1
|
Kaur P, Kaur H, Aggarwal R, Bains K, Mahal AK, Singla LD, Gupta K. Analysing the Impact of Resistant Starch Formation in Basmati Rice Products: Exploring Associations with Blood Glucose and Lipid Profiles across Various Cooking and Storage Conditions In Vivo. Foods 2024; 13:1669. [PMID: 38890898 PMCID: PMC11171569 DOI: 10.3390/foods13111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024] Open
Abstract
Common cooking methods were used to prepare basmati rice products, including boiling 1 (boiling by absorption), boiling 2 (boiling in extra amount of water), frying, and pressure cooking. The cooked rice was held at various temperatures and times as follows: it was made fresh (T1), kept at room temperature (20-22 °C) for 24 h (T2), kept at 4 °C for 24 h (T3), and then reheated after being kept at 4 °C for 24 h (T4). The proximate composition, total dietary fibre, resistant starch (RS), and in vitro starch digestion rate of products were examined. The effect of RS on blood glucose and lipid profiles was measured in humans and rats, including a histopathological study of the liver and pancreas in rats. The basmati rice that was prepared via boiling 1 and stored with T3 was found to be low in glycaemic index and glycaemic load, and to be high in resistant starch. Similarly, in rats, the blood glucose level, cholesterol, triglycerides, and LDL were reduced by about 29.7%, 37.9%, 31.3%, and 30.5%, respectively, after the consumption of basmati rice that was prepared via boiling 1 and stored with T3. Awareness should be raised among people about the health benefits of resistant starch consumption and the right way of cooking.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, Punjab, India (R.A.)
| | - Harpreet Kaur
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, Punjab, India (R.A.)
| | - Renuka Aggarwal
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, Punjab, India (R.A.)
| | - Kiran Bains
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana 141004, Punjab, India (R.A.)
| | - Amrit Kaur Mahal
- Department of Mathematics, Statistics and Physics, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Lachhman Das Singla
- Department of Parasitology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| | - Kuldeep Gupta
- Department of Veterinary Pathology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India
| |
Collapse
|
2
|
Waibel M, Wentworth JM, So M, Couper JJ, Cameron FJ, MacIsaac RJ, Atlas G, Gorelik A, Litwak S, Sanz-Villanueva L, Trivedi P, Ahmed S, Martin FJ, Doyle ME, Harbison JE, Hall C, Krishnamurthy B, Colman PG, Harrison LC, Thomas HE, Kay TWH. Baricitinib and β-Cell Function in Patients with New-Onset Type 1 Diabetes. N Engl J Med 2023; 389:2140-2150. [PMID: 38055252 DOI: 10.1056/nejmoa2306691] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Janus kinase (JAK) inhibitors, including baricitinib, block cytokine signaling and are effective disease-modifying treatments for several autoimmune diseases. Whether baricitinib preserves β-cell function in type 1 diabetes is unclear. METHODS In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned patients with type 1 diabetes diagnosed during the previous 100 days to receive baricitinib (4 mg once per day) or matched placebo orally for 48 weeks. The primary outcome was the mean C-peptide level, determined from the area under the concentration-time curve, during a 2-hour mixed-meal tolerance test at week 48. Secondary outcomes included the change from baseline in the glycated hemoglobin level, the daily insulin dose, and measures of glycemic control assessed with the use of continuous glucose monitoring. RESULTS A total of 91 patients received baricitinib (60 patients) or placebo (31 patients). The median of the mixed-meal-stimulated mean C-peptide level at week 48 was 0.65 nmol per liter per minute (interquartile range, 0.31 to 0.82) in the baricitinib group and 0.43 nmol per liter per minute (interquartile range, 0.13 to 0.63) in the placebo group (P = 0.001). The mean daily insulin dose at 48 weeks was 0.41 U per kilogram of body weight per day (95% confidence interval [CI], 0.35 to 0.48) in the baricitinib group and 0.52 U per kilogram per day (95% CI, 0.44 to 0.60) in the placebo group. The levels of glycated hemoglobin were similar in the two trial groups. However, the mean coefficient of variation of the glucose level at 48 weeks, as measured by continuous glucose monitoring, was 29.6% (95% CI, 27.8 to 31.3) in the baricitinib group and 33.8% (95% CI, 31.5 to 36.2) in the placebo group. The frequency and severity of adverse events were similar in the two trial groups, and no serious adverse events were attributed to baricitinib or placebo. CONCLUSIONS In patients with type 1 diabetes of recent onset, daily treatment with baricitinib over 48 weeks appeared to preserve β-cell function as estimated by the mixed-meal-stimulated mean C-peptide level. (Funded by JDRF International and others; BANDIT Australian New Zealand Clinical Trials Registry number, ACTRN12620000239965.).
Collapse
Affiliation(s)
- Michaela Waibel
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - John M Wentworth
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Michelle So
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Jennifer J Couper
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Fergus J Cameron
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Richard J MacIsaac
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Gabby Atlas
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Alexandra Gorelik
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Sara Litwak
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Laura Sanz-Villanueva
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Prerak Trivedi
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Simi Ahmed
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Francis J Martin
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Madeleine E Doyle
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Jessica E Harbison
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Candice Hall
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Balasubramanian Krishnamurthy
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Peter G Colman
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Leonard C Harrison
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Helen E Thomas
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| | - Thomas W H Kay
- From St. Vincent's Institute of Medical Research (M.W., M.S., S.L., L.S.-V., P.T., M.E.D., C.H., B.K., H.E.T., T.W.H.K.), St. Vincent's Hospital Melbourne (R.J.M., B.K., T.W.H.K.), and the Department of Medicine at St. Vincent's Hospital, University of Melbourne (R.J.M., L.S.-V., M.E.D., B.K., H.E.T., T.W.H.K.), Fitzroy, the Walter and Eliza Hall Institute of Medical Research (J.M.W., P.G.C., L.C.H.), the Departments of Medical Biology (J.M.W., L.C.H.) and Medicine (A.G.), University of Melbourne, the Royal Melbourne Hospital (J.M.W., M.S., C.H., P.G.C., L.C.H.), the Royal Children's Hospital (F.J.C., G.A.), and the Murdoch Children's Research Institute (F.J.C.), Parkville, and the School of Public Health and Preventive Medicine, Monash University, Melbourne (A.G.), VIC, and Women's and Children's Hospital (J.J.C., J.E.H.) and the University of Adelaide (J.J.C.), Adelaide, SA - all in Australia; the New York Stem Cell Foundation, New York (S.A.); and Macromoltek, Austin, TX (F.J.M.)
| |
Collapse
|
3
|
Sun F, Yang CL, Wang FX, Rong SJ, Luo JH, Lu WY, Yue TT, Wang CY, Liu SW. Pancreatic draining lymph nodes (PLNs) serve as a pathogenic hub contributing to the development of type 1 diabetes. Cell Biosci 2023; 13:156. [PMID: 37641145 PMCID: PMC10464122 DOI: 10.1186/s13578-023-01110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained β cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN-centered view of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or peripheral circulation, undergo immune remodeling within the local microenvironment and export effector cell components into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory β cell damage, enhance gut integrity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the outputs of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Fei Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Devision of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
De George DJ, Ge T, Krishnamurthy B, Kay TWH, Thomas HE. Inflammation versus regulation: how interferon-gamma contributes to type 1 diabetes pathogenesis. Front Cell Dev Biol 2023; 11:1205590. [PMID: 37293126 PMCID: PMC10244651 DOI: 10.3389/fcell.2023.1205590] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with onset from early childhood. The insulin-producing pancreatic beta cells are destroyed by CD8+ cytotoxic T cells. The disease is challenging to study mechanistically in humans because it is not possible to biopsy the pancreatic islets and the disease is most active prior to the time of clinical diagnosis. The NOD mouse model, with many similarities to, but also some significant differences from human diabetes, provides an opportunity, in a single in-bred genotype, to explore pathogenic mechanisms in molecular detail. The pleiotropic cytokine IFN-γ is believed to contribute to pathogenesis of type 1 diabetes. Evidence of IFN-γ signaling in the islets, including activation of the JAK-STAT pathway and upregulation of MHC class I, are hallmarks of the disease. IFN-γ has a proinflammatory role that is important for homing of autoreactive T cells into islets and direct recognition of beta cells by CD8+ T cells. We recently showed that IFN-γ also controls proliferation of autoreactive T cells. Therefore, inhibition of IFN-γ does not prevent type 1 diabetes and is unlikely to be a good therapeutic target. In this manuscript we review the contrasting roles of IFN-γ in driving inflammation and regulating the number of antigen specific CD8+ T cells in type 1 diabetes. We also discuss the potential to use JAK inhibitors as therapy for type 1 diabetes, to inhibit both cytokine-mediated inflammation and proliferation of T cells.
Collapse
Affiliation(s)
- David J. De George
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Balasubramaniam Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
5
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
6
|
Li X, Liao M, Guan J, Zhou L, Shen R, Long M, Shao J. Identification of Key Genes and Pathways in Peripheral Blood Mononuclear Cells of Type 1 Diabetes Mellitus by Integrated Bioinformatics Analysis. Diabetes Metab J 2022; 46:451-463. [PMID: 35381625 PMCID: PMC9171163 DOI: 10.4093/dmj.2021.0018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The onset and progression of type 1 diabetes mellitus (T1DM) is closely related to autoimmunity. Effective monitoring of the immune system and developing targeted therapies are frontier fields in T1DM treatment. Currently, the most available tissue that reflects the immune system is peripheral blood mononuclear cells (PBMCs). Thus, the aim of this study was to identify key PBMC biomarkers of T1DM. METHODS Common differentially expressed genes (DEGs) were screened from the Gene Expression Omnibus (GEO) datasets GSE9006, GSE72377, and GSE55098, and PBMC mRNA expression in T1DM patients was compared with that in healthy participants by GEO2R. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein-protein interaction (PPI) network analyses of DEGs were performed using the Cytoscape, DAVID, and STRING databases. The vital hub genes were validated by reverse transcription-polymerase chain reaction using clinical samples. The disease-gene-drug interaction network was built using the Comparative Toxicogenomics Database (CTD) and Drug Gene Interaction Database (DGIdb). RESULTS We found that various biological functions or pathways related to the immune system and glucose metabolism changed in PBMCs from T1DM patients. In the PPI network, the DEGs of module 1 were significantly enriched in processes including inflammatory and immune responses and in pathways of proteoglycans in cancer. Moreover, we focused on four vital hub genes, namely, chitinase-3-like protein 1 (CHI3L1), C-X-C motif chemokine ligand 1 (CXCL1), matrix metallopeptidase 9 (MMP9), and granzyme B (GZMB), and confirmed them in clinical PBMC samples. Furthermore, the disease-gene-drug interaction network revealed the potential of key genes as reference markers in T1DM. CONCLUSION These results provide new insight into T1DM pathogenesis and novel biomarkers that could be widely representative reference indicators or potential therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Xing Li
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Mingyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiangheng Guan
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan, China
| | - Ling Zhou
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rufei Shen
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Min Long
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, China
- Min Long https://orcid.org/0000-0003-1071-8131 Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China E-mail:
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Endocrinology, Jinling Hospital, Nanjing Medical University, Nanjing, China
- Correspond authors: Jiaqing Shao https://orcid.org/0000-0002-9739-5410 Department of Endocrinology, Jinling Hospital, Medical School of Nanjing University, Nanjing Medical University, 305 Zhongshan E Rd, Nanjing 210016, China E-mail:
| |
Collapse
|
7
|
Ciecko AE, Schauder DM, Foda B, Petrova G, Kasmani MY, Burns R, Lin CW, Drobyski WR, Cui W, Chen YG. Self-Renewing Islet TCF1 + CD8 T Cells Undergo IL-27-Controlled Differentiation to Become TCF1 - Terminal Effectors during the Progression of Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2021; 207:1990-2004. [PMID: 34507949 DOI: 10.4049/jimmunol.2100362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022]
Abstract
In type 1 diabetes (T1D) autoreactive CD8 T cells infiltrate pancreatic islets and destroy insulin-producing β cells. Progression to T1D onset is a chronic process, which suggests that the effector activity of β-cell autoreactive CD8 T cells needs to be maintained throughout the course of disease development. The mechanism that sustains diabetogenic CD8 T cell effectors during the course of T1D progression has not been completely defined. Here we used single-cell RNA sequencing to gain further insight into the phenotypic complexity of islet-infiltrating CD8 T cells in NOD mice. We identified two functionally distinct subsets of activated CD8 T cells, CD44highTCF1+CXCR6- and CD44highTCF1-CXCR6+, in islets of prediabetic NOD mice. Compared with CD44highTCF1+CXCR6- CD8 T cells, the CD44highTCF1-CXCR6+ subset expressed higher levels of inhibitory and cytotoxic molecules and was more prone to apoptosis. Adoptive cell transfer experiments revealed that CD44highTCF1+CXCR6- CD8 T cells, through continuous generation of the CD44highTCF1-CXCR6+ subset, were more capable than the latter population to promote insulitis and the development of T1D. We further showed that direct IL-27 signaling in CD8 T cells promoted the generation of terminal effectors from the CD44highTCF1+CXCR6- population. These results indicate that islet CD44highTCF1+CXCR6- CD8 T cells are a progenitor-like subset with self-renewing capacity, and, under an IL-27-controlled mechanism, they differentiate into the CD44highTCF1-CXCR6+ terminal effector population. Our study provides new insight into the sustainability of the CD8 T cell response in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Ashley E Ciecko
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - David M Schauder
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Versiti Blood Research Institute, Milwaukee, WI
| | - Bardees Foda
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI.,Department of Molecular Genetics and Enzymology, National Research Center, Dokki, Egypt
| | - Galina Petrova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Versiti Blood Research Institute, Milwaukee, WI
| | | | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI; and
| | - William R Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI.,Versiti Blood Research Institute, Milwaukee, WI
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI; .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
8
|
Kwong CTJ, Selck C, Tahija K, McAnaney LJ, Le DV, Kay TW, Thomas HE, Krishnamurthy B. Harnessing CD8 + T-cell exhaustion to treat type 1 diabetes. Immunol Cell Biol 2021; 99:486-495. [PMID: 33548057 DOI: 10.1111/imcb.12444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
Although immune interventions have shown great promise in type 1 diabetes mellitus (T1D) clinical trials, none are yet in routine clinical use or able to achieve insulin independence in patients. In addition to this, the principles of T1D treatment remain essentially unchanged since the isolation of insulin, almost a century ago. T1D is characterized by insulin deficiency as a result of destruction of insulin-producing beta cells mediated by autoreactive T cells. Therapies that target beta-cell antigen-specific T cells are needed to prevent T1D. CD8+ T-cell exhaustion is an emerging area of research in chronic infection, cancer immunotherapy, and more recently, autoimmunity. Recent data suggest that exhausted T-cell populations are associated with improved markers of T1D. T-cell exhaustion is both characterized and mediated by inhibitory receptors. This review aims to identify which inhibitory receptors may prove useful to induce T-cell exhaustion to treat T1D and identify limitations and gaps in the current literature.
Collapse
Affiliation(s)
- Chun-Ting J Kwong
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Claudia Selck
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Krisna Tahija
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Lachlan J McAnaney
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Dan V Le
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Thomas Wh Kay
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Helen E Thomas
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Balasubramanian Krishnamurthy
- St Vincent's Institute, Fitzroy, VIC, 3065, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, 3065, Australia
| |
Collapse
|
9
|
Ge T, Jhala G, Fynch S, Akazawa S, Litwak S, Pappas EG, Catterall T, Vakil I, Long AJ, Olson LM, Krishnamurthy B, Kay TW, Thomas HE. The JAK1 Selective Inhibitor ABT 317 Blocks Signaling Through Interferon-γ and Common γ Chain Cytokine Receptors to Reverse Autoimmune Diabetes in NOD Mice. Front Immunol 2020; 11:588543. [PMID: 33343569 PMCID: PMC7746546 DOI: 10.3389/fimmu.2020.588543] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/04/2020] [Indexed: 01/31/2023] Open
Abstract
Cytokines that signal through the JAK-STAT pathway, such as interferon-γ (IFN-γ) and common γ chain cytokines, contribute to the destruction of insulin-secreting β cells by CD8+ T cells in type 1 diabetes (T1D). We previously showed that JAK1/JAK2 inhibitors reversed autoimmune insulitis in non-obese diabetic (NOD) mice and also blocked IFN-γ mediated MHC class I upregulation on β cells. Blocking interferons on their own does not prevent diabetes in knockout NOD mice, so we tested whether JAK inhibitor action on signaling downstream of common γ chain cytokines, including IL-2, IL-7 IL-15, and IL-21, may also affect the progression of diabetes in NOD mice. Common γ chain cytokines activate JAK1 and JAK3 to regulate T cell proliferation. We used a JAK1-selective inhibitor, ABT 317, to better understand the specific role of JAK1 signaling in autoimmune diabetes. ABT 317 reduced IL-21, IL-2, IL-15 and IL-7 signaling in T cells and IFN-γ signaling in β cells, but ABT 317 did not affect GM-CSF signaling in granulocytes. When given in vivo to NOD mice, ABT 317 reduced CD8+ T cell proliferation as well as the number of KLRG+ effector and CD44hiCD62Llo effector memory CD8+ T cells in spleen. ABT 317 also prevented MHC class I upregulation on β cells. Newly diagnosed diabetes was reversed in 94% NOD mice treated twice daily with ABT 317 while still on treatment at 40 days and 44% remained normoglycemic after a further 60 days from discontinuing the drug. Our results indicate that ABT 317 blocks common γ chain cytokines in lymphocytes and interferons in lymphocytes and β cells and are thus more effective against diabetes pathogenesis than IFN-γ receptor deficiency alone. Our studies suggest use of this class of drug for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Stacey Fynch
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Satoru Akazawa
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Sara Litwak
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Evan G Pappas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Tara Catterall
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Ishan Vakil
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Andrew J Long
- AbbVie Bioresearch Center, Worcester, MA, United States
| | - Lisa M Olson
- AbbVie Bioresearch Center, Worcester, MA, United States
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia.,Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
10
|
Bender C, Rodriguez-Calvo T, Amirian N, Coppieters KT, von Herrath MG. The healthy exocrine pancreas contains preproinsulin-specific CD8 T cells that attack islets in type 1 diabetes. SCIENCE ADVANCES 2020; 6:6/42/eabc5586. [PMID: 33067232 PMCID: PMC7567597 DOI: 10.1126/sciadv.abc5586] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Preproinsulin (PPI) is presumably a crucial islet autoantigen found in patients with type 1 diabetes (T1D) but is also recognized by CD8+ T cells from healthy individuals. We quantified PPI-specific CD8+ T cells within different areas of the human pancreas from nondiabetic controls, autoantibody-positive donors, and donors with T1D to investigate their role in diabetes development. This spatial cellular quantitation revealed unusually high frequencies of autoreactive CD8+ T cells supporting the hypothesis that PPI is indeed a key autoantigen. To our surprise, PPI-specific CD8+ T cells were already abundantly present in the nondiabetic pancreas, thus questioning the dogma that T1D is caused by defective thymic deletion or systemic immune dysregulation. During T1D development, these cells accumulated in and around islets, indicating that an islet-specific trigger such as up-regulation of major histocompatibility complex class I might be essential to unmask beta cells to the immune system.
Collapse
Affiliation(s)
- Christine Bender
- Center for Type 1 Diabetes Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Teresa Rodriguez-Calvo
- Center for Type 1 Diabetes Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- The Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Diabetes Research, Munich-Neuherberg, Germany
| | - Natalie Amirian
- Center for Type 1 Diabetes Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ken T Coppieters
- Global Research Project Management, Novo Nordisk, Måløv, Denmark
| | - Matthias G von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
- The Novo Nordisk Research Center Seattle Inc., Seattle, WA, USA
| |
Collapse
|
11
|
Vrbensky JR, Arnold DM, Kelton JG, Smith JW, Jaffer AM, Larché M, Clare R, Ivetic N, Nazy I. Increased cytotoxic potential of CD8 + T cells in immune thrombocytopenia. Br J Haematol 2019; 188:e72-e76. [PMID: 31850531 DOI: 10.1111/bjh.16334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John R Vrbensky
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - John G Kelton
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - James W Smith
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anushka M Jaffer
- McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Mark Larché
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Rumi Clare
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Nikola Ivetic
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Ciecko AE, Foda B, Barr JY, Ramanathan S, Atkinson MA, Serreze DV, Geurts AM, Lieberman SM, Chen YG. Interleukin-27 Is Essential for Type 1 Diabetes Development and Sjögren Syndrome-like Inflammation. Cell Rep 2019; 29:3073-3086.e5. [PMID: 31801074 PMCID: PMC6914223 DOI: 10.1016/j.celrep.2019.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Human genetic studies implicate interleukin-27 (IL-27) in the pathogenesis of type 1 diabetes (T1D), but the underlying mechanisms remain largely unexplored. To further define the role of IL-27 in T1D, we generated non-obese diabetic (NOD) mice deficient in IL-27 or IL-27Rα. In contrast to wild-type NOD mice, both NOD.Il27-/- and NOD.Il27ra-/- strains are completely resistant to T1D. IL-27 from myeloid cells and IL-27 signaling in T cells are critical for T1D development. IL-27 directly alters the balance of regulatory T cells (Tregs) and T helper 1 (Th1) cells in pancreatic islets, which in turn modulates the diabetogenic activity of CD8 T cells. IL-27 also directly enhances the effector function of CD8 T cells within pancreatic islets. In addition to T1D, IL-27 signaling in T cells is also required for lacrimal and salivary gland inflammation in NOD mice. Our study reveals that IL-27 contributes to autoimmunity in NOD mice through multiple mechanisms and provides substantial evidence to support its pathogenic role in human T1D.
Collapse
Affiliation(s)
- Ashley E Ciecko
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Bardees Foda
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Molecular Genetics and Enzymology, National Research Centre, Dokki, Egypt
| | - Jennifer Y Barr
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Mark A Atkinson
- Departments of Pediatrics, and Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL 32611, USA
| | - David V Serreze
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Scott M Lieberman
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
13
|
IL-21 regulates SOCS1 expression in autoreactive CD8 + T cells but is not required for acquisition of CTL activity in the islets of non-obese diabetic mice. Sci Rep 2019; 9:15302. [PMID: 31653894 PMCID: PMC6814838 DOI: 10.1038/s41598-019-51636-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
In type 1 diabetes, maturation of activated autoreactive CD8+ T cells to fully armed effector cytotoxic T lymphocytes (CTL) occurs within the islet. At present the signals required for the maturation process are poorly defined. Cytokines could potentially provide the necessary "third signal" required to generate fully mature CTL capable of killing insulin-producing β-cells. To determine whether autoreactive CTL within islets respond to cytokines we generated non-obese diabetic (NOD) mice with a reporter for cytokine signalling. These mice express a reporter gene, hCD4, under the control of the endogenous regulatory elements for suppressor of cytokine signalling (SOCS)1, which is itself regulated by pro-inflammatory cytokines. In NOD mice, the hCD4 reporter was expressed in infiltrated islets and the expression level was positively correlated with the frequency of infiltrating CD45+ cells. SOCS1 reporter expression was induced in transferred β-cell-specific CD8+ 8.3T cells upon migration from pancreatic draining lymph nodes into islets. To determine which cytokines induced SOCS1 promoter activity in islets, we examined hCD4 reporter expression and CTL maturation in the absence of the cytokine receptors IFNAR1 or IL-21R. We show that IFNAR1 deficiency does not confer protection from diabetes in 8.3 TCR transgenic mice, nor is IFNAR1 signalling required for SOCS1 reporter upregulation or CTL maturation in islets. In contrast, IL-21R-deficient 8.3 mice have reduced diabetes incidence and reduced SOCS1 reporter activity in islet CTLs. However IL-21R deficiency did not affect islet CD8+ T cell proliferation or expression of granzyme B or IFNγ. Together these data indicate that autoreactive CD8+ T cells respond to IL-21 and not type I IFNs in the islets of NOD mice, but neither IFNAR1 nor IL-21R are required for islet intrinsic CTL maturation.
Collapse
|
14
|
Trivedi PM, Fynch S, Kennedy LM, Chee J, Krishnamurthy B, O'Reilly LA, Strasser A, Kay TWH, Thomas HE. Soluble FAS ligand is not required for pancreatic islet inflammation or beta-cell destruction in non-obese diabetic mice. Cell Death Discov 2019; 5:136. [PMID: 31552143 PMCID: PMC6755132 DOI: 10.1038/s41420-019-0217-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
CD8+ T cells play a central role in beta-cell destruction in type 1 diabetes. CD8+ T cells use two main effector pathways to kill target cells, perforin plus granzymes and FAS ligand (FASL). We and others have established that in non-obese diabetic (NOD) mice, perforin is the dominant effector molecule by which autoreactive CD8+ T cells kill beta cells. However, blocking FASL pharmacologically was shown to protect NOD mice from diabetes, indicating that FASL may have some role. FASL can engage with its receptor FAS on target cells either as membrane bound or soluble FASL. It has been shown that membrane-bound FASL is required to stimulate FAS-induced apoptosis in target cells, whereas excessive soluble FASL can induce NF-κB-dependent gene expression and inflammation. Because islet inflammation is a feature of autoimmune diabetes, we tested whether soluble FASL could be important in disease pathogenesis independent of its cell death function. We generated NOD mice deficient in soluble FASL, while maintaining expression of membrane-bound FASL due to a mutation in the FASL sequence required for cleavage by metalloproteinase. NOD mice lacking soluble FASL had normal numbers of lymphocytes in their spleen and thymus. Soluble FASL deficient NOD mice had similar islet inflammation as wild-type NOD mice and were not protected from diabetes. Our data indicate that soluble FASL is not required in development of autoimmune diabetes.
Collapse
Affiliation(s)
- Prerak M Trivedi
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia.,5Present Address: Memorial Sloan Kettering Cancer Center, New York, NY 10065 USA
| | - Stacey Fynch
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia
| | - Lucy M Kennedy
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia
| | - Jonathan Chee
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia.,6Present Address: University of Western Australia, Nedlands, Western Australia 6009 Australia
| | | | - Lorraine A O'Reilly
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050 Australia.,4Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andreas Strasser
- 3The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3050 Australia.,4Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Thomas W H Kay
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia
| | - Helen E Thomas
- 1St. Vincent's Institute, Fitzroy, Victoria 3065 Australia.,2Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria 3065 Australia
| |
Collapse
|
15
|
Gao L, Sun N, Xu Q, Jiang Z, Li C. Comparative analysis of mRNA expression profiles in Type 1 and Type 2 diabetes mellitus. Epigenomics 2019; 11:685-699. [PMID: 31016992 DOI: 10.2217/epi-2018-0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: We aimed to understand the individual and shared features of Type 1 diabetes (T1D) and Type 2 diabetes (T2D) by analyzing the gene expression profile. Materials & methods: An integrated analysis was performed with microarray datasets for T1D and T2D. Compared with normal control, shared and specific differentially expressed genes (DEGs) in T1D and T2D were obtained. Functional annotation, further validation and receiver operating characteristic curve analysis were performed. Results: Five and three datasets for T1D and T2D were downloaded, respectively. In total, 141 (85 T1D vs 56 normal controls) and 70 (29 T2D vs 41 normal controls) peripheral blood samples were included in T1D and T2D group, respectively. Compared with normal controls, 119 and 146 DEGs were found in T1D and T2D, respectively. PNP and CCR1 have great diagnostic value for both T1D and T2D. MGAM and NAMPT had great diagnostic value for T2D. Conclusion: Our finding provided clues for developing biomarkers for diabetes.
Collapse
Affiliation(s)
- Li Gao
- Department of Endocrinology, Shandong Provincial Qianfoshan Hospital (Qianfoshan Hospital Affiliated to Shandong University), Jinan 250014, China
| | - Nannan Sun
- Department of Critical-care Medicine, Shandong Provincial Qianfoshan Hospital (Qianfoshan Hospital Affiliated to Shandong University), Jinan 250014, China
| | - Qinglei Xu
- Department of Endocrinology, Lanshan District Diabetes Hospital of LinYi, Shandong University of Traditional Chinese Medicine, Linyi 276038, China
| | - Zhiming Jiang
- Department of Critical-care Medicine, Shandong Provincial Qianfoshan Hospital (Qianfoshan Hospital Affiliated to Shandong University), Jinan 250014, China
| | - Chong Li
- Department of Critical-care Medicine, Shandong Provincial Qianfoshan Hospital (Qianfoshan Hospital Affiliated to Shandong University), Jinan 250014, China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving β cells in patients with or at risk for T1D. RECENT FINDINGS Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
17
|
Yeo L, Woodwyk A, Sood S, Lorenc A, Eichmann M, Pujol-Autonell I, Melchiotti R, Skowera A, Fidanis E, Dolton GM, Tungatt K, Sewell AK, Heck S, Saxena A, Beam CA, Peakman M. Autoreactive T effector memory differentiation mirrors β cell function in type 1 diabetes. J Clin Invest 2018; 128:3460-3474. [PMID: 29851415 DOI: 10.1172/jci120555] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
In type 1 diabetes, cytotoxic CD8+ T cells with specificity for β cell autoantigens are found in the pancreatic islets, where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β cell-reactive CD8+ T cells that are detectable in the circulation, and their relationship to β cell function, are not known. Here, we tracked multiple, circulating β cell-reactive CD8+ T cell subsets and measured β cell function longitudinally for 2 years, starting immediately after diagnosis of type 1 diabetes. We found that change in β cell-specific effector memory CD8+ T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8+ T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer-specific protein of 37 kDa, and CD16, and reduced expression of CD28) compared with their CD57- counterparts, and network association modeling indicated that the dynamics of β cell-reactive CD57+ effector memory CD8+ T cell subsets were strongly linked. Thus, coordinated changes in circulating β cell-specific CD8+ T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.
Collapse
Affiliation(s)
- Lorraine Yeo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Alyssa Woodwyk
- Division of Epidemiology and Biostatistics, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Sanjana Sood
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Anna Lorenc
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Martin Eichmann
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Irma Pujol-Autonell
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Rosella Melchiotti
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Ania Skowera
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Efthymios Fidanis
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Garry M Dolton
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Katie Tungatt
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Andrew K Sewell
- Division of Infection and Immunity and Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Susanne Heck
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Alka Saxena
- National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom
| | - Craig A Beam
- Division of Epidemiology and Biostatistics, Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan, USA
| | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.,National Institute of Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital and King's College London, London, United Kingdom.,King's Health Partners Institute of Diabetes, Endocrinology and Obesity, London, United Kingdom
| |
Collapse
|
18
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
19
|
Newby BN, Brusko TM, Zou B, Atkinson MA, Clare-Salzler M, Mathews CE. Type 1 Interferons Potentiate Human CD8 + T-Cell Cytotoxicity Through a STAT4- and Granzyme B-Dependent Pathway. Diabetes 2017; 66:3061-3071. [PMID: 28877912 PMCID: PMC5697952 DOI: 10.2337/db17-0106] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022]
Abstract
Events defining the progression to human type 1 diabetes (T1D) have remained elusive owing to the complex interaction between genetics, the immune system, and the environment. Type 1 interferons (T1-IFN) are known to be a constituent of the autoinflammatory milieu within the pancreas of patients with T1D. However, the capacity of IFNα/β to modulate human activated autoreactive CD8+ T-cell (cytotoxic T lymphocyte) responses within the islets of patients with T1D has not been investigated. Here, we engineer human β-cell-specific cytotoxic T lymphocytes and demonstrate that T1-IFN augments cytotoxicity by inducing rapid phosphorylation of STAT4, resulting in direct binding at the granzyme B promoter within 2 h of exposure. The current findings provide novel insights concerning the regulation of effector function by T1-IFN in human antigen-experienced CD8+ T cells and provide a mechanism by which the presence of T1-IFN potentiates diabetogenicity within the autoimmune islet.
Collapse
Affiliation(s)
- Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Baiming Zou
- Department of Biostatistics, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Michael Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
20
|
Willcox A, Richardson SJ, Walker LSK, Kent SC, Morgan NG, Gillespie KM. Germinal centre frequency is decreased in pancreatic lymph nodes from individuals with recent-onset type 1 diabetes. Diabetologia 2017; 60:1294-1303. [PMID: 28213757 PMCID: PMC5487689 DOI: 10.1007/s00125-017-4221-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/13/2016] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS Pancreatic lymph nodes (PLNs) are critical sites for the initial interaction between islet autoantigens and autoreactive lymphocytes, but the histology of PLNs in tissue from individuals with type 1 diabetes has not been analysed in detail. The aim of this study was to examine PLN tissue sections from healthy donors compared with those at risk of, or with recent-onset and longer-duration type 1 diabetes. METHODS Immunofluorescence staining was used to examine PLN sections from the following donor groups: non-diabetic (n=15), non-diabetic islet autoantibody-positive (n=5), recent-onset (≤1.5 years duration) type 1 diabetes (n=13), and longer-duration type 1 diabetes (n=15). Staining for CD3, CD20 and Ki67 was used to detect primary and secondary (germinal centre-containing) follicles and CD21 and CD35 to detect follicular dendritic cell networks. RESULTS The frequency of secondary follicles was lower in the recent-onset type 1 diabetes group compared with the non-diabetic control group. The presence of insulitis (as evidence of ongoing beta cell destruction) and diagnosis of type 1 diabetes at a younger age, however, did not appear to be associated with a lower frequency of secondary follicles. A higher proportion of primary B cell follicles were observed to lack follicular dendritic cell networks in the recent-onset type 1 diabetes group. CONCLUSIONS/INTERPRETATION Histological analysis of rare PLNs from individuals with type 1 diabetes suggests a previously unrecognised phenotype comprising decreased primary B cell follicle frequency and fewer follicular dendritic cell networks in recent-onset type 1 diabetes.
Collapse
Affiliation(s)
- Abby Willcox
- Diabetes and Metabolism, Level 2 Learning and Research, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, UCL Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Sally C Kent
- Division of Diabetes, Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism, Level 2 Learning and Research, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|
21
|
Lin HH, Gutenberg A, Chen TY, Tsai NM, Lee CJ, Cheng YC, Cheng WH, Tzou YM, Caturegli P, Tzou SC. In Situ Activation of Pituitary-Infiltrating T Lymphocytes in Autoimmune Hypophysitis. Sci Rep 2017; 7:43492. [PMID: 28262761 PMCID: PMC5337949 DOI: 10.1038/srep43492] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023] Open
Abstract
Autoimmune hypophysitis (AH) is a chronic inflammatory disease characterized by infiltration of T and B lymphocytes in the pituitary gland. The mechanisms through which infiltrating lymphocytes cause disease remain unknown. Using a mouse model of AH we assessed whether T lymphocytes undergo activation in the pituitary gland. Infiltrating T cells co-localized with dendritic cells in the pituitary and produced increased levels of interferon-γ and interleukin-17 upon stimulation in vitro. Assessing proliferation of CD3- and B220-postive lymphocytes by double immunohistochemistry (PCNA-staining) and flow cytometry (BrdU incorporation) revealed that a discrete proportion of infiltrating T cells and B cells underwent proliferation within the pituitary parenchyma. This proliferation persisted into the late disease stage (day 56 post-immunization), indicating the presence of a continuous generation of autoreactive T and B cells within the pituitary gland. T cell proliferation in the pituitary was confirmed in patients affected by autoimmune hypophysitis. In conclusion, we show that pituitary-infiltrating lymphocytes proliferate in situ during AH, providing a previously unknown pathogenic mechanism and new avenues for treatment.
Collapse
Affiliation(s)
- Han-Huei Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 30068, Taiwan
| | - Angelika Gutenberg
- Department of Neurosurgery, Johannes Gutenberg University, Mainz 55131, Germany
| | - Tzu-Yu Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin-Chu 30068, Taiwan
| | - Nu-Man Tsai
- Department of Medical Technology and Biotechnology, School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Jung Lee
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 30068, Taiwan
| | - Yu-Che Cheng
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin-Chu 30068, Taiwan
| | - Wen-Hui Cheng
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 30068, Taiwan
| | - Ywh-Min Tzou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patrizio Caturegli
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Shey-Cherng Tzou
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 30068, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin-Chu 30068, Taiwan
| |
Collapse
|
22
|
Newby BN, Mathews CE. Type I Interferon Is a Catastrophic Feature of the Diabetic Islet Microenvironment. Front Endocrinol (Lausanne) 2017; 8:232. [PMID: 28959234 PMCID: PMC5604085 DOI: 10.3389/fendo.2017.00232] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 01/01/2023] Open
Abstract
A detailed understanding of the molecular pathways and cellular interactions that result in islet beta cell (β cell) destruction is essential for the development and implementation of effective therapies for prevention or reversal of type 1 diabetes (T1D). However, events that define the pathogenesis of human T1D have remained elusive. This gap in our knowledge results from the complex interaction between genetics, the immune system, and environmental factors that precipitate T1D in humans. A link between genetics, the immune system, and environmental factors are type 1 interferons (T1-IFNs). These cytokines are well known for inducing antiviral factors that limit infection by regulating innate and adaptive immune responses. Further, several T1D genetic risk loci are within genes that link innate and adaptive immune cell responses to T1-IFN. An additional clue that links T1-IFN to T1D is that these cytokines are a known constituent of the autoinflammatory milieu within the pancreas of patients with T1D. The presence of IFNα/β is correlated with characteristic MHC class I (MHC-I) hyperexpression found in the islets of patients with T1D, suggesting that T1-IFNs modulate the cross-talk between autoreactive cytotoxic CD8+ T lymphocytes and insulin-producing pancreatic β cells. Here, we review the evidence supporting the diabetogenic potential of T1-IFN in the islet microenvironment.
Collapse
Affiliation(s)
- Brittney N. Newby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Clayton E. Mathews,
| |
Collapse
|
23
|
Askenasy N. Mechanisms of diabetic autoimmunity: I--the inductive interface between islets and the immune system at onset of inflammation. Immunol Res 2016; 64:360-8. [PMID: 26639356 DOI: 10.1007/s12026-015-8753-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms of autoimmune reactivity onset in type 1 diabetes (T1D) remain elusive despite extensive experimentation and discussion. We reconsider several key aspects of the early stages of autoimmunity at four levels: islets, pancreatic lymph nodes, thymic function and peripheral immune homeostasis. Antigen presentation is the islets and has the capacity to provoke immune sensitization, either in the process of physiological neonatal β cell apoptosis or as a consequence of cytolytic activity of self-reactive thymocytes that escaped negative regulation. Diabetogenic effectors are efficiently expanded in both the islets and the lymph nodes under conditions of empty lymphoid niches during a period of time coinciding with a synchronized wave of β cell apoptosis surrounding weaning. A major drive of effector cell activation and expansion is inherent peripheral lymphopenia characteristic of neonates, though it remains unclear when is autoimmunity triggered in subjects displaying hyperglycemia in late adolescence. Our analysis suggests that T1D evolves through coordinated activity of multiple physiological mechanisms of stimulation within specific characteristics of the neonate immune system.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, 49202, Petach Tikva, Israel.
| |
Collapse
|
24
|
Boldison J, Wong FS. Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends Endocrinol Metab 2016; 27:856-867. [PMID: 27659143 DOI: 10.1016/j.tem.2016.08.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023]
Abstract
The autoimmune destruction of the pancreatic islet β cells is due to a targeted lymphocyte attack. Different T cell subsets communicate with each other and with the insulin-producing β cells in this process, with evidence not only of damage to the tissue cells but also of lymphocyte regulation. Here we explore the various components of the immune response as well as the cellular interactions that are involved in causing or reducing immune damage to the β cells. We consider these in the light of the possibility that understanding them may help us identify therapeutic targets to reduce the damage and destruction leading to type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
25
|
Askenasy N. Mechanisms of diabetic autoimmunity: II--Is diabetes a central or peripheral disorder of effector and regulatory cells? Immunol Res 2016; 64:36-43. [PMID: 26482052 DOI: 10.1007/s12026-015-8725-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Two competing hypotheses aiming to explain the onset of autoimmune reactions are discussed in the context of genetic and environmental predisposition to type 1 diabetes (T1D). The first hypothesis has evolved along characterization of the mechanisms of self-discrimination and attributes diabetic autoimmunity to escape of reactive T cells from central regulation in the thymus. The second considers frequent occurrence of autoimmune reactions within the immune homunculus, which are adequately suppressed by regulatory T cells originating from the thymus, and occasionally, insufficient suppression results in autoimmunity. Besides thymic dysfunction, deregulation of both effector and suppressor cells can in fact result from homeostatic aberrations at the peripheral level during initial stages of evolution of adaptive immunity. Pathogenic cells sensitized in the islets are efficiently expanded in the target tissue and pancreatic lymph nodes of lymphopenic neonates. In parallel, the same mechanisms of peripheral sensitization contribute to tolerization through education of naïve/effector T cells and expansion of regulatory T cells. Experimental evidence presented for each individual mechanism implies that T1D may result from a primary effector or suppressor immune abnormality. Disturbed self-tolerance leading to T1D may well result from peripheral deregulation of innate and adaptive immunity, with variable contribution of central thymic dysfunction.
Collapse
|
26
|
Marrero I, Aguilera C, Hamm DE, Quinn A, Kumar V. High-throughput sequencing reveals restricted TCR Vβ usage and public TCRβ clonotypes among pancreatic lymph node memory CD4(+) T cells and their involvement in autoimmune diabetes. Mol Immunol 2016; 74:82-95. [PMID: 27161799 PMCID: PMC6301078 DOI: 10.1016/j.molimm.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/28/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
Islet-reactive memory CD4(+) T cells are an essential feature of type 1 diabetes (T1D) as they are involved in both spontaneous disease and in its recurrence after islet transplantation. Expansion and enrichment of memory T cells have also been shown in the peripheral blood of diabetic patients. Here, using high-throughput sequencing, we investigated the clonal diversity of the TCRβ repertoire of memory CD4(+) T cells in the pancreatic lymph nodes (PaLN) of non-obese diabetic (NOD) mice and examined their clonal overlap with islet-infiltrating memory CD4T cells. Both prediabetic and diabetic NOD mice exhibited a restricted TCRβ repertoire dominated by clones expressing TRBV13-2, TRBV13-1 or TRBV5 gene segments. There is a limited degree of TCRβ overlap between the memory CD4 repertoire of PaLN and pancreas as well as between the prediabetic and diabetic group. However, public TCRβ clonotypes were identified across several individual animals, some of them with sequences similar to the TCRs from the islet-reactive T cells suggesting their antigen-driven expansion. Moreover, the majority of the public clonotypes expressed TRBV13-2 (Vβ8.2) gene segment. Nasal vaccination with an immunodominat peptide derived from the TCR Vβ8.2 chain led to protection from diabetes, suggesting a critical role for Vβ8.2(+) CD4(+) memory T cells in T1D. These results suggest that memory CD4(+) T cells bearing limited dominant TRBV genes contribute to the autoimmune diabetes and can be potentially targeted for intervention in diabetes. Furthermore, our results have important implications for the identification of public T cell clonotypes as potential novel targets for immune manipulation in human T1D.
Collapse
Affiliation(s)
- Idania Marrero
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Carlos Aguilera
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | - David E Hamm
- Adaptive Biotechnologies, 1551 Eastlake Ave E #200, Seattle, WA 98102, USA
| | - Anthony Quinn
- Department of Biological Sciences, University of Toledo, 2801 W Bancroft St., Toledo, OH 43606, USA
| | - Vipin Kumar
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
27
|
Zaleska J, Skorka K, Zajac M, Karczmarczyk A, Karp M, Tomczak W, Hus M, Wlasiuk P, Giannopoulos K. Specific cytotoxic T-cell immune responses against autoantigens recognized by chronic lymphocytic leukaemia cells. Br J Haematol 2016; 174:582-90. [PMID: 27097566 DOI: 10.1111/bjh.14098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Mounting evidence suggests that autoreactivity and inflammatory processes are involved in the pathogenesis of chronic lymphocytic leukaemia (CLL). Cytoskeletal proteins, including non-muscle myosin heavy chain IIA (MYHIIA), vimentin (VIM) and cofilin-1 (CFL1), exposed on the surface of apoptotic cells have been identified as autoantigens that are recognized by the specific B-cell receptors of the CLL cells. In 212 CLL patients analysed with quantitative reverse transcriptase-polymerase chain reaction we found CFL1 overexpression and low expression of MYH9 in comparison with healthy volunteers. We detected specific cytotoxic immune responses for peptides derived from MYHIIA in 66·7%, VIM in 87·5% and CFL1 in 62·5% CLL patients in an Enzyme-Linked ImmunoSpot assay. Low frequencies of autoreactive peptide-specific T cells were detected against MYHIIA, VIM and CFL1 in CLL patients ex vivo; most of the detected cells had an effector-memory phenotype. Our findings support the existence of cytotoxic immune responses against three autoantigens that have been identified as targets of CLL clonotypic B-cell receptors. The presence of autoreactive CD8(+) T cells against MYHIIA, VIM and CFL1 in CLL patients indicates the involvement of antigen-specific autoreactive T cells in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Joanna Zaleska
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Skorka
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Malgorzata Zajac
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Karczmarczyk
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Marta Karp
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Waldemar Tomczak
- Department of Haemato-oncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Marek Hus
- Department of Haemato-oncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Paulina Wlasiuk
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Haemato-oncology, Medical University of Lublin, Lublin, Poland.,Department of Haematology, St. John's Cancer Centre, Lublin, Poland
| |
Collapse
|
28
|
Krishnamurthy B, Selck C, Chee J, Jhala G, Kay TWH. Analysis of antigen specific T cells in diabetes - Lessons from pre-clinical studies and early clinical trials. J Autoimmun 2016; 71:35-43. [PMID: 27083395 DOI: 10.1016/j.jaut.2016.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
Antigen-specific immune tolerance promises to provide safe and effective therapies to prevent type 1 diabetes (T1D). Antigen-specific therapy requires two components: well-defined, clinically relevant autoantigens; and safe approaches to inducing tolerance in T cells specific for these antigens. Proinsulin is a critical autoantigen in both NOD mice, based on knockout mouse studies and induction of immune tolerance to proinsulin preventing disease whereas most antigens cannot, and also in human T1D based on proinsulin-specific T cells being found in the islets of affected individuals and the early appearance of insulin autoantibodies. Effective antigen-specific therapies that prevent T1D in humans have not yet been developed although doubt remains about the best molecular form of the antigen, the dose and the route of administration. Preclinical studies suggest that antigen specific therapy is most useful when administered before onset of autoimmunity but this time-window has not been tested in humans until the recent "pre-point" study. There may be a 'window of opportunity' during the neonatal period when 'vaccine' like administration of proinsulin for a short period may be sufficient to prevent diabetes. After the onset of autoimmunity, naive antigen-specific T cells have differentiated into antigen-experienced memory cells and the immune responses have spread to multiple antigens. Induction of tolerance at this stage becomes more difficult although recent studies have suggested generation of antigen-specific TR1 cells can inhibit memory T cells. Preclinical studies are required to identify additional 'help' that is required to induce tolerance to memory T cells and develop protocols for effective therapy in individuals with established autoimmunity.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Claudia Selck
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Jonathan Chee
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Guarang Jhala
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia
| | - Thomas W H Kay
- St. Vincent's Institute, 41 Victoria Parade, Fitzroy, 3065, Victoria, Australia; The University of Melbourne Department of Medicine, St Vincent's Hospital, Fitzroy, 3065, Victoria, Australia.
| |
Collapse
|
29
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
30
|
Graham K, Fynch S, Papas E, Tan C, Kay T, Thomas H. Isolation and Culture of the Islets of Langerhans from Mouse Pancreas. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
31
|
Engman C, Wen Y, Meng WS, Bottino R, Trucco M, Giannoukakis N. Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clin Immunol 2015; 160:103-23. [PMID: 25773782 DOI: 10.1016/j.clim.2015.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
We have developed novel antisense oligonucleotide-formulated microspheres that can reverse hyperglycemia in newly-onset diabetic mice. Dendritic cells taking up the microspheres adopt a restrained co-stimulation ability and migrate to the pancreatic lymph nodes when injected into an abdominal region that is drained by those lymph nodes. Furthermore, we demonstrate that the absolute numbers of antigen-specific Foxp3+ T regulatory cells are increased only in the lymph nodes draining the site of administration and that these T-cells proliferate independently of antigen supply in the microspheres. Taken together, our data add to the emerging model where antigen supply may not be a requirement in "vaccines" for autoimmune disease, but the site of administration - subserved by lymph nodes draining the target organ - is in fact critical to foster the generation of antigen-specific regulatory cells. The implications of these observations on "vaccine" design for autoimmunity are discussed and summarized.
Collapse
MESH Headings
- Animals
- B7-1 Antigen/genetics
- B7-2 Antigen/genetics
- Blood Glucose/drug effects
- CD11c Antigen/metabolism
- CD40 Antigens/genetics
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dendritic Cells/immunology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/therapy
- Female
- Forkhead Transcription Factors/analysis
- Gene Knockdown Techniques
- Hyperglycemia/therapy
- Leukocyte Common Antigens/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/immunology
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred NOD
- Mice, Transgenic
- Microspheres
- Oligonucleotides, Antisense/genetics
- Pancreas/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Regulatory/cytology
- Vaccines/administration & dosage
- Vaccines/immunology
Collapse
Affiliation(s)
- Carl Engman
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Yi Wen
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| | - Rita Bottino
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Massimo Trucco
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
32
|
An evolving autoimmune microenvironment regulates the quality of effector T cell restimulation and function. Proc Natl Acad Sci U S A 2014; 111:9223-8. [PMID: 24927530 DOI: 10.1073/pnas.1322193111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Defining the processes of autoimmune attack of tissues is important for inhibiting continued tissue destruction. In type 1 diabetes, it is not known how cytotoxic effector T cell responses evolve over time in the pancreatic islets targeted for destruction. We used two-photon microscopy of live, intact, individual islets to investigate how progression of islet infiltration altered the behavior of infiltrating islet-specific CD8(+) T cells. During early-islet infiltration, T-cell interactions with CD11c(+) antigen-presenting cells (APCs) were stable and real-time imaging of T cell receptor (TCR) clustering provided evidence of TCR recognition in these stable contacts. Early T cell-APC encounters supported production of IFN-γ by T effectors, and T cells at this stage also killed islet APCs. At later stages of infiltration, T-cell motility accelerated, and cytokine production was lost despite the presence of higher numbers of infiltrating APCs that were able to trigger T-cell signaling in vitro. Using timed introduction of effector T cells, we demonstrate that elements of the autoimmune-tissue microenvironment control the dynamics of autoantigen recognition by T cells and their resulting pathogenic effector functions.
Collapse
|
33
|
Quah HS, Miranda-Hernandez S, Khoo A, Harding A, Fynch S, Elkerbout L, Brodnicki TC, Baxter AG, Kay TWH, Thomas HE, Graham KL. Deficiency in type I interferon signaling prevents the early interferon-induced gene signature in pancreatic islets but not type 1 diabetes in NOD mice. Diabetes 2014; 63:1032-40. [PMID: 24353186 DOI: 10.2337/db13-1210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type I interferons (IFNs) have been implicated in the initiation of islet autoimmunity and development of type 1 diabetes. To directly test their involvement, we generated NOD mice deficient in type I IFN receptors (NOD.IFNAR1(-/-)). Expression of the type I IFN-induced genes Mx1, Isg15, Ifit1, Oas1a, and Cxcr4 was detectable in NOD islets as early as 1 week of age. Of these five genes, expression of Isg15, Ifit1, Oas1a, and Mx1 peaked at 3-4 weeks of age, corresponding with an increase in Ifnα mRNA, declined at 5-6 weeks of age, and increased again at 10-14 weeks of age. Increased IFN-induced gene expression was ablated in NOD.IFNAR1(-/-) islets. Loss of Toll-like receptor 2 (TLR2) resulted in reduced islet expression of Mx1 at 2 weeks of age, but TLR2 or TLR9 deficiency did not change the expression of other IFN-induced genes in islets compared with wild-type NOD islets. We observed increased β-cell major histocompatibility complex class I expression with age in NOD and NOD.IFNAR1(-/-) mice. NOD.IFNAR1(-/-) mice developed insulitis and diabetes at a similar rate to NOD controls. These results indicate type I IFN is produced within islets in young mice but is not essential for the initiation and progression of diabetes in NOD mice.
Collapse
|
34
|
Pane JA, Webster NL, Zufferey C, Coulson BS. Rotavirus acceleration of murine type 1 diabetes is associated with increased MHC class I-restricted antigen presentation by B cells and elevated proinflammatory cytokine expression by T cells. Virus Res 2014; 179:73-84. [DOI: 10.1016/j.virusres.2013.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 01/08/2023]
|
35
|
Chee J, Ko HJ, Skowera A, Jhala G, Catterall T, Graham KL, Sutherland RM, Thomas HE, Lew AM, Peakman M, Kay TWH, Krishnamurthy B. Effector-Memory T Cells Develop in Islets and Report Islet Pathology in Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2013; 192:572-80. [DOI: 10.4049/jimmunol.1302100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Graham KL, Sutherland RM, Mannering SI, Zhao Y, Chee J, Krishnamurthy B, Thomas HE, Lew AM, Kay TWH. Pathogenic mechanisms in type 1 diabetes: the islet is both target and driver of disease. Rev Diabet Stud 2012; 9:148-68. [PMID: 23804258 DOI: 10.1900/rds.2012.9.148] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent advances in our understanding of the pathogenesis of type 1 diabetes have occurred in all steps of the disease. This review outlines the pathogenic mechanisms utilized by the immune system to mediate destruction of the pancreatic beta-cells. The autoimmune response against beta-cells appears to begin in the pancreatic lymph node where T cells, which have escaped negative selection in the thymus, first meet beta-cell antigens presented by dendritic cells. Proinsulin is an important antigen in early diabetes. T cells migrate to the islets via the circulation and establish insulitis initially around the islets. T cells within insulitis are specific for islet antigens rather than bystanders. Pathogenic CD4⁺ T cells may recognize peptides from proinsulin which are produced locally within the islet. CD8⁺ T cells differentiate into effector T cells in islets and then kill beta-cells, primarily via the perforin-granzyme pathway. Cytokines do not appear to be important cytotoxic molecules in vivo. Maturation of the immune response within the islet is now understood to contribute to diabetes, and highlights the islet as both driver and target of the disease. The majority of our knowledge of these pathogenic processes is derived from the NOD mouse model, although some processes are mirrored in the human disease. However, more work is required to translate the data from the NOD mouse to our understanding of human diabetes pathogenesis. New technology, especially MHC tetramers and modern imaging, will enhance our understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Kate L Graham
- St. Vincent´s Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mollah ZU, Graham KL, Krishnamurthy B, Trivedi P, Brodnicki TC, Trapani JA, Kay TW, Thomas HE. Granzyme B is dispensable in the development of diabetes in non-obese diabetic mice. PLoS One 2012; 7:e40357. [PMID: 22792290 PMCID: PMC3392222 DOI: 10.1371/journal.pone.0040357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/04/2012] [Indexed: 11/18/2022] Open
Abstract
Pancreatic beta cell destruction in type 1 diabetes is mediated by cytotoxic CD8(+) T lymphoctyes (CTL). Granzyme B is an effector molecule used by CTL to kill target cells. We previously showed that granzyme B-deficient allogeneic CTL inefficiently killed pancreatic islets in vitro. We generated granzyme B-deficient non-obese diabetic (NOD) mice to test whether granzyme B is an important effector molecule in spontaneous type 1 diabetes. Granzyme B-deficient islet antigen-specific CD8(+) T cells had impaired homing into islets of young mice. Insulitis was reduced in granzyme B-deficient mice at 70 days of age (insulitis score 0.043±0.019 in granzyme B-deficient versus 0.139±0.034 in wild-type NOD mice p<0.05), but was similar to wild-type at 100 and 150 days of age. We observed a reduced frequency of CD3(+)CD8(+) T cells in the islets and peripheral lymphoid tissues of granzyme B-deficient mice (p<0.005 and p<0.0001 respectively), but there was no difference in cell proportions in the thymus. Antigen-specific CTL developed normally in granzyme B-deficient mice, and were able to kill NOD islet target cells as efficiently as wild-type CTL in vitro. The incidence of spontaneous diabetes in granzyme B-deficient mice was the same as wild-type NOD mice. We observed a delayed onset of diabetes in granzyme B-deficient CD8-dependent NOD8.3 mice (median onset 102.5 days in granzyme B-deficient versus 57.50 days in wild-type NOD8.3 mice), which may be due to the delayed onset of insulitis or inefficient priming at an earlier age in this accelerated model of diabetes. Our data indicate that granzyme B is dispensable for beta cell destruction in type 1 diabetes, but is required for efficient early activation of CTL.
Collapse
Affiliation(s)
- Zia U. Mollah
- St. Vincent’s Institute, Fitzroy, Victoria, Australia
| | | | | | - Prerak Trivedi
- St. Vincent’s Institute, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Thomas C. Brodnicki
- St. Vincent’s Institute, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | | | - Thomas W. Kay
- St. Vincent’s Institute, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
| | - Helen E. Thomas
- St. Vincent’s Institute, Fitzroy, Victoria, Australia
- Department of Medicine, The University of Melbourne, St. Vincent’s Hospital, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
38
|
Graham KL, Krishnamurthy B, Fynch S, Ayala-Perez R, Slattery RM, Santamaria P, Thomas HE, Kay TWH. Intra-islet proliferation of cytotoxic T lymphocytes contributes to insulitis progression. Eur J Immunol 2012; 42:1717-22. [DOI: 10.1002/eji.201242435] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/12/2012] [Accepted: 04/06/2012] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Stacey Fynch
- St. Vincent's Institute; Fitzroy; Victoria; Australia
| | | | - Robyn M. Slattery
- Department of Immunology; Faculty of Medicine; Nursing and Health Sciences; Monash University; The Alfred Hospital; Victoria; Australia
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre and Department of Microbiology; Immunology and Infectious Disease; Faculty of Medicine, University of Calgary; Calgary; Alberta; Canada
| | | | | |
Collapse
|