1
|
Weiting L, Kawaguchi M, Fukushima T, Sato Y. Loss of hepatocyte growth factor activator inhibitor type 1 (HAI-1) upregulates MMP-9 expression and induces degradation of the epidermal basement membrane. Hum Cell 2024; 38:36. [PMID: 39730982 DOI: 10.1007/s13577-024-01159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1), which is encoded by the SPINT1 gene, is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. We had previously demonstrated that HAI-1 is critical for placental development, epidermal keratinization, and maintenance of keratinocyte morphology by regulating cognate proteases, matriptase and prostasin. After performing ultrastructural analysis of Spint1-deleted skin tissues, our results showed that Spint1-deleted epidermis exhibited partially disrupted epidermal basement-membrane structures. Matrix metalloproteinases-9 (MMP-9) expression levels were upregulated in Spint1-deleted primary cultured keratinocytes and SPINT1 knockout (KO) HaCaT cells. Furthermore, gelatin zymography of the conditioned medium showed increased MMP activities in keratinocytes with reduced HAI-1 expression. Treating SPINT1 KO HaCaT cells with dehydroxymethylepoxyquinomicin (DHMEQ), a small molecule inhibitor of NF-κB, abrogated the upregulation of MMP9 and the gelatinolytic activity associated with MMP-9. These results suggest that HAI-1 may play a critical role in epidermal basement membrane integrity by regulating NF-κB activation-induced upregulation of MMP-9.
Collapse
Affiliation(s)
- Liang Weiting
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan.
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| | - Yuichiro Sato
- Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miazaki, 889-1692, Japan
| |
Collapse
|
2
|
Lin HH, Yu IS, Cheng MS, Chang TJ, Lin HY, Chang YC, Ko CJ, Chen PH, Lin SW, Huang TC, Huang SY, Chen TY, Kan KW, Huang HP, Lee MS. Spint1 disruption in mouse pancreas leads to glucose intolerance and impaired insulin production involving HEPSIN/MAFA. Nat Commun 2024; 15:10537. [PMID: 39627229 PMCID: PMC11615295 DOI: 10.1038/s41467-024-54927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
SPINT1, a membrane-anchored serine protease inhibitor, regulates cascades of pericellular proteolysis while its tissue-specific functions remain incompletely characterized. In this study, we generate Spint1-lacZ knock-in mice and observe Spint1 expression in embryonic pancreatic epithelium. Pancreas-specific Spint1 disruption significantly diminishes islet size and mass, causing glucose intolerance and downregulation of MAFA and insulin. Mechanistically, the serine protease HEPSIN interacts with SPINT1 in β cells, and Hepsin silencing counteracts the downregulation of Mafa and Ins1 caused by Spint1 depletion. Furthermore, we demonstrate a potential interaction between HEPSIN and GLP1R in β cells. Spint1 silencing or Hepsin overexpression reduces GLP1R-related cyclic AMP levels and Mafa expression. Spint1-disrupted mice also exhibit a significant reduction in Exendin-4-induced insulin secretion. Moreover, SPINT1 expression increases in islets of prediabetic humans compared to non-prediabetic groups. The results unveil a role for SPINT1 in β cells, modulating glucose homeostasis and insulin production via HEPSIN/MAFA signaling.
Collapse
Affiliation(s)
- Hsin-Hsien Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
- NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Shan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Ying Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Ko
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Hung Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
- NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Chung Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Wen Kan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ming-Shyue Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Pawar NR, Buzza MS, Duru N, Strong AA, Antalis TM. Matriptase drives dissemination of ovarian cancer spheroids by a PAR-2/PI3K/Akt/MMP9 signaling axis. J Cell Biol 2023; 222:e202209114. [PMID: 37737895 PMCID: PMC10515437 DOI: 10.1083/jcb.202209114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
The transmembrane serine protease matriptase is a key regulator of both barrier-disruptive and protective epithelial cell-cell interactions. Elevated matriptase is a consistent feature of epithelial ovarian cancers (OvCa), where multicellular spheroids shed from the primary tumor into the peritoneal cavity are critical drivers of metastasis. Dynamic cell-to-cell adhesive contacts are required for spheroid formation and maintenance. Here, we show that overactive matriptase, reflected in an increased ratio of matriptase to its inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), disrupts cell-cell contacts to produce loose prometastatic spheroids that display increased mesothelial cell adhesion and submesothelial invasion. We show that these activities are dependent on the matriptase activation of a protease-activated receptor-2 (PAR-2) signaling pathway involving PI3K/Akt and MMP9-induced disruption of cell-cell adhesion by the release of the soluble E-cadherin ectodomain. These data reveal a novel pathological connection between matriptase activation of PAR-2 and disruption of cell-cell adhesion, and support the clinical investigation of this signaling axis as a therapeutic strategy for aggressive metastatic OvCa.
Collapse
Affiliation(s)
- Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, USA
| | - Nadire Duru
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amando A. Strong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD, USA
| |
Collapse
|
4
|
Guo L, Kruglyak L. Genetics and biology of coloration in reptiles: the curious case of the Lemon Frost geckos. Physiol Genomics 2023; 55:479-486. [PMID: 37642275 DOI: 10.1152/physiolgenomics.00015.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Although there are more than 10,000 reptile species, and reptiles have historically contributed to our understanding of biology, genetics research into class Reptilia has lagged compared with other animals. Here, we summarize recent progress in genetics of coloration in reptiles, with a focus on the leopard gecko, Eublepharis macularius. We highlight genetic approaches that have been used to examine variation in color and pattern formation in this species as well as to provide insights into mechanisms underlying skin cancer. We propose that their long breeding history in captivity makes leopard geckos one of the most promising emerging reptilian models for genetic studies. More broadly, technological advances in genetics, genomics, and gene editing may herald a golden era for studies of reptile biology.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, California, United States
- Department of Biological Chemistry, University of California, Los Angeles, California, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| |
Collapse
|
5
|
Yamashita F, Kaieda T, Shimomura T, Kawaguchi M, Lin C, Johnson MD, Tanaka H, Kiwaki T, Fukushima T, Kataoka H. Role of the polycystic kidney disease domain in matriptase chaperone activity and localization of hepatocyte growth factor activator inhibitor‐1. FEBS J 2022; 289:3422-3439. [DOI: 10.1111/febs.16348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Takashi Kaieda
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
- Chitose Laboratory Corp Kanagawa Japan
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Chen‐Yong Lin
- Lambardi Comprehensive Cancer Center Georgetown University, School of Medicine Washington DC USA
| | - Michael D Johnson
- Lambardi Comprehensive Cancer Center Georgetown University, School of Medicine Washington DC USA
| | - Hiroyuki Tanaka
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Takumi Kiwaki
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology Department of Pathology, Faculty of Medicine, University of Miyazaki Japan
| |
Collapse
|
6
|
Ozaka S, Sonoda A, Ariki S, Kamiyama N, Hidano S, Sachi N, Ito K, Kudo Y, Minata M, Saechue B, Dewayani A, Chalalai T, Soga Y, Takahashi Y, Fukuda C, Mizukami K, Okumura R, Kayama H, Murakami K, Takeda K, Kobayashi T. Protease inhibitory activity of secretory leukocyte protease inhibitor ameliorates murine experimental colitis by protecting the intestinal epithelial barrier. Genes Cells 2021; 26:807-822. [PMID: 34379860 DOI: 10.1111/gtc.12888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestine, and the dysfunction of intestinal epithelial barrier (IEB) may trigger the onset of IBD. Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that has been implicated in the tissue-protective effect in the skin and lung. We found that SLPI was induced in lipopolysaccharides-treated colon carcinoma cell line and in the colon of dextran sulfate sodium (DSS)-treated mice. SLPI-deficient mice were administered DSS to induce colitis and sustained severe inflammation compared with wild-type mice. The colonic mucosa of SLPI-deficient mice showed more severe inflammation with neutrophil infiltration and higher levels of proinflammatory cytokines compared with control mice. Moreover, neutrophil elastase (NE) activity in SLPI-deficient mice was increased and IEB function was severely impaired in the colon, accompanied with the increased number of apoptotic cells. Importantly, we demonstrated that DSS-induced colitis was ameliorated by administration of protease inhibitor SSR69071 and recombinant SLPI. These results suggest that the protease inhibitory activity of SLPI protects from colitis by preventing IEB dysfunction caused by excessive NE activity, which provides insight into the novel function of SLPI in the regulation of gut homeostasis and therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shimpei Ariki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kanako Ito
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Mizuki Minata
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Astri Dewayani
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Thanyakorn Chalalai
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuya Takahashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
7
|
Ma J, Scott CA, Ho YN, Mahabaleshwar H, Marsay KS, Zhang C, Teow CK, Ng SS, Zhang W, Tergaonkar V, Partridge LJ, Roy S, Amaya E, Carney TJ. Matriptase activation of Gq drives epithelial disruption and inflammation via RSK and DUOX. eLife 2021; 10:66596. [PMID: 34165081 PMCID: PMC8291973 DOI: 10.7554/elife.66596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues are primed to respond to insults by activating epithelial cell motility and rapid inflammation. Such responses are also elicited upon overexpression of the membrane-bound protease, Matriptase, or mutation of its inhibitor, Hai1. Unrestricted Matriptase activity also predisposes to carcinoma. How Matriptase leads to these cellular outcomes is unknown. We demonstrate that zebrafish hai1a mutants show increased H2O2, NfκB signalling, and IP3R -mediated calcium flashes, and that these promote inflammation, but do not generate epithelial cell motility. In contrast, inhibition of the Gq subunit in hai1a mutants rescues both the inflammation and epithelial phenotypes, with the latter recapitulated by the DAG analogue, PMA. We demonstrate that hai1a has elevated MAPK pathway activity, inhibition of which rescues the epidermal defects. Finally, we identify RSK kinases as MAPK targets disrupting adherens junctions in hai1a mutants. Our work maps novel signalling cascades mediating the potent effects of Matriptase on epithelia, with implications for tissue damage response and carcinoma progression. Cancer occurs when normal processes in the cell become corrupted or unregulated. Many proteins can contribute, including one enzyme called Matriptase that cuts other proteins at specific sites. Matriptase activity is tightly controlled by a protein called Hai1. In mice and zebrafish, when Hai1 cannot adequately control Matriptase activity, invasive cancers with severe inflammation develop. However, it is unclear how unregulated Matriptase leads to both inflammation and cancer invasion. One outcome of Matriptase activity is removal of proteins called Cadherins from the cell surface. These proteins have a role in cell adhesion: they act like glue to stick cells together. Without them, cells can dissociate from a tissue and move away, a critical step in cancer cells invading other organs. However, it is unknown exactly how Matriptase triggers the removal of Cadherins from the cell surface to promote invasion. Previous work has shown that Matriptase switches on a receptor called Proteinase-activated receptor 2, or Par2 for short, which is known to activate many enzymes, including one called phospholipase C. When activated, this enzyme releases two signals into the cell: a sugar called inositol triphosphate, IP3; and a lipid or fat called diacylglycerol, DAG. It is possible that these two signals have a role to play in how Matriptase removes Cadherins from the cell surface. To find out, Ma et al. mapped the effects of Matriptase in zebrafish lacking the Hai1 protein. This revealed that Matriptase increases IP3 and DAG levels, which initiate both inflammation and invasion. IP3 promotes inflammation by switching on pro-inflammatory signals inside the cell such as the chemical hydrogen peroxide. At the same time, DAG promotes cell invasion by activating a well-known cancer signalling pathway called MAPK. This pathway activates a protein called RSK. Ma et al. show that this protein is required to remove Cadherins from the surface of cells, thus connecting Matriptase’s activation of phospholipase C with its role in disrupting cell adhesion. An increase in the ratio of Matriptase to HAI-1 (the human equivalent of Hai1) is present in many cancers. For this reason, the signal cascades described by Ma et al. may be of interest in developing treatments for these cancers. Understanding how these signals work together could lead to more direct targeted anti-cancer approaches in the future.
Collapse
Affiliation(s)
- Jiajia Ma
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Claire A Scott
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ying Na Ho
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Katherine S Marsay
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Changqing Zhang
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Christopher Kj Teow
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Ser Sue Ng
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Weibin Zhang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Lynda J Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Tom J Carney
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
8
|
Guo L, Bloom J, Sykes S, Huang E, Kashif Z, Pham E, Ho K, Alcaraz A, Xiao XG, Duarte-Vogel S, Kruglyak L. Genetics of white color and iridophoroma in "Lemon Frost" leopard geckos. PLoS Genet 2021; 17:e1009580. [PMID: 34166378 PMCID: PMC8224956 DOI: 10.1371/journal.pgen.1009580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 12/16/2022] Open
Abstract
The squamates (lizards and snakes) are close relatives of birds and mammals, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration, venom production, and regeneration. Due to a lack of genomic tools, few genetic studies in squamates have been carried out. The leopard gecko, Eublepharis macularius, is a popular companion animal, and displays a variety of coloration patterns. We took advantage of a large breeding colony and used linkage analysis, synteny, and homozygosity mapping to investigate a spontaneous semi-dominant mutation, “Lemon Frost”, that produces white coloration and causes skin tumors (iridophoroma). We localized the mutation to a single locus which contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma (SKCM) and over-proliferation of epithelial cells in mice and zebrafish. Our work establishes the leopard gecko as a tractable genetic system and suggests that a tumor suppressor in melanocytes in humans can also suppress tumor development in iridophores in lizards. The squamates (lizards and snakes) comprise a diverse group of reptiles, with more than 10,000 described species that display extensive variation in a number of important biological traits, including coloration. In this manuscript, we used quantitative genetics and genomics to map the mutation underlying white coloration in the Lemon Frost morph of the common leopard gecko, Eublepharis macularius. Lemon Frost geckos have increased white body coloration with brightened yellow and orange areas. This morph also displays a high incidence of iridophoroma, a tumor of white-colored cells. We obtained phenotype information and DNA samples from geckos in a large breeding colony and used genome sequencing and genetic linkage analysis to localize the Lemon Frost mutation to a single locus. This locus contains a strong candidate gene, SPINT1, a tumor suppressor implicated in human skin cutaneous melanoma. Together with other recent advances, our work brings reptiles into the modern genetics era.
Collapse
Affiliation(s)
- Longhua Guo
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| | - Joshua Bloom
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Steve Sykes
- Geckos Etc. Herpetoculture, Rocklin, California, United States of America
| | - Elaine Huang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Zain Kashif
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Elise Pham
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Katarina Ho
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
| | - Ana Alcaraz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, United States of America
| | - Xinshu Grace Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, United States of America
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Leonid Kruglyak
- Department of Human Genetics, Department of Biological Chemistry, Howard Hughes Medical Institute, University of California, Los Angeles, California, United States of America
- * E-mail: (LG); (LK)
| |
Collapse
|
9
|
Kwon H, Ha H, Jeon H, Jang J, Son SH, Lee K, Park SK, Byun Y. Structure-activity relationship studies of dipeptide-based hepsin inhibitors with Arg bioisosteres. Bioorg Chem 2020; 107:104521. [PMID: 33334587 DOI: 10.1016/j.bioorg.2020.104521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/09/2023]
Abstract
Hepsin is a type II transmembrane serine protease (TTSP) associated with cell proliferation and overexpressed in several types of cancer including prostate cancer (PCa). Because of its significant role in cancer progression and metastasis, hepsin is an attractive protein as a potential therapeutic and diagnostic biomarker for PCa. Based on the reported Leu-Arg dipeptide-based hepsin inhibitors, we performed structural modification and determined in vitro hepsin- and matriptase-inhibitory activities. Comprehensive structure-activity relationship studies identified that the p-guanidinophenylalanine-based dipeptide analog 22a exhibited a strong hepsin-inhibitory activity (Ki = 50.5 nM) and 22-fold hepsin selectivity over matriptase. Compound 22a could be a prototype molecule for structural optimization of dipeptide-based hepsin inhibitors.
Collapse
Affiliation(s)
- Hongmok Kwon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Hyunsoo Ha
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Hayoung Jeon
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Jaebong Jang
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Sang-Hyun Son
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Jochiwon-eup, Sejong 30019, Republic of Korea; Biomedical Research Center, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea.
| |
Collapse
|
10
|
Ozawa S, Matsubayashi M, Nanaura H, Yanagita M, Mori K, Asanuma K, Kajiwara N, Hayashi K, Ohashi H, Kasahara M, Yokoi H, Kataoka H, Mori E, Nakagawa T. Proteolytic cleavage of Podocin by Matriptase exacerbates podocyte injury. J Biol Chem 2020; 295:16002-16012. [PMID: 32907879 DOI: 10.1074/jbc.ra120.013721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/18/2020] [Indexed: 01/15/2023] Open
Abstract
Podocyte injury is a critical step toward the progression of renal disease and is often associated with a loss of slit diaphragm proteins, including Podocin. Although there is a possibility that the extracellular domain of these slit diaphragm proteins can be a target for a pathological proteolysis, the precise mechanism driving the phenomenon remains unknown. Here we show that Matriptase, a membrane-anchored protein, was activated at podocytes in CKD patients and mice, whereas Matriptase inhibitors slowed the progression of mouse kidney disease. The mechanism could be accounted for by an imbalance favoring Matriptase over its cognate inhibitor, hepatocyte growth factor activator inhibitor type 1 (HAI-1), because conditional depletion of HAI-1 in podocytes accelerated podocyte injury in mouse model. Matriptase was capable of cleaving Podocin, but such a reaction was blocked by either HAI-1 or dominant-negative Matriptase. Furthermore, the N terminus of Podocin, as a consequence of Matriptase cleavage of Podocin, translocated to nucleoli, suggesting that the N terminus of Podocin might be involved in the process of podocyte injury. Given these observations, we propose that the proteolytic cleavage of Podocin by Matriptase could potentially cause podocyte injury and that targeting Matriptase could be a novel therapeutic strategy for CKD patients.
Collapse
Affiliation(s)
- Shota Ozawa
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Research Unit/Innovative Medical Science, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoki Nanaura
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Motoko Yanagita
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Kiyoshi Mori
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Katsuhiko Asanuma
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Nephrology, Chiba University, Chiba, Japan
| | | | - Kazuyuki Hayashi
- Department of Nephrology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Hiroshi Ohashi
- Department of Pathology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Masato Kasahara
- Institute for Clinical and Translational Science, Nara Medical University, Kashihara, Nara, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Kataoka
- Department of Pathology, University of Miyazaki, Kihara, Miyazaki, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| | - Takahiko Nakagawa
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
11
|
Mukai S, Yamasaki K, Fujii M, Nagai T, Terada N, Kataoka H, Kamoto T. Dysregulation of Type II Transmembrane Serine Proteases and Ligand-Dependent Activation of MET in Urological Cancers. Int J Mol Sci 2020; 21:ijms21082663. [PMID: 32290402 PMCID: PMC7215454 DOI: 10.3390/ijms21082663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023] Open
Abstract
Unlike in normal epithelium, dysregulated overactivation of various proteases have been reported in cancers. Degradation of pericancerous extracellular matrix leading to cancer cell invasion by matrix metalloproteases is well known evidence. On the other hand, several cell-surface proteases, including type II transmembrane serine proteases (TTSPs), also induce progression through activation of growth factors, protease activating receptors and other proteases. Hepatocyte growth factor (HGF) known as a multifunctional growth factor that upregulates cancer cell motility, invasiveness, proliferative, and anti-apoptotic activities through phosphorylation of MET (a specific receptor of HGF). HGF secreted as inactive zymogen (pro-HGF) from cancer associated stromal fibroblasts, and the proteolytic activation by several TTSPs including matriptase and hepsin is required. The activation is strictly regulated by HGF activator inhibitors (HAIs) in physiological condition. However, downregulation is frequently observed in cancers. Indeed, overactivation of MET by upregulation of matriptase and hepsin accompanied by the downregulation of HAIs in urological cancers (prostate cancer, renal cell carcinoma, and bladder cancer) are also reported, a phenomenon observed in cancer cells with malignant phenotype, and correlated with poor prognosis. In this review, we summarized current reports focusing on TTSPs, HAIs, and MET signaling axis in urological cancers.
Collapse
Affiliation(s)
- Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
- Correspondence: ; Tel.: +81-985-85-2968
| | - Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Masato Fujii
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Takahiro Nagai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| | - Hiroaki Kataoka
- Oncopathology and Regenerative Biology Section, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (K.Y.); (M.F.); (T.N.); (N.T.); (T.K.)
| |
Collapse
|
12
|
Kawaguchi M, Yamamoto K, Kataoka H, Izumi A, Yamashita F, Kiwaki T, Nishida T, Camerer E, Fukushima T. Protease-activated receptor-2 accelerates intestinal tumor formation through activation of nuclear factor-κB signaling and tumor angiogenesis in Apc Min/+ mice. Cancer Sci 2020; 111:1193-1202. [PMID: 31997435 PMCID: PMC7156842 DOI: 10.1111/cas.14335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor‐1 (HAI‐1), encoded by the SPINT1 gene, is a membrane‐bound protease inhibitor expressed on the surface of epithelial cells. Hepatocyte growth factor activator inhibitor‐1 regulates type II transmembrane serine proteases that activate protease‐activated receptor‐2 (PAR‐2). We previously reported that deletion of Spint1 in ApcMin/+ mice resulted in accelerated formation of intestinal tumors, possibly through enhanced nuclear factor‐κB signaling. In this study, we examined the role of PAR‐2 in accelerating tumor formation in the ApcMin/+ model in the presence or absence of Spint1. We observed that knockout of the F2rl1 gene, encoding PAR‐2, not only eliminated the enhanced formation of intestinal tumors caused by Spint1 deletion, but also reduced tumor formation in the presence of Spint1. Exacerbation of anemia and weight loss associated with HAI‐1 deficiency was also normalized by compound deficiency of PAR‐2. Mechanistically, signaling triggered by deregulated protease activities increased nuclear translocation of RelA/p65, vascular endothelial growth factor expression, and vascular density in ApcMin/+‐induced intestinal tumors. These results suggest that serine proteases promote intestinal carcinogenesis through activation of PAR‐2, and that HAI‐1 plays a critical tumor suppressor role as an inhibitor of matriptase, kallikreins, and other PAR‐2 activating proteases.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Aya Izumi
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Fumiki Yamashita
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Takumi Kiwaki
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Takahiro Nishida
- Department of Pathology, University of Miyazaki, Miyazaki, Japan
| | - Eric Camerer
- Inserm U970, Paris Cardiovascular Research Center, Université de Paris, Paris, France
| | | |
Collapse
|
13
|
Min DJ, Zhao Y, Monks A, Palmisano A, Hose C, Teicher BA, Doroshow JH, Simon RM. Identification of pharmacodynamic biomarkers and common molecular mechanisms of response to genotoxic agents in cancer cell lines. Cancer Chemother Pharmacol 2019; 84:771-780. [PMID: 31367787 PMCID: PMC8127867 DOI: 10.1007/s00280-019-03898-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Genotoxic agents (GAs) including cisplatin, doxorubicin, gemcitabine, and topotecan are often used in cancer treatment. However, the response to GAs is variable among patients and predictive biomarkers are inadequate to select patients for treatment. Accurate and rapid pharmacodynamics measures of response can, thus, be useful for monitoring therapy and improve clinical outcomes. METHODS This study focuses on integrating a database of genome-wide response to treatment (The NCI Transcriptional Pharmacodynamics Workbench) with a database of baseline gene expression (GSE32474) for the NCI-60 cell lines to identify mechanisms of response and pharmacodynamic (PD) biomarkers. RESULTS AND CONCLUSIONS Our analysis suggests that GA-induced endoplasmic reticulum (ER) stress may signal for GA-induced cell death. Reducing the uptake of GA, activating DNA repair, and blocking ER-stress induction cooperate to prevent GA-induced cell death in the GA-resistant cells. ATF3, DDIT3, CARS, and PPP1R15A appear as possible candidate PD biomarkers for monitoring the progress of GA treatment. Further validation studies on the proposed intrinsic drug-resistant mechanism and candidate genes are needed using in vivo data from either patient-derived xenograft models or clinical chemotherapy trials.
Collapse
Affiliation(s)
- Dong-Joon Min
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Anne Monks
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Curtis Hose
- Molecular Pharmacology Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Beverly A Teicher
- Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Richard M Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| |
Collapse
|
14
|
Promoter Hypomethylation Is Responsible for Upregulated Expression of HAI-1 in Hepatocellular Carcinoma. DISEASE MARKERS 2019; 2019:9175215. [PMID: 31558918 PMCID: PMC6735181 DOI: 10.1155/2019/9175215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
An upregulated expression of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in hepatocellular carcinomas (HCC) associates with poor prognosis, but the underlying mechanism for expression regulation has not been elucidated. HAI-1 was expressed in HCC cell line Hep3B cells at a high level but absent or has a low level in other HCC cell lines HepG2 and SMMC7721 and immortal normal liver cell line L02 at transcriptional and translational levels, respectively. A dual-luciferase reporter assay showed that transcriptional activity of HAI-1 in the promoter region (-452 bp to -280 bp from the mRNA start site) was strongly enhanced in Hep3B and SMMC7721. Bisulfite genomic sequencing results of the HAI-1 promoter region showed an inverse correlation between levels of promoter methylation and expression in HCC cells. The expression level of HAI-1 in SMMC7721, HepG2, and L02 cells was elevated after 5-Aza-2′-deoxycytidine treatment. Hypomethylation of the HAI-1 promoter region contributed to the elevated HAI-1 expression in HCC tissues. In addition, the hypomethylation of the HAI-1 promoter region correlated with poor differentiation status of HCC tissues. Our findings indicate that promoter hypomethylation is an important mechanism for aberrant HAI-1 expression regulation in HCC.
Collapse
|
15
|
Morrin ST, Owens RA, Le Berre M, Gerlach JQ, Joshi L, Bode L, Irwin JA, Hickey RM. Interrogation of Milk-Driven Changes to the Proteome of Intestinal Epithelial Cells by Integrated Proteomics and Glycomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1902-1917. [PMID: 30663306 DOI: 10.1021/acs.jafc.8b06484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bovine colostrum is a rich source of bioactive components which are important in the development of the intestine, in stimulating gut structure and function and in preparing the gut surface for subsequent colonization of microbes. What is not clear, however, is how colostrum may affect the repertoire of receptors and membrane proteins of the intestinal surface and the post-translational modifications associated with them. In the present work, we aimed to characterize the surface receptor and glycan profile of human HT-29 intestinal cells after exposure to a bovine colostrum fraction (BCF) by means of proteomic and glycomic analyses. Integration of label-free quantitative proteomic analysis and lectin array profiles confirmed that BCF exposure results in changes in the levels of glycoproteins present at the cell surface and also changes to their glycosylation pattern. This study contributes to our understanding of how milk components may regulate intestinal cells and prime them for bacterial interaction.
Collapse
Affiliation(s)
- Sinead T Morrin
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rebecca A Owens
- Department of Biology , Maynooth University , Maynooth , W23 F2H6 , County Kildare , Ireland
| | - Marie Le Berre
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Jared Q Gerlach
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lokesh Joshi
- Glycoscience Group, Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science , National University of Ireland Galway , H91TK33 , Galway , Ireland
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence , University of California, San Diego , La Jolla , California 92093 , United States
| | - Jane A Irwin
- Veterinary Sciences Centre, School of Veterinary Medicine , University College Dublin , Belfield, Dublin 4, D04 V1W8 , Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre , Moorepark , Fermoy, P61C996 , County Cork , Ireland
| |
Collapse
|
16
|
Kawaguchi M, Yamamoto K, Takeda N, Fukushima T, Yamashita F, Sato K, Kitamura K, Hippo Y, Janetka JW, Kataoka H. Hepatocyte growth factor activator inhibitor-2 stabilizes Epcam and maintains epithelial organization in the mouse intestine. Commun Biol 2019; 2:11. [PMID: 30623107 PMCID: PMC6320337 DOI: 10.1038/s42003-018-0255-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023] Open
Abstract
Mutations in SPINT2 encoding the epithelial serine protease inhibitor hepatocyte growth factor activator inhibitor-2 (HAI-2) are associated with congenital tufting enteropathy. However, the functions of HAI-2 in vivo are poorly understood. Here we used tamoxifen-induced Cre-LoxP recombination in mice to ablate Spint2. Mice lacking Spint2 died within 6 days after initiating tamoxifen treatment and showed severe epithelial damage in the whole intestinal tracts, and, to a lesser extent, the extrahepatic bile duct. The intestinal epithelium showed enhanced exfoliation, villous atrophy, enterocyte tufts and elongated crypts. Organoid crypt culture indicated that Spint2 ablation induced Epcam cleavage with decreased claudin-7 levels and resulted in organoid rupture. These organoid changes could be rescued by addition of serine protease inhibitors aprotinin, camostat mesilate and matriptase-selective α-ketobenzothiazole as well as by co-deletion of Prss8, encoding the serine protease prostasin. These results indicate that HAI-2 is an essential cellular inhibitor for maintaining intestinal epithelium architecture.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Naoki Takeda
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 8600811, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Kenichiro Kitamura
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 4093898 Japan
| | - Yoshitaka Hippo
- Division of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba 2608717, Japan
| | - James W. Janetka
- Department of Medicine, Oncology Division, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110 USA
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| |
Collapse
|
17
|
Matsushita T, Sakai M, Yoshida H, Morita S, Hieda Y, Sakai T. Grhl2 regulation of SPINT1 expression controls salivary gland development. Biochem Biophys Res Commun 2018; 504:263-269. [PMID: 30193734 DOI: 10.1016/j.bbrc.2018.08.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Development of the salivary gland is characterized by extensive branching morphogenesis and lumen formation, the latter of which is closely associated with differentiation into acinar and ductal cells. Although various molecules, including signaling and cell adhesion molecules, have been implicated in salivary gland development, transcription factors (TFs) regulating the expression of those molecules and morphological development of the gland are largely unknown. Here we show that knockdown of the epithelial TF, Grainyhead-like 2 (Grhl2), with siRNA in developing mouse submandibular salivary gland (SMG) cultured ex vivo resulted in retardation of epithelial development. This retardation was concomitant with suppression of gene expression for the cell adhesion molecules, such as E-cadherin and the extracellular protease inhibitor SPINT1, and with the disorganized deposition of the basal lamina protein laminin. ChIP-PCR demonstrated the binding of Grhl2 protein to the Spint1 gene in the SMG. Notably, addition of recombinant SPINT1 protein in cultured SMG overcame the suppressive effects of Grhl2 siRNA on epithelial development and laminin deposition. These findings show that Grhl2 regulation of SPINT1 expression controls salivary gland development.
Collapse
Affiliation(s)
- Takumi Matsushita
- First Department of Oral and Maxillofacial Surgery, Osaka Dental University, 8-1 Hanazono-cho, Kuzuha, Hirakata-city, Osaka, 573-1121, Japan; Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-city, Osaka, 565-0871, Japan
| | - Manabu Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-city, Osaka, 565-0871, Japan; Department of Clinical Laboratory, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita-city, Osaka, 565-0871, Japan
| | - Hiroaki Yoshida
- First Department of Oral and Maxillofacial Surgery, Osaka Dental University, 8-1 Hanazono-cho, Kuzuha, Hirakata-city, Osaka, 573-1121, Japan
| | - Shousuke Morita
- First Department of Oral and Maxillofacial Surgery, Osaka Dental University, 8-1 Hanazono-cho, Kuzuha, Hirakata-city, Osaka, 573-1121, Japan
| | - Yohki Hieda
- Department of Biology, Osaka Dental University, 8-1 Hanazono-cho, Kuzuha, Hirakata-city, Osaka, 573-1121, Japan; Basic Cultural Education Research Center, Kyushu University of Nursing and Social Welfare, 888 Tomino, Tamana-city, Kumamoto, 865-0062, Japan.
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-city, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Danielsen ET, Olsen AK, Coskun M, Nonboe AW, Larsen S, Dahlgaard K, Bennett EP, Mitchelmore C, Vogel LK, Troelsen JT. Intestinal regulation of suppression of tumorigenicity 14 (ST14) and serine peptidase inhibitor, Kunitz type -1 (SPINT1) by transcription factor CDX2. Sci Rep 2018; 8:11813. [PMID: 30087389 PMCID: PMC6081401 DOI: 10.1038/s41598-018-30216-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
The type II membrane-anchored serine protease, matriptase, encoded by suppression of tumorgenicity-14 (ST14) regulates the integrity of the intestinal epithelial barrier in concert with its inhibitor, HAI-1 encoded by serine peptidase inhibitor, Kunitz type -1 (SPINT1). The balance of the protease/inhibitor gene expression ratio is vital in preventing the oncogenic potential of matriptase. The intestinal cell lineage is regulated by a transcriptional regulatory network where the tumor suppressor, Caudal homeobox 2 (CDX2) is considered to be an intestinal master transcription factor. In this study, we show that CDX2 has a dual function in regulating both ST14 and SPINT1, gene expression in intestinal cells. We find that CDX2 is not required for the basal ST14 and SPINT1 gene expression; however changes in CDX2 expression affects the ST14/SPINT1 mRNA ratio. Exploring CDX2 ChIP-seq data from intestinal cell lines, we identified genomic CDX2-enriched enhancer elements for both ST14 and SPINT1, which regulate their corresponding gene promoter activity. We show that CDX2 displays both repressive and enhancing regulatory abilities in a cell specific manner. Together, these data reveal new insight into transcriptional mechanisms controlling the intestinal matriptase/inhibitor balance.
Collapse
Affiliation(s)
- E Thomas Danielsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Institute of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Anders Krüger Olsen
- Institute of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, University of Copenhagen, DK-2730, Herlev, Denmark
| | - Annika W Nonboe
- Institute of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Department of Clinical Immunology, Naestved Hospital, Naestved, Region Zealand, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Eric Paul Bennett
- Copenhagen Center for Glycomics, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathy Mitchelmore
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Lotte Katrine Vogel
- Institute of Cellular and Molecular Medicine, the Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
19
|
Kawaguchi M, Yamamoto K, Kanemaru A, Tanaka H, Umezawa K, Fukushima T, Kataoka H. Inhibition of nuclear factor-κB signaling suppresses Spint1-deletion-induced tumor susceptibility in the ApcMin/+ model. Oncotarget 2018; 7:68614-68622. [PMID: 27612426 PMCID: PMC5356577 DOI: 10.18632/oncotarget.11863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/24/2016] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1), encoded by the Spint1 gene, is a membrane-bound serine protease inhibitor expressed on the epithelial cell surface. We have previously reported that the intestine-specific Spint1-deleted ApcMin/+ mice showed accelerated formation of intestinal tumors. In this study, we focused on the role of nuclear factor-κB (NF-κB) signaling in the HAI-1 loss-induced tumor susceptibility. In the HAI-1-deficient intestine, inflammatory cytokines, such as tumor necrosis factor-α and interleukin-6, were upregulated in normal mucosa. Furthermore, increased nuclear translocation of NF-κB was observed in both normal mucosa and tumor tissues of HAI-1-deficient ApcMin/+ intestines, and an NF-κB target gene, such as urokinase-type plasminogen activator, was upregulated in the HAI-1-deficient tumor tissues. Thus, we investigated the effect of dehydroxymethylepoxyquinomicin (DHMEQ), a synthetic inhibitor of NF-κB, on intestinal HAI-1-deficient ApcMin/+ mice. Treatment with DHMEQ reduced the formation of intestinal tumors compared with vehicle control in the HAI-1-deficient ApcMin/+ mice. These results suggested that insufficient HAI-1 function promotes intestinal carcinogenesis by activating NF-κB signaling.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ai Kanemaru
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Tanaka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kazuo Umezawa
- Department of Molecular Target Medicine Screening, Aichi Medical University School of Medicine, Aichi, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
20
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
21
|
Owusu BY, Bansal N, Venukadasula PKM, Ross LJ, Messick TE, Goel S, Galemmo RA, Klampfer L. Inhibition of pro-HGF activation by SRI31215, a novel approach to block oncogenic HGF/MET signaling. Oncotarget 2017; 7:29492-506. [PMID: 27121052 PMCID: PMC5045412 DOI: 10.18632/oncotarget.8785] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/28/2016] [Indexed: 01/05/2023] Open
Abstract
The binding of hepatocyte growth factor (HGF) to its receptor MET activates a signaling cascade that promotes cell survival, proliferation, cell scattering, migration and invasion of malignant cells. HGF is secreted by cancer cells or by tumor-associated fibroblasts as pro-HGF, an inactive precursor. A key step in the regulation of HGF/MET signaling is proteolytic processing of pro-HGF to its active form by one of the three serine proteases, matriptase, hepsin or HGF activator (HGFA).We developed SRI 31215, a small molecule that acts as a triplex inhibitor of matriptase, hepsin and HGFA and mimics the activity of HAI-1/2, endogenous inhibitors of HGF activation. We demonstrated that SRI 31215 inhibits fibroblast-induced MET activation, epithelial-mesenchymal transition and migration of cancer cells. SRI 31215 overcomes primary resistance to cetuximab and gefitinib in HGF-producing colon cancer cells and prevents fibroblast-mediated resistance to EGFR inhibitors. Thus, SRI 31215 blocks signaling between cancer cells and fibroblasts and inhibits the tumor-promoting activity of cancer-associated fibroblasts.Aberrant HGF/MET signaling supports cell survival, proliferation, angiogenesis, invasion and metastatic spread of cancer cells, establishing HGF and MET as valid therapeutic targets. Our data demonstrate that inhibitors of HGF activation, such as SRI 31215, merit investigation as potential therapeutics in tumors that are addicted to HGF/MET signaling. The findings reported here also indicate that inhibitors of HGF activation overcome primary and acquired resistance to anti-EGFR therapy, providing a rationale for concurrent inhibition of EGFR and HGF to prevent therapeutic resistance and to improve the outcome of cancer patients.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Oncology, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Namita Bansal
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | | | - Larry J Ross
- High Throughput Screening, Southern Research, Drug Discovery Division, Birmingham, AL, USA
| | - Troy E Messick
- The Wistar Institute, Southern Research, Philadelphia, PA, USA
| | - Sanjay Goel
- Albert Einstein Cancer Center, Southern Research, Bronx, NY, USA
| | - Robert A Galemmo
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Lidija Klampfer
- Department of Oncology, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| |
Collapse
|
22
|
Owusu BY, Thomas S, Venukadasula P, Han Z, Janetka JW, Galemmo RA, Klampfer L. Targeting the tumor-promoting microenvironment in MET-amplified NSCLC cells with a novel inhibitor of pro-HGF activation. Oncotarget 2017; 8:63014-63025. [PMID: 28968967 PMCID: PMC5609899 DOI: 10.18632/oncotarget.18260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/03/2017] [Indexed: 12/01/2022] Open
Abstract
Targeted therapeutic agents, such as inhibitors of epithelial growth factor receptor (EGFR), have transformed the management of non-small cell lung cancer (NSCLC) patients. MET-amplified NSCLC cells display resistance to EGFR-targeting agents, but are addicted to MET signaling for survival and proliferation and are sensitive to MET inhibition. However, responsive cancer cells invariably develop resistance to MET-targeted treatment. The tumor microenvironment plays a major role in resistance to anticancer therapy. We demonstrated that fibroblasts block the response of MET-amplified NSCLC cells to the MET kinase inhibitor, JNJ38877605 in an HGF-dependent manner. Thus, MET-amplified NSCLC cells become addicted to HGF upon pharmacological inhibition of MET. HGF restored phosphorylation of MET, EGFR and RON, and maintained pro-survival AKT and ERK signaling in MET-inhibited cells. We developed a small molecule inhibitor of pro-HGF activation, SRI31215, which acts as a triplex inhibitor of the pro-HGF activating proteases matriptase, hepsin and HGF activator (HGFA). SRI31215 blocked crosstalk between tumor cells and fibroblasts and overcame fibroblast-mediated resistance to MET inhibition by preventing fibroblast-mediated reactivation of AKT and ERK signaling. Structurally unrelated triplex inhibitors of matriptase, hepsin and HGFA that we developed in parallel showed similar biological activity. Our data suggest that simultaneous inhibition of HGF and MET is required to overcome resistance to MET inhibitors in MET-amplified NSCLC cells. This provides a rationale for the development of novel combination therapeutic strategies for the treatment of NSCLC patients with MET amplification.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Oncology Southern Research, Birmingham, AL, 35205 USA
| | - Shantasia Thomas
- Department of Oncology Southern Research, Birmingham, AL, 35205 USA
| | | | - Zhenfu Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110 USA
| | - Robert A Galemmo
- Department of Oncology Southern Research, Birmingham, AL, 35205 USA
| | - Lidija Klampfer
- Department of Oncology Southern Research, Birmingham, AL, 35205 USA
| |
Collapse
|
23
|
Hepatocyte Growth Factor, a Key Tumor-Promoting Factor in the Tumor Microenvironment. Cancers (Basel) 2017; 9:cancers9040035. [PMID: 28420162 PMCID: PMC5406710 DOI: 10.3390/cancers9040035] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment plays a key role in tumor development and progression. Stromal cells secrete growth factors, cytokines and extracellular matrix proteins which promote growth, survival and metastatic spread of cancer cells. Fibroblasts are the predominant constituent of the tumor stroma and Hepatocyte Growth Factor (HGF), the specific ligand for the tyrosine kinase receptor c-MET, is a major component of their secretome. Indeed, cancer-associated fibroblasts have been shown to promote growth, survival and migration of cancer cells in an HGF-dependent manner. Fibroblasts also confer resistance to anti-cancer therapy through HGF-induced epithelial mesenchymal transition (EMT) and activation of pro-survival signaling pathways such as ERK and AKT in tumor cells. Constitutive HGF/MET signaling in cancer cells is associated with increased tumor aggressiveness and predicts poor outcome in cancer patients. Due to its role in tumor progression and therapeutic resistance, both HGF and MET have emerged as valid therapeutic targets. Several inhibitors of MET and HGF are currently being tested in clinical trials. Preclinical data provide a strong indication that inhibitors of HGF/MET signaling overcome both primary and acquired resistance to EGFR, HER2, and BRAF targeting agents. These findings support the notion that co-targeting of cancer cells and stromal cells is required to prevent therapeutic resistance and to increase the overall survival rate of cancer patients. HGF dependence has emerged as a hallmark of therapeutic resistance, suggesting that inhibitors of biological activity of HGF should be included into therapeutic regimens of cancer patients.
Collapse
|
24
|
Liu M, Yuan C, Jensen JK, Zhao B, Jiang Y, Jiang L, Huang M. The crystal structure of a multidomain protease inhibitor (HAI-1) reveals the mechanism of its auto-inhibition. J Biol Chem 2017; 292:8412-8423. [PMID: 28348076 DOI: 10.1074/jbc.m117.779256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Indexed: 01/23/2023] Open
Abstract
Hepatocyte growth factor activator inhibitor 1 (HAI-1) is a membrane-bound multidomain protein essential to the integrity of the basement membrane during placental development and is also important in maintaining postnatal homeostasis in many tissues. HAI-1 is a Kunitz-type serine protease inhibitor, and soluble fragments of HAI-1 with variable lengths have been identified in vivo The full-length extracellular portion of HAI-1 (sHAI-1) shows weaker inhibitory activity toward target proteases than the smaller fragments, suggesting auto-inhibition of HAI-1. However, this possible regulatory mechanism has not yet been evaluated. Here, we solved the crystal structure of sHAI-1 and determined the solution structure by small-angle X-ray scattering. These structural analyses revealed that, despite the presence of long linkers, sHAI-1 exists in a compact conformation in which sHAI-1 active sites in Kunitz domain 1 are sterically blocked by neighboring structural elements. We also found that in the presence of target proteases, sHAI-1 adopts an extended conformation that disables the auto-inhibition effect. Our results also reveal the roles of non-inhibitory domains of this multidomain protein and explain the low activity of the full-length protein. The structural insights gained here improve our understanding of the regulation of HAI-1 inhibitory activities and point to new approaches for better controlling these activities.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Yuan
- College of Bioscience and Biotechnology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Baoyu Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yunbin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longguang Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
25
|
Stidham RW, Wu J, Shi J, Lubman DM, Higgins PDR. Serum Glycoproteome Profiles for Distinguishing Intestinal Fibrosis from Inflammation in Crohn's Disease. PLoS One 2017; 12:e0170506. [PMID: 28114331 PMCID: PMC5256928 DOI: 10.1371/journal.pone.0170506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Reliable identification and quantitation of intestinal fibrosis in the setting of co-existing inflammation due to Crohn's disease (CD) is difficult. We aimed to identify serum biomarkers which distinguish inflammatory from fibrostenotic phenotypes of CD using serum glycoproteome profiles. METHODS Subjects with fibrostenotic and inflammation-predominant CD phenotypes (n = 20 per group) underwent comparison by quantitative serum glycoproteome profiles as part of a single tertiary care center cohort study. Following lectin elution, glycoproteins underwent liquid chromatography followed by tandem mass spectrometry. Identified candidate biomarkers of fibrosis were also measured by serum ELISA, a widely available technique. RESULTS Five (5) glycoproteins demonstrated a ≥20% relative abundance change in ≥80% of subjects, including cartilage oligomeric matrix protein (COMP) and hepatocyte growth factor activator (HGFA). COMP (431.7±112.7 vs. 348.7±90.5 ng/mL, p = 0.012) and HGFA (152.7±66.5 vs. 107.1±38.7 ng/mL, p = 0.031) serum levels were elevated in the fibrostenotic vs. inflammatory CD groups using ELISA. Within the fibrostenotic group, intra-individual changes of candidate biomarkers revealed HGFA levels significantly declined following the resection of all diseased intestine (152.7±66.5 vs. 107.1±38.7 ng/mL, p = 0.015); COMP levels were unchanged. Immunohistochemical staining confirmed the presence of COMP in the submucosa and muscularis of resected fibrostenotic tissue. CONCLUSIONS In this biomarker discovery study, several serum glycoproteins, specifically COMP and HGFA, differ between between predominately inflammatory and fibrostenotic CD phenotypes. The development of blood-based biomarkers of fibrosis would provide an important complement to existing prognostic tools in IBD, aiding decisions on therapeutic intensity and mechanism selection, surgery, and the monitoring of future anti-fibrotic therapies for CD.
Collapse
Affiliation(s)
- Ryan W Stidham
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jing Wu
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - Jiaqi Shi
- Department of Pathology, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - David M Lubman
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, United States of America
| | - Peter D R Higgins
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
26
|
Liu M, Yuan C, Jiang Y, Jiang L, Huang M. Recombinant hepatocyte growth factor activator inhibitor 1: expression in Drosophila S2 cells, purification and crystallization. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2017; 73:45-50. [PMID: 28045393 DOI: 10.1107/s2053230x16020082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Hepatocyte growth factor activator inhibitor 1 (HAI-1) is a multi-domain membrane-associated protease inhibitor that potently inhibits a variety of serine proteases such as hepatocyte growth factor activator and matriptase. Different truncates of HAI-1 show varying potencies for inhibition of target proteases, suggesting that the domain organization of HAI-1 plays a critical role in its function. Here, the soluble full-length extracellular part of HAI-1 (sHAI-1) was expressed using the Drosophila S2 insect-cell expression system. Diffraction-quality crystals of sHAI-1 were produced using ammonium sulfate as precipitant. The crystal diffracted to 3.8 Å resolution and belonged to space group P41212, with unit-cell parameters a = b = 95.42, c = 124.50 Å. The asymmetric unit contains one sHAI-1 molecule.
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Cai Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Yunbin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Longguang Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
27
|
Altered Prostasin (CAP1/Prss8) Expression Favors Inflammation and Tissue Remodeling in DSS-induced Colitis. Inflamm Bowel Dis 2016; 22:2824-2839. [PMID: 27755216 DOI: 10.1097/mib.0000000000000940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn's disease are diseases with impaired epithelial barrier function. We aimed to investigate whether mutated prostasin and thus, reduced colonic epithelial sodium channel activity predisposes to develop an experimentally dextran sodium sulfate (DSS)-induced colitis. METHODS Wildtype, heterozygous (fr/+), and homozygous (fr/fr) prostasin-mutant rats were treated 7 days with DSS followed by 7 days of recovery and analyzed with respect to histology, clinicopathological parameters, inflammatory marker mRNA transcript expression, and sodium transporter protein expression. RESULTS In this study, a more detailed analysis on rat fr/fr colons revealed reduced numbers of crypt and goblet cells, and local angiodysplasia, as compared with heterozygous (fr/+) and wildtype littermates. Following 2% DSS treatment for 7 days followed by 7 days recovery, fr/fr animals lost body weight, and reached maximal diarrhea score and highest disease activity after only 3 days, and strongly increased cytokine levels. The histology score significantly increased in all groups, but fr/fr colons further displayed pronounced histological alterations with near absence of goblet cells, rearrangement of the lamina propria, and presence of neutrophils, eosinophils, and macrophages. Additionally, fr/fr colons showed ulcerations and edemas that were absent in fr/+ and wildtype littermates. Following recovery, fr/fr rats reached, although significantly delayed, near-normal diarrhea score and disease activity, but exhibited severe architectural remodeling, despite unchanged sodium transporter protein expression. CONCLUSIONS In summary, our results demonstrate a protective role of colonic prostasin expression against experimental colitis, and thus represent a susceptibility gene in the development of inflammatory bowel disease.
Collapse
|
28
|
Boddicker RL, Koltes JE, Fritz‐Waters ER, Koesterke L, Weeks N, Yin T, Mani V, Nettleton D, Reecy JM, Baumgard LH, Spencer JD, Gabler NK, Ross JW. Genome‐wide methylation profile following prenatal and postnatal dietary omega‐3 fatty acid supplementation in pigs. Anim Genet 2016; 47:658-671. [DOI: 10.1111/age.12468] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Affiliation(s)
- R. L. Boddicker
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | - J. E. Koltes
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | | | - L. Koesterke
- Texas Advanced Computing Center University of Texas Austin TX 78758‐4497 USA
| | - N. Weeks
- Department of Mathematics Iowa State University Ames IA 50011 USA
| | - T. Yin
- Department of Statistics Iowa State University Ames IA 50011 USA
| | - V. Mani
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | - D. Nettleton
- Department of Statistics Iowa State University Ames IA 50011 USA
| | - J. M. Reecy
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | - L. H. Baumgard
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | | | - N. K. Gabler
- Department of Animal Science Iowa State University Ames IA 50011 USA
| | - J. W. Ross
- Department of Animal Science Iowa State University Ames IA 50011 USA
| |
Collapse
|
29
|
Hong Z, De Meulemeester L, Jacobi A, Pedersen JS, Morth JP, Andreasen PA, Jensen JK. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1: FUNCTIONAL INTERACTIONS BETWEEN THE KUNITZ-TYPE INHIBITOR DOMAIN-1 AND THE NEIGHBORING POLYCYSTIC KIDNEY DISEASE-LIKE DOMAIN. J Biol Chem 2016; 291:14340-14355. [PMID: 27189939 DOI: 10.1074/jbc.m115.707240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain).
Collapse
Affiliation(s)
- Zebin Hong
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Laura De Meulemeester
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Annemarie Jacobi
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - J Preben Morth
- Norwegian Center of Molecular Medicine (NCMM), University of Oslo, NO-0316 Oslo, Norway
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | - Jan K Jensen
- Department of Molecular Biology and Genetics, Danish-Chinese Centre for Proteases and Cancer, Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark,.
| |
Collapse
|
30
|
Venukadasula PKM, Owusu BY, Bansal N, Ross LJ, Hobrath JV, Bao D, Truss JW, Stackhouse M, Messick TE, Klampfer L, Galemmo RA. Design and Synthesis of Nonpeptide Inhibitors of Hepatocyte Growth Factor Activation. ACS Med Chem Lett 2016; 7:177-81. [PMID: 26985294 DOI: 10.1021/acsmedchemlett.5b00357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/22/2015] [Indexed: 01/28/2023] Open
Abstract
In this letter we report first nonpeptide inhibitors of hepatocyte growth factor (HGF) activation. These compounds inhibit the three proteases (matriptase, hepsin, and HGF activator) required for HGF maturation. We show that 6, 8a, 8b, and 8d block activation of fibroblast-derived pro-HGF, thus preventing fibroblast-induced scattering of DU145 prostate cancer cells. Compound 6 (SRI 31215) is very soluble (91 μM) and has excellent microsome stability (human t 1/2 = 162 min; mouse t 1/2 = 296 min). In mouse 6 has an in vivo t 1/2 = 5.8 h following IV administration. The high solubility of 6 and IV t 1/2 make this compound a suitable prototype "triplex inhibitor" for the study of the inhibition of HGF activation in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Troy E. Messick
- The Wistar Institute, 3601
Spruce Street, Philadelphia, Pennsylvania19104, United States
| | | | | |
Collapse
|
31
|
Walentin K, Hinze C, Schmidt-Ott KM. The basal chorionic trophoblast cell layer: An emerging coordinator of placenta development. Bioessays 2016; 38:254-65. [PMID: 26778584 DOI: 10.1002/bies.201500087] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During gestation, fetomaternal exchange occurs in the villous tree (labyrinth) of the placenta. Development of this structure depends on tightly coordinated cellular processes of branching morphogenesis and differentiation of specialized trophoblast cells. The basal chorionic trophoblast (BCT) cell layer that localizes next to the chorioallantoic interface is of critical importance for labyrinth morphogenesis in rodents. Gcm1-positive cell clusters within this layer initiate branching morphogenesis thereby guiding allantoic fetal blood vessels towards maternal blood sinuses. Later these cells differentiate and contribute to the syncytiotrophoblast of the fetomaternal barrier. Additional cells within the BCT layer sustain continued morphogenesis, possibly through a repopulating progenitor population. Several mouse mutants highlight the importance of a structurally intact BCT epithelium, and a growing number of studies addresses its patterning and epithelial architecture. Here, we review and discuss emerging concepts in labyrinth development focussing on the biology of the BCT cell layer.
Collapse
Affiliation(s)
| | - Christian Hinze
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Kawaguchi M, Kanemaru A, Fukushima T, Yamamoto K, Tanaka H, Haruyama Y, Itoh H, Matsumoto N, Kangawa K, Nakazato M, Kataoka H. Ghrelin administration suppresses inflammation-associated colorectal carcinogenesis in mice. Cancer Sci 2015; 106:1130-6. [PMID: 26094822 PMCID: PMC4582981 DOI: 10.1111/cas.12725] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022] Open
Abstract
Ghrelin is a 28-amino-acid peptide that stimulates the release of pituitary growth hormone. Because of its orexigenic effects, ghrelin is being developed as a therapeutic option for postoperative support and treatment of anorexia-cachexia syndrome of cancer patients. However, ghrelin has a multiplicity of physiological functions, and it also affects cell proliferation. Therefore, the effects of ghrelin administration on carcinogenesis and cancer progression in patients susceptible to cancer should be clarified. In this study, we examined the effects of ghrelin on cancer promotion in vivo using murine intestinal carcinogenesis models. Intestinal tumorigenesis was examined to determine the effects of either exogenous ghrelin administration or ghrelin deficiency following deletion of the Ghrl gene. Two murine intestinal tumorigenesis models were used. The first was the azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced inflammation-associated colon carcinogenesis model and the second was the ApcMin/+ genetic cancer susceptibility model. In AOM/DSS-treated mice, administration of ghrelin significantly suppressed tumor formation in the colon. In contrast, ghrelin administration did not affect the number of intestinal tumors formed in ApcMin/+ mice. The absence of endogenous ghrelin did not affect the incidence of intestinal tumors in either AOM/DSS-treated mice or ApcMin/+ mice, though tumor size tended to be larger in Ghrl−/− colons in the AOM/DSS model. No tumor-promoting effect was observed by ghrelin administration in either tumorigenesis model. In summary, this study provides in vivo experimental evidence for the usefulness of ghrelin administration in the chemoprevention of inflammation-associated colorectal carcinogenesis and may suggest its safety in patients under colitis-associated cancer susceptibility conditions.
Collapse
Affiliation(s)
- Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ai Kanemaru
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Tanaka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yukihiro Haruyama
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Itoh
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Nobuhiro Matsumoto
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cardiovascular Center Research Institute, Osaka, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
33
|
Walentin K, Hinze C, Werth M, Haase N, Varma S, Morell R, Aue A, Pötschke E, Warburton D, Qiu A, Barasch J, Purfürst B, Dieterich C, Popova E, Bader M, Dechend R, Staff AC, Yurtdas ZY, Kilic E, Schmidt-Ott KM. A Grhl2-dependent gene network controls trophoblast branching morphogenesis. Development 2015; 142:1125-36. [PMID: 25758223 DOI: 10.1242/dev.113829] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction.
Collapse
Affiliation(s)
- Katharina Walentin
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Christian Hinze
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Max Werth
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Nadine Haase
- Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Saaket Varma
- Department of Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Robert Morell
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders (NIDCD)/National Institutes of Health (NIH), 5 Research Court, Rockville, MD 20850, USA
| | - Annekatrin Aue
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Elisabeth Pötschke
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - David Warburton
- Department of Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
| | - Andong Qiu
- Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Jonathan Barasch
- Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Bettina Purfürst
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Christoph Dieterich
- Bioinformatics, Max Planck Institute for Biology of Ageing, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany
| | - Anne Cathrine Staff
- Department of Gynecology and Obstetrics, Institute of Clinical Medicine, Oslo University Hospital and University of Oslo, Kirkeveien 166, Oslo 0450, Norway
| | - Zeliha Yesim Yurtdas
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Department of Urology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany Berlin Institute of Urologic Research, Berlin 10117, Germany
| | - Ergin Kilic
- Department of Pathology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, Berlin 13125, Germany Experimental and Clinical Research Center, a collaboration between the Max Delbrück Center and the Medical Faculty of the Charité, Robert-Rössle-Str. 10, Berlin 13125, Germany Department of Nephrology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin 10117, Germany
| |
Collapse
|
34
|
Hepatocyte growth factor activator inhibitor type 1 maintains the assembly of keratin into desmosomes in keratinocytes by regulating protease-activated receptor 2-dependent p38 signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1610-23. [PMID: 25842366 DOI: 10.1016/j.ajpath.2015.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1; official symbol SPINT1) is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. Genetically engineered mouse models demonstrated that HAI-1 is critical for epidermal function, possibly through direct and indirect regulation of cell surface proteases, such as matriptase and prostasin. To obtain a better understanding of the role of HAI-1 in maintaining epidermal integrity, we performed ultrastructural analysis of Spint1-deleted mouse epidermis and organotypic culture of an HAI-1 knockdown (KD) human keratinocyte cell line, HaCaT. We found that the aggregation of tonofilaments to desmosomes was significantly reduced in HAI-1-deficient mouse epidermis with decreased desmosome number. Similar findings were observed in HAI-1 KD HaCaT organotypic cultures. Immunoblot and immunohistochemical analyses revealed that p38 mitogen-activated protein kinase was activated in response to HAI-1 insufficiency. Treatment of HAI-1 KD HaCaT cells with a p38 inhibitor abrogated the above-observed ultrastructural abnormalities. The activation of p38 induced by the loss of HAI-1 likely resulted from enhanced signaling of protease-activated receptor-2 (PAR-2), because its silencing abrogated the enhanced activation of p38. Consequently, treatment of HAI-1 KD HaCaT cells with a serine protease inhibitor, aprotinin, or PAR-2 antagonist alleviated the abnormal ultrastructural phenotype in organotypic culture. These results suggest that HAI-1 may have a critical role in maintaining normal keratinocyte morphology through regulation of PAR-2-dependent p38 mitogen-activated protein kinase signaling.
Collapse
|
35
|
Friis S, Sales KU, Schafer JM, Vogel LK, Kataoka H, Bugge TH. The protease inhibitor HAI-2, but not HAI-1, regulates matriptase activation and shedding through prostasin. J Biol Chem 2014; 289:22319-32. [PMID: 24962579 DOI: 10.1074/jbc.m114.574400] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The membrane-anchored serine proteases, matriptase and prostasin, and the membrane-anchored serine protease inhibitors, hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2, are critical effectors of epithelial development and postnatal epithelial homeostasis. Matriptase and prostasin form a reciprocal zymogen activation complex that results in the formation of active matriptase and prostasin that are targets for inhibition by HAI-1 and HAI-2. Conflicting data, however, have accumulated as to the existence of auxiliary functions for both HAI-1 and HAI-2 in regulating the intracellular trafficking and activation of matriptase. In this study, we, therefore, used genetically engineered mice to determine the effect of ablation of endogenous HAI-1 and endogenous HAI-2 on endogenous matriptase expression, subcellular localization, and activation in polarized intestinal epithelial cells. Whereas ablation of HAI-1 did not affect matriptase in epithelial cells of the small or large intestine, ablation of HAI-2 resulted in the loss of matriptase from both tissues. Gene silencing studies in intestinal Caco-2 cell monolayers revealed that this loss of cell-associated matriptase was mechanistically linked to accelerated activation and shedding of the protease caused by loss of prostasin regulation by HAI-2. Taken together, these data indicate that HAI-1 regulates the activity of activated matriptase, whereas HAI-2 has an essential role in regulating prostasin-dependent matriptase zymogen activation.
Collapse
Affiliation(s)
- Stine Friis
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, and the Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Katiuchia Uzzun Sales
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, and Clinical Research Core, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Jeffrey Martin Schafer
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, and the College of Medicine, The Ohio State University, Columbus, Ohio 43210, and
| | - Lotte K Vogel
- the Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hiroaki Kataoka
- the Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Thomas H Bugge
- From the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, and
| |
Collapse
|
36
|
Ye J, Cheng H, Wang Y, Cao J. Down-regulation of HAI-1 is associated with poor-differentiation status of colorectal cancer. Hum Cell 2013; 26:162-9. [PMID: 23979832 DOI: 10.1007/s13577-013-0074-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is a Kunitz-type serine protease inhibitor which is widely expressed in epithelial cells. The purpose of this study is to investigate the relationship between HAI-1 expression and differentiation status of colorectal epithelia. The expression of HAI-1 in clinical samples of both cancerous and normal colorectal tissues was evaluated by immunohistochemical staining. An in vitro epithelial differentiation model of Caco-2 cell was established, and the characteristics of differentiation of Caco-2 cells were observed by transmission electron microscopy. The expression of HAI-1 in Caco-2 cells at different differentiation stages was examined by western blot. Immunohistochemical staining of 52 human colorectal cancer tissues showed a definite correlation between HAI-1 expression and differentiation status: IHC score (mean ± SE) of HAI-1 was higher for well- or moderately-differentiated colorectal cancer tissues than for poorly-differentiated colorectal cancer tissues, with significant differences in HAI-1 positive rate (P < 0.01 and P < 0.05 for well-differentiated vs. poorly-differentiated and moderately-differentiated vs. poorly-differentiated, respectively). Immunohistochemical staining of normal colorectal tissues showed positive HAI-1 expression in well-differentiated epithelial cells whereas the under-differentiated crypt cells showed very weak HAI-1 staining signals. The result of western blot also showed the gradual increasing of HAI-1 expression during the process of Caco-2 differentiation in vitro. HAI-1 expression correlates with the differentiation status of colorectal epithelia and could serve as a differentiation marker.
Collapse
Affiliation(s)
- Jingjia Ye
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, China
| | | | | | | |
Collapse
|
37
|
Hoshiko S, Kawaguchi M, Fukushima T, Haruyama Y, Yorita K, Tanaka H, Seiki M, Inatsu H, Kitamura K, Kataoka H. Hepatocyte growth factor activator inhibitor type 1 is a suppressor of intestinal tumorigenesis. Cancer Res 2013; 73:2659-70. [PMID: 23447577 DOI: 10.1158/0008-5472.can-12-3337] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1/SPINT1) is a membrane-bound serine protease inhibitor expressed on the surface of epithelial cells. Although HAI-1/SPINT1 is abundantly expressed in the intestinal epithelium, its role in intestinal tumorigenesis is not known. In this study, we investigated the role of Hai-1/Spint1 in intestinal tumorigenesis using mouse models. The membranous Hai-1/Spint1 immunoreactivity was decreased in murine Apc(Min/+) tumors and also in carcinogen (azoxymethane treatment followed by dextran sodium sulfate administration)-induced colon tumors compared with the adjacent non-neoplastic epithelium. The decreased immunoreactivity appeared to be due to sheddase activity of membrane-type 1 matrix metalloprotease. Then, we examined the effect of intestine-specific deletion of Spint1 gene on Apc(Min/+) mice. The loss of Hai-1/Spint1 significantly accelerated tumor formation in Apc(Min/+) mice and shortened their survival periods. Activation of HGF was enhanced in Hai-1/Spint1-deficient Apc(Min/+) intestine. Gene expression profiling revealed upregulation of the Wnt/β-catenin signaling circuit, claudin-2 expression, and angiogenesis not only in tumor tissue but also in the background mucosa without macroscopic tumors in Hai-1/Spint1-deficient Apc(Min/+) intestine. Intestinal deletion of Spint1 also enhanced the susceptibility to carcinogen-induced colon tumorigenicity of wild-type Apc mice. Our findings suggest that HAI-1/SPINT1 has a crucial role in suppressing intestinal tumorigenesis, which implies a novel link between epithelial cell surface serine protease inhibitors and protection from carcinogenic stimuli.
Collapse
Affiliation(s)
- Shinri Hoshiko
- Authors' Affiliations: Section of Oncopathology and Regenerative Biology, Department of Pathology, Section of Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki; and Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kohama K, Kawaguchi M, Fukushima T, Lin CY, Kataoka H. Regulation of pericellular proteolysis by hepatocyte growth factor activator inhibitor type 1 (HAI-1) in trophoblast cells. Hum Cell 2012; 25:100-10. [PMID: 23248048 DOI: 10.1007/s13577-012-0055-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 11/26/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1/serine protease inhibitor Kunitz type 1 (HAI-1/SPINT1) is a membrane-bound Kunitz-type serine protease inhibitor that is abundantly expressed on the surface of cytotrophoblasts, and is critically required for the formation of the placenta labyrinth in mice. HAI-1/SPINT1 regulates several membrane-associated cell surface serine proteases, with matriptase being the most cognate target. Matriptase degrades extracellular matrix protein such as laminin and activates other cell surface proteases including prostasin. This study aimed to analyze the role of HAI-1/SPINT1 in pericellular proteolysis of trophoblasts. In HAI-1/SPINT1-deficient mouse placenta, laminin immunoreactivity around trophoblasts was irregular and occasionally showed an intense punctate pattern, which differed significantly from the linear distribution along the basement membrane observed in wild-type placenta. To explore the molecular mechanism underlying this observation, we analyzed the effect of HAI-1/SPINT1 knock down (KD) on pericellular proteolysis in the human trophoblast cell line, BeWo. HAI-1/SPINT1-KD BeWo cells had increased amounts of cellular laminin protein and decreased laminin degradation activity in the culture supernatant. Subsequent analysis indicated that cell-associated matriptase was significantly decreased in KD cells whereas its mRNA level was not altered, suggesting an enhanced release and/or dislocation of matriptase in the absence of HAI-1/SPINT1. Moreover, prostasin activation and pericellular total serine protease activities were significantly suppressed by HAI-1/SPINT1 KD. These observations suggest that HAI-1/SPINT1 is critically required for the cell surface localization of matriptase in trophoblasts, and, in the absence of HAI-1/SPINT1, physiological activation of prostasin and other protease(s) initiated by cell surface matriptase may be impaired.
Collapse
Affiliation(s)
- Kazuyo Kohama
- Department of Pathology, Faculty of Medicine, Section of Oncopathology and Regenerative Biology, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | | | | | | | | |
Collapse
|
39
|
Szabo R, Uzzun Sales K, Kosa P, Shylo NA, Godiksen S, Hansen KK, Friis S, Gutkind JS, Vogel LK, Hummler E, Camerer E, Bugge TH. Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation. PLoS Genet 2012; 8:e1002937. [PMID: 22952456 PMCID: PMC3431340 DOI: 10.1371/journal.pgen.1002937] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/18/2012] [Indexed: 12/14/2022] Open
Abstract
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1–deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2–deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent. Vertebrate embryogenesis is dependent upon a series of precisely coordinated cell proliferation, migration, and differentiation events. Recently, the execution of these events was shown to be guided in part by extracellular cues provided by focal pericellular proteolysis by a newly identified family of membrane-anchored serine proteases. We now show that two of these membrane-anchored serine proteases, prostasin and matriptase, constitute a single proteolytic signaling cascade that is active at multiple stages of development. Furthermore, we show that failure to precisely regulate the enzymatic activity of both prostasin and matriptase by two developmentally co-expressed transmembrane serine protease inhibitors, hepatocyte growth factor activator inhibitor-1 and -2, causes an array of developmental defects, including clefting of the embryonic ectoderm, lack of placental labyrinth formation, and inability to close the neural tube. Our study also provides evidence that the failure to regulate the prostasin–matriptase cascade may derail morphogenesis independent of the activation of known protease-regulated developmental signaling pathways. Because hepatocyte growth factor activator inhibitor–deficiency in humans is known to cause an assortment of common and rare developmental abnormalities, the aberrant activity of the prostasin–matriptase cascade identified in our study may contribute importantly to genetic as well as sporadic birth defects in humans.
Collapse
Affiliation(s)
- Roman Szabo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katiuchia Uzzun Sales
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter Kosa
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Natalia A. Shylo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sine Godiksen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Karina K. Hansen
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stine Friis
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lotte K. Vogel
- Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Edith Hummler
- Pharmacology and Toxicology Department, University de Lausanne, Lausanne, Switzerland
| | - Eric Camerer
- INSERM U970, Paris Cardiovascular Research Centre, Paris, France
- Université Paris-Descartes, Paris, France
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Netzel-Arnett S, Buzza MS, Shea-Donohue T, Désilets A, Leduc R, Fasano A, Bugge TH, Antalis TM. Matriptase protects against experimental colitis and promotes intestinal barrier recovery. Inflamm Bowel Dis 2012; 18:1303-14. [PMID: 22081509 PMCID: PMC3288858 DOI: 10.1002/ibd.21930] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 09/28/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND Matriptase is a membrane-anchored serine protease encoded by suppression of tumorigenicity-14 (ST14) that is required for epithelial barrier homeostasis. However, its functional role in inflammatory bowel disease (IBD) is unexplored. METHODS Matriptase expression in control, Crohn's disease, and ulcerative colitis tissue specimens was studied by quantitative polymerase chain reaction (qPCR) and immunostaining. Matriptase function was investigated by subjecting St14 hypomorphic and control littermates to dextran sodium sulfate (DSS)-induced colitis and by siRNA silencing in cultured monolayers. Mice were analyzed for clinical, histological, molecular, and cellular effects. RESULTS Matriptase protein and ST14 mRNA levels are significantly downregulated in inflamed colonic tissues from Crohn's disease and ulcerative colitis patients. Matriptase-deficient St14 hypomorphic mice administered DSS for 7 days followed by water without DSS for 3 days develop a severe colitis, with only 30% of the St14 hypomorphic mice surviving to day 14, compared with 100% of control littermates. Persistent colitis in surviving St14 hypomorphic mice was associated with sustained cytokine production, an inability to recover barrier integrity, and enhanced claudin-2 expression. Cytokines implicated in barrier disruption during IBD suppress matriptase expression in T84 epithelial monolayers and restoration of matriptase improves barrier integrity in the cytokine-perturbed monolayers. CONCLUSIONS These data demonstrate a critical role for matriptase in restoring barrier function to injured intestinal mucosa during colitis, which is suppressed by excessive activation of the immune system. Strategies to enhance matriptase-mediated barrier recovery could be important for intervening in the cycle of inflammation associated with IBD.
Collapse
Affiliation(s)
- Sarah Netzel-Arnett
- Center for Vascular and Inflammatory Diseases and Department of Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases and Department of Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Terez Shea-Donohue
- Mucosal Biology Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Antoine Désilets
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Richard Leduc
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Alessio Fasano
- Mucosal Biology Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Cranofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases and Department of Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Québec, Canada,Corresponding author: Toni M. Antalis Ph.D., The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore St, Baltimore MD 21201 USA. Ph: 410 706 8222; Fax: 410 706 8121;
| |
Collapse
|
41
|
Baba T, Kawaguchi M, Fukushima T, Sato Y, Orikawa H, Yorita K, Tanaka H, Lin CY, Sakoda S, Kataoka H. Loss of membrane-bound serine protease inhibitor HAI-1 induces oral squamous cell carcinoma cells' invasiveness. J Pathol 2012; 228:181-92. [PMID: 22262311 DOI: 10.1002/path.3993] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/29/2011] [Accepted: 01/12/2012] [Indexed: 12/19/2022]
Abstract
A loss of balance between cell membrane-associated proteases and their inhibitors may underlie cancer invasion and metastasis. We analysed the roles of a membrane- associated serine protease inhibitor, HAI-1, in oral squamous cell carcinoma (OSCC). While membranous HAI-1 was widely observed in cancer cells of human OSCC tissues, this was significantly reduced at the infiltrative invasion front. In vitro, HAI-1 was detected in all eight OSCC cell lines examined, in which its cognate membrane protease, matriptase was also expressed. HAI-1 expression knock-down (KD) in OSCC lines, SAS and HSC-3, reduced the growth of both lines in vitro but significantly enhanced SAS tumourigenicity in vivo, which was accompanied by histological changes suggestive of the epithelial-mesenchymal transition. Both HAI-1-KD lines also exhibited significantly enhanced migratory capability, and membrane-associated but not truncated HAI-1 was required to rescue this phenotype. Other OSCC lines (HSC-2, Sa3, Ca9-22) also showed enhanced migration in response to HAI-1 KD. The enhanced migration is partly attributed to dysregulation of matriptase, as simultaneous matriptase KD alleviated the migration of HAI-1-KD cells. HAI-1 deficiency also altered the expression of CD24, S100A4, CCND2 and DUSP6, all of which are involved in tumour progression. While matriptase was involved in the increased CD24 expression associated with HAI-1 deficiency, the protease appeared to be not responsible for the altered expression of other genes. Therefore, a matriptase-independent mechanism for the invasiveness associated with HAI-1 KD is also present. Together, these observations suggest that HAI-1 has a crucial suppressive role in OSCC cell invasiveness.
Collapse
Affiliation(s)
- Takashi Baba
- Section of Oncopathology and Regenerative Biology, Department of Pathology, University of Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|