted delivery of minocycline to the injured site and injured cells in the brain can be highly beneficial. Systemically administered hydroxyl poly(amidoamine) (PAMAM) generation-6 (G6) dendrimers have a longer blood circulation time and have been shown to cross the impaired BBB. We have successfully prepared and characterized the in vitro efficacy and in vivo targeting ability of hydroxyl-G6 PAMAM dendrimer-9-amino-minocycline conjugate (D-mino). Minocycline is a challenging drug to carry out chemical transformations due to its inherent instability. We used a combination of a highly efficient and mild copper catalyzed azide-alkyne click reaction (CuAAC) along with microwave energy to conjugate 9-amino-minocycline (mino) to the dendrimer surface via enzyme responsive linkages. D-mino was further evaluated for anti-inflammatory and antioxidant activity in lipopolysaccharides-activated murine microglial cells. D-mino conjugates enhanced the intracellular availability of the drug due to their rapid uptake, suppressed inflammatory cytokine tumor necrosis factor α (TNF-α) production, and reduced oxidative stress by suppressing nitric oxide production, all significantly better than the free drug. Fluorescently labeled dendrimer conjugate (Cy5-D-mino) was systematically administered (intravenous, 55 mg/kg) on postnatal day 1 to rabbit kits with a clinically relevant phenotype of cerebral palsy. The in vivo imaging study indicates that Cy5-D-mino crossed the impaired blood-brain barrier and co-localized with activated microglia at the periventricular white matter areas, including the corpus callosum and the angle of the lateral ventricle, with significant implications for positive therapeutic outcomes. The enhanced efficacy of D-mino, when combined with the inherent neuroinflammation-targeting capability of the PAMAM dendrimers, may provide new opportunities for targeted drug delivery to treat neurological disorders.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Soo-Young Kim
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Siva Pramodh Kambhampati
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| | - Rangaramanujam M. Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, Maryland 21205, United States
- Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, Maryland 21218, United States
| |
Collapse
|
33
|
Williams M, Zhang Z, Nance E, Drewes JL, Lesniak WG, Singh S, Chugani DC, Rangaramanujam K, Graham DR, Kannan S. Maternal Inflammation Results in Altered Tryptophan Metabolism in Rabbit Placenta and Fetal Brain. Dev Neurosci 2017; 39:399-412. [PMID: 28490020 DOI: 10.1159/000471509] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Maternal inflammation has been linked to neurodevelopmental and neuropsychiatric disorders such as cerebral palsy, schizophrenia, and autism. We had previously shown that intrauterine inflammation resulted in a decrease in serotonin, one of the tryptophan metabolites, and a decrease in serotonin fibers in the sensory cortex of newborns in a rabbit model of cerebral palsy. In this study, we hypothesized that maternal inflammation results in alterations in tryptophan pathway enzymes and metabolites in the placenta and fetal brain. We found that intrauterine endotoxin administration at gestational day 28 (G28) resulted in a significant upregulation of indoleamine 2,3-dioxygenase (IDO) in both the placenta and fetal brain at G29 (24 h after treatment). This endotoxin-mediated IDO induction was also associated with intense microglial activation, an increase in interferon gamma expression, and increases in kynurenine and the kynurenine pathway metabolites kynurenine acid and quinolinic acid, as well as a significant decrease in 5-hydroxyindole acetic acid (a precursor of serotonin) levels in the periventricular region of the fetal brain. These results indicate that maternal inflammation shunts tryptophan metabolism away from the serotonin to the kynurenine pathway, which may lead to excitotoxic injury along with impaired development of serotonin-mediated thalamocortical fibers in the newborn brain. These findings provide new targets for prevention and treatment of maternal inflammation-induced fetal and neonatal brain injury leading to neurodevelopmental disorders such as cerebral palsy and autism.
Collapse
Affiliation(s)
- Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University SOM, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
35
|
Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, Manhães-de-Castro R, Toscano AE. Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats. Physiol Behav 2017; 173:69-78. [DOI: 10.1016/j.physbeh.2017.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/30/2022]
|
36
|
Lacerda DC, Ferraz-Pereira KN, Bezerra de morais AT, Costa-de-santana B, Quevedo OG, Manhães-de-Castro R, Toscano AE. Oro-facial functions in experimental models of cerebral palsy: a systematic review. J Oral Rehabil 2017; 44:251-260. [DOI: 10.1111/joor.12489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2017] [Indexed: 11/30/2022]
Affiliation(s)
- D. C. Lacerda
- Post Graduate Program in Nutrition; Federal University of Pernambuco UFPE; Recife PE Brazil
| | - K. N. Ferraz-Pereira
- Department of Physical Education and Sports Science; CAV; Federal University of Pernambuco; Vitória de Santo Antão PE Brazil
| | - A. T. Bezerra de morais
- Post Graduate Program in Physical Therapy; Federal University of Pernambuco; Recife PE Brazil
| | - B. J. R. Costa-de-santana
- Post Graduate Program in Neuropsychiatry and Behavioral Sciences; Federal University of Pernambuco UFPE; Recife PE Brazil
| | - O. G. Quevedo
- Facultad de Químico-Farmacobiología; Universidad Michoacana de San Nicolás de Hidalgo; Morelia Michoacán Mexico
| | | | - A. E. Toscano
- Department of Nursing; CAV; Federal University of Pernambuco; Vitória de Santo Antão Brazil
| |
Collapse
|
37
|
Kannan RM, Kannan S. Emerging nanomedicine approaches in obstetrics. Am J Obstet Gynecol 2017; 216:201-203. [PMID: 28249659 DOI: 10.1016/j.ajog.2017.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 01/14/2023]
|
38
|
Stavsky M, Mor O, Mastrolia SA, Greenbaum S, Than NG, Erez O. Cerebral Palsy-Trends in Epidemiology and Recent Development in Prenatal Mechanisms of Disease, Treatment, and Prevention. Front Pediatr 2017; 5:21. [PMID: 28243583 PMCID: PMC5304407 DOI: 10.3389/fped.2017.00021] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/25/2017] [Indexed: 11/13/2022] Open
Abstract
Cerebral palsy (CP) is the most common motor disability in childhood. This syndrome is the manifestation of intrauterine pathologies, intrapartum complications, and the postnatal sequel, especially among preterm neonates. A double hit model theory is proposed suggesting that an intrauterine condition along with intrapartum or postnatal insult lead to the development of CP. Recent reports demonstrated that treatment during the process of preterm birth such as magnesium sulfate and postnatal modalities such as cooling may prevent or reduce the prevalence of this syndrome. Moreover, animal models demonstrated that postnatal treatment with anti-inflammatory drugs coupled with nanoparticles may affect the course of the disease in pups with neuroinflammation. This review will describe the changes in the epidemiology of this disease, the underlying prenatal mechanisms, and possible treatments that may reduce the prevalence of CP and alter the course of the disease.
Collapse
Affiliation(s)
- Moshe Stavsky
- Faculty of Health Sciences, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Omer Mor
- Faculty of Health Sciences, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | | | - Shirley Greenbaum
- Faculty of Health Sciences, Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Budapest, Hungary; Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary; First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Offer Erez
- Faculty of Health Sciences, Maternity Department "D", Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| |
Collapse
|
39
|
Zhang Z, Bassam B, Thomas AG, Williams M, Liu J, Nance E, Rojas C, Slusher BS, Kannan S. Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain. Neurobiol Dis 2016; 94:116-28. [PMID: 27326668 PMCID: PMC5394739 DOI: 10.1016/j.nbd.2016.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/05/2016] [Accepted: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Astrocyte dysfunction and excessive activation of glutamatergic systems have been implicated in a number of neurologic disorders, including periventricular leukomalacia (PVL) and cerebral palsy (CP). However, the role of chorioamnionitis on glutamate homeostasis in the fetal and neonatal brains is not clearly understood. We have previously shown that intrauterine endotoxin administration results in intense microglial 'activation' and increased pro-inflammatory cytokines in the periventricular region (PVR) of the neonatal rabbit brain. In this study, we assessed the effect of maternal inflammation on key components of the glutamate pathway and its relationship to astrocyte and microglial activation in the fetal and neonatal New Zealand white rabbit brain. We found that intrauterine endotoxin exposure at gestational day 28 (G28) induced acute and prolonged glutamate elevation in the PVR of fetal (G29, 1day post-injury) and postnatal day 1 (PND1, 3days post-injury) brains along with prominent morphological changes in the astrocytes (soma hypertrophy and retracted processes) in the white matter tracts. There was a significant increase in glutaminase and N-Methyl-d-Aspartate receptor (NMDAR) NR2 subunit expression along with decreased glial L-glutamate transporter 1 (GLT-1) in the PVR at G29, that would promote acute dysregulation of glutamate homeostasis. This was accompanied with significantly decreased TGF-β1 at PND1 in CP kits indicating ongoing neuroinflammation. We also show for the first time that glutamate carboxypeptidase II (GCPII) was significantly increased in the activated microglia at the periventricular white matter area in both G29 and PND1 CP kits. This was confirmed by in vitro studies demonstrating that LPS activated primary microglia markedly upregulate GCPII enzymatic activity. These results suggest that maternal intrauterine endotoxin exposure results in early onset and long-lasting dysregulation of glutamate homeostasis, which may be mediated by impaired astrocyte function and GCPII upregulation in activated microglia.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Bassam Bassam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Monica Williams
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Jinhuan Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Elizabeth Nance
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Barbara S Slusher
- Neurology, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21287, USA.
| |
Collapse
|
40
|
Surface functionality affects the biodistribution and microglia-targeting of intra-amniotically delivered dendrimers. J Control Release 2016; 237:61-70. [PMID: 27378700 DOI: 10.1016/j.jconrel.2016.06.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 12/26/2022]
Abstract
Cerebral Palsy (CP) is a chronic childhood disorder with limited therapeutic options. Maternal intrauterine inflammation/infection is a major risk factor in the pathogenesis of CP. In pre-clinical models, dendrimer-based therapies are viable in postnatal period, attenuating inflammation and improving motor function in vivo. However, treatment to the mother, in the prenatal period, may provide the possibility of preventing/resolving inflammation at early stages. Towards this goal, we used a maternal intrauterine inflammation-induced rabbit model of CP to study fetal-maternal transport and neuroinflammation targeting of intra-amniotically administrated dendrimers with neutral/anionic surface functionality. Our study suggested both hydroxyl-terminated 'neutral' (D-OH) and carboxyl-terminated 'anionic' (D-COOH) Polyamidoamine (PAMAM) dendrimers were absorbed by fetuses and demonstrated bi-directional transport between fetuses and mother. D-OH was more effective in crossing the fetal blood-brain barrier, and targeting activated microglia. The cell-specific targeting was associated with the extent of microglia activation. This study demonstrated intra-amniotically administered hydroxyl PAMAM dendrimers could be an effective drug delivery vehicle for targeting fetal inflammation and preventing subsequent neurologic injury associated with chorioamnionitis.
Collapse
|
41
|
Nanoscale effects in dendrimer-mediated targeting of neuroinflammation. Biomaterials 2016; 101:96-107. [PMID: 27267631 DOI: 10.1016/j.biomaterials.2016.05.044] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
Abstract
Neuroinflammation, mediated by activated microglia and astrocytes, plays a key role in the pathogenesis of many neurological disorders. Systemically-administered dendrimers target neuroinflammation and deliver drugs with significant efficacy, without the need for ligands. Elucidating the nanoscale aspects of targeting neuroinflammation will enable superior nanodevices for eventual translation. Using a rabbit model of cerebral palsy, we studied the in vivo contributions of dendrimer physicochemical properties and disease pathophysiology on dendrimer brain uptake, diffusion, and cell specific localization. Neutral dendrimers move efficiently within the brain parenchyma and rapidly localize in glial cells in regions of injury. Dendrimer uptake is also dependent on the extent of blood-brain-barrier breakdown, glial activation, and disease severity (mild, moderate, or severe), which can lend the dendrimer to be used as an imaging biomarker for disease phenotype. This new understanding of the in vivo mechanism of dendrimer-mediated delivery in a clinically-relevant rabbit model provides greater opportunity for clinical translation of targeted brain injury therapies.
Collapse
|
42
|
Zhang F, Nance E, Alnasser Y, Kannan R, Kannan S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J Neuroinflammation 2016; 13:65. [PMID: 27004516 PMCID: PMC4802843 DOI: 10.1186/s12974-016-0529-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. Methods To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Results Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. Conclusions This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the “impaired” microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex vivo model also provides a rapid screening tool for evaluation of the effects of various therapies on microglial function. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0529-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Elizabeth Nance
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Present address: Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yossef Alnasser
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rangaramanujam Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Hugo Moser Research Center, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Hugo Moser Research Center, Kennedy Krieger Institute, Baltimore, MD, 21205, USA. .,Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
43
|
Zhang Z, Saraswati M, Koehler RC, Robertson C, Kannan S. A New Rabbit Model of Pediatric Traumatic Brain Injury. J Neurotrauma 2015; 32:1369-79. [PMID: 25758339 PMCID: PMC4543485 DOI: 10.1089/neu.2014.3701] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability in childhood, resulting in numerous physical, behavioral, and cognitive sequelae, which can influence development through the lifespan. The mechanisms by which TBI influences normal development and maturation remain largely unknown. Pediatric rodent models of TBI often do not demonstrate the spectrum of motor and cognitive deficits seen in patients. To address this problem, we developed a New Zealand white rabbit model of pediatric TBI that better mimics the neurological injury seen after TBI in children. On postnatal Day 5-7 (P5-7), rabbits were injured by a controlled cortical impact (6-mm impactor tip; 5.5 m/sec, 2-mm depth, 50-msec duration). Rabbits from the same litter served as naïve (no injury) and sham (craniotomy alone) controls. Functional abilities and activity levels were measured 1 and 5 d after injury. Maturation level was monitored daily. We performed cognitive tests during P14-24 and sacrificed the animals at 1, 3, 7, and 21 d after injury to evaluate lesion volume and microglia. TBI kits exhibited delayed achievement of normal developmental milestones. They also demonstrated significant cognitive deficits, with lower percentage of correct alternation rate in the T-maze (n=9-15/group; p<0.001) and less discrimination between novel and old objects (p<0.001). Lesion volume increased from 16% at Day 3 to 30% at Day 7 after injury, indicating ongoing secondary injury. Activated microglia were noted at the injury site and also in white matter regions of the ipsilateral and contralateral hemispheres. The neurologic and histologic changes in this model are comparable to those reported clinically. Thus, this rabbit model provides a novel platform for evaluating neuroprotective therapies in pediatric TBI.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Manda Saraswati
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Courtney Robertson
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
44
|
Brain damage of the preterm infant: new insights into the role of inflammation. Biochem Soc Trans 2015; 42:557-63. [PMID: 24646278 DOI: 10.1042/bst20130284] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epidemiological studies have shown a strong association between perinatal infection/inflammation and brain damage in preterm infants and/or neurological handicap in survivors. Experimental studies have shown a causal effect of infection/inflammation on perinatal brain damage. Infection including inflammatory factors can disrupt programmes of brain development and, in particular, induce death and/or blockade of oligodendrocyte maturation, leading to myelin defects. Alternatively, in the so-called multiple-hit hypothesis, infection/inflammation can act as predisposing factors, making the brain more susceptible to a second stress (sensitization process), such as hypoxic-ischaemic or excitotoxic insults. Epidemiological data also suggest that perinatal exposure to inflammatory factors could predispose to long-term diseases including psychiatric disorders.
Collapse
|
45
|
Lim SY, Tyan YS, Chao YP, Nien FY, Weng JC. New insights into the developing rabbit brain using diffusion tensor tractography and generalized q-sampling MRI. PLoS One 2015; 10:e0119932. [PMID: 25798595 PMCID: PMC4370884 DOI: 10.1371/journal.pone.0119932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/25/2015] [Indexed: 11/25/2022] Open
Abstract
The use of modern neuroimaging methods to characterize the complex anatomy of brain development at different stages reveals an enormous wealth of information in understanding this highly ordered process and provides clues to detect neurological and neurobehavioral disorders that have their origin in early structural and functional cerebral maturation. Non-invasive diffusion tensor magnetic resonance imaging (DTI) is able to distinguish cerebral microscopic structures, especially in the white matter regions. However, DTI is unable to resolve the complicated neural structure, i.e., the fiber crossing that is frequently observed during the maturation process. To overcome this limitation, several methods have been proposed. One such method, generalized q-sampling imaging (GQI), can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes that are believed to be able to resolve the complicated crossing fibers. Rabbits have been widely used for neurodevelopment research because they exhibit human-like timing of perinatal brain white matter maturation. Here, we present a longitudinal study using both DTI and GQI to demonstrate the changes in cerebral maturation of in vivo developing rabbit brains over a period of 40 weeks. Fractional anisotropy (FA) of DTI and generalized fractional anisotropy (GFA) of GQI indices demonstrated that the white matter anisotropy increased with age, with GFA exhibiting an increase in the hippocampus as well. Normalized quantitative anisotropy (NQA) of GQI also revealed an increase in the hippocampus, allowing us to observe the changes in gray matter as well. Regional and whole brain DTI tractography also demonstrated refinement in fiber pathway architecture with maturation. We concluded that DTI and GQI results were able to characterize the white matter anisotropy changes, whereas GQI provided further information about the gray matter hippocampus area. This developing rabbit brain DTI and GQI database could also be used for educational purposes and neuroscience investigations.
Collapse
Affiliation(s)
- Seong Yong Lim
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yeu-Sheng Tyan
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Graduate Institute of Medical Mechatronics, Chang-Gung University, Taoyuan, Taiwan
| | - Fang-Yu Nien
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jun-Cheng Weng
- School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Freire G, Shevell M, Oskoui M. Cerebral palsy: phenotypes and risk factors in term singletons born small for gestational age. Eur J Paediatr Neurol 2015; 19:218-25. [PMID: 25596065 DOI: 10.1016/j.ejpn.2014.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Children born small for gestational age (SGA) are at increased risk of developing cerebral palsy (CP). The pathophysiology behind this association remains unclear. We compare the clinical profile of children with CP born SGA to other children with CP. We hypothesize that differences noted will support antenatal causes of CP in children born SGA. METHODS We conducted a retrospective cohort study of term singletons with CP, extracting data from the Canadian Cerebral Palsy Registry. SGA was determined as birth weight for gestational age and sex below the tenth percentile. RESULTS Mothers of children with CP born SGA were more likely to be of African-American ethnicity (RR 2.54, 95% CI 1.20-5.39), have intrauterine infections (RR 2.22, 95% CI 1.09-4.50) and have gestational hypertension (RR 1.78, 95% CI 1.06-3.00). Children with CP born SGA had smaller head circumferences at birth (p < 0.001) and higher frequencies of emergency cesarean-section (RR 1.53, 95% CI 1.22-1.92), birth asphyxia (RR 1.53, 95% CI 1.0-2.32), and placental abnormalities (RR 1.45, 95% CI 1.00-2.10). Children with CP born SGA had greater fine motor (RR 1.46, 95% CI 1.02-2.11), gross motor (RR 1.53, 95% CI 1.12-2.10) and communication impairment (RR 1.24, 95% CI 1.10-1.40), and a higher frequency of cognitive impairment (RR 1.33, 95% CI 1.06-1.69). CONCLUSION Children with CP born SGA have different clinical factors and phenotypic profiles than other children with CP. These differences support the hypothesis of antenatal and perinatal causes of CP in children born SGA. Future case control studies would be desired to further define this causal pathway.
Collapse
Affiliation(s)
- Gabrielle Freire
- Department of Pediatrics, CHU Ste-Justine, McGill University, Canada
| | - Michael Shevell
- Departments of Pediatrics and Neurology & Neurosurgery, McGill University, Canada
| | - Maryam Oskoui
- Departments of Pediatrics and Neurology & Neurosurgery, McGill University, Canada.
| |
Collapse
|
47
|
Dean JM, Shi Z, Fleiss B, Gunn KC, Groenendaal F, van Bel F, Derrick M, Juul SE, Tan S, Gressens P, Mallard C, Bennet L, Gunn AJ. A Critical Review of Models of Perinatal Infection. Dev Neurosci 2015; 37:289-304. [DOI: 10.1159/000370309] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
One of the central, unanswered questions in perinatology is why preterm infants continue to have such poor long-term neurodevelopmental, cognitive and learning outcomes, even though severe brain injury is now rare. There is now strong clinical evidence that one factor underlying disability may be infection, as well as nonspecific inflammation, during fetal and early postnatal life. In this review, we examine the experimental evidence linking both acute and chronic infection/inflammation with perinatal brain injury and consider key experimental determinants, including the microglia response, relative brain and immune maturity and the pattern of exposure to infection. We highlight the importance of the origin and derivation of the bacterial cell wall component lipopolysaccharide. Such experimental paradigms are essential to determine the precise time course of the inflammatory reaction and to design targeted neuroprotective strategies to protect the perinatal brain from infection and inflammation.
Collapse
|
48
|
Jantzie LL, Robinson S. Preclinical Models of Encephalopathy of Prematurity. Dev Neurosci 2015; 37:277-88. [PMID: 25722056 DOI: 10.1159/000371721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
Encephalopathy of prematurity (EoP) encompasses the central nervous system (CNS) abnormalities associated with injury from preterm birth. Although rapid progress is being made, limited understanding exists of how cellular and molecular CNS injury from early birth manifests as the myriad of neurological deficits in children who are born preterm. More importantly, this lack of direct insight into the pathogenesis of these deficits hinders both our ability to diagnose those infants who are at risk in real time and could potentially benefit from treatment and our ability to develop more effective interventions. Current barriers to clarifying the pathophysiology, developmental trajectory, injury timing, and evolution include preclinical animal models that only partially recapitulate the molecular, cellular, histological, and functional abnormalities observed in the mature CNS following EoP. Inflammation from hypoxic-ischemic and/or infectious injury induced in utero in lower mammals, or actual prenatal delivery of more phylogenetically advanced mammals, are likely to be the most clinically relevant EOP models, facilitating translation to benefit infants. Injury timing, type, severity, and pathophysiology need to be optimized to address the specific hypothesis being tested. Functional assays of the mature animal following perinatal injury to mimic EoP should ideally test for the array of neurological deficits commonly observed in preterm infants, including gait, seizure threshold and cognitive and behavioral abnormalities. Here, we review the merits of various preclinical models, identify gaps in knowledge that warrant further study and consider challenges that animal researchers may face in embarking on these studies. While no one model system is perfect, insights relevant to the clinical problem can be gained with interpretation of experimental results within the context of inherent limitations of the chosen model system. Collectively, optimal use of multiple models will address a major challenge facing the field today - to identify the type and severity of CNS injury these vulnerable infants suffer in a safe and timely manner, such that emerging neurointerventions can be tailored to specifically address individual reparative needs.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico, Albuquerque, N. Mex., USA
| | | |
Collapse
|
49
|
Clowry GJ, Basuodan R, Chan F. What are the Best Animal Models for Testing Early Intervention in Cerebral Palsy? Front Neurol 2014; 5:258. [PMID: 25538677 PMCID: PMC4255621 DOI: 10.3389/fneur.2014.00258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
Abstract
Interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One drawback to this approach is that interventions have to undergo exceptionally rigorous assessment for both safety and efficacy prior to use in infants. Part of this process should involve research using animals but how good are our animal models? Part of the problem is that cerebral palsy is an umbrella term that covers a number of conditions. There are also many causal pathways to cerebral palsy, such as periventricular white matter injury in premature babies, perinatal infarcts of the middle cerebral artery, or generalized anoxia at the time of birth, indeed multiple causes, including intra-uterine infection or a genetic predisposition to infarction, may need to interact to produce a clinically significant injury. In this review, we consider which animal models best reproduce certain aspects of the condition, and the extent to which the multifactorial nature of cerebral palsy has been modeled. The degree to which the corticospinal system of various animal models human corticospinal system function and development is also explored. Where attempts have already been made to test early intervention in animal models, the outcomes are evaluated in light of the suitability of the model.
Collapse
Affiliation(s)
- Gavin John Clowry
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Reem Basuodan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| | - Felix Chan
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
50
|
Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol 2014; 10:643-60. [PMID: 25311587 DOI: 10.1038/nrneurol.2014.187] [Citation(s) in RCA: 618] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have shown a clear association between maternal infection and schizophrenia or autism in the progeny. Animal models have revealed maternal immune activation (mIA) to be a profound risk factor for neurochemical and behavioural abnormalities in the offspring. Microglial priming has been proposed as a major consequence of mIA, and represents a critical link in a causal chain that leads to the wide spectrum of neuronal dysfunctions and behavioural phenotypes observed in the juvenile, adult or aged offspring. Such diversity of phenotypic outcomes in the mIA model are mirrored by recent clinical evidence suggesting that infectious exposure during pregnancy is also associated with epilepsy and, to a lesser extent, cerebral palsy in children. Preclinical research also suggests that mIA might precipitate the development of Alzheimer and Parkinson diseases. Here, we summarize and critically review the emerging evidence that mIA is a shared environmental risk factor across CNS disorders that varies as a function of interactions between genetic and additional environmental factors. We also review ongoing clinical trials targeting immune pathways affected by mIA that may play a part in disease manifestation. In addition, future directions and outstanding questions are discussed, including potential symptomatic, disease-modifying and preventive treatment strategies.
Collapse
|