1
|
Younge N, Patel RM. Probiotics and the Risk of Infection. Clin Perinatol 2025; 52:87-100. [PMID: 39892956 PMCID: PMC11789005 DOI: 10.1016/j.clp.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Probiotic use has increased in preterm infants and may reduce the risk of necrotizing enterocolitis. Probiotic-associated infection is a concern for infants receiving probiotic supplementation in the neonatal intensive care unit, as highlighted by a recent case and subsequent action by the United States Food and Drug Administration. Based on reports to date, invasive infection is an infrequent but known risk of probiotic supplementation. In this article, we discuss the epidemiology and pathophysiology of invasive infection in preterm infants, review the benefits and risks of probiotic as regulations and available products continue to evolve.
Collapse
Affiliation(s)
- Noelle Younge
- Department of Pediatrics, Duke University, 2400 Pratt Street, DUMC Box 2739, Durham, NC 27705, USA
| | - Ravi M Patel
- Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Arthur M. Blank Hospital, 2220 North Druid Hills Road NE, CL.06323, Atlanta, GA 30329, USA.
| |
Collapse
|
2
|
Mercer SD, Doherty C, Singh G, Willmott T, Cheesapcharoen T, Teanpaisan R, O'Neill C, Ledder RG, McBain AJ. Lactobacillus lysates protect oral epithelial cells from pathogen-associated damage, increase secretion of pro-inflammatory cytokines and enhance barrier integrity. Sci Rep 2025; 15:5894. [PMID: 39966408 PMCID: PMC11836205 DOI: 10.1038/s41598-025-86914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Periodontitis is a chronic gum disease characterised by inflammation and the loss of bone. We have explored the potential prophylactic effects of lysates from four Lactobacillus strains against the toxic effects of three periodontal pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans). TR146 oral epithelial cells were pre-treated with Lactobacillus lysates (L. rhamnosus - GG, L. rhamnosus - SD11, L. reuteri and L. plantarum) and then challenged with pathogenic material (live cells, lysates, or supernatants). Cytokine analysis was performed on supernatants of cells treated with probiotic lysates from 1.5 h to 24 h. Effects of probiotic lysates on re-epithelialisation were determined using keratinocyte scratch assays, monitoring both migration and proliferation. Epithelial barrier function was observed after lysate addition by trans-epithelial electrical resistance (TEER) and by quantifying claudin-1 expression. Treatment of host cells with Lactobacillus lysates before pathogen exposure conferred significant protection against viability loss. Although extended pre-treatment did not generally increase protection, against live Aggregatibacter actinomycetemcomitans, significant increases in viability were seen after 24 h of pre-treatment for GG, SD11 and L. plantarum. Pro-inflammatory cytokines TNF-α, IP-10, IL-6, and IL-8 increased significantly with extended probiotic treatment, while IL-1β and IL-1α secretion significantly increased but remained constant over time. Secretion of the growth-promoting cytokine TGF-β increased after 3 h of treatment, however no increases in the regulatory cytokine IL-10 were recorded. Only exposure to SD11 significantly enhanced re-epithelialisation, TEER and claudin-1 expression while GG increased TEER but decreased claudin-1 expression. L. plantarum significantly inhibited re-epithelialisation but did not impact TEER or claudin-1 expression. All lysates significantly improved TEER in the presence of pathogenic material, demonstrating a protective effect on barrier function.
Collapse
Affiliation(s)
- Steven D Mercer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Division of Musculoskeletal and Dermatological Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Christopher Doherty
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Gurdeep Singh
- Division of Musculoskeletal and Dermatological Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Thomas Willmott
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Institute of Infection, Veterinary and Ecological Sciences, Clinical Infection, Microbiology & Immunology, University of Liverpool, Liverpool, UK
| | - Tanaporn Cheesapcharoen
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat- Yai, Thailand
| | - Rawee Teanpaisan
- Medical Science Research and Innovation Institute, Prince of Songkla University, Hat-Yai, Thailand
| | - Catherine O'Neill
- Division of Musculoskeletal and Dermatological Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ruth G Ledder
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Antoine D, Tao J, Singh S, Singh PK, Marin BG, Roy S. Neonatal exposure to morphine results in prolonged pain hypersensitivity during adolescence, driven by gut microbial dysbiosis and gut-brain axis-mediated inflammation. Brain Behav Immun 2025; 126:3-23. [PMID: 39900146 DOI: 10.1016/j.bbi.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Opioids, such as morphine, are used in the Neonatal Intensive Care Unit (NICU) for pain relief in neonates. However, the available evidence concerning the benefits and harms of opioid therapy in neonates remains limited. While previous studies have reported that neonatal morphine exposure (NME) results in long-term heightened pain sensitivity, the underlying mechanisms are not well understood. This study proposes that dysbiosis of the gut microbiome contributes to pain hypersensitivity following NME. Using an adolescent female murine model, pain sensitivity was evaluated using the tail flick and hot plate assays for thermal pain and the Von Frey assay for mechanical pain. Gut microbiome composition was assessed using 16S rRNA sequencing, while transcriptomic changes in midbrain samples were investigated using bulk RNA sequencing. NME induced prolonged hypersensitivity to thermal and mechanical pain in adolescence, accompanied by persistent gut microbial dysbiosis and sustained systemic inflammation, characterized by elevated circulating cytokine levels (e.g., IL-1α, IL-12p70, IFN-γ, IL-10). Transplantation of the microbiome from NME adolescents recapitulated pain hypersensitivity in naïve adolescent mice, while neonatal probiotic intervention with Bifidobacterium infantis (B. infantis) reversed the pain hypersensitivity by preventing gut dysbiosis and associated systemic inflammation. Furthermore, transcriptomic analysis of midbrain tissues revealed that NME upregulated several genes and key signaling pathways, including those related to immune activation and excitatory signaling, which were notably mitigated with neonatal B. infantis administration. Together, these findings highlight the critical role of the gut-brain axis in modulating pain sensitivity and suggest that targeting the gut microbiome offers a promising therapeutic strategy for managing neurobiological disorders following early opioid exposure.
Collapse
Affiliation(s)
- Danielle Antoine
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA; Department of Neuroscience, University of Miami Miller School of Medicine Miami FL USA
| | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Salma Singh
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Praveen Kumar Singh
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Barbara G Marin
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA; Department of Neuroscience, University of Miami Miller School of Medicine Miami FL USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA.
| |
Collapse
|
4
|
De Bernardo G, Ziello C, Parisi G, Vecchione C, Fattorusso V, Spadarella S, Giordano M, Buonocore G, Perrone S. Clinical Picture, Diagnosis, Management of NEC, and Effects of Probiotics on its Prevention: A Narrative Review. Curr Pediatr Rev 2025; 21:104-110. [PMID: 39129157 DOI: 10.2174/0115733963317134240801113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 08/13/2024]
Abstract
Preterm newborns represent a population at risk of developing intestinal dysbiosis as well as being predisposed to sepsis and Necrotizing Enterocolitis. Necrotizing Enterocolitis is a condition burdened by many complications and mortality due to an alteration of the intestinal barrier, an immaturity of the immune system, and intestinal dysbiosis. Low gestational age at birth, low birth weight, and early use of antibiotics are other predisposing factors. Instead, breast milk and probiotics are protective factors in providing intestinal homeostasis and microbiome regulation. In this mini-review, we analysed the protective role of probiotics in the onset of Necrotizing Enterocolitis in preterm populations.
Collapse
MESH Headings
- Humans
- Probiotics/therapeutic use
- Enterocolitis, Necrotizing/prevention & control
- Enterocolitis, Necrotizing/diagnosis
- Enterocolitis, Necrotizing/therapy
- Infant, Newborn
- Infant, Premature
- Gastrointestinal Microbiome
- Infant, Premature, Diseases/prevention & control
- Infant, Premature, Diseases/therapy
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/microbiology
- Milk, Human/microbiology
- Dysbiosis
Collapse
Affiliation(s)
- Giuseppe De Bernardo
- Department of Woman and Child, Buon Consiglio Fatebenefratelli Hospital, Naples, Italy
| | - Carla Ziello
- Division of Pediatrics, Department of Transaltional Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Grazia Parisi
- Division of Pediatrics, Department of Transaltional Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Carolina Vecchione
- Division of Pediatrics, Department of Transaltional Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Fattorusso
- Department of Woman and Child, Buon Consiglio Fatebenefratelli Hospital, Naples, Italy
| | - Simona Spadarella
- Department of Woman and Child, Buon Consiglio Fatebenefratelli Hospital, Naples, Italy
| | - Maurizio Giordano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Serafina Perrone
- Neonatology Unit, Department of Medicine and Surgery, University of Parma, Pietro Barilla Children's Hospital, Parma, Italy
| |
Collapse
|
5
|
Wang J, Gao M, Wang J, Zeng Y, Wang C, Cao X. LGG promotes activation of intestinal ILC3 through TLR2 receptor and inhibits salmonella typhimurium infection in mice. Virulence 2024; 15:2384553. [PMID: 39080852 PMCID: PMC11296546 DOI: 10.1080/21505594.2024.2384553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Salmonella is a foodborne pathogen that causes disruption of intestinal mucosal immunity, leading to acute gastroenteritis in the host. In this study, we found that Salmonella Typhimurium (STM) infection of the intestinal tract of mice led to a significant increase in the proportion of Lacticaseibacillus, while the secretion of IL-22 from type 3 innate lymphoid cells (ILC3) increased significantly. Feeding Lacticaseibacillus rhamnosus GG (LGG) effectively alleviated the infection of STM in the mouse intestines. TLR2-/- mice experiments found that TLR2-expressing dendritic cells (DCs) are crucial for LGG's activation of ILC3. Subsequent in vitro experiments showed that heat-killed LGG (HK-LGG) could promote DCs to secrete IL-23, which in turn further promotes the activation of ILC3 and the secretion of IL-22. Finally, organoid experiments further verified that IL-22 secreted by ILC3 can enhance the intestinal mucosal immune barrier and inhibit STM infection. This study demonstrates that oral administration of LGG is a potential method for inhibiting STM infection.
Collapse
Affiliation(s)
- Junhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming Gao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jiarui Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Wei J, Tian Y, Guan M, Wei J, Ji Y, Tao G, Sylvester KG. Sodium formate induces development-dependent intestinal epithelial injury via necroptosis and apoptosis. Redox Rep 2024; 29:2433393. [PMID: 39620924 PMCID: PMC11613409 DOI: 10.1080/13510002.2024.2433393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVES Necrotizing enterocolitis (NEC) is a common and sometimes fatal disease affecting premature infants. Elevated formate has been found in the stool of patients with NEC. Sodium formate (NaF) is used to explore the role of formate in the intestinal epithelial injury. METHODS In this study, 150 mM NaF solution was intraluminally injected in 14-day-old and 28-day-old mice. Mice were sacrificed after 24 h of feces collection, and the blood and small intestinal tissues were collected to detect the pathological damage of intestinal tissue, intestinal permeability, oxidative stress indicators including SOD, HO-1, MDA, and 4-HNE, inflammatory cytokines including IL-1β, TNF-α and IL-6, mitochondrial function such as ATP and PGC-1α in mice intestinal tissue, indicators of the cell death modes including necroptosis-related protein RIPK1 and p-MLKL, and apoptosis- related protein cleaved-caspase-3 and p-AKT (S473). RESULTS NaF treatment significantly damaged intestinal epithelial tissue and barrier function, caused mitochondrial dysfunction, manifesting as decreased ATP and PGC-1α levels, increased lipid peroxidation products MDA and 4-HNE, depleted antioxidant enzyme SOD, and upregulated the expression of HO-1. Furthermore, NaF treatment induced inflammatory responses by promoting the release of IL-1β, IL-6 and TNF-α in a development-dependent manner, eventually inducing necroptosis and apoptosis. CONCLUSIONS Formate may be a source of metabolic intestinal injury contributing to the pathogenesis of NEC in human newborns.
Collapse
Affiliation(s)
- Jingjing Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuan Tian
- Department of Pediatrics, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Meiqi Guan
- Department of Pediatrics, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jinshu Wei
- Department of Pediatrics, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yong Ji
- Department of Neonatal Intensive Care Unit, Shanxi Children’s Hospital, Taiyuan, People’s Republic of China
| | - Guozhong Tao
- Pediatric Surgery-Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Karl G. Sylvester
- Pediatric Surgery-Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Gao X, Guo K, Liu S, Yang W, Sheng J, Tian Y, Peng L, Zhao Y. A Potential Use of Vidarabine: Alleviation of Functional Constipation Through Modulation of the Adenosine A2A Receptor-MLC Signaling Pathway and the Gut Microbiota. Int J Mol Sci 2024; 25:12810. [PMID: 39684522 DOI: 10.3390/ijms252312810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Vidarabine (VID) is an antiviral medication that is commonly utilized to treat conditions such as hand, foot, and mouth disease and herpes. Constipation is a prevalent complication of these diseases. Could VID treat these diseases by influencing defecation behavior? To date, no studies have been conducted on the potential of VID to relieve constipation. Therefore, a systematic investigation was conducted into the laxative effects and mechanisms of VID using loperamide-induced functional constipated mice. The findings indicate that the oral administration of VID promoted gastrointestinal peristalsis, improved fecal properties, facilitated defecation, and demonstrated a significant laxative effect on functional constipated mice. It has been demonstrated that VID may increase the water content of feces by regulating the expression of aquaporins (AQP3, AQP4, and AQP8) in the colon and promote intestinal motility by regulating the expression of neurotransmitters (AChE and VIP) and the adenosine A2A receptor-myosin light chain (A2AR-MLC) signaling pathway in constipated mice. Concurrently, VID may also reduce colonic inflammation in constipated mice, reinforce the gut barrier function, and alter the composition and structure of the gut microbial community. Some microbial taxa, including Firmicutes and Lactobacillus, were found to be associated with the alleviation of constipation, while other taxa, including Bacteroidetes, Proteobacteria, Muribaculaceae, Muribaculum, norank__f__Desulfovibrionaceae, and Parasutterella, were found to be associated with constipation. These results indicate that the gut microbiota may play a significant role in the alleviation of constipation by VID. These findings confirm the efficacy of VID in a constipated animal model, which justifies further investigation into its potential clinical applications.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Kaifeng Guo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shuangfeng Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weixing Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yan Zhao
- Division of Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Shu YY, Hu LL, Ye J, Yang L, Jin Y. Rifaximin alleviates MCD diet-induced NASH in mice by restoring the gut microbiota and intestinal barrier. Life Sci 2024; 357:123095. [PMID: 39368771 DOI: 10.1016/j.lfs.2024.123095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/31/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
AIMS Due to the increasing global incidence rate of nonalcoholic steatohepatitis (NASH) combined with the lack of effective treatment methods for this disease, there is an urgent need to find new treatment strategies. The aim of this study was to investigate the efficacy of rifaximin in preventing and treating NASH and the related mechanism. MATERIALS AND METHODS A NASH model was constructed by feeding male C57BL/6 mice a methionine-choline-deficient (MCD) diet for 4 weeks. Rifaximin was administered for 1 week before MCD diet feeding or during the last week of MCD diet feeding to investigate its preventive or therapeutic effects. Liver pathology, hepatic enzyme levels and metabolic indices were measured to evaluate the effects of rifaximin on NASH. Intestinal barrier integrity was measured via the Ussing chamber system and western blotting. 16S rDNA sequencing was conducted to investigate the fecal microbiota composition. Western blotting was performed to evaluate peroxisome proliferator activated receptor (PPAR)α and PPARγ protein levels. KEY FINDINGS Rifaximin effectively alleviated MCD diet-induced NASH. The microbiota composition in MCD diet-fed mice was significantly altered, and intestinal barrier integrity was disrupted. Dysbiosis and intestinal barrier dysfunction were reversed by rifaximin. In addition, rifaximin modulated PPARα and PPARγ expression in the liver. SIGNIFICANCE Rifaximin effectively alleviated MCD diet-induced NASH by restoring the gut microbiota and reversing intestinal barrier dysfunction, suggesting that rifaximin treatment is a new approach for preventing and treating NASH.
Collapse
Affiliation(s)
- Yan Yun Shu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Li Lin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
9
|
Zhang X, Sun L, Wu M, Yu C, Zhao D, Wang L, Zhang Z, Yi D, Hou Y, Wu T. Effect of supplementation with Lactobacillus rhamnosus GG powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide. Front Microbiol 2024; 15:1466274. [PMID: 39534507 PMCID: PMC11555397 DOI: 10.3389/fmicb.2024.1466274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024] Open
Abstract
This study explores the effect of dietary along with Lactobacillus rhamnosus GG (LGG) powder on intestinal and liver damage in broiler chickens challenged by lipopolysaccharide (LPS). A total of 100 healthy 1-day-old Ross 308 broiler chickens were selected and randomly divided into two treatments: the control group and the LGG treatment group. There were five replicates for each group, with 10 chickens per replicate. The chickens in the control group were fed a basal diet, while LGG treatment was supplemented with 1,000 mg/kg LGG along with the basal diet. The experiment lasted 29 days, and the trial included two phases. During the first 27 days, the animals were weighed on the 14th and 27th days to calculate growth performance. Then, on day 29, 2 animals from each replicate were intraperitoneally injected with 1 mg/kg BW LPS, and another 2 animals were treated with an equal volume of saline. The chickens were slaughtered 3 h later for sampling and further analysis. (1) LGG addition to the diet did not affect growth performance, including average daily gain (ADG), average daily feed intake (ADFI), and feed-to-weight ratio (F/G) of broiler chickens; (2) LPS stimulation decreased villus height (VH), and caused oxidative stress and increased the amount of diamine oxidase (DAO) in plasma, and the relative expression of intestinal inflammation genes (interleukin-8 [IL-8], interleukin 1β [IL-1β], inducible nitric oxide synthase [iNOS], and tumor necrosis factor-α [TNF-α]) and the relative expression of liver injury genes (b-cell lymphoma 2 [BCL2], heat shock protein70 [HSP70], and matrix metallopeptidase 13 [MMP13]). (3) Supplementation of LGG increased VH and the relative expression of intestinal barrier genes (mucins 2 [Mucin2] and occludin [Occludin]) and decreased the amount of DAO in plasma and the relative expression of intestinal inflammatory factors (IL-8, iNOS, and IL-1β). LGG supplementation also increased the expression of liver injury-related genes (MMP13 and MMP9). In conclusion, LGG enhanced intestinal barrier function, improved intestinal morphology, and alleviated the intestines' inflammatory response in LPS-stimulated broiler chicken, and it has a slightly protective effect on liver damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
10
|
Zhu L, Bai Y, Li A, Wan J, Sun M, Lou X, Duan X, Sheng Y, Lei N, Qin Z. IFN-γ-responsiveness of lymphatic endothelial cells inhibits melanoma lymphatic dissemination via AMPK-mediated metabolic control. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167314. [PMID: 38936516 DOI: 10.1016/j.bbadis.2024.167314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
The integrity of the lymphatic system is critical for preventing the dissemination of tumor cells, such as melanoma, to distant parts of the body. IFN-γ is well studied as a negative regulator for lymphangiogenesis, which is strongly associated with cancer metastasis. However, the exact mechanisms underlying this process remain unclear. In the present study, we investigated whether IFN-γ signaling in lymphatic endothelial cells (LECs) affects tumor cell dissemination by regulating the barrier function of tumor-associated lymphatic vessels. Using LEC-specific IFN-γ receptor (IFN-γR) knockout mice, we found that the loss of IFN-γR in LECs increased the dissemination of melanoma cells into the draining lymph nodes. Notably, IFN-γ signaling in LECs inhibited trans-lymphatic endothelial cell migration of melanoma cells, indicating its regulation of lymphatic barrier function. Further investigations revealed that IFN-γ upregulated the expression of the tight junction protein Claudin-3 in LECs, while knockdown of Claudin-3 in LECs abolished IFN-γ-induced inhibition of trans-lymphatic endothelial migration activity. Mechanistically, IFN-γ inhibits AMPK signaling activation, which is involved in the regulation of fatty acid metabolism. Modulating fatty acid metabolism and AMPK activation in LECs also affected the lymphatic dissemination of melanoma cells, further confirming that this process is involved in IFN-γ-induced regulation of lymphatic barrier function. These results provide novel insights into how IFN-γ modulates tight junctions in LECs, inhibiting the dissemination of melanoma cells via the lymphatic vessels.
Collapse
Affiliation(s)
- Linyu Zhu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yueyue Bai
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Anqi Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyao Sun
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohan Lou
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqiao Sheng
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China; Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Qiu J, Ye B, Feng L. Improvement of intestinal microbial structure in patients with cerebral infarction through in vitro fermentation of anthocyanins from Lycium ruthenicum Murray. Food Sci Nutr 2024; 12:7481-7491. [PMID: 39479706 PMCID: PMC11521701 DOI: 10.1002/fsn3.4263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 11/02/2024] Open
Abstract
Anthocyanins in Lycium ruthenicum Murray can be degraded into metabolites by intestinal microorganisms and have a wide range of biological functions. However, there are limited studies on the effect of anthocyanins on the intestinal flora structure in patients with cerebral infarction. To explore the new probiotic effects of ACN, the gut microbiota present in fecal samples obtained from healthy volunteers and patients with acute cerebral infarction underwent in vitro fermentation analysis. The in vitro fermentation product of ACN with L. ruthenicum Murray can significantly increase the diversity of the gut flora in patients with cerebral infarction. It can also promote beneficial bacteria (e.g., Bifidobacterium) in the guts of patients with acute cerebral infarction (e.g. Bifidobacterium, Allisonella, and Prevotell), reduce the growth of potentially harmful bacteria (Dialister, Megamonas, and Clostridium), and increase the levels of SCFAs. This investigation demonstrated the capability of ACN in vitro fermentation to improve the gut microbiota structure in patients with cerebral infarction. This, in turn, furnishes new theoretical underpinnings for its potential development as a functional food component.
Collapse
Affiliation(s)
- Jun Qiu
- Stroke CenterThe Third People's Hospital of BengbuBengbuAnhuiChina
| | - Bin Ye
- Stroke CenterThe Third People's Hospital of BengbuBengbuAnhuiChina
| | - Lei Feng
- Department of NeurosurgeryThe First People's Hospital of JiningJiningShandongChina
- Jining Key Laboratory of Stroke and Nerve RepairJiningShandongChina
| |
Collapse
|
12
|
AlMarzooqi SK, Almarzooqi F, Sadida HQ, Jerobin J, Ahmed I, Abou-Samra AB, Fakhro KA, Dhawan P, Bhat AA, Al-Shabeeb Akil AS. Deciphering the complex interplay of obesity, epithelial barrier dysfunction, and tight junction remodeling: Unraveling potential therapeutic avenues. Obes Rev 2024; 25:e13766. [PMID: 38745386 DOI: 10.1111/obr.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/11/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara K AlMarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Fajr Almarzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
13
|
Shawky LM, Abo El Wafa SM, Behery M, Bahr MH, Abu Alnasr MT, Morsi AA. Lactobacillus rhamnosus GG and Tannic Acid Synergistically Promote the Gut Barrier Integrity in a Rat Model of Experimental Diarrhea via Selective Immunomodulatory Cytokine Targeting. Mol Nutr Food Res 2024; 68:e2400295. [PMID: 39034291 DOI: 10.1002/mnfr.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Indexed: 07/23/2024]
Abstract
SCOPE Diarrhea is a common health issue that contributes to a significant annual death rate among children and the elderly worldwide. The anti-diarrheal activity of Lactobacillus rhamnosus GG (LGG) and tannic acid (TA), alone or combined, is examined, in addition to their effect on intestinal barrier integrity. METHODS AND RESULTS Fifty-six adult male Wistar rats are randomly assigned into seven groups: control, LGG alone, TA alone, diarrhea model, diarrhea+LGG, diarrhea+TA, and diarrhea+LGG+TA-treated groups. Diarrhea is induced by high-lactose diet (HLD) consumption. LGG (1x109 CFU/rat) and TA (100 mg Kg-1 d-1) were given orally 4 days after HLD feeding and continued for 10 days. Ileum specimens are processed for biochemical analysis of the local intestinal cytokines, polymerase chain reaction (PCR), and histological study. Also, immunohistochemistry-based identification of Proliferating Cell Nuclear Antigen (PCNA) and zonula occludens 1 (ZO-1) is performed. Compared to the diarrhea model group, both treatments maintain the intestinal mucosal structure and proliferative activity and preserve ZO-1 expression, with the combination group showing the maximal effect. However, LGG-treated diarrheic rats show a remarkable decrease in the intestinal tissue concentrations of tumor necrosis factor-alpha (TNF-α) and nuclear factor Kappa beta (NF-κB); meanwhile, TA treatment leads to a selective decrease of interferon-gamma (INF-γ) and transforming growth factor-beta (TGF-β1). CONCLUSION Individual LGG and TA treatments significantly alleviate diarrhea, probably through a selective immunomodulatory cytokine-dependent mechanism, while the combination of both synergistically maintains the intestinal mucosa by keeping the intestinal epithelial barrier function and regenerative capability.
Collapse
Affiliation(s)
- Lamiaa M Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Sahar M Abo El Wafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Maged Behery
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha, 13511, Egypt
| | - Mohamed H Bahr
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, 11591, Egypt
- Department of Basic Medical Sciences, Vision Colleges, Riyadh, 11451, Saudi Arabia
| | | | - Ahmed A Morsi
- Department of Histology and Cell Biology, Faculty of Medicine, Fayoum University, Fayoum, 63511, Egypt
| |
Collapse
|
14
|
Li S, Zhang K, Bai S, Wang J, Zeng Q, Peng H, Lv H, Mu Y, Xuan Y, Li S, Ding X. Extract of Scutellaria baicalensis and Lonicerae flos improves growth performance, antioxidant capacity, and intestinal barrier of yellow-feather broiler chickens against Clostridium perfringens. Poult Sci 2024; 103:103718. [PMID: 38692178 PMCID: PMC11077025 DOI: 10.1016/j.psj.2024.103718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 03/31/2024] [Indexed: 05/03/2024] Open
Abstract
In this study, we aimed to investigate the effect of Scutellaria baicalensis and Lonicerae Flos (SL) extract on the growth performance and intestinal health of yellow-feather broilers following a Clostridium perfringens challenge. In total, 600 one-day-old yellow-feather broilers were divided into five treatments (6 replicate pens of 20 birds per treatment), including a control (Con) group fed a basal diet and the infected group (iCon) fed a basal diet and infected with Clostridium perfringens, the other 3 groups receiving different doses of SL (150, 300, and 450 mg/kg) and infected with Clostridium perfringens. The total experimental period was 80 d. When the birds were 24-days-old, a subclinical necrotizing enteritis model was induced by orally inoculating the birds with 11,000 oocysts of mixed Eimeria species on d 24, followed by C. perfringens (108 CFU/mL) from d 28 to 30. The birds were evaluated for parameters such as average weight gain (AWG), average daily feed intake (ADFI), mortality, feed conversion ration (FCR), intestinal lesion score, intestinal C. perfringens counts, and villus histomorphometry. Results indicated that C. perfringens infection led to reduced AWG and the levels of tight junction proteins, increased the FCR, ileum E. coli load, and intestinal permeability, causing damage to the intestinal mucosal barrier (P < 0.05). Compared with the infected group, supplementing 300 mg/kg of SL significantly increased AWG at 43 to 80 d, the ratio of villus height to crypt depth in the jejunum and ileum at 35 d, and the activity of superoxide dismutase (SOD) in serum. It also significantly reduced the FCR at 22 to 42 d, intestinal lesion score, and the amount of C. perfringens in the ileum (P < 0.05). Additionally, compared with the infected group, the addition of 300 mg/kg SL significantly increased mRNA levels of claudin-2, claudin-3, mucin-2, and toll-like receptor 2 (TLR-2) in the ileum of infected birds at 35 d of age. In conclusion, supplementation with SL extract could effectively mitigate the negative effects of C. perfringens challenge by improving intestinal barrier function and histomorphology, positively influencing the growth performance of challenged birds.
Collapse
Affiliation(s)
- Shi Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huiyuan Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing 100193, China; Beijing Centre Biology Co. Ltd. Daxing District, Beijing 102218, China
| | - Yadong Mu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shanshan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
15
|
Gu N, Yan J, Tang W, Zhang Z, Wang L, Li Z, Wang Y, Zhu Y, Tang S, Zhong J, Cheng C, Sun X, Huang Z. Prevotella copri transplantation promotes neurorehabilitation in a mouse model of traumatic brain injury. J Neuroinflammation 2024; 21:147. [PMID: 38835057 DOI: 10.1186/s12974-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.
Collapse
Affiliation(s)
- Nina Gu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin Yan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhaosi Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Zhao Li
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Emergency Department, Chengdu First People's Hospital, Chengdu, China
| | - Yingwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yajun Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shuang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurosurgery, Suining Central Hospital, Suining, China
| | - Jianjun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chongjie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zhijian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Moon AN, Briand F, Breyner N, Song DK, Madsen MR, Kim H, Choi K, Lee Y, Namkung W. Improvement of NASH and liver fibrosis through modulation of the gut-liver axis by a novel intestinal FXR agonist. Biomed Pharmacother 2024; 173:116331. [PMID: 38428307 DOI: 10.1016/j.biopha.2024.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
Farnesoid X receptor (FXR) plays a pivotal role in the regulation of bile acid homeostasis and is involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). Although FXR agonists effectively alleviate pathological features of NASH, adverse effects such as disturbance of cholesterol homeostasis and occurrence of pruritus remain to be addressed. Here, we identified a novel FXR agonist, ID119031166 (ID166), and explored the pharmacological benefits of ID166 in the treatment of NASH. ID166, a potent and selective non-bile acid FXR agonist, exhibits preferential distribution in the intestine and shows no agonist activity against potential itch receptors including Mas-related G protein-coupled receptor X4 (MRGPRX4). Interestingly, ID166 significantly attenuated total nonalcoholic fatty liver disease (NAFLD) activity and liver fibrosis in a free choice diet-induced NASH hamster model. In addition, ID166 drastically modulated the relative abundance of five gut microbes and reduced the increase in plasma total bile acid levels to normal levels in NASH hamsters. Moreover, long-term treatment with ID166 significantly improved key histological features of NASH and liver fibrosis in a diet-induced NASH mouse model. In the NASH mouse livers, RNA-seq analysis revealed that ID166 reduced the gene expression changes associated with both NASH and liver fibrosis. Notably, ID166 exhibited no substantial effects on scratching behavior and serum IL-31 levels in mice. Our findings suggest that ID166, a novel FXR agonist with improved pharmacological properties, provides a preclinical basis to optimize clinical benefits for NASH drug development.
Collapse
Affiliation(s)
- An-Na Moon
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea; iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea
| | - François Briand
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, Escalquens 31750, France
| | - Natalia Breyner
- Physiogenex, 280 rue de l'Hers, ZAC de la Masquère, Escalquens 31750, France
| | - Dong-Keun Song
- iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea
| | | | - Hongbin Kim
- KINS, Korean Institute of Nonclinical Study, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13505, South Korea
| | - Keonwoo Choi
- KINS, Korean Institute of Nonclinical Study, 172 Dolma-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13505, South Korea
| | - Yoonsuk Lee
- iLeadBMS Co., Ltd., 614 Dongtangiheung-ro, Hwaseong-si 18469, South Korea.
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, South Korea.
| |
Collapse
|
17
|
Koh YC, Chang YC, Lin WS, Leung SY, Chen WJ, Wu SH, Wei YS, Gung CL, Chou YC, Pan MH. Efficacy and Mechanism of the Action of Live and Heat-Killed Bacillus coagulans BC198 as Potential Probiotic in Ameliorating Dextran Sulfate Sodium-Induced Colitis in Mice. ACS OMEGA 2024; 9:10253-10266. [PMID: 38463297 PMCID: PMC10918820 DOI: 10.1021/acsomega.3c07529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Inflammatory bowel disease alters the gut microbiota, causes defects in mucosal barrier function, and leads to dysregulation of the immune response to microbial stimulation. This study investigated and compared the efficacy of a candidate probiotic strain, Bacillus coagulans BC198, and its heat-killed form in treating dextran sulfate sodium-induced colitis. Both live and heat-killed B. coagulans BC198 increased gut barrier-associated protein expression, reduced neutrophil and M1 macrophage infiltration of colon tissue, and corrected gut microbial dysbiosis induced by colitis. However, only live B. coagulans BC198 could alleviate the general symptoms of colitis, prevent colon shortening, and suppress inflammation and tissue damage. At the molecular level, live B. coagulans BC198 was able to inhibit Th17 cells while promoting Treg cells in mice with colitis, reduce pro-inflammatory MCP-1 production, and increase anti-inflammatory IL-10 expression in the colonic mucosa. The live form of B. coagulans BC198 functioned more effectively than the heat-killed form in ameliorating colitis by enhancing the anti-inflammatory response and promoting Treg cell accumulation in the colon.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Ya-Chu Chang
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Wei-Sheng Lin
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Food Science, National Quemoy University, Quemoy 892, Taiwan
| | - Siu-Yi Leung
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Wei-Jen Chen
- Biotech
Department, Syngen Biotech Co., Ltd., Tainan 744094, Taiwan
| | - Shiuan-Huei Wu
- Biotech
Department, Syngen Biotech Co., Ltd., Tainan 744094, Taiwan
| | - Yu-Shan Wei
- Research
and Development Department, Syngen Biotech
Co., Ltd., Tainan 744094, Taiwan
| | - Chiau-Ling Gung
- Research
and Development Department, Syngen Biotech
Co., Ltd., Tainan 744094, Taiwan
| | - Ya-Chun Chou
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Sciences and Technology, National
Taiwan University, Taipei 10617, Taiwan
- Department
of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan
- Department
of Health and Nutrition Biotechnology, Asia
University, Taichung City 41354, Taiwan
| |
Collapse
|
18
|
Belchik SE, Oba PM, Lin CY, Swanson KS. Effects of a veterinary gastrointestinal low-fat diet on fecal characteristics, metabolites, and microbiota concentrations of adult dogs treated with metronidazole. J Anim Sci 2024; 102:skae297. [PMID: 39344678 PMCID: PMC11568346 DOI: 10.1093/jas/skae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Antibiotics are known to cause loose stools, disrupt the fecal microbiota, and alter fecal bile acid (BA) profiles of dogs. Recovery may be aided by diet, but little research has been conducted. The objective of this study was to determine how a veterinary low-fat diet affected the fecal characteristics, metabolites, BA, and microbiota of dogs receiving antibiotics. Twenty-four healthy adult dogs [7.38 ± 1.95 yr; 7.67 ± 0.76 kg body weight (BW)] were used in an 8-wk completely randomized design study. During a 2-wk baseline, all dogs were fed a leading grocery brand diet (GBD). Over the next 2 wk, dogs were fed GBD and received metronidazole orally (20 mg/kg BW twice daily). At week 4, dogs were randomly allotted to one of two treatments [GBD or Blue Buffalo Natural Veterinary Diet GI Gastrointestinal Support Low-Fat (BB)] and fed for 4 wk. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, 7, and 8 for measurement of pH, dry matter content, and metabolite and BA concentrations. Fecal microbiota populations were analyzed using 16S rRNA gene amplicon sequencing and qPCR-based dysbiosis index (DI). All data were analyzed as repeated measures using the Mixed Models procedure of SAS 9.4, testing for effects of treatment, time, and treatment*time and significance set at P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools), reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations, increased primary BA concentrations, and decreased secondary BA concentrations. Metronidazole also reduced fecal bacterial alpha diversity, altered the abundance of 58 bacterial genera, and increased DI. During antibiotic recovery, changes in fecal pH, dry matter percentage, and metabolite and immunoglobulin A concentrations were altered (P < 0.05) by diet. Fecal BA concentrations recovered quickly for all dogs. Change in lithocholic acid was affected (P < 0.0001) by diet, but other BA were not. Recovery of over 25 bacterial genera was impacted by diet (P < 0.05). While many bacterial taxa returned to baseline levels after 4 wk, others did not fully recover. DI and bacterial alpha diversity measures recovered quickly for all dogs but were not impacted by diet. In conclusion, metronidazole drastically altered the fecal microbiota and metabolites of dogs. While most variables returned to baseline by week 8, diet may be used to aid in recovery.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Doney E, Dion-Albert L, Coulombe-Rozon F, Osborne N, Bernatchez R, Paton SE, Kaufmann FN, Agomma RO, Solano JL, Gaumond R, Dudek KA, Szyszkowicz JK, Lebel M, Doyen A, Durand A, Lavoie-Cardinal F, Audet MC, Menard C. Chronic Stress Exposure Alters the Gut Barrier: Sex-Specific Effects on Microbiota and Jejunum Tight Junctions. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:213-228. [PMID: 38306213 PMCID: PMC10829561 DOI: 10.1016/j.bpsgos.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 02/04/2024] Open
Abstract
Background Major depressive disorder (MDD) is the leading cause of disability worldwide. Of individuals with MDD, 30% to 50% are unresponsive to common antidepressants, highlighting untapped causal biological mechanisms. Dysfunction in the microbiota-gut-brain axis has been implicated in MDD pathogenesis. Exposure to chronic stress disrupts blood-brain barrier integrity; still, little is known about intestinal barrier function in these conditions, particularly for the small intestine, where absorption of most foods and drugs takes place. Methods We investigated how chronic social or variable stress, two mouse models of depression, impact the jejunum intestinal barrier in males and females. Mice were subjected to stress paradigms followed by analysis of gene expression profiles of intestinal barrier-related targets, fecal microbial composition, and blood-based markers. Results Altered microbial populations and changes in gene expression of jejunum tight junctions were observed depending on the type and duration of stress, with sex-specific effects. We used machine learning to characterize in detail morphological tight junction properties, identifying a cluster of ruffled junctions in stressed animals. Junctional ruffling is associated with inflammation, so we evaluated whether lipopolysaccharide injection recapitulates stress-induced changes in the jejunum and observed profound sex differences. Finally, lipopolysaccharide-binding protein, a marker of gut barrier leakiness, was associated with stress vulnerability in mice, and translational value was confirmed on blood samples from women with MDD. Conclusions Our results provide evidence that chronic stress disrupts intestinal barrier homeostasis in conjunction with the manifestation of depressive-like behaviors in a sex-specific manner in mice and, possibly, in human depression.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Francois Coulombe-Rozon
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Natasha Osborne
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Renaud Bernatchez
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Sam E.J. Paton
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Roseline Olory Agomma
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - José L. Solano
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Raphael Gaumond
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Katarzyna A. Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Joanna Kasia Szyszkowicz
- Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Alain Doyen
- Department of Food Science, Institute of Nutrition and Functional Foods, Université Laval, Québec City, Québec, Canada
| | - Audrey Durand
- Department of Computer Science and Software Engineering and Department of Electrical and Computer Engineering, Université Laval, Québec City, Québec, Canada
| | - Flavie Lavoie-Cardinal
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| | - Marie-Claude Audet
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
20
|
Zaib S, Hayat A, Khan I. Probiotics and their Beneficial Health Effects. Mini Rev Med Chem 2024; 24:110-125. [PMID: 37291788 DOI: 10.2174/1389557523666230608163823] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Probiotics are living microorganisms that are present in cultured milk and fermented food. Fermented foods are a rich source for the isolation of probiotics. They are known as good bacteria. They have various beneficial effects on human health including antihypertensive effects, antihypercholesterolemic effects, prevention of bowel disease, and improving the immune system. Microorganisms including bacteria, yeast, and mold are used as probiotics but the major microorganisms that are used as probiotics are bacteria from the genus Lactobacillus, Lactococcus, Streptococcus, and Bifidobacterium. Probiotics are beneficial in the prevention of harmful effects. Recently, the use of probiotics for the treatment of various oral and skin diseases has also gained significant attention. Clinical studies indicate that the usage of probiotics can alter gut microbiota composition and provoke immune modulation in a host. Due to their various health benefits, probiotics are attaining more interest as a substitute for antibiotics or anti-inflammatory drugs leading to the growth of the probiotic market.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Aqsa Hayat
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
21
|
Ahmad R, Kumar B, Thapa I, Talmon GA, Salomon J, Ramer-Tait AE, Bastola DK, Dhawan P, Singh AB. Loss of claudin-3 expression increases colitis risk by promoting Gut Dysbiosis. Gut Microbes 2023; 15:2282789. [PMID: 38010872 PMCID: PMC10730149 DOI: 10.1080/19490976.2023.2282789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Dysregulation of both the gut barrier and microbiota (dysbiosis) promotes susceptibility to and severity of Inflammatory Bowel Diseases (IBD). Leaky gut and dysbiosis often coexist; however, potential interdependence and molecular regulation are not well understood. Robust expression of claudin-3 (CLDN3) characterizes the gut epithelium, and studies have demonstrated a positive association between CLDN3 expression and gut barrier maturity and integrity, including in response to probiotics. However, the exact status and causal role of CLDN3 in IBD and regulation of gut dysbiosis remain unknown. Analysis of mouse and human IBD cohorts helped examine CLDN3 expression in IBD. The causal role was determined by modeling CLDN3 loss of expression during experimental colitis. 16S sequencing and in silico analysis helped examine gut microbiota diversity between Cldn3KO and WT mice and potential host metabolic responses. Fecal microbiota transplant (FMT) studies were performed to assess the role of gut dysbiosis in the increased susceptibility of Cldn3KO mice to colitis. A significant decrease in CLDN3 expression characterized IBD and CLDN3 loss of expression promoted colitis. 16S sequencing analysis suggested gut microbiota changes in Cldn3KO mice that were capable of modulating fatty acid metabolism and oxidative stress response. FMT from naïve Cldn3KO mice promoted colitis susceptibility in recipient germ-free mice (GFM) compared with GFM-receiving microbiota from WT mice. Our data demonstrate a critical role of CLDN3 in maintaining normal gut microbiota and inflammatory responses, which can be harnessed to develop novel therapeutic opportunities for patients with IBD.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology and the Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dhundy K. Bastola
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
22
|
Wala SJ, Sajankila N, Ragan MV, Duff AF, Wickham J, Volpe SG, Wang Y, Conces M, Dumbauld Z, Purayil N, Narayanan S, Rajab A, Mihi B, Bailey MT, Goodman SD, Besner GE. Superior performance of biofilm versus planktonic Limosilactobacillus reuteri in protection of the intestines and brain in a piglet model of necrotizing enterocolitis. Sci Rep 2023; 13:17740. [PMID: 37872187 PMCID: PMC10593788 DOI: 10.1038/s41598-023-44676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal-related death in premature infants. Its etiology is multifactorial, with intestinal dysbiosis playing a major role. Probiotics are a logical preventative therapy for NEC, however their benefits have been inconsistent. We previously developed a novel probiotic delivery system in which planktonic (free-living) Limosilactobacillus reuteri (Lr) is incubated with biocompatible dextranomer microspheres (DM) loaded with maltose (Lr-DM-maltose) to induce biofilm formation. Here we have investigated the effects of Lr-DM-maltose in an enteral feed-only piglet model of NEC. We found a significant decrease in the incidence of Definitive NEC (D-NEC), death associated with D-NEC, and activated microglia in the brains of piglets treated with Lr-DM-maltose compared to non-treated piglets. Microbiome analyses using 16S rRNA sequencing of colonic contents revealed a significantly different microbial community composition between piglets treated with Lr-DM-maltose compared to non-treated piglets, with an increase in Lactobacillaceae and a decrease in Clostridiaceae in Lr-DM-maltose-treated piglets. Furthermore, there was a significant decrease in the incidence of D-NEC between piglets treated with Lr-DM-maltose compared to planktonic Lr. These findings validate our previous results in rodents, and support future clinical trials of Lr in its biofilm state for the prevention of NEC in premature neonates.
Collapse
Affiliation(s)
- Samantha J Wala
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Nitin Sajankila
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Mecklin V Ragan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Audrey F Duff
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Joseph Wickham
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Samuel G Volpe
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Yijie Wang
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Miriam Conces
- Department of Pathology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Zachary Dumbauld
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Nanditha Purayil
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Siddharth Narayanan
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Adrian Rajab
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Belgacem Mihi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
23
|
Feng B, Zhang Z, Wei Q, Mo Y, Luo M, Jing L, Li Y. A prediction model for neonatal necrotizing enterocolitis in preterm and very low birth weight infants. Front Pediatr 2023; 11:1242978. [PMID: 37920794 PMCID: PMC10619757 DOI: 10.3389/fped.2023.1242978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Objectives Neonatal necrotizing enterocolitis (NEC) is a severe gastrointestinal disease that primarily affects preterm and very low birth weight infants, with high morbidity and mortality. We aim to build a reliable prediction model to predict the risk of NEC in preterm and very low birth weight infants. Methods We conducted a retrospective analysis of medical data from infants (gestational age <32 weeks, birth weight <1,500 g) admitted to Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region. We collected clinical data, randomly dividing it into an 8:2 ratio for training and testing. Multivariate logistic regression was employed to identify significant predictors for NEC. Principal component analysis was used for dimensionality reduction of numerical variables. The prediction model was constructed through logistic regression, incorporating all relevant variables. Subsequently, we calculated performance evaluation metrics, including Receiver Operating Characteristic (ROC) curves and confusion matrices. Additionally, we conducted model performance comparisons with common machine learning models to establish its superiority. Results A total of 292 infants were included, with 20% (n = 58) randomly selected for external validation. Multivariate logistic regression revealed the significance of four predictors for NEC in preterm and very low birth weight infants: temperature (P = 0.003), Apgar score at 5 min (P = 0.004), formula feeding (P = 0.007), and gestational diabetes mellitus (GDM, P = 0.033). The model achieved an accuracy of 82.46% in the test set with an F1 score of 0.90, outperforming other machine learning models (support vector machine, random forest). Conclusions Our logistic regression model effectively predicts NEC risk in preterm and very low birth weight infants, as confirmed by external validation. Key predictors include temperature, Apgar score at 5 min, formula feeding, and GDM. This study provides a vital tool for NEC risk assessment in this population, potentially improving early interventions and child survival. However, clinical validation and further research are necessary for practical application.
Collapse
Affiliation(s)
- Baoying Feng
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Disease, Nanning, China
| | - Zhihui Zhang
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Qiufen Wei
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Disease, Nanning, China
| | - Yan Mo
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Disease, Nanning, China
| | - Mengmeng Luo
- Department of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lianfang Jing
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Disease, Nanning, China
| | - Yan Li
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Disease, Nanning, China
| |
Collapse
|
24
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
25
|
Xiang Q, Yan X, Shi W, Li H, Zhou K. Early gut microbiota intervention in premature infants: Application perspectives. J Adv Res 2023; 51:59-72. [PMID: 36372205 PMCID: PMC10491976 DOI: 10.1016/j.jare.2022.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm birth is the leading cause of death in children under the age of five. One of the major factors contributing to the high risk of diseases and deaths in premature infants is the incomplete development of the intestinal immune system. The gut microbiota has been widely recognized as a critical factor in promoting the development and function of the intestinal immune system after birth. However, the gut microbiota of premature infants is at high risk of dysbiosis, which is highly associated with adverse effects on the development and education of the early life immune system. Early intervention can modulate the colonization and development of gut microbiota and has a long-term influence on the development of the intestinal immune system. AIM OF REVIEW This review aims to summarize the characterization, interconnection, and underlying mechanism of gut microbiota and intestinal innate immunity in premature infants, and to discuss the status, applicability, safety, and prospects of different intervention strategies in premature infants, thus providing an overview and outlook of the current applications and remaining gaps of early intervention strategies in premature infants. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, the gut microbiota of premature infants is at high risk of dysbiosis, resulting in dysfunctional intestinal immune system processes. Secondly, contributing roles of early intervention have been observed in improving the intestinal environment and promoting gut microbiota colonization, which is significant in the development and function of gut immunity in premature infants. Thirdly, different strategies of early intervention, such as probiotics, fecal microbiota transplantation, and nutrients, show different safety, applicability, and outcome in premature infants, and the underlying mechanism is complex and poorly understood.
Collapse
Affiliation(s)
- Quanhang Xiang
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Xudong Yan
- Department of Neonatal Intensive Care Unit, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Huiping Li
- Department of Respiratory and Critical Care Medicine, the first affiliated hospital of Southern University of Science and Technology of China, Shenzhen People's Hospital, Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China; The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
26
|
Ribeiro TA, Breznik JA, Kennedy KM, Yeo E, Kennelly BKE, Jazwiec PA, Patterson VS, Bellissimo CJ, Anhê FF, Schertzer JD, Bowdish DME, Sloboda DM. Intestinal permeability and peripheral immune cell composition are altered by pregnancy and adiposity at mid- and late-gestation in the mouse. PLoS One 2023; 18:e0284972. [PMID: 37549142 PMCID: PMC10406227 DOI: 10.1371/journal.pone.0284972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/13/2023] [Indexed: 08/09/2023] Open
Abstract
It is clear that the gastrointestinal tract influences metabolism and immune function. Most studies to date have used male test subjects, with a focus on effects of obesity and dietary challenges. Despite significant physiological maternal adaptations that occur across gestation, relatively few studies have examined pregnancy-related gut function. Moreover, it remains unknown how pregnancy and diet can interact to alter intestinal barrier function. In this study, we investigated the impacts of pregnancy and adiposity on maternal intestinal epithelium morphology, in vivo intestinal permeability, and peripheral blood immunophenotype, using control (CTL) and high-fat (HF) fed non-pregnant female mice and pregnant mice at mid- (embryonic day (E)14.5) and late (E18.5) gestation. We found that small intestine length increased between non-pregnant mice and dams at late-gestation, but ileum villus length, and ileum and colon crypt depths and goblet cell numbers remained similar. Compared to CTL-fed mice, HF-fed mice had reduced small intestine length, ileum crypt depth and villus length. Goblet cell numbers were only consistently reduced in HF-fed non-pregnant mice. Pregnancy increased in vivo gut permeability, with a greater effect at mid- versus late-gestation. Non-pregnant HF-fed mice had greater gut permeability, and permeability was also increased in HF-fed pregnant dams at mid but not late-gestation. The impaired maternal gut barrier in HF-fed dams at mid-gestation coincided with changes in maternal blood and bone marrow immune cell composition, including an expansion of circulating inflammatory Ly6Chigh monocytes. In summary, pregnancy has temporal effects on maternal intestinal structure and barrier function, and on peripheral immunophenotype, which are further modified by HF diet-induced maternal adiposity. Maternal adaptations in pregnancy are thus vulnerable to excess maternal adiposity, which may both affect maternal and child health.
Collapse
Affiliation(s)
- Tatiane A. Ribeiro
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
| | - Jessica A. Breznik
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katherine M. Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Brianna K. E. Kennelly
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Patrycja A. Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Violet S. Patterson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Christian J. Bellissimo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Fernando F. Anhê
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Dawn M. E. Bowdish
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - Deborah M. Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Barone M, Ramayo-Caldas Y, Estellé J, Tambosco K, Chadi S, Maillard F, Gallopin M, Planchais J, Chain F, Kropp C, Rios-Covian D, Sokol H, Brigidi P, Langella P, Martín R. Gut barrier-microbiota imbalances in early life lead to higher sensitivity to inflammation in a murine model of C-section delivery. MICROBIOME 2023; 11:140. [PMID: 37394428 PMCID: PMC10316582 DOI: 10.1186/s40168-023-01584-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/25/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Most interactions between the host and its microbiota occur at the gut barrier, and primary colonizers are essential in the gut barrier maturation in the early life. The mother-offspring transmission of microorganisms is the most important factor influencing microbial colonization in mammals, and C-section delivery (CSD) is an important disruptive factor of this transfer. Recently, the deregulation of symbiotic host-microbe interactions in early life has been shown to alter the maturation of the immune system, predisposing the host to gut barrier dysfunction and inflammation. The main goal of this study is to decipher the role of the early-life gut microbiota-barrier alterations and its links with later-life risks of intestinal inflammation in a murine model of CSD. RESULTS The higher sensitivity to chemically induced inflammation in CSD mice is related to excessive exposure to a too diverse microbiota too early in life. This early microbial stimulus has short-term consequences on the host homeostasis. It switches the pup's immune response to an inflammatory context and alters the epithelium structure and the mucus-producing cells, disrupting gut homeostasis. This presence of a too diverse microbiota in the very early life involves a disproportionate short-chain fatty acids ratio and an excessive antigen exposure across the vulnerable gut barrier in the first days of life, before the gut closure. Besides, as shown by microbiota transfer experiments, the microbiota is causal in the high sensitivity of CSD mice to chemical-induced colitis and in most of the phenotypical parameters found altered in early life. Finally, supplementation with lactobacilli, the main bacterial group impacted by CSD in mice, reverts the higher sensitivity to inflammation in ex-germ-free mice colonized by CSD pups' microbiota. CONCLUSIONS Early-life gut microbiota-host crosstalk alterations related to CSD could be the linchpin behind the phenotypic effects that lead to increased susceptibility to an induced inflammation later in life in mice. Video Abstract.
Collapse
Affiliation(s)
- M. Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Y. Ramayo-Caldas
- INRAE, AgroParisTech, GABI, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J. Estellé
- INRAE, AgroParisTech, GABI, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - K. Tambosco
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - S. Chadi
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - F. Maillard
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - M. Gallopin
- CNRS, CEA, l’Institut de Biologie Intégrative de La Cellule (I2BC), Paris-Saclay University, 91405 Orsay, France
| | - J. Planchais
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - F. Chain
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - C. Kropp
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - D. Rios-Covian
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - H. Sokol
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Centre de Recherche Saint-Antoine, CRSA, AP-HP, INSERM, Saint Antoine Hospital, Sorbonne Université, 75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - P. Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - P. Langella
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - R. Martín
- INRAE, AgroParisTech, Micalis Institut,, Paris-Saclay University, 78350 Jouy-en-Josas, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, Paris, France
| |
Collapse
|
28
|
Jiang J, Fu Y, Tang A, Gao X, Zhang D, Shen Y, Mou T, Hu S, Gao J, Lai J. Sex difference in prebiotics on gut and blood-brain barrier dysfunction underlying stress-induced anxiety and depression. CNS Neurosci Ther 2023; 29 Suppl 1:115-128. [PMID: 36650644 PMCID: PMC10314104 DOI: 10.1111/cns.14091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Most of the previous studies have demonstrated the potential antidepressive and anxiolytic role of prebiotic supplement in male subjects, yet few have females enrolled. Herein, we explored whether prebiotics administration during chronic stress prevented depression-like and anxiety-like behavior in a sex-specific manner and the mechanism of behavioral differences caused by sex. METHODS Female and male C57 BL/J mice on normal diet were supplemented with or without a combination of fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS) during 3- and 4-week chronic restraint stress (CRS) treatment, respectively. C57 BL/J mice on normal diet without CRS were used as controls. Behavior consequences, gut microbiota, dysfunction of gut and brain-blood barriers, and inflammatory profiles were measured. RESULTS In the 3rd week, FOS + GOS administration attenuated stress-induced anxiety-like behavior in female, but not in male mice, and the anxiolytic effects in males were observed until the 4th week. However, protective effects of prebiotics on CRS-induced depression were not observed. Changes in the gene expression of tight junction proteins in the distal colon and hippocampus, and decreased number of colon goblet cells following CRS were restored by prebiotics only in females. In both female and male mice, prebiotics alleviated stress-induced BBB dysfunction and elevation in pro-inflammatory cytokines levels, and modulated gut microbiota caused by stress. Furthermore, correlation analysis revealed that anxiety-like behaviors were significantly correlated with levels of pro-inflammatory cytokines and gene expression of tight junction proteins in the hippocampus of female mice, and the abundance of specific gut microbes was also correlated with anxiety-like behaviors, pro-inflammatory cytokines, and gene expression of tight junction proteins in the hippocampus of female mice. CONCLUSION Female mice were more vulnerable to stress and prebiotics than males. The gut microbiota, gut and blood-brain barrier, and inflammatory response may mediate the protective effects of prebiotics on anxiety-like behaviors in female mice.
Collapse
Affiliation(s)
- Jiajun Jiang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
| | - Yaoyang Fu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Anying Tang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xingle Gao
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuting Shen
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationZhejiang University School of MedicineHangzhouChina
| | - Jingfang Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine)HangzhouChina
- The First College of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- The Key Laboratory of Mental Disorder's Management in Zhejiang ProvinceHangzhouChina
- Brain Research Institute of Zhejiang UniversityHangzhouChina
- Zhejiang Engineering Center for Mathematical Mental HealthHangzhouChina
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
29
|
Wala SJ, Ragan MV, Sajankila N, Volpe SG, Purayil N, Dumbauld Z, Besner GE. Probiotics and novel probiotic delivery systems. Semin Pediatr Surg 2023; 32:151307. [PMID: 37295299 DOI: 10.1016/j.sempedsurg.2023.151307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Necrotizing enterocolitis (NEC) is an infectious and inflammatory intestinal disease that is the most common surgical emergency in the premature patient population. Although the etiology of the disease is multifactorial, intestinal dysbiosis is a hallmark of this disease. Based on this, probiotics may play a therapeutic role in NEC by introducing beneficial bacteria with immunomodulating, antimicrobial, and anti-inflammatory functions into the gastrointestinal tract. Currently, there is no Food and Drug Administration (FDA)-approved probiotic for the prevention and treatment of NEC. All probiotic clinical studies to date have administered the bacteria in their planktonic (free-living) state. This review will discuss established probiotic delivery systems including planktonic probiotics, prebiotics, and synbiotics, as well as novel probiotic delivery systems such as biofilm-based and designer probiotics. We will also shed light on whether or not probiotic efficacy is influenced by administration with breast milk. Finally, we will consider the challenges associated with developing an FDA-approved probiotic for NEC.
Collapse
Affiliation(s)
- Samantha J Wala
- Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Mecklin V Ragan
- Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Nitin Sajankila
- Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Samuel G Volpe
- Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Nanditha Purayil
- Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Zachary Dumbauld
- Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gail E Besner
- Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
30
|
Cuna A, Nsumu M, Menden HL, Chavez-Bueno S, Sampath V. The Detrimental Effects of Peripartum Antibiotics on Gut Proliferation and Formula Feeding Injury in Neonatal Mice Are Alleviated with Lactobacillus rhamnosus GG. Microorganisms 2023; 11:1482. [PMID: 37374984 DOI: 10.3390/microorganisms11061482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Peripartum antibiotics can negatively impact the developing gut microbiome and are associated with necrotizing enterocolitis (NEC). The mechanisms by which peripartum antibiotics increase the risk of NEC and strategies that can help mitigate this risk remain poorly understood. In this study, we determined mechanisms by which peripartum antibiotics increase neonatal gut injury and evaluated whether probiotics protect against gut injury potentiated by peripartum antibiotics. To accomplish this objective, we administered broad-spectrum antibiotics or sterile water to pregnant C57BL6 mice and induced neonatal gut injury to their pups with formula feeding. We found that pups exposed to antibiotics had reduced villus height, crypt depth, and intestinal olfactomedin 4 and proliferating cell nuclear antigen compared to the controls, indicating that peripartum antibiotics impaired intestinal proliferation. When formula feeding was used to induce NEC-like injury, more severe intestinal injury and apoptosis were observed in the pups exposed to antibiotics compared to the controls. Supplementation with the probiotic Lactobacillus rhamnosus GG (LGG) reduced the severity of formula-induced gut injury potentiated by antibiotics. Increased intestinal proliferating cell nuclear antigen and activation of the Gpr81-Wnt pathway were noted in the pups supplemented with LGG, suggesting partial restoration of intestinal proliferation by probiotics. We conclude that peripartum antibiotics potentiate neonatal gut injury by inhibiting intestinal proliferation. LGG supplementation decreases gut injury by activating the Gpr81-Wnt pathway and restoring intestinal proliferation impaired by peripartum antibiotics. Our results suggest that postnatal probiotics may be effective in mitigating the increased risk of NEC associated with peripartum antibiotic exposure in preterm infants.
Collapse
Affiliation(s)
- Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Marianne Nsumu
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Heather L Menden
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Susana Chavez-Bueno
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Division of Infectious Diseases, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
31
|
Caporilli C, Giannì G, Grassi F, Esposito S. An Overview of Short-Bowel Syndrome in Pediatric Patients: Focus on Clinical Management and Prevention of Complications. Nutrients 2023; 15:nu15102341. [PMID: 37242224 DOI: 10.3390/nu15102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Short-bowel syndrome (SBS) in pediatric age is defined as a malabsorptive state, resulting from congenital malformations, significant small intestine surgical resection or disease-associated loss of absorption. SBS is the leading cause of intestinal failure in children and the underlying cause in 50% of patients on home parental nutrition. It is a life-altering and life-threatening disease due to the inability of the residual intestinal function to maintain nutritional homeostasis of protein, fluid, electrolyte or micronutrient without parenteral or enteral supplementation. The use of parenteral nutrition (PN) has improved medical care in SBS, decreasing mortality and improving the overall prognosis. However, the long-term use of PN is associated with the incidence of many complications, including liver disease and catheter-associated malfunction and bloodstream infections (CRBSIs). This manuscript is a narrative review of the current available evidence on the management of SBS in the pediatric population, focusing on prognostic factors and outcome. The literature review showed that in recent years, the standardization of management has demonstrated to improve the quality of life in these complex patients. Moreover, the development of knowledge in clinical practice has led to a reduction in mortality and morbidity. Diagnostic and therapeutic decisions should be made by a multidisciplinary team that includes neonatologists, pediatric surgeons, gastroenterologists, pediatricians, nutritionists and nurses. A significant improvement in prognosis can occur through the careful monitoring of nutritional status, avoiding dependence on PN and favoring an early introduction of enteral nutrition, and through the prevention, diagnosis and aggressive treatment of CRSBIs and SIBO. Multicenter initiatives, such as research consortium or data registries, are mandatory in order to personalize the management of these patients, improve their quality of life and reduce the cost of care.
Collapse
Affiliation(s)
- Chiara Caporilli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuliana Giannì
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Federica Grassi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
32
|
Pandey U, Tambat S, Aich P. Postnatal 14D is the Key Window for Mice Intestinal Development- An Insight from Age-Dependent Antibiotic-Mediated Gut Microbial Dysbiosis Study. Adv Biol (Weinh) 2023:e2300089. [PMID: 37178322 DOI: 10.1002/adbi.202300089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Indexed: 05/15/2023]
Abstract
The postnatal period is one of the critical windows for the structure-function development of the gastrointestinal tract and associated mucosal immunity. Along with other constituent members, recent studies suggest the contribution of gut microbiota in maintaining host health, immunity, and development. Although the gut microbiota's role in maintaining barrier integrity is known, its function in early life development still needs to be better understood. To understand the details of gut microbiota's effects on intestinal integrity, epithelium development, and immune profile, the route of antibiotic-mediated perturbation is taken. Mice on days 7(P7D), 14(P14D), 21(P21D) and 28(P28D) are sacrificed and 16S rRNA metagenomic analysis is performed. The barrier integrity, tight junction proteins (TJPs) expression, intestinal epithelial cell (IEC) markers, and inflammatory cytokines are analyzed. Results reveal a postnatal age-related impact of gut microbiota perturbation, with a gradual increase in the relative abundance of Proteobacteria and a reduction in Bacteroidetes and Firmicutes. Significant barrier integrity disruption, reduced TJPs and IECs marker expression, and increased systemic inflammation at P14D of AVNM-treated mice are found. Moreover, the microbiota transplantation shows recolonization of Verrucomicrobia, proving a causal role in barrier functions. The investigation reveals P14D as a critical period for neonatal intestinal development, regulated by specific microbiota composition.
Collapse
Affiliation(s)
- Uday Pandey
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Subodh Tambat
- Department of Life Sciences and Healthcare, Persistent Systems Limited, Pune, Maharashtra, 411004, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O. Jatni, Khurda, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
33
|
Nii T, Shinkoda T, Isobe N, Yoshimura Y. Intravaginal injection of Lactobacillus johnsonii may modulates oviductal microbiota and mucosal barrier function of laying hens. Poult Sci 2023; 102:102699. [PMID: 37270892 PMCID: PMC10242643 DOI: 10.1016/j.psj.2023.102699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 06/06/2023] Open
Abstract
The avian oviduct connects to the gastrointestinal tract through cloaca, where it is exposed to pathogenic bacteria from intestinal contents. Therefore, improvement of mucosal barrier function in the oviduct is important for safe poultry production. Lactic acid bacteria are known to contribute to strengthening the mucosal barrier function in the intestinal tract, and a similar effect is expected in the oviduct mucosa of chickens. This study aimed to clarify the effects of vaginal administration of lactic acid bacteria on the mucosal barrier function of the oviduct. White Leghorn laying hens (500-days old) were intravaginally administered 1 mL of Lactobacillus johnsonii suspension (1 × 105 and 1 × 108 cfu/mL: low concentration of Lactobacillus (LL) and high concentration of Lactobacillus (HL) groups, respectively) or without bacteria (control: C group) for 7 d (n = 6). The oviductal magnum, uterus, and vagina were collected for histological observations and mucosal barrier function-related gene expression analysis. Amplicon sequence analysis of oviductal mucus bacteria was also performed. Eggs were collected during the experimental period and their weight was measured. Vaginally administering L. johnsonii for 7 d caused 1) an increase in α-diversity of vaginal mucosa microbiota with an increase in the abundance ratio of beneficial bacteria and a decrease in pathogenic bacteria, 2) enhanced claudin (CLA) 1 and 3 gene expression in the magnum and vaginal mucosa, and 3) a decrease in avian β-defensin (AvBD) 10, 11, and 12 gene expression in the magnum, uterus, and vaginal mucosa. These results suggest that transvaginal administration of L. johnsonii contributes to protection against infection in the oviduct by improving the microflora of the oviductal mucosa and strengthening the mechanical barrier function of the tight junctions. In contrast, transvaginal administration of lactic acid bacteria does not enhance the production of AvBD10, 11, and 12 in the oviduct.
Collapse
Affiliation(s)
- T Nii
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan; Japanese Avian Bioresource Project Research Center, Higashi-Hiroshima, Japan.
| | - T Shinkoda
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - N Isobe
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Y Yoshimura
- Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, Japan; Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan; Hiroshima Study Center, The Open University of Japan, Hiroshima, Japan
| |
Collapse
|
34
|
Lama Tamang R, Juritsch AF, Ahmad R, Salomon JD, Dhawan P, Ramer-Tait AE, Singh AB. The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease. Tissue Barriers 2023; 11:2077069. [PMID: 35603609 PMCID: PMC10161950 DOI: 10.1080/21688370.2022.2077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/21/2023] Open
Abstract
The intestinal barrier orchestrates selective permeability to nutrients and metabolites while excluding noxious stimuli. Recent scientific advances establishing a causal role for the gut microbiota in human health outcomes have generated a resurgent interest toward intestinal permeability. Considering the well-established role of the gut barrier in protection against foreign antigens, there is mounting evidence for a causal link between gut permeability and the microbiome in regulating human health. However, an understanding of the dynamic host-microbiota interactions that govern intestinal barrier functions remains poorly defined. Furthermore, the system-level mechanisms by which microbiome-targeted therapies, such as probiotics and prebiotics, simultaneously promote intestinal barrier function and host health remain an area of active investigation. This review summarizes the recent advances in understanding the dynamics of intestinal permeability in human health and its integration with gut microbiota. We further summarize mechanisms by which probiotics/prebiotics influence the gut microbiota and intestinal barrier functions.
Collapse
Affiliation(s)
- Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony F. Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jeffrey D. Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
35
|
Torow N, Hand TW, Hornef MW. Programmed and environmental determinants driving neonatal mucosal immune development. Immunity 2023; 56:485-499. [PMID: 36921575 PMCID: PMC10079302 DOI: 10.1016/j.immuni.2023.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/17/2023] [Indexed: 03/15/2023]
Abstract
The mucosal immune system of neonates goes through successive, non-redundant phases that support the developmental needs of the infant and ultimately establish immune homeostasis. These phases are informed by environmental cues, including dietary and microbial stimuli, but also evolutionary developmental programming that functions independently of external stimuli. The immune response to exogenous stimuli is tightly regulated during early life; thresholds are set within this neonatal "window of opportunity" that govern how the immune system will respond to diet, the microbiota, and pathogenic microorganisms in the future. Thus, changes in early-life exposure, such as breastfeeding or environmental and microbial stimuli, influence immunological and metabolic homeostasis and the risk of developing diseases such as asthma/allergy and obesity.
Collapse
Affiliation(s)
- Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Timothy W Hand
- Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany.
| |
Collapse
|
36
|
Intestinal permeability, microbiota composition and expression of genes related to intestinal barrier function of broiler chickens fed different methionine sources supplemented at varying concentrations. Poult Sci 2023; 102:102656. [PMID: 37043958 PMCID: PMC10140141 DOI: 10.1016/j.psj.2023.102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Intestinal health of broiler chickens is influenced by the concentration of dietary amino acids but data are limited on the role of dietary methionine (Met). Two experiments were conducted to investigate the implications of different Met sources for performance, gut barrier function, and intestinal microbiota in broilers. In the first experiment, Ross 308 off-sex birds (n = 900) were assigned to 10 dietary treatments each replicated 9 times in a 35-day study. Three sources of Met included DL-Met, L-Met, or Met hydroxy analog free acid (MHA-FA), each supplemented at suboptimal (SUB) at 80%, adequate (ADE) at 100% and over-requirement (OVR) at 120% of the specifications against a deficient (DEF) diet with no added Met. The second experiment used 96 Ross 308 broilers in a 2 × 4 factorial arrangement. Four diets included 3 sources of Met supplemented at ADE level plus the DEF treatment. On d 17, 19, and 23, half of the birds in each dietary treatment were injected with dexamethasone (DEX) to induce leaky gut. In the first experiment, without an interaction, from d 0 to 35, birds fed DL-Met and L-Met performed similarly for BWG, feed intake, and FCR but birds fed MHA-FA had less feed intake and BWG (P < 0.05). At d 23, mRNA expression of selected tight junction proteins was not affected except for claudin 2. Ileal microbiota of DEF treatment was different from DL-MET or L-MET supplemented birds (P < 0.05). However, microbiota of MHA-FA treatments was only different at OVR from the DEF group. The abundance of Peptostreptococcus increased in DEF treatment whereas Lactobacillus decreased. In the second experiment, DEX independently increased (P < 0.001) intestinal permeability assayed by fluorescein isothiocyanate dextran, but diet had no effect. DL-Met and L-Met fed birds had a higher level of claudin 3 only in DEX-injected birds (P < 0.05). In conclusion, unlike the level of supplementation, DL-Met, L-Met, and MHA-FA were largely similar in their limited impacts on intestinal barrier function and gut microbiota in broilers.
Collapse
|
37
|
Abstract
Abnormalities in gut microbiota have been suggested to be involved in the pathophysiology and progression of Parkinson's disease (PD). Gastrointestinal nonmotor symptoms often precede the onset of motor features in PD, suggesting a role for gut dysbiosis in neuroinflammation and α-synuclein (α-syn) aggregation. In the first part of this chapter, we analyze critical features of healthy gut microbiota and factors (environmental and genetic) that modify its composition. In the second part, we focus on the mechanisms underlying the gut dysbiosis and how it alters anatomically and functionally the mucosal barrier, triggering neuroinflammation and subsequently α-syn aggregation. In the third part, we describe the most common alterations in the gut microbiota of PD patients, dividing the gastrointestinal system in higher and lower tract to examine the association between microbiota abnormalities and clinical features. In the final section, we report on current and future therapeutic approaches to gut dysbiosis aiming to either reduce the risk for PD, modify the disease course, or improve the pharmacokinetic profile of dopaminergic therapies. We also suggest that further studies will be needed to clarify the role of the microbiome in PD subtyping and of pharmacological and nonpharmacological interventions in modifying specific microbiota profiles in individualizing disease-modifying treatments in PD.
Collapse
Affiliation(s)
- Salvatore Bonvegna
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy
| | - Roberto Cilia
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Milan, Italy.
| |
Collapse
|
38
|
Otte ML, Lama Tamang R, Papapanagiotou J, Ahmad R, Dhawan P, Singh AB. Mucosal healing and inflammatory bowel disease: Therapeutic implications and new targets. World J Gastroenterol 2023; 29:1157-1172. [PMID: 36926666 PMCID: PMC10011951 DOI: 10.3748/wjg.v29.i7.1157] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Mucosal healing (MH) is vital in maintaining homeostasis within the gut and protecting against injury and infections. Multiple factors and signaling pathways contribute in a dynamic and coordinated manner to maintain intestinal homeostasis and mucosal regeneration/repair. However, when intestinal homeostasis becomes chronically disturbed and an inflammatory immune response is constitutively active due to impairment of the intestinal epithelial barrier autoimmune disease results, particularly inflammatory bowel disease (IBD). Many proteins and signaling pathways become dysregulated or impaired during these pathological conditions, with the mechanisms of regulation just beginning to be understood. Consequently, there remains a relative lack of broadly effective therapeutics that can restore MH due to the complexity of both the disease and healing processes, so tissue damage in the gastrointestinal tract of patients, even those in clinical remission, persists. With increased understanding of the molecular mechanisms of IBD and MH, tissue damage from autoimmune disease may in the future be ameliorated by developing therapeutics that enhance the body’s own healing response. In this review, we introduce the concept of mucosal healing and its relevance in IBD as well as discuss the mechanisms of IBD and potential strategies for altering these processes and inducing MH.
Collapse
Affiliation(s)
- Megan Lynn Otte
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Julia Papapanagiotou
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Amar B Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
39
|
Microbiota-dependent presence of murine enteric glial cells requires myeloid differentiation primary response protein 88 signaling. J Biosci 2023. [DOI: 10.1007/s12038-023-00325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
40
|
Tao G, Wang H, Shen Y, Zhai L, Liu B, Wang B, Chen W, Xing S, Chen Y, Gu HM, Qin S, Zhang DW. Surf4 (Surfeit Locus Protein 4) Deficiency Reduces Intestinal Lipid Absorption and Secretion and Decreases Metabolism in Mice. Arterioscler Thromb Vasc Biol 2023; 43:562-580. [PMID: 36756879 PMCID: PMC10026970 DOI: 10.1161/atvbaha.123.318980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Postprandial dyslipidemia is a causative risk factor for cardiovascular disease. The majority of absorbed dietary lipids are packaged into chylomicron and then delivered to circulation. Previous studies showed that Surf4 (surfeit locus protein 4) mediates very low-density lipoprotein secretion from hepatocytes. Silencing hepatic Surf4 markedly reduces the development of atherosclerosis in different mouse models of atherosclerosis without causing hepatic steatosis. However, the role of Surf4 in chylomicron secretion is unknown. METHODS We developed inducible intestinal-specific Surf4 knockdown mice (Surf4IKO) using Vil1Cre-ERT2 and Surf4flox mice. Metabolic cages were used to monitor mouse metabolism. Enzymatic kits were employed to measure serum and tissue lipid levels. The expression of target genes was detected by qRT-PCR and Western Blot. Transmission electron microscopy and radiolabeled oleic acid were used to assess the structure of enterocytes and intestinal lipid absorption and secretion, respectively. Proteomics was performed to determine changes in protein expression in serum and jejunum. RESULTS Surf4IKO mice, especially male Surf4IKO mice, displayed significant body weight loss, increased mortality, and reduced metabolism. Surf4IKO mice exhibited lipid accumulation in enterocytes and impaired fat absorption and secretion. Lipid droplets and small lipid vacuoles were accumulated in the cytosol and the endoplasmic reticulum lumen of the enterocytes of Surf4IKO mice, respectively. Surf4 colocalized with apoB and co-immunoprecipitated with apoB48 in differentiated Caco-2 cells. Intestinal Surf4 deficiency also significantly reduced serum triglyceride, cholesterol, and free fatty acid levels in mice. Proteomics data revealed that diverse pathways were altered in Surf4IKO mice. In addition, Surf4IKO mice had mild liver damage, decreased liver size and weight, and reduced hepatic triglyceride levels. CONCLUSIONS Our findings demonstrate that intestinal Surf4 plays an essential role in lipid absorption and chylomicron secretion and suggest that the therapeutic use of Surf4 inhibition requires highly cell/tissue-specific targeting.
Collapse
Affiliation(s)
- Geru Tao
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Hao Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | | | - Lei Zhai
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Boyan Liu
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Bingxiang Wang
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Wei Chen
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Sijie Xing
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Yuan Chen
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Hong-Mei Gu
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (H.-M.G., D.-W.Z.)
| | - Shucun Qin
- School of Basic Medical Sciences, The Second Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
- Institute of Atherosclerosis in Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China (G.T., H.W., L.Z., B.L., B.W., W.C., S.X., Y.C., S.Q.)
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada (H.-M.G., D.-W.Z.)
| |
Collapse
|
41
|
Tziatzios G, Gkolfakis P, Leite G, Mathur R, Damoraki G, Giamarellos-Bourboulis EJ, Triantafyllou K. Probiotics in Functional Dyspepsia. Microorganisms 2023; 11:microorganisms11020351. [PMID: 36838317 PMCID: PMC9964889 DOI: 10.3390/microorganisms11020351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Functional dyspepsia (FD) is a common disorder in everyday clinical practice identified nowadays as a multi-factorial, difficult to treat condition with a significant burden on patients' quality of life (QoL) and healthcare systems worldwide. Despite its high prevalence in the general population, the precise etiology of the disorder remains elusive, with its pathophysiological spectrum evolving over time, including variable potential mechanisms, i.e., impaired gastric accommodation, gastric motor disorders, hypersensitivity to gastric distention, disorders of the brain-gut axis, as well as less evident ones, i.e., altered duodenal microbiota composition and genetic susceptibility. In light of these implications, a definitive, universal treatment that could be beneficial for all FD patients is not available yet. Recently, probiotics have been suggested to be an effective therapeutic option that could alleviate gastrointestinal symptoms in patients with Irritable Bowel Syndrome (IBS), potentially due to anti-inflammatory properties or by modulating the complex bidirectional interactions between gastrointestinal microbiota and host crosstalk; however, their impact on the multiple aspects of FD remains ambiguous. In this review, we aim to summarize all currently available evidence for the efficacy of probiotics as a novel therapeutic approach for FD.
Collapse
Affiliation(s)
- Georgios Tziatzios
- Department of Gastroenterology, “Konstantopoulio-Patision” General Hospital, 3–5, Theodorou Konstantopoulou Street, Nea Ionia, 142 33 Athens, Greece
- Correspondence: ; Tel.: +30-213-2057000
| | - Paraskevas Gkolfakis
- Department of Gastroenterology, “Konstantopoulio-Patision” General Hospital, 3–5, Theodorou Konstantopoulou Street, Nea Ionia, 142 33 Athens, Greece
| | - Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA 90048, USA
| | - Georgia Damoraki
- 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | | | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Internal Medicine—Propaedeutic, Medical School, Research Institute and Diabetes Center, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| |
Collapse
|
42
|
Chen C, Li T, Chen G, Chen D, Peng Y, Hu B, Sun Y, Zeng X. Prebiotic effect of sialylated immunoglobulin G on gut microbiota of patients with inflammatory bowel disease by in vitro fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Transcriptional responses of human intestinal epithelial HT-29 cells to spore-displayed p40 derived from Lacticaseibacillus rhamnosus GG. BMC Microbiol 2022; 22:316. [PMID: 36550414 PMCID: PMC9772600 DOI: 10.1186/s12866-022-02735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUNDS The aims of this study were to construct spore-displayed p40, a Lacticaseibacillus rhamnosus GG-derived soluble protein, using spore surface display technology and to evaluate transcriptional responses in human intestinal epithelial cells. RESULTS p40 was displayed on the surface of Bacillus subtilis spores using spore coat protein CotG as an anchor protein. Effects of spore-displayed p40 (CotG-p40) on gene expression of intestinal epithelial cell line HT-29 were evaluated by transcriptome analysis using RNA-sequencing. As a result of differentially expressed gene (DEG) analysis, 81 genes were up-regulated and 82 genes were down-regulated in CotG-p40 stimulated cells than in unstimulated cells. Gene ontology enrichment analysis showed that CotG-p40 affected biological processes such as developmental process, metabolic process, cell surface receptor linked signaling pathway, and retinoic acid metabolic process. Gene-gene network analysis suggested that 10 DEGs (EREG, FOXF1, GLI2, PTGS2, SPP1, MMP19, TNFRSF1B, PTGER4, CLDN18, and ALDH1A3) activated by CotG-p40 were associated with probiotic action. CONCLUSIONS This study demonstrates the regulatory effects of CotG-p40 on proliferation and homeostasis of HT-29 cells. This study provided comprehensive insights into the transcriptional response of human intestinal epithelial cells stimulated by CotG-p40.
Collapse
|
44
|
Imrat, Labala RK, Behara AK, Jeyaram K. Selective extracellular secretion of small double-stranded RNA by Tetragenococcus halophilus. Funct Integr Genomics 2022; 23:10. [PMID: 36542169 DOI: 10.1007/s10142-022-00934-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Small double-stranded RNAs (dsRNAs) abundantly produced by lactic acid bacteria demonstrate immunomodulatory activity and antiviral protective immunity. However, the extracellular secretion of dsRNA from lactic acid bacteria and their compositional and functional differences compared to the intracellular dsRNA is unknown. In this study, we compared the intracellular and secreted extracellular dsRNA of the lactic acid bacteria, Tetragenococcus halophilus, commonly present in fermented foods, by growing in RNA-free and RNase-free media. We used RNA deep sequencing and in-silico analysis to annotate potential regulatory functions for the comparison. A time series sampling of T. halophilus culture demonstrated growth phase-dependent dynamics in extracellular dsRNA secretion with no major change in the intracellular dsRNA profile. The RNA deep sequencing resulted in thousands of diverse dsRNA fragments with 14-21 nucleotides in size from T. halophilus culture. Over 70% of the secreted extracellular dsRNAs were unique in their sequences compared to the intracellular dsRNAs. Furthermore, the extracellular dsRNA abundantly contains sequences that are not T. halophilus genome encoded, not detected intracellularly and showed higher hits on human transcriptome during in-silico analysis, which suggests the presence of extrachromosomal mobile regulatory elements. Further analysis showed significant enrichment of dsRNA target genes of human transcriptome on cancer pathways and transcription process, indicating the extracellular dsRNA of T. halophilus is different not only at the sequence level but also in function. Studying the bacterial extracellular dsRNA is a promising area of future research, particularly for developing postbiotic fermented functional foods and understanding the impact of commensal gut bacteria on human health.
Collapse
Affiliation(s)
- Imrat
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India.,Department of Biotechnology, Gauhati University, Guwahati, 781014, Assam, India
| | - Rajendra Kumar Labala
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India
| | - Abhisek Kumar Behara
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal, 795001, Manipur, India.,IBSD Regional Centre, Tadong, Gangtok, 737102, Sikkim, India
| |
Collapse
|
45
|
Cerdó T, García-Santos JA, Rodríguez-Pöhnlein A, García-Ricobaraza M, Nieto-Ruíz A, G. Bermúdez M, Campoy C. Impact of Total Parenteral Nutrition on Gut Microbiota in Pediatric Population Suffering Intestinal Disorders. Nutrients 2022; 14:4691. [PMID: 36364953 PMCID: PMC9658482 DOI: 10.3390/nu14214691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023] Open
Abstract
Parenteral nutrition (PN) is a life-saving therapy providing nutritional support in patients with digestive tract complications, particularly in preterm neonates due to their gut immaturity during the first postnatal weeks. Despite this, PN can also result in several gastrointestinal complications that are the cause or consequence of gut mucosal atrophy and gut microbiota dysbiosis, which may further aggravate gastrointestinal disorders. Consequently, the use of PN presents many unique challenges, notably in terms of the potential role of the gut microbiota on the functional and clinical outcomes associated with the long-term use of PN. In this review, we synthesize the current evidence on the effects of PN on gut microbiome in infants and children suffering from diverse gastrointestinal diseases, including necrotizing enterocolitis (NEC), short bowel syndrome (SBS) and subsequent intestinal failure, liver disease and inflammatory bowel disease (IBD). Moreover, we discuss the potential use of pre-, pro- and/or synbiotics as promising therapeutic strategies to reduce the risk of severe gastrointestinal disorders and mortality. The findings discussed here highlight the need for more well-designed studies, and harmonize the methods and its interpretation, which are critical to better understand the role of the gut microbiota in PN-related diseases and the development of efficient and personalized approaches based on pro- and/or prebiotics.
Collapse
Affiliation(s)
- Tomás Cerdó
- Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - José Antonio García-Santos
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Anna Rodríguez-Pöhnlein
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - María García-Ricobaraza
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Ana Nieto-Ruíz
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Mercedes G. Bermúdez
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
| | - Cristina Campoy
- EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research Centre, University of Granada, 18016 Granada, Spain
- Department of Paediatrics, School of Medicine, University of Granada, Avda. Investigación 11, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria Ibs-GRANADA, Health Sciences Technological Park, 18012 Granada, Spain
- Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada’s Node, Carlos III Health Institute, Avda. Monforte de Lemos 5, 28028 Madrid, Spain
| |
Collapse
|
46
|
Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, Deokar GS, Santivarangkna C, Nirmal NP. Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods 2022; 11:3094. [PMID: 36230169 PMCID: PMC9564201 DOI: 10.3390/foods11193094] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Postbiotics are non-viable bacterial products or metabolic byproducts produced by probiotic microorganisms that have biologic activity in the host. Postbiotics are functional bioactive compounds, generated in a matrix during anaerobic fermentation of organic nutrients like prebiotics, for the generation of energy in the form of adenosine triphosphate. The byproducts of this metabolic sequence are called postbiotics, these are low molecular weight soluble compounds either secreted by live microflora or released after microbial cell lysis. A few examples of widely studied postbiotics are short-chain fatty acids, microbial cell fragments, extracellular polysaccharides, cell lysates, teichoic acid, vitamins, etc. Presently, prebiotics and probiotics are the products on the market; however, postbiotics are also gaining a great deal of attention. The numerous health advantages of postbiotic components may soon lead to an increase in consumer demand for postbiotic supplements. The most recent research aspects of postbiotics in the food and pharmaceutical industries are included in this review. The review encompasses a brief introduction, classification, production technologies, characterization, biological activities, and potential applications of postbiotics.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | | | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | - Karthik Sajith Babu
- Department of Animal Sciences and Industry, Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat 131028, India
| | | | - Gitanjali S. Deokar
- Department of Quality Assurance, MET’s Institute of Pharmacy, Bhujbal Knowledge City, Nashik 422003, India
| | - Chalat Santivarangkna
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
47
|
Fisette A, Sergi D, Breton-Morin A, Descôteaux S, Martinoli MG. New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection. Curr Pharm Des 2022; 28:3068-3081. [PMID: 36121075 DOI: 10.2174/1381612828666220919085742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era's worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.
Collapse
Affiliation(s)
- Alexandre Fisette
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Domenico Sergi
- Department of Translational Medicine, University di Ferrara, Ferrara, Italy
| | - Alyssa Breton-Morin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Savanah Descôteaux
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada
| | - Maria-Grazia Martinoli
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Qc., Canada.,Department of Psychiatry and Neuroscience, U. Laval and CHU Research Center, Québec, Canada
| |
Collapse
|
48
|
Liu Y, Liu Q, Zhao J, Zhang H, Zhai Q, Chen W. Strain-specific regulative effects of Lactobacillus plantarum on intestinal barrier dysfunction are associated with their capsular polysaccharides. Int J Biol Macromol 2022; 222:1343-1352. [PMID: 36126811 DOI: 10.1016/j.ijbiomac.2022.09.136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022]
Abstract
The intestinal barrier is integral to the host's defense, and disrupting its integrity contributes to gut and systemic diseases. Lactobacillus plantarum has been widely reported to exhibit a protective effect on the gut barrier. However, the strain-specific mechanism of this bacterium's function remains unclear. This study characterized the regulative effects of 55 L. plantarum strains on the intestinal barrier using TNF-α-induced Caco-2 cells and a dextran sulfate sodium-induced colitis animal model and found that the regulative effect is strain-specific. Comparative genomic analysis suggested that the ability of L. plantarum to regulate the intestinal barrier is exerted in part by genes encoding proteins associated with polysaccharide synthesis. This observation was verified using surface protein/capsular polysaccharides separation experiments. Structural analysis of capsular polysaccharides showed that molecular weight and mole ratios of monosaccharide compositions may play important roles in strain-specific protective effects on the gut barrier. This study identified different effects of L. plantarum strains on intestinal barrier dysfunction and proved that this regulative ability relies on the characteristic of the capsular polysaccharides of the strains. Thus, our data provided genetic targets and molecular for screening L. plantarum strains with the ability to protect the gut barrier, and suggested the capsular polysaccharides of L. plantarum may be explored as a potential functional food component against intestinal barrier dysfunction.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research, Institute Wuxi Branch, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
49
|
Hu C, Bai Y, Sun B, Tang L, Chen L. Significant impairment of intestinal health in zebrafish after subchronic exposure to methylparaben. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156389. [PMID: 35654191 DOI: 10.1016/j.scitotenv.2022.156389] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Methylparaben (MeP) is a ubiquitous pollutant in aquatic environment, which has caused severe pollution worldwide. However, aquatic toxicology of MeP is still largely unknown. In the present study, adult zebrafish were exposed to environmentally realistic concentrations of MeP (0, 1, 3, and 10 μg/L) for 28 days. In terms of the antimicrobial nature, dysregulation of gut microbiota and zebrafish health by MeP were elucidated after exposure. High-throughput amplicon sequencing showed that MeP subchronic exposure was able to disrupt the composition and diversity of gut microbial community, which was characterized by the alterations in alpha diversity and divergent distribution by principal component analysis. In addition, MeP exposure increased the body length and body weight of female fish, implying stimulated growth at low doses. In male intestine, consistent increases were notable in goblet cell density, tight junction protein (TJP) 2 expression, and serotonin neurotransmitter concentration after MeP exposure. In contrast, female intestine exposed to MeP had lower density of goblet cells, inhibited expression of TJP2, reduced concentration of serotonin, but up-regulated transcription of pro-inflammatory cytokine. Under the stress of MeP pollutant, intestinal catalase antioxidant enzyme was activated, thus contributing to the removal of oxidative free radicals. Correlation analysis verified the modulation of TJP2 expression by Lactobacillus probiotic bacteria. Disturbances in goblet cell, tight junctions, and serotonin by MeP may be combined to interfere with gut barrier function. Overall, the present study highlights the impairment of intestinal health by environmentally realistic concentrations of MeP, which necessitates an urgent risk assessment.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
50
|
Pan R, Wang L, Xu X, Chen Y, Wang H, Wang G, Zhao J, Chen W. Crosstalk between the Gut Microbiome and Colonic Motility in Chronic Constipation: Potential Mechanisms and Microbiota Modulation. Nutrients 2022; 14:nu14183704. [PMID: 36145079 PMCID: PMC9505360 DOI: 10.3390/nu14183704] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic constipation (CC) is a highly prevalent and burdensome gastrointestinal disorder. Accumulating evidence highlights the link between imbalances in the gut microbiome and constipation. However, the mechanisms by which the microbiome and microbial metabolites affect gut movement remain poorly understood. In this review, we discuss recent studies on the alteration in the gut microbiota in patients with CC and the effectiveness of probiotics in treating gut motility disorder. We highlight the mechanisms that explain how the gut microbiome and its metabolism are linked to gut movement and how intestinal microecological interventions may counteract these changes based on the enteric nervous system, the central nervous system, the immune function, and the ability to modify intestinal secretion and the hormonal milieu. In particular, microbiota-based approaches that modulate the levels of short-chain fatty acids and tryptophan catabolites or that target the 5-hydroxytryptamine and Toll-like receptor pathways may hold therapeutic promise. Finally, we discuss the existing limitations of microecological management in treating constipation and suggest feasible directions for future research.
Collapse
Affiliation(s)
- Ruili Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaopeng Xu
- The Department of Clinical Laboratory, Wuxi Xishan People’s Hospital, Wuxi 214105, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haojue Wang
- The Department of of Obstetrics and Gynecology, Wuxi Xishan People’s Hospital, Wuxi 214105, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence: (H.W.); (J.Z.); Tel.: +86-510-8240-2084 (H.W.); +86-510-8591-2155 (J.Z.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|