1
|
Wang M, Liu K, Wang X, Shang Z, Liu Y, Pan N, Sun X, Xu W. Limbal stem cells carried by a four-dimensional -printed chitosan-based scaffold for corneal epithelium injury in diabetic rabbits. Front Physiol 2024; 15:1285850. [PMID: 38887317 PMCID: PMC11180886 DOI: 10.3389/fphys.2024.1285850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Methods: Herein, we obtained and characterized deltaN p63- and adenosine triphosphate-binding cassette subfamily G member 2-expressing limbal stem cells (LSCs). Chitosan and carboxymethyl chitosan (CTH) were cross-linked to be an in situ thermosensitive hydrogel (ACH), which was printed through four-dimensional (4D) printing to obtain a porous carrier with uniform pore diameter (4D-CTH). Rabbits were injected with alloxan to induce diabetes mellitus (DM). Following this, the LSC-carrying hydrogel was spread on the surface of the cornea of the diabetic rabbits to cure corneal epithelium injury. Results: Compared with the control group (LSCs only), rapid wound healing was observed in rabbits treated with LSC-carrying 4D-CTH. Furthermore, the test group also showed better corneal nerve repair ability. The results indicated the potential of LSC-carrying 4D-CTH in curing corneal epithelium injury. Conclusion: 4D-CTH holds potential as a useful tool for studying regenerative processes occurring during the treatment of various diabetic corneal epithelium pathologies with the use of stem cell-based technologies.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Kaibin Liu
- Department of Thoracic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Zhen Shang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Yiming Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Nailong Pan
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Xueqing Sun
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Na KS, Kim D, Kim H, Koh WG, Lee HJ. The combined effect of epidermal growth factor and keratinocyte growth factor delivered by hyaluronic acid hydrogel on corneal wound healing. Int J Biol Macromol 2024; 270:132365. [PMID: 38750850 DOI: 10.1016/j.ijbiomac.2024.132365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
This study strategically incorporates epidermal growth factor (EGF) and keratinocyte growth factor (KGF) within a hyaluronic acid (HA) hydrogel to enhance corneal wound healing. The controlled release of EGF and KGF from the HA hydrogel is engineered to promote the regeneration of both the epithelial and stromal layers. Specifically, EGF plays a pivotal role in the regeneration of the epithelial layer, while KGF exhibits efficacy in the regeneration of the stromal layer. The combination of these growth factors facilitates efficient regeneration of each layer and demonstrates the capability to modulate each other's regenerative effects. The interplay between EGF and KGF provides an understanding of their cooperative influence on the dynamics of corneal wound healing. The results of this study contribute to the development of advanced strategies for corneal wound management and offer insights into the complex process of corneal regeneration.
Collapse
Affiliation(s)
- Kyung-Sun Na
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, 10 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| | - Dohyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyewon Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
3
|
Gao N, Yu FS. Lack of Elevated Expression of TGFβ3 Contributes to the Delay of Epithelial Wound Healing in Diabetic Corneas. Invest Ophthalmol Vis Sci 2024; 65:35. [PMID: 38546583 PMCID: PMC10981440 DOI: 10.1167/iovs.65.3.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/12/2024] [Indexed: 04/01/2024] Open
Abstract
Purpose To investigate the mechanisms underlying the differential roles of TGFβ1 and TGFβ3 in accelerating corneal epithelial wound healing (CEWH) in diabetic (DM) corneas, with normoglycemia (NL) corneas as the control. Methods Two types of diabetic mice, human corneal organ cultures, mouse corneal epithelial progenitor cell lines, and bone marrow-derived macrophages (BMDMs) were employed to assess the effects of TGFβ1 and TGFβ3 on CEWH, utilizing quantitative PCR, western blotting, ELISA, and whole-mount confocal microscopy. Results Epithelial debridement led to an increased expression of TGFβ1 and TGFβ3 in cultured human NL corneas, but only TGFβ1 in DM corneas. TGFβ1 and TGFβ3 inhibition was significantly impeded, but exogenous TGFβ1 and, more potently, TGFβ3 promoted CEWH in cultured TKE2 cells and in NL and DM C57BL6 mouse corneas. Wounding induced similar levels of p-SMAD2/SMAD3 in NL and DM corneas but weaker ERK1/2, Akt, and EGFR phosphorylation in DM corneas compared to NL corneas. Whereas TGFβ1 augmented SMAD2/SMAD3 phosphorylation, TGFβ3 preferentially activated ERK, PI3K, and EGFR in healing DM corneas. Furthermore, TGFβ1 and TGFβ3 differentially regulated the expression of S100a9, PAI-1, uPA/tPA, and CCL3 in healing NL and DM corneas. Finally, TGFβ1 induced the expression of M1 macrophage markers iNOS, CD86, and CTGF, whereas TGFβ3 promoted the expression of M2 markers CD206 and NGF in BMDMs from db/db or db/+ mice. Conclusions Hyperglycemia disrupts the balanced expression of TGFβ3/TGFβ1, resulting in delayed CEWH, including impaired sensory nerve regeneration in the cornea. Supplementing TGFβ3 in DM wounds may hold therapeutic potential for accelerating delayed wound healing in diabetic patients.
Collapse
Affiliation(s)
- Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fu-Shin Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
4
|
Lee D, Tomita Y, Shinojima A, Ban N, Yamaguchi S, Nishioka K, Negishi K, Yoshino J, Kurihara T. Nicotinamide mononucleotide, a potential future treatment in ocular diseases. Graefes Arch Clin Exp Ophthalmol 2024; 262:689-700. [PMID: 37335334 DOI: 10.1007/s00417-023-06118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE The burden of ocular diseases has been gradually increasing worldwide. Various factors are suggested for the development and progression of ocular diseases, such as ocular inflammation, oxidative stress, and complex metabolic dysregulation. Thus, managing ocular diseases requires the modulation of pathologic signaling pathways through many mechanisms. Nicotinamide mononucleotide (NMN) is a bioactive molecule naturally found in life forms. NMN is a direct precursor of the important molecule nicotinamide adenine dinucleotide (NAD+), an essential co-enzyme required for enormous cellular functions in most life forms. While the recent experimental evidence of NMN treatment in various metabolic diseases has been well-reviewed, NMN treatment in ocular diseases has not been comprehensively summarized yet. In this regard, we aimed to focus on the therapeutic roles of NMN treatment in various ocular diseases with recent advances. METHODS How we came to our current opinion with a recent summary was described based on our own recent reports as well as a search of the related literature. RESULTS We found that NMN treatment might be available for the prevention of and protection from various experimental ocular diseases, as NMN treatment modulated ocular inflammation, oxidative stress, and complex metabolic dysregulation in murine models for eye diseases such as ischemic retinopathy, corneal defect, glaucoma, and age-related macular degeneration. CONCLUSION Our current review suggests and discusses new modes of actions of NMN for the prevention of and protection from various ocular diseases and can urge future research to obtain more solid evidence on a potential future NMN treatment in ocular diseases at the preclinical stages.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ari Shinojima
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Norimitsu Ban
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shintaro Yamaguchi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ken Nishioka
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jun Yoshino
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Buonfiglio F, Wasielica-Poslednik J, Pfeiffer N, Gericke A. Diabetic Keratopathy: Redox Signaling Pathways and Therapeutic Prospects. Antioxidants (Basel) 2024; 13:120. [PMID: 38247544 PMCID: PMC10812573 DOI: 10.3390/antiox13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetes mellitus, the most prevalent endocrine disorder, not only impacts the retina but also significantly involves the ocular surface. Diabetes contributes to the development of dry eye disease and induces morphological and functional corneal alterations, particularly affecting nerves and epithelial cells. These changes manifest as epithelial defects, reduced sensitivity, and delayed wound healing, collectively encapsulated in the context of diabetic keratopathy. In advanced stages of this condition, the progression to corneal ulcers and scarring further unfolds, eventually leading to corneal opacities. This critical complication hampers vision and carries the potential for irreversible visual loss. The primary objective of this review article is to offer a comprehensive overview of the pathomechanisms underlying diabetic keratopathy. Emphasis is placed on exploring the redox molecular pathways responsible for the aberrant structural changes observed in the cornea and tear film during diabetes. Additionally, we provide insights into the latest experimental findings concerning potential treatments targeting oxidative stress. This endeavor aims to enhance our understanding of the intricate interplay between diabetes and ocular complications, offering valuable perspectives for future therapeutic interventions.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (J.W.-P.); (N.P.)
| |
Collapse
|
6
|
He D, Liao C, Li P, Liao X, Zhang S. Multifunctional photothermally responsive hydrogel as an effective whole-process management platform to accelerate chronic diabetic wound healing. Acta Biomater 2024; 174:153-162. [PMID: 38061676 DOI: 10.1016/j.actbio.2023.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The management of chronic diabetic wounds is a complex issue that requires wound repair, regulation of inflammatory levels, and intervention to prevent bacterial infection. To address this issue, we developed a multifunctional photothermally responsive hydrogel (PAG-CuS) as an effective platform for managing the entire wound-healing process, including promoting wound healing, providing anti-inflammatory therapy, and performing photothermal sterilization. Constructed through copolymerization of acrylic acid (AA), methacrylic anhydride-modified gelatin (GelMA), and lipoic acid sodium (LAS) coated copper sulfide nanoparticles (CuS@LAS), PAG-CuS possessed a porous three-dimensional structure that promoted cell adhesion and had a substantial water-holding capacity. Additionally, the internal CuS@LAS not only conferred photothermal antibacterial properties to the hydrogel but also served as physical cross-linking agents, thus enhancing its mechanical strength. Under the NIR-induced photothermal effect, the porous hydrogel liberates CuS@LAS, and later CuS@LAS expels LAS via micelle deassembly to eliminate intracellular ROS. This results in the down-regulation of MMP-9 expression, promoting ECM production and facilitating wound healing. Meanwhile, the release of Cu2+ from PAG-CuS could enhance CD31 expression in endothelial cells, promoting microvessel formation, which is crucial for wound healing. In the diabetic wound model of GK rats, the PAG-CuS hydrogel reduced ROS levels, increased microvessel count, improved epithelialization, and enhanced wound healing. Therefore, this versatile photothermal hydrogel has the potential to be applied in sterilization, scavenging free radicals, and promoting angiogenesis, making it an effective and comprehensive solution to manage the challenges of diabetic wounds. STATEMENT OF SIGNIFICANCE: Assessment of functional recovery and timely adjustment of treatment strategy is critical in the management of chronic diabetic wounds. In this work, we prepared PAG-CuS composite hydrogels by integrating in situ reduction, chemical crosslinking, and nanoenhancement techniques. The near-infrared light-induced photothermal effect of PAG-CuS gel rapidly kills bacteria at the lesion site, and the generated heat simultaneously promotes the multilevel release of LAS from the gel, which could regulate the levels of ROS and MMP-9 to promote extracellular matrix formation. In addition, the Cu2+ released from the gel can promote the formation of blood vessels to improve blood oxygenation. Therefore, this project proposes a synergistic solution to realize the whole process of management to accelerate chronic diabetic wound healing.
Collapse
Affiliation(s)
- Dengfeng He
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; Institute of Burn Research Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chunyan Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Pengfei Li
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiaoming Liao
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Shiyong Zhang
- College of Biomedical Engineering and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
7
|
Nureen L, Di Girolamo N. Limbal Epithelial Stem Cells in the Diabetic Cornea. Cells 2023; 12:2458. [PMID: 37887302 PMCID: PMC10605319 DOI: 10.3390/cells12202458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Continuous replenishment of the corneal epithelium is pivotal for maintaining optical transparency and achieving optimal visual perception. This dynamic process is driven by limbal epithelial stem cells (LESCs) located at the junction between the cornea and conjunctiva, which is otherwise known as the limbus. In patients afflicted with diabetes, hyperglycemia-induced impairments in corneal epithelial regeneration results in persistent epithelial and other defects on the ocular surface, termed diabetic keratopathy (DK), which progressively diminish vision and quality of life. Reports of delayed corneal wound healing and the reduced expression of putative stem cell markers in diabetic relative to healthy eyes suggest that the pathogenesis of DK may be associated with the abnormal activity of LESCs. However, the precise role of these cells in diabetic corneal disease is poorly understood and yet to be comprehensively explored. Herein, we review existing literature highlighting aberrant LESC activity in diabetes, focusing on factors that influence their form and function, and emerging therapies to correct these defects. The consequences of malfunctioning or depleted LESC stocks in DK and limbal stem cell deficiency (LSCD) are also discussed. These insights could be exploited to identify novel targets for improving the management of ocular surface complications that manifest in patients with diabetes.
Collapse
Affiliation(s)
| | - Nick Di Girolamo
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
8
|
Gao N, Lee PSY, Zhang J, Yu FSX. Ocular nociception and neuropathic pain initiated by blue light stress in C57BL/6J mice. Pain 2023; 164:1616-1626. [PMID: 37093736 PMCID: PMC10277230 DOI: 10.1097/j.pain.0000000000002896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 04/25/2023]
Abstract
To elucidate the physiological, cellular, and molecular mechanisms responsible for initiating and sustaining ocular neuropathic pain, we created a blue-light-exposure model in C57BL/6 mice. Mice were exposed to 12 h of blue or white light followed by 12 h of darkness. Before blue light exposure, baseline tear secretion, stability, and ocular hyperalgesia were assessed by measuring hyper- or hypo-osmotic solution-induced eye wiping, wind-induced eye closing, and cold-induced eye blinking. At 1 day post-blue light exposure, alterations in hypotonic/hypertonic-induced eye-wiping, and tear film abnormalities were observed. Eye-wiping behaviors were abolished by topical anesthesia. The cold-stimulated eye-blinking and wind-stimulated eye-closing behaviors began after day 3 and their frequency further increased after day 9. Blue-light exposure reduced the density of nerve endings, and increased their tortuosity, the number of beadlike structures, and the branching of stromal nerve fibers, as assessed by whole-mount confocal microscopy. Blue-light exposure also increased TRPV1, but not TRPV4 staining intensity of corneal-projecting neurons in the trigeminal ganglia, as detected by Fluorogold retrograde labeling and immunohistochemistry. TRPV1 and substance P expression was increased, whereas CGRP expression deceased at the mRNA level in isolated corneal projecting neurons. Hence, our blue-light exposure B6 mouse model for assessing tearing and ocular hyperalgesia is useful for studying ocular pain and its underlying mechanisms. Blue-light-induced alterations in tearing and ocular hyperalgesia may be related to the elevated expression of TRPV1, SP, and/or the suppressed expression of CGRP at the ocular surface.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology, Visual and Anatomical
Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Patrick S. Y. Lee
- Department of Ophthalmology, Visual and Anatomical
Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jitao Zhang
- Biomedical Engineering Department, Wayne State University.
6135 Woodward Ave, Integrative Biosciences Center, Detroit, MI, 48202
| | - Fu-shin X. Yu
- Department of Ophthalmology, Visual and Anatomical
Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
9
|
Kokabi F, Ebrahimi S, Mirzavi F, Ghiasi Nooghabi N, Hashemi SF, Hashemy SI. The neuropeptide substance P/neurokinin-1 receptor system and diabetes: From mechanism to therapy. Biofactors 2023. [PMID: 36651605 DOI: 10.1002/biof.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
Diabetes is a significant public health issue known as the world's fastest-growing disease condition. It is characterized by persistent hyperglycemia and subsequent chronic complications leading to organ dysfunction and, ultimately, the failure of target organs. Substance P (SP) is an undecapeptide that belongs to the family of tachykinin (TK) peptides. The SP-mediated activation of the neurokinin 1 receptor (NK1R) regulates many pathophysiological processes in the body. There is also a relation between the SP/NK1R system and diabetic processes. Importantly, deregulated expression of SP has been reported in diabetes and diabetes-associated chronic complications. SP can induce both diabetogenic and antidiabetogenic effects and thus affect the pathology of diabetes destructively or protectively. Here, we review the current knowledge of the functional relevance of the SP/NK1R system in diabetes pathogenesis and its exploitation for diabetes therapy. A comprehensive understanding of the role of the SP/NK1R system in diabetes is expected to shed further light on developing new therapeutic possibilities for diabetes and its associated chronic conditions.
Collapse
Affiliation(s)
- Fariba Kokabi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Yu FSX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, Yang E, Zhou Q, Xie L. The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res 2022; 89:101039. [PMID: 34991965 PMCID: PMC9250553 DOI: 10.1016/j.preteyeres.2021.101039] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, with several underlying pathophysiological mechanisms, some of which are still uncertain. The cornea is an avascular tissue and sensitive to hyperglycemia, resulting in several diabetic corneal complications including delayed epithelial wound healing, recurrent erosions, neuropathy, loss of sensitivity, and tear film changes. The manifestation of DPN in the cornea is referred to as diabetic neurotrophic keratopathy (DNK). Recent studies have revealed that disturbed epithelial-neural-immune cell interactions are a major cause of DNK. The epithelium is supplied by a dense network of sensory nerve endings and dendritic cell processes, and it secretes growth/neurotrophic factors and cytokines to nourish these neighboring cells. In turn, sensory nerve endings release neuropeptides to suppress inflammation and promote epithelial wound healing, while resident immune cells provide neurotrophic and growth factors to support neuronal and epithelial cells, respectively. Diabetes greatly perturbs these interdependencies, resulting in suppressed epithelial proliferation, sensory neuropathy, and a decreased density of dendritic cells. Clinically, this results in a markedly delayed wound healing and impaired sensory nerve regeneration in response to insult and injury. Current treatments for DPN and DNK largely focus on managing the severe complications of the disease. Cell-based therapies hold promise for providing more effective treatment for diabetic keratopathy and corneal ulcers.
Collapse
Affiliation(s)
- Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Patrick S Y Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Alexander V Ljubimov
- Departments of Biomedical Sciences and Neurosurgery, Cedars-Sinai Medical Center, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ellen Yang
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| |
Collapse
|
11
|
Zhou Q, Yang L, Wang Q, Li Y, Wei C, Xie L. Mechanistic investigations of diabetic ocular surface diseases. Front Endocrinol (Lausanne) 2022; 13:1079541. [PMID: 36589805 PMCID: PMC9800783 DOI: 10.3389/fendo.2022.1079541] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Qun Wang
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Eye Institute of Shandong First Medical University, Qingdao, China
- Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- *Correspondence: Lixin Xie,
| |
Collapse
|
12
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Hargrave A, Courson JA, Pham V, Landry P, Magadi S, Shankar P, Hanlon S, Das A, Rumbaut RE, Smith CW, Burns AR. Corneal dysfunction precedes the onset of hyperglycemia in a mouse model of diet-induced obesity. PLoS One 2020; 15:e0238750. [PMID: 32886728 PMCID: PMC7473521 DOI: 10.1371/journal.pone.0238750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/21/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The purpose of this study was to use a mouse model of diet-induced obesity to determine if corneal dysfunction begins prior to the onset of sustained hyperglycemia and if the dysfunction is ameliorated by diet reversal. METHODS Six-week-old male C57BL/6 mice were fed a high fat diet (HFD) or a normal diet (ND) for 5-15 weeks. Diet reversal (DiR) mice were fed a HFD for 5 weeks, followed by a ND for 5 or 10 weeks. Corneal sensitivity was determined using aesthesiometry. Corneal cytokine expression was analyzed using a 32-plex Luminex assay. Excised corneas were prepared for immunofluorescence microscopy to evaluate diet-induced changes and wound healing. For wounding studies, mice were fed a HFD or a ND for 10 days prior to receiving a central 2mm corneal abrasion. RESULTS After 10 days of HFD consumption, corneal sensitivity declined. By 10 weeks, expression of corneal inflammatory mediators increased and nerve density declined. While diet reversal restored nerve density and sensitivity, the corneas remained in a heightened inflammatory state. After 10 days on the HFD, corneal circadian rhythms (limbal neutrophil accumulation, epithelial cell division and Rev-erbα expression) were blunted. Similarly, leukocyte recruitment after wounding was dysregulated and accompanied by delays in wound closure and nerve recovery. CONCLUSION In the mouse, obesogenic diet consumption results in corneal dysfunction that precedes the onset of sustained hyperglycemia. Diet reversal only partially ameliorated this dysfunction, suggesting a HFD diet may have a lasting negative impact on corneal health that is resistant to dietary therapeutic intervention.
Collapse
Affiliation(s)
- Aubrey Hargrave
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Justin A Courson
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Vanna Pham
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Paul Landry
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Sri Magadi
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Pooja Shankar
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Sam Hanlon
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Apoorva Das
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Rolando E Rumbaut
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - C Wayne Smith
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, Texas, United States of America
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
14
|
Priyadarsini S, Whelchel A, Nicholas S, Sharif R, Riaz K, Karamichos D. Diabetic keratopathy: Insights and challenges. Surv Ophthalmol 2020; 65:513-529. [PMID: 32092364 PMCID: PMC8116932 DOI: 10.1016/j.survophthal.2020.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Ocular complications from diabetes mellitus are common. Diabetic keratopathy, the most frequent clinical condition affecting the human cornea, is a potentially sight-threatening condition caused mostly by epithelial disturbances that are of clinical and research attention because of their severity. Diabetic keratopathy exhibits several clinical manifestations, including persistent corneal epithelial erosion, superficial punctate keratopathy, delayed epithelial regeneration, and decreased corneal sensitivity, that may lead to compromised visual acuity or permanent vision loss. The limited amount of clinical studies makes it difficult to fully understand the pathobiology of diabetic keratopathy. Effective therapeutic approaches are elusive. We summarize the clinical manifestations of diabetic keratopathy and discuss available treatments and up-to-date research studies in an attempt to provide a thorough overview of the disorder.
Collapse
Affiliation(s)
- S Priyadarsini
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - A Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - S Nicholas
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - R Sharif
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - K Riaz
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - D Karamichos
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
15
|
De Clerck EE, Schouten JS, Berendschot TT, Koolschijn RS, Nuijts RM, Schram MT, Schaper NC, Henry RM, Dagnelie PC, Ruggeri A, Guimarães P, Stehouwer CD, Webers CA. Reduced corneal nerve fibre length in prediabetes and type 2 diabetes: The Maastricht Study. Acta Ophthalmol 2020; 98:485-491. [PMID: 32017403 PMCID: PMC7496813 DOI: 10.1111/aos.14359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE In individuals with diabetes, injury to the corneal nerve fibres predisposes to delayed corneal epithelial healing, reduced corneal sensitivity and corneal erosion. We investigated to what extent a reduction in corneal nerve fibre length (CNFL) is present in individuals with prediabetes or type 2 diabetes (DM2) compared with individuals with normal glucose metabolism (NGM). METHODS Using composite images acquired by corneal confocal microscopy, we assessed total CNFL per mm2 in the subbasal nerve plexus of the cornea in 134 participants (mean age 59 ± 8 years, 49% men, 87 NGM, 20 prediabetes, 27 DM2). Multivariable linear regression was used to assess the association between CNFL and glucose metabolism status, adjusted for age and sex. RESULTS In individuals with type 2 diabetes, the mean CNFL was significantly reduced [β = -1.86 mm/mm2 (95% CI -3.64 to -0.08), p = 0.04], as compared with individuals with normal glucose metabolism after adjustment for age and sex. Part of the reduction was present in individuals with prediabetes [β = -0.96 mm/mm2 (95% CI -2.91 to 0.99), p = 0.34], with a linear trend of corneal nerve fibre reduction with severity of glucose metabolism status (p trend = 0.04). CONCLUSIONS A significant reduction in CNFL was found in individuals with DM2 compared with individuals with NGM. A trend of reduction in CNFL was observed between individuals with NGM and prediabetes. The reduction in corneal nerve fibre length could contribute to a delayed corneal healing and an increased risk for corneal complications after surgery.
Collapse
Affiliation(s)
- Eline E.B. De Clerck
- University Eye Clinic MaastrichtMaastricht University Medical Center +Maastrichtthe Netherlands
| | - Jan S.A.G. Schouten
- University Eye Clinic MaastrichtMaastricht University Medical Center +Maastrichtthe Netherlands
| | - Tos T.J.M. Berendschot
- University Eye Clinic MaastrichtMaastricht University Medical Center +Maastrichtthe Netherlands
| | - Renée S. Koolschijn
- University Eye Clinic MaastrichtMaastricht University Medical Center +Maastrichtthe Netherlands
| | - Rudy M.M.A. Nuijts
- University Eye Clinic MaastrichtMaastricht University Medical Center +Maastrichtthe Netherlands
| | - Miranda T. Schram
- Department of Internal MedicineMaastricht University Medical Center +Maastrichtthe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtthe Netherlands
| | - Nicolaas C. Schaper
- Department of Internal MedicineMaastricht University Medical Center +Maastrichtthe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtthe Netherlands,CAPHRI School for Public Health and Primary CareMaastricht UniversityMaastrichtthe Netherlands
| | - Ronald M.A. Henry
- Department of Internal MedicineMaastricht University Medical Center +Maastrichtthe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtthe Netherlands
| | - Pieter C. Dagnelie
- CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtthe Netherlands,CAPHRI School for Public Health and Primary CareMaastricht UniversityMaastrichtthe Netherlands,Department of EpidemiologyMaastricht UniversityMaastrichtthe Netherlands
| | - Alfredo Ruggeri
- Department of Information EngineeringUniversity of PaduaPaduaItaly
| | - Pedro Guimarães
- Department of Information EngineeringUniversity of PaduaPaduaItaly
| | - Coen D.A. Stehouwer
- Department of Internal MedicineMaastricht University Medical Center +Maastrichtthe Netherlands,CARIM School for Cardiovascular DiseasesMaastricht UniversityMaastrichtthe Netherlands
| | - Carroll A.B. Webers
- University Eye Clinic MaastrichtMaastricht University Medical Center +Maastrichtthe Netherlands
| |
Collapse
|
16
|
Zhang Y, Gao N, Wu L, Lee PSY, Me R, Dai C, Xie L, Yu FSX. Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration, and Their Defects in Diabetic Corneas. Diabetes 2020; 69:1549-1561. [PMID: 32345752 PMCID: PMC7306128 DOI: 10.2337/db19-0870] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/20/2020] [Indexed: 12/21/2022]
Abstract
Diabetic keratopathy, a sight-threatening corneal disease, comprises several symptomatic conditions including delayed epithelial wound healing, recurrent erosions, and sensory nerve (SN) neuropathy. We investigated the role of neuropeptides in mediating corneal wound healing, including epithelial wound closure and SN regeneration. Denervation by resiniferatoxin severely impaired corneal wound healing and markedly upregulated proinflammatory gene expression. Exogenous neuropeptides calcitonin gene-related peptide (CGRP), substance P (SP), and vasoactive intestinal peptide (VIP) partially reversed resiniferatoxin's effects, with VIP specifically inducing interleukin-10 expression. Hence, we focused on VIP and observed that wounding induced VIP and VIP type 1 receptor (VIPR1) expression in normal (NL) corneas, but not corneas from mice with diabetes mellitus (DM). Targeting VIPR1 in NL corneas attenuated corneal wound healing, dampened wound-induced expression of neurotrophic factors, and exacerbated inflammatory responses, while exogenous VIP had the opposite effects in DM corneas. Remarkably, wounding and diabetes also affected the expression of Sonic Hedgehog (Shh) in a VIP-dependent manner. Downregulating Shh expression in NL corneas decreased while exogenous Shh in DM corneas increased the rates of corneal wound healing. Furthermore, inhibition of Shh signaling dampened VIP-promoted corneal wound healing. We conclude that VIP regulates epithelial wound healing, inflammatory response, and nerve regeneration in the corneas in an Shh-dependent manner, suggesting a therapeutic potential for these molecules in treating diabetic keratopathy.
Collapse
Affiliation(s)
- Yangyang Zhang
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Nan Gao
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Lin Wu
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Patrick S Y Lee
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Rao Me
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Chenyang Dai
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Lixin Xie
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
| | - Fu-Shin X Yu
- Departments of Ophthalmology, Visual and Anatomical Sciences and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
17
|
Li W, Wang X, Cheng J, Li J, Wang Q, Zhou Q, Li H, Xue J, Zhang Y, Yang L, Xie L. Leucine-rich α-2-glycoprotein-1 promotes diabetic corneal epithelial wound healing and nerve regeneration via regulation of matrix metalloproteinases. Exp Eye Res 2020; 196:108060. [DOI: 10.1016/j.exer.2020.108060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
|
18
|
Tear Levels of IGFBP-3: A Potential Biomarker for Diabetic Nerve Changes in the Cornea. Eye Contact Lens 2020; 46:319-325. [DOI: 10.1097/icl.0000000000000700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Han Y, Jiang N, Su T, Yang QC, Yan CC, Ye L, Yuan Q, Zhu PW, Li W, Liu ZG, Shao Y. Netrin-1 promotes epithelium repair in corneal injury. Int J Ophthalmol 2020; 13:206-212. [PMID: 32090028 DOI: 10.18240/ijo.2020.02.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/25/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To explore netrin-1 functions on corneal epithelium in vitro and in vivo. METHODS In vitro the human corneal epithelial (HCE) cells were treated with serum free DMEM-F12 basic media containing 0, 50, 100, 200, 300, 500, 800, and 1000 ng/mL of netrin-1, respectively. The cells viability was detected by cell counting kit-8 (CCK-8). The wound-healing assay was applied to assess the migration proficiency of HCE cells. Flow cytometry was used to analyze the cell-cycle distribution and apoptosis. In vivo, normal c57 (6wk) mice were demarcated with a trephine in the middle of the cornea to produce a 3-mm circular wound. Mice corneas were inflicted no epithelium with a 3-mm wound displayed, but remained the limbal epithelium intact. A blunt scalpel blade was used to remove the corneal epithelian cells, followed by topical netrin-1 application (200 ng/mL), and the group treated by PBS as control. The treated group was injected netrin-1 into the normal c57 mice inferior subconjunctival 4h before trauma. Mouse corneal inflammation and neovascularization were observed under slit lamp microscope. The apoptosis of corneal cells was determined by TUNEL staining. RESLUTS A concentration of 200 ng/mL netrin-1 enhanced 25% of the HCE viability. The relative migration rates were 76.3% and 100% in control and netrin-1 treated group after cultured 72h. Treated with netrin-1 (200 ng/mL) decreased the apoptosis of HCE cells, as well as decreased their percentage from 19.3%±0.57% to 12.7%±0.42% of the total. The remaining wound area was 1.22 mm2 in control group but 0.22 mm2 in the netrin-1 treated group. Exogenous Netrin-1 inhibits apoptosis of corneal epithelial cells of c57 mice. TUNEL-positive cells at the epithelial layer of the corneas of the control and netrin-1 treated c57 mice at 24h after wounding were 43.3% and 16.7% respectively. CONCLUSION Netrin-1 can reduce HCE apoptosis as well as promote its proliferation and migration. Topical application of netrin-1 promotes the injuryed cornea epithelial wound repair and inhibits apoptosis of corneal epithelial cells. These findings may offer potential therapies to repair the defects of corneal epithelial based on netrin-1.
Collapse
Affiliation(s)
- Yun Han
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Nan Jiang
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Ting Su
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Qi-Chen Yang
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Cong-Cong Yan
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Lei Ye
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qing Yuan
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Pei-Wen Zhu
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Wei Li
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Zu-Guo Liu
- Eye Institute of Xiamen University and Medical College of Xiamen University, Xiamen 361102, Fujian Province, China.,Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen 361102, Fujian Province, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
20
|
Li Y, Ma X, Li J, Yang L, Zhao X, Qi X, Zhang X, Zhou Q, Shi W. Corneal Denervation Causes Epithelial Apoptosis Through Inhibiting NAD+ Biosynthesis. Invest Ophthalmol Vis Sci 2019; 60:3538-3546. [PMID: 31415077 DOI: 10.1167/iovs.19-26909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine if trigeminal innervations of the corneal epithelium maintains its integrity and homeostasis through controlling the nicotinamide adenine dinucleotide (NAD) content of this tissue. Methods Corneal denervation of C57BL/6 mice was induced by squeezing the nerve bundles that derive from the trigeminal ganglion and was confirmed by whole-mount corneal nerve staining and the sensation test. The apoptosis of the corneal epithelium was examined by TUNEL assay and annexin V/propidium iodide staining. NAD biosynthesis-related enzymes were analyzed by quantitative PCR, immunofluorescence staining, and Western blotting. FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), exogenous nicotinamide mononucleotide (NMN), and NAD+ were used to evaluate the effect of NAD+ on the apoptosis of cultured corneal epithelial cells and epithelial detachment in denervated mice. Protein expression that related to apoptosis and phosphorylation were analyzed by Western blotting. Results The denervated mice showed spontaneous corneal epithelial detachment and cell apoptosis accompanied with impaired epithelial NAD+ contents due to low levels of NAMPT. Similarly, inhibition of NAMPT recapitulated epithelial detachment as in denervated mice and induced apoptosis in cultured corneal epithelial cells. The replenishment of NMN or NAD+ partially slowed down corneal nerve fiber degeneration, reduced the epithelial defect in denervated mice, and improved apoptosis induction in FK866-treated cells by restoring the activation levels of SIRT1, AKT, and CREB. Conclusions Corneal denervation lowered epithelial NAD+ contents through reducing the expression of NAMPT and caused cell apoptosis and epithelial defects, suggesting that corneal innervations contribute to epithelial homeostasis by regulating NAD+ biosynthesis.
Collapse
Affiliation(s)
- Ya Li
- Medical College, Qingdao University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiubin Ma
- Medical College, Qingdao University, Qingdao, China
| | - Jing Li
- Medical College, University of Jinan, Jinan, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaowen Zhao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | | | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
21
|
Wang F, Wang D, Song M, Zhou Q, Liao R, Wang Y. MiRNA-155-5p Reduces Corneal Epithelial Permeability by Remodeling Epithelial Tight Junctions during Corneal Wound Healing. Curr Eye Res 2019; 45:904-913. [PMID: 31852252 DOI: 10.1080/02713683.2019.1707229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Corneal epithelial cells play a vital role in the function of the cornea by forming a physical barrier to protect the eye from invasion by external pathogenic agents. A recent study showed that miR-155 promotes cutaneous wound healing. However, its function in corneal epithelial wound healing is unknown. The present study examined whether miR-155-5p reduces corneal epithelial permeability by remodeling epithelial tight junctions during corneal wound healing. MATERIALS AND METHODS Rat corneal wounds were produced by removing the central corneal epithelium with a blunt scalpel blade under a dissecting microscope. One eye of each rat was treated with topical miR-155-5p, and the other eye was treated with topical agomir negative control for 3 days before and after corneal epithelial wounding. Corneal epithelial permeability was assessed by the macromolecular osmosis method. Expression of zona occludens 1 (ZO-1), occludin, and myosin light chain kinase (MLCK) and phosphorylation of myosin light chain (MLC) were detected by Western blot. Human corneal epithelial (HCE) cells were cultured in the upper chamber of Transwell filters, and transepithelial electrical resistance (TER) was measured using a voltohmmeter. The distribution of ZO-1 and occludin in HCE cells treated with miR-155-5p was determined by immunofluorescence. RESULTS miR-155-5p significantly promoted the repair of corneal epithelial injury and reduced the permeability of the corneal epithelium. It significantly decreased expression of MLCK and phosphorylation of MLC and increased expression of the tight junction proteins ZO-1 and occludin in corneal epithelial cells during corneal wound healing. miR-155-5p significantly increased TER, decreased MLCK expression and MLC phosphorylation, increased ZO-1 and occludin expression, and promoted anchoring of tight junction proteins in the cell membrane and remodeling in HEC cells. CONCLUSIONS Our results suggest that miR-155-5p reduced corneal permeability and accelerated the recovery of corneal epithelial wounds by decreasing the expression of MLCK and phosphorylation of MLC and by remodeling tight junctions.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital, Anhui Medical University , Hefei, Anhui, P.R.China.,Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Duomei Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Meng Song
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Qing Zhou
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Rongfeng Liao
- Department of Ophthalmology, The First Affiliated Hospital, Anhui Medical University , Hefei, Anhui, P.R.China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry, Anhui Medical University , Hefei, Anhui, P.R.China
| |
Collapse
|
22
|
Repetitive magnetic stimulation protects corneal epithelium in a rabbit model of short-term exposure keratopathy. Ocul Surf 2019; 18:64-73. [PMID: 31574316 DOI: 10.1016/j.jtos.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the effect of repetitive magnetic stimulation (RMS) on corneal epithelial permeability in a rabbit model of exposure keratopathy. METHODS 61 female New Zealand White (NZW) rabbits were treated on one eye with repetitive magnetic stimulation (RMS) at a frequency of 20 Hz for 15 min. The other eye was untreated. Rabbit eyes were kept open for 2 h to induce acute corneal desiccation. The extent of fluorescein corneal staining was evaluated using EpiView software and the concentration of fluorescein in the anterior chamber was determined by a fluorometer. Safety was evaluated by electroretinogram, spectral domain optical coherence tomography (SD-OCT) and histopathology. Expression pattern of corneal cell markers was determined by immunofluorescence. RESULTS A significant decrease in fluorescein concentration in the anterior chamber (54 ± 8.4 ng/ml vs. 146.5 ± 18.6 ng/ml, p = 0.000001) and in corneal surface fluorescein staining score (1.7 ± 0.2 vs. 4.6 ± 0.6, p = 0.00001) was obtained in RMS-treated eyes compared with control eyes, respectively. RMS treatment reduced by nearly 4 fold the percentage of corneal area with epithelial erosions by anterior segment SD-OCT. The therapeutic effect was maintained for at least 3 months. Increased expression of epithelial tight junction protein Zo-1 was observed in treated eyes. SD-OCT and histopathology analysis revealed no pathological changes in the treated or non-treated eyes. CONCLUSIONS RMS treatment decreases epithelial corneal erosions in a rabbit model of exposure keratopathy, with no indication of pathological changes. RMS may present a novel treatment for protection of corneal epithelium from desiccation.
Collapse
|
23
|
Wang S, Jia Y, Li T, Wang A, Gao L, Yang C, Zou H. Dry Eye Disease Is More Prevalent in Children with Diabetes than in Those without Diabetes. Curr Eye Res 2019; 44:1299-1305. [PMID: 31294638 DOI: 10.1080/02713683.2019.1641827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purpose: To compare the prevalence of dry eye disease between children with and without diabetes, and analyze the factors associated with dry eye disease in children with diabetes.Materials and methods: 38 children with diabetes were selected as cases, and 40 children without diabetes constituted the control group. The prevalence of dry eye disease in both groups was statistically analyzed. Related factors of dry eye disease were analyzed in children with diabetes.Results: The prevalence of dry eye disease in the case group was significantly higher than that in the control group (P < .01), with the attributable proportion among the exposed (0.827) and the population attributable fraction (0.700). Univariate analysis showed that the diabetes duration, best-corrected visual acuity, corneal sensation, and levels of glycosylated hemoglobin were associated with dry eye disease in children with diabetes. Logistic regression analysis revealed that only diabetes duration and corneal sensation were independent factors associated with dry eye disease. The diabetes duration was significantly higher and the level of corneal sensation was significantly lower in subjects with dry eye disease than in those without dry eye disease.Conclusions: Early screening and close follow-up of dry eye disease in children with diabetes should be strictly implemented, especially in children with a long duration of diabetes and those with peripheral neuropathy.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Yan Jia
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Tao Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Anken Wang
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Lu Gao
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Chenhao Yang
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, Shanghai, China
| |
Collapse
|
24
|
Lee PSY, Gao N, Dike M, Shkilnyy O, Me R, Zhang Y, Yu FSX. Opposing Effects of Neuropilin-1 and -2 on Sensory Nerve Regeneration in Wounded Corneas: Role of Sema3C in Ameliorating Diabetic Neurotrophic Keratopathy. Diabetes 2019; 68:807-818. [PMID: 30679185 PMCID: PMC6425876 DOI: 10.2337/db18-1172] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
The diabetic cornea exhibits pathological alterations, such as delayed epithelial wound healing and nerve regeneration. We investigated the role of semaphorin (SEMA) 3C in corneal wound healing and reinnervation in normal and diabetic B6 mice. Wounding induced the expression of SEMA3A, SEMA3C, and their receptor neuropilin-2 (NRP2), but not NRP1, in normal corneal epithelial cells; this upregulation was suppressed for SEMA3C and NRP2 in diabetic corneas. Injections of Sema3C-specific small interfering RNA and NRP2-neutralizing antibodies in wounded mice resulted in a decrease in the rate of wound healing and regenerating nerve fibers, whereas exogenous SEMA3C had opposing effects in diabetic corneas. NRP1 neutralization, on the other hand, decreased epithelial wound closure but increased sensory nerve regeneration in diabetic corneas, suggesting a detrimental role in nerve regeneration. Taken together, epithelium-expressed SEMA3C plays a role in corneal epithelial wound closure and sensory nerve regeneration. The hyperglycemia-suppressed SEMA3C/NRP2 signaling may contribute to the pathogenesis of diabetic neurotrophic keratopathy, and SEMA3C might be used as an adjunctive therapeutic for treating the disease.
Collapse
Affiliation(s)
- Patrick Shean-Young Lee
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Mamata Dike
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Olga Shkilnyy
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Rao Me
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Yangyang Zhang
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
25
|
Sensory nerve supports epithelial stem cell function in healing of corneal epithelium in mice: the role of trigeminal nerve transient receptor potential vanilloid 4. J Transl Med 2019; 99:210-230. [PMID: 30413814 DOI: 10.1038/s41374-018-0118-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/24/2023] Open
Abstract
In order to understand the pathobiology of neurotrophic keratopathy, we established a mouse model by coagulating the first branch of the trigeminal nerve (V1 nerve). In our model, the sensory nerve in the central cornea disappeared and remaining fibers were sparse in the peripheral limbal region. Impaired corneal epithelial healing in the mouse model was associated with suppression of both cell proliferation and expression of stem cell markers in peripheral/limbal epithelium as well as a reduction of transient receptor potential vanilloid 4 (TRPV4) expression in tissue. TRPV4 gene knockout also suppressed epithelial repair in mouse cornea, although it did not seem to directly modulate migration of epithelium. In a co-culture experiment, TRPV4-introduced KO trigeminal ganglion upregulated nerve growth factor (NGF) in cultured corneal epithelial cells, but ganglion with a control vector did not. TRPV4 gene introduction into a damaged V1 nerve rescues the impairment of epithelial healing in association with partial recovery of the stem/progenitor cell markers and upregulation of cell proliferation and of NGF expression in the peripheral/limbal epithelium. Gene transfer of TRPV4 did not accelerate the regeneration of nerve fibers. Sensory nerve TRPV4 is critical to maintain stemness of peripheral/limbal basal cells, and is one of the major mechanisms of homeostasis maintenance of corneal epithelium.
Collapse
|
26
|
Abstract
PURPOSE To evaluate the role of estrogen in corneal nociception, its influence on lacrimal secretion, and development of dry eye. METHODS Ovariectomy was performed in normal healthy female rats (OVX). Estrogen replacement was performed in a population of these rats (OVX+E). Tests for dry eye and corneal sensitivity were performed and compared with rats in proestrus (PRO) as controls. Gene expression of neuropeptides such as substance P, calcitonin gene receptor-like protein (CGRP), estrogen receptor α, TRPV1, and TRPM8 was evaluated in the cornea and trigeminal ganglion. Expression of substance P and CGRP in the cornea was also examined by immunohistochemistry. The response of the cornea to capsaicin and menthol was evaluated to identify the activity of receptors TRPV1 and TRPM8, respectively. RESULTS There was a significant decrease in tear formation (4.2 ± 0.6 mm/min vs. 6.6 ± 0.42 mm/min), corneal sensitivity (2.2 ± 0.17 cm vs. 6 ± 0 cm), and increase in fluorescein staining in corneas after ovariectomy compared with controls. There was a significant decrease in gene expression of CGRP, substance P, TRPV1, and TRPM8 in the ovarioectomized cornea. A significant decrease in tear formation (3.17 ± 0.30 mm/min vs. 7.17 ± 0.87 mm/min) and eye wipe response (10.5 ± 1.99 wipes vs. 18.33 ± 1.05 wipes) after treatment with menthol and capsaicin in OVX rats was observed. Estrogen replacement significantly enhanced tear formation (4.02 ± 0.6 mm/min vs. 6.7 ± 0.80 mm/min), corneal sensitivity (2.2 ± 0.17 cm vs. 3.2 ± 0.17 cm), and response to capsaicin (10.5 ± 1.99 eye wipes vs. 24.5 ± 0.92 wipes) and menthol (3.17 ± 0.30 mm/min vs. 6.5 ± 0.22 mm/min) and increased expression of neuropeptides, TRPV1 and TRPM8. CONCLUSIONS This study demonstrates the role of estrogen in corneal nociception and its deficiency as a cause of dry eye.
Collapse
|
27
|
Zhang Z, Hu X, Qi X, Di G, Zhang Y, Wang Q, Zhou Q. Resolvin D1 promotes corneal epithelial wound healing and restoration of mechanical sensation in diabetic mice. Mol Vis 2018; 24:274-285. [PMID: 29643724 PMCID: PMC5881880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/30/2018] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the effect and mechanism of proresolving lipid mediator resolvin D1 (RvD1) on the corneal epithelium and the restoration of mechanical sensation in diabetic mice. METHODS Type 1 diabetes was induced in mice with intraperitoneal streptozocin injections. The healthy and diabetic mice underwent removal of the central corneal epithelium, and then 100 ng/ml RvD1 or its formyl peptide receptor 2 (FPR2) antagonist WRW4 was used to treat the diabetic mice. Regeneration of the corneal epithelium and nerves was observed with sodium fluorescein staining and whole-mount anti-β3-tubulin fluorescence staining. The inflammatory response level was measured with hematoxylin and eosin staining (inflammatory cell infiltration), enzyme-linked immunosorbent assay (tumor necrosis factor alpha and interleukin-1 beta content), myeloperoxidase activity, and fluorescence staining (macrophage content). The reactive oxygen species (ROS) and glutathione (GSH) levels were examined with incubation with fluorescent probes, and oxidative stress-related protein expression levels were evaluated with fluorescence staining and western blotting. RESULTS Topical application of RvD1 promoted regeneration of the corneal epithelium in diabetic mice, accompanied by the reactivation of signaling and inflammation resolution related to regeneration of the epithelium. Furthermore, RvD1 directly attenuated the accumulation of ROS and nicotinamide adenine dinucleotide phosphate oxidase 2/4 expression, while RvD1 enhanced GSH synthesis and reactivated the Nrf2-ARE signaling pathway that was impaired in the corneal epithelium in the diabetic mice. More interestingly, topical application of RvD1 promoted regeneration of corneal nerves and completely restored impaired mechanical sensitivity of the cornea in diabetic mice. In addition, the promotion of corneal epithelial wound healing by RvD1 in diabetic mice was abolished by its FPR2 antagonist WRW4. CONCLUSIONS Topical application of RvD1 promotes corneal epithelial wound healing and the restoration of mechanical sensation in diabetic mice, which may be related to the lipid mediator's regulation of inflammation resolution, the reactivation of regenerative signaling in the epithelium, and the attenuation of oxidative stress.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaoli Hu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Guohu Di
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yangyang Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qian Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
28
|
Bihoreau MT, Dumas ME, Lathrop M, Gauguier D. Genomic regulation of type 2 diabetes endophenotypes: Contribution from genetic studies in the Goto-Kakizaki rat. Biochimie 2017; 143:56-65. [DOI: 10.1016/j.biochi.2017.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022]
|
29
|
At'kova EL, Reyn DA, Yartsev VD, Subbot AM. [Influence of TGF-β cytokine and a number of other biochemical factors on regenerative process]. Vestn Oftalmol 2017; 133:89-96. [PMID: 28980572 DOI: 10.17116/oftalma2017133489-96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Scarring is one of the main causes of surgical failure in a number of eye diseases, dacryologic conditions in particular. The process of wound healing, including postoperative wound healing, goes through several stages mediated by various biochemical factors, such as growth factors and pro- and anti-inflammatory cytokines. The balance between the latter directly influences the wound healing. However, current data on the effect of these factors on postoperative outcomes are few and contradictory. Thus, in dacryology as well as in other areas of ophthalmology, the role of cytokines and growth factors in healing of surgical wounds is being intensively researched.
Collapse
Affiliation(s)
- E L At'kova
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russia, 119021
| | - D A Reyn
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russia, 119021
| | - V D Yartsev
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russia, 119021
| | - A M Subbot
- Research Institute of Eye Diseases, 11, A, B, Rossolimo St., Moscow, Russia, 119021
| |
Collapse
|
30
|
Diabetic complications in the cornea. Vision Res 2017; 139:138-152. [PMID: 28404521 DOI: 10.1016/j.visres.2017.03.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
Diabetic corneal alterations, such as delayed epithelial wound healing, edema, recurrent erosions, neuropathy/loss of sensitivity, and tear film changes are frequent but underdiagnosed complications of both type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus. The disease affects corneal epithelium, corneal nerves, tear film, and to a lesser extent, endothelium, and also conjunctiva. These abnormalities may appear or become exacerbated following trauma, as well as various surgeries including retinal, cataract or refractive. The focus of the review is on mechanisms of diabetic corneal abnormalities, available animal, tissue and organ culture models, and emerging treatments. Changes of basement membrane structure and wound healing rates, the role of various proteinases, advanced glycation end products (AGEs), abnormal growth and motility factors (including opioid, epidermal, and hepatocyte growth factors) are analyzed. Experimental therapeutics under development, including topical naltrexone, insulin, inhibitors of aldose reductase, and AGEs, as well as emerging gene and cell therapies are discussed in detail.
Collapse
|
31
|
VEGF-B promotes recovery of corneal innervations and trophic functions in diabetic mice. Sci Rep 2017; 7:40582. [PMID: 28091556 PMCID: PMC5238415 DOI: 10.1038/srep40582] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)-B possesses the capacity of promoting injured peripheral nerve regeneration and restore their sensory and trophic functions. However, the contribution and mechanism of VEGF-B in diabetic peripheral neuropathy remains unclear. In the present study, we investigated the expression and role of VEGF-B in diabetic corneal neuropathy by using type 1 diabetic mice and cultured trigeminal ganglion (TG) neurons. Hyperglycemia attenuated the endogenous expression of VEGF-B in regenerated diabetic corneal epithelium, but not that of VEGF receptors in diabetic TG neurons and axons. Exogenous VEGF-B promoted diabetic corneal nerve fiber regeneration through the reactivation of PI-3K/Akt-GSK3β-mTOR signaling and the attenuation of neuronal mitochondria dysfunction via the VEGF receptor-1 and neuropilin-1. Moreover, VEGF-B improved corneal sensation and epithelial regeneration in both normal and diabetic mice, accompanied with the elevated corneal content of pigment epithelial-derived factor (PEDF). PEDF blockade partially abolished trophic function of VEGF-B in diabetic corneal re-innervation. In conclusion, hyperglycemia suppressed endogenous VEGF-B expression in regenerated corneal epithelium of diabetic mice, while exogenous VEGF-B promoted recovery of corneal innervations and trophic functions through reactivating PI-3K/Akt-GSK-3β-mTOR signaling, attenuating neuronal oxidative stress and elevating PEDF expression.
Collapse
|
32
|
Zhao WN, Xu SQ, Liang JF, Peng L, Liu HL, Wang Z, Fang Q, Wang M, Yin WQ, Zhang WJ, Lou JN. Endothelial progenitor cells from human fetal aorta cure diabetic foot in a rat model. Metabolism 2016; 65:1755-1767. [PMID: 27832863 DOI: 10.1016/j.metabol.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/03/2016] [Accepted: 09/13/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Recent evidence has suggested that circulating endothelial progenitor cells (EPCs) can repair the arterial endothelium during vascular injury. However, a reliable source of human EPCs is needed for therapeutic applications. In this study, we isolated human fetal aorta (HFA)-derived EPCs and analyzed the capacity of EPCs to differentiate into endothelial cells. In addition, because microvascular dysfunction is considered to be the major cause of diabetic foot (DF), we investigated whether transplantation of HFA-derived EPCs could treat DF in a rat model. METHODS EPCs were isolated from clinically aborted fetal aorta. RT-PCR, fluorescence-activated cell sorting, immunofluorescence, and an enzyme-linked immunosorbent assay were used to examine the expressions of CD133, CD34, CD31, Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), von Willebrand Factor (vWF), and Endothelial Leukocyte Adhesion Molecule-1 (ELAM-1). Morphology and Dil-uptake were used to assess function of the EPCs. We then established a DF model by injecting microcarriers into the hind-limb arteries of Goto-Kakizaki rats and then transplanting the cultured EPCs into the ischemic hind limbs. Thermal infrared imaging, oxygen saturation apparatus, and laser Doppler perfusion imaging were used to monitor the progression of the disease. Immunohistochemistry was performed to examine the microvascular tissue formed by HFA-derived EPCs. RESULTS We found that CD133, CD34, and VEGFR2 were expressed by HFA-derived EPCs. After VEGF induction, CD133 expression was significantly decreased, but expression levels of vWF and ELAM-1 were markedly increased. Furthermore, tube formation and Dil-uptake were improved after VEGF induction. These observations suggest that EPCs could differentiate into endothelial cells. In the DF model, temperature, blood flow, and oxygen saturation were reduced but recovered to a nearly normal level following injection of the EPCs in the hind limb. Ischemic symptoms also improved. Injected EPCs were preferentially and durably engrafted into the blood vessels. In addition, anti-human CD31+-AMA+-vWF+ microvasculars were detected after transplantation of EPCs. CONCLUSION Early fetal aorta-derived EPCs possess strong self-renewal ability and can differentiate into endothelial cells. We demonstrated for the first time that transplanting HFA-derived EPCs could ameliorate DF prognosis in a rat model. These findings suggest that the transplantation of HFA-derived EPCs could serve as an innovative therapeutic strategy for managing DF.
Collapse
Affiliation(s)
- Wan-Ni Zhao
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Shi-Qing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jian-Feng Liang
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Hong-Lin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Meng Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei-Qin Yin
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wen-Jian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Jin-Ning Lou
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
33
|
Gao N, Lee P, Yu FS. Intraepithelial dendritic cells and sensory nerves are structurally associated and functional interdependent in the cornea. Sci Rep 2016; 6:36414. [PMID: 27805041 PMCID: PMC5090364 DOI: 10.1038/srep36414] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/10/2016] [Indexed: 12/12/2022] Open
Abstract
The corneal epithelium consists of stratified epithelial cells, sparsely interspersed with dendritic cells (DCs) and a dense layer of sensory axons. We sought to assess the structural and functional correlation of DCs and sensory nerves. Two morphologically different DCs, dendriform and round-shaped, were detected in the corneal epithelium. The dendriform DCs were located at the sub-basal space where the nerve plexus resides, with DC dendrites crossing several nerve endings. The round-shaped DCs were closely associated with nerve fiber branching points, penetrating the basement membrane and reaching into the stroma. Phenotypically, the round-shaped DCs were CD86 positive. Trigeminal denervation resulted in epithelial defects with or without total tarsorrhaphy, decreased tear secretion, and the loss of dendriform DCs at the ocular surface. Local DC depletion resulted in a significant decrease in corneal sensitivity, an increase in epithelial defects, and a reduced density of nerve endings at the center of the cornea. Post-wound nerve regeneration was also delayed in the DC-depleted corneas. Taken together, our data show that DCs and sensory nerves are located in close proximity. DCs may play a role in epithelium innervation by accompanying the sensory nerve fibers in crossing the basement membrane and branching into nerve endings.
Collapse
Affiliation(s)
- Nan Gao
- Departments of Ophthalmology, Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Patrick Lee
- Departments of Ophthalmology, Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Fu-Shin Yu
- Departments of Ophthalmology, Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
34
|
Diabetic wound regeneration using peptide-modified hydrogels to target re-epithelialization. Proc Natl Acad Sci U S A 2016; 113:E5792-E5801. [PMID: 27647919 DOI: 10.1073/pnas.1612277113] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is a clinical need for new, more effective treatments for chronic wounds in diabetic patients. Lack of epithelial cell migration is a hallmark of nonhealing wounds, and diabetes often involves endothelial dysfunction. Therefore, targeting re-epithelialization, which mainly involves keratinocytes, may improve therapeutic outcomes of current treatments. In this study, we present an integrin-binding prosurvival peptide derived from angiopoietin-1, QHREDGS (glutamine-histidine-arginine-glutamic acid-aspartic acid-glycine-serine), as a therapeutic candidate for diabetic wound treatments by demonstrating its efficacy in promoting the attachment, survival, and collective migration of human primary keratinocytes and the activation of protein kinase B Akt and MAPKp42/44 The QHREDGS peptide, both as a soluble supplement and when immobilized in a substrate, protected keratinocytes against hydrogen peroxide stress in a dose-dependent manner. Collective migration of both normal and diabetic human keratinocytes was promoted on chitosan-collagen films with the immobilized QHREDGS peptide. The clinical relevance was demonstrated further by assessing the chitosan-collagen hydrogel with immobilized QHREDGS in full-thickness excisional wounds in a db/db diabetic mouse model; QHREDGS showed significantly accelerated and enhanced wound closure compared with a clinically approved collagen wound dressing, peptide-free hydrogel, or blank wound controls. The accelerated wound closure resulted primarily from faster re-epithelialization and increased formation of granulation tissue. There were no observable differences in blood vessel density or size within the wound; however, the total number of blood vessels was greater in the peptide-hydrogel-treated wounds. Together, these findings indicate that QHREDGS is a promising candidate for wound-healing interventions that enhance re-epithelialization and the formation of granulation tissue.
Collapse
|
35
|
Sassani JW, Mc Laughlin PJ, Zagon IS. The Yin and Yang of the Opioid Growth Regulatory System: Focus on Diabetes-The Lorenz E. Zimmerman Tribute Lecture. J Diabetes Res 2016; 2016:9703729. [PMID: 27703986 PMCID: PMC5039296 DOI: 10.1155/2016/9703729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/24/2016] [Indexed: 12/16/2022] Open
Abstract
The Opioid Growth Regulatory System consists of opioid growth factor (OGF), [Met5]-enkephalin, and its unique receptor (OGFr). OGF inhibits cell division when bound to OGFr. Conversely, blockade of the interaction of OGF and OGFr, using the potent, long-acting opioid receptor antagonist, naltrexone (NTX), results in increased DNA synthesis and cell division. The authors have demonstrated both in vitro and in vivo that the addition of exogenous OGF or an increase in available OGFr decreases corneal epithelial cell division and wound healing. Conversely, blockade of the OGF-OGFr interaction by NTX or a decrease in the production of the OGFr increases corneal epithelial cell division and facilitates corneal epithelial wound healing. The authors also have demonstrated that depressed corneal and cutaneous wound healing, dry eye, and abnormal corneal sensitivity in type 1 and type 2 diabetes in animals can be reversed by OGF-OGFr blockade by NTX. Thus, the function of the Opioid Growth Regulatory System appears to be disordered in diabetic animals, and its function can be restored with NTX treatment. These studies suggest a fundamental role for the Opioid Growth Regulatory System in the pathobiology of diabetic complications and a need for studies to elucidate this role further.
Collapse
Affiliation(s)
- Joseph W. Sassani
- Departments of Ophthalmology and Pathology, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Patricia J. Mc Laughlin
- Department of Neural and Behavioral Sciences, The Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ian S. Zagon
- Department of Neural and Behavioral Sciences, The Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
36
|
Shen Y, Pfluger T, Ferreira F, Liang J, Navedo MF, Zeng Q, Reid B, Zhao M. Diabetic cornea wounds produce significantly weaker electric signals that may contribute to impaired healing. Sci Rep 2016; 6:26525. [PMID: 27283241 PMCID: PMC4901296 DOI: 10.1038/srep26525] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/04/2016] [Indexed: 12/26/2022] Open
Abstract
Wounds naturally produce electric signals which serve as powerful cues that stimulate and guide cell migration during wound healing. In diabetic patients, impaired wound healing is one of the most challenging complications in diabetes management. A fundamental gap in knowledge is whether diabetic wounds have abnormal electric signaling. Here we used a vibrating probe to demonstrate that diabetic corneas produced significantly weaker wound electric signals than the normal cornea. This was confirmed in three independent animal models of diabetes: db/db, streptozotocin-induced and mice fed a high-fat diet. Spatial measurements illustrated that diabetic cornea wound currents at the wound edge but not wound center were significantly weaker than normal. Time lapse measurements revealed that the electric currents at diabetic corneas lost the normal rising and plateau phases. The abnormal electric signals correlated significantly with impaired wound healing. Immunostaining suggested lower expression of chloride channel 2 and cystic fibrosis transmembrane regulator in diabetic corneal epithelium. Acute high glucose exposure significantly (albeit moderately) reduced electrotaxis of human corneal epithelial cells in vitro, but did not affect the electric currents at cornea wounds. These data suggest that weaker wound electric signals and impaired electrotaxis may contribute to the impaired wound healing in diabetes.
Collapse
Affiliation(s)
- Yunyun Shen
- Department of Dermatology, University of California, Davis, CA, USA.,Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Trisha Pfluger
- Department of Dermatology, University of California, Davis, CA, USA
| | - Fernando Ferreira
- Department of Dermatology, University of California, Davis, CA, USA.,Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Jiebing Liang
- Department of Biology, California State University, Northridge, CA, USA
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Department of Occupational and Environmental Health, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Brian Reid
- Department of Dermatology, University of California, Davis, CA, USA
| | - Min Zhao
- Department of Dermatology, University of California, Davis, CA, USA.,Department of Ophthalmology and Vision Science, University of California, Davis, CA, USA
| |
Collapse
|
37
|
Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt. Sci Rep 2016; 6:25870. [PMID: 27174608 PMCID: PMC4865747 DOI: 10.1038/srep25870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/25/2016] [Indexed: 01/20/2023] Open
Abstract
The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway.
Collapse
|
38
|
Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, Fan X, Yu FS. Targeting Imbalance between IL-1β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1466-80. [PMID: 27109611 DOI: 10.1016/j.ajpath.2016.01.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/15/2022]
Abstract
Patients with diabetes mellitus often develop corneal complications and delayed wound healing. How diabetes might alter acute inflammatory responses to tissue injury, leading to delayed wound healing, remains mostly elusive. Using a streptozotocin-induced type I diabetes mellitus mice and corneal epithelium-debridement wound model, we discovered that although wounding induced marked expression of IL-1β and the secreted form of IL-1 receptor antagonist (sIL-1Ra), diabetes suppressed the expressions of sIL-1Ra but not IL-1β in healing epithelia and both in whole cornea. In normoglycemic mice, IL-1β or sIL-1Ra blockade delayed wound healing and influenced each other's expression. In diabetic mice, in addition to delayed reepithelization, diabetes weakened phosphatidylinositol 3-kinase-Akt signaling, caused cell apoptosis, diminished cell proliferation, suppressed neutrophil and natural killer cell infiltrations, and impaired sensory nerve reinnervation in healing mouse corneas. Local administration of recombinant IL-1Ra partially, but significantly, reversed these pathological changes in the diabetic corneas. CXCL10 was a downstream chemokine of IL-1β-IL-1Ra, and exogenous CXCL10 alleviated delayed wound healing in the diabetic, but attenuated it in the normal corneas. In conclusion, the suppressed early innate/inflammatory responses instigated by the imbalance between IL-1β and IL-1Ra is an underlying cause for delayed wound healing in the diabetic corneas. Local application of IL-1Ra accelerates reepithelialization and may be used to treat chronic corneal and potential skin wounds of diabetic patients.
Collapse
Affiliation(s)
- Chenxi Yan
- Department of Ophthalmology, Graduate Program, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Nan Gao
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Haijing Sun
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jia Yin
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Patrick Lee
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Zhou
- Department of Dermatology, Henry Ford Immunology Program, Henry Ford Health System, Detroit, Michigan
| | - Xianqun Fan
- Department of Ophthalmology, Graduate Program, Shanghai Ninth Peoples' Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fu-Shin Yu
- Department of Ophthalmology, Kresge Eye Institute, and the Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
39
|
Gao N, Yan C, Lee P, Sun H, Yu FS. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea. J Clin Invest 2016; 126:1998-2011. [PMID: 27064280 DOI: 10.1172/jci85097] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/24/2016] [Indexed: 12/11/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) often leads to neurotrophic ulcerations in the cornea and skin; however, the underlying cellular mechanisms of this complication are poorly understood. Here, we used post-wound corneal sensory degeneration and regeneration as a model and tested the hypothesis that diabetes adversely affects DC populations and infiltration, resulting in disrupted DC-nerve communication and DPN. In streptozotocin-induced type 1 diabetic mice, there was a substantial reduction in sensory nerve density and the number of intraepithelial DCs in unwounded (UW) corneas. In wounded corneas, diabetes markedly delayed sensory nerve regeneration and reduced the number of infiltrating DCs, which were a major source of ciliary neurotrophic factor (CNTF) in the cornea. While CNTF neutralization retarded reinnervation in normal corneas, exogenous CNTF accelerated nerve regeneration in the wounded corneas of diabetic mice and healthy animals, in which DCs had been locally depleted. Moreover, blockade of the CNTF-specific receptor CNTFRα induced sensory nerve degeneration and retarded regeneration in normal corneas. Soluble CNTFRα also partially restored the branching of diabetes-suppressed sensory nerve endings and regeneration in the diabetic corneas. Collectively, our data show that DCs mediate sensory nerve innervation and regeneration through CNTF and that diabetes reduces DC populations in UW and wounded corneas, resulting in decreased CNTF and impaired sensory nerve innervation and regeneration.
Collapse
|
40
|
Zhou Q, Chen P, Di G, Zhang Y, Wang Y, Qi X, Duan H, Xie L. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing. Stem Cells 2016; 33:1566-76. [PMID: 25546438 DOI: 10.1002/stem.1942] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy.
Collapse
Affiliation(s)
- Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The study of diabetic neuropathy has relied primarily on the use of streptozotocin-treated rat and mouse models of type 1 diabetes. This chapter will review the creation and use of other rodent models that have been developed in order to investigate the contribution of factors besides insulin deficiency to the development and progression of diabetic neuropathy as it occurs in obesity, type 1 or type 2 diabetes. Diabetic peripheral neuropathy is a complex disorder with multiple mechanisms contributing to its development and progression. Even though many animal models have been developed and investigated, no single model can mimic diabetic peripheral neuropathy as it occurs in humans. Nonetheless, animal models can play an important role in improving our understanding of the etiology of diabetic peripheral neuropathy and in performing preclinical screening of potential new treatments. To date treatments found to be effective for diabetic peripheral neuropathy in rodent models have failed in clinical trials. However, with the identification of new endpoints for the early detection of diabetic peripheral neuropathy and the understanding that a successful treatment may require a combination therapeutic approach there is hope that an effective treatment will be found.
Collapse
Affiliation(s)
- M A Yorek
- Iowa City Health Care System, Iowa City, IA, United States; University of Iowa, Iowa City, IA, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
42
|
Sun H, Mi X, Gao N, Yan C, Yu FS. Hyperglycemia-suppressed expression of Serpine1 contributes to delayed epithelial wound healing in diabetic mouse corneas. Invest Ophthalmol Vis Sci 2015; 56:3383-92. [PMID: 26024123 DOI: 10.1167/iovs.15-16606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Patients with diabetes mellitus (DM) are at an increased risk for developing corneal complications, including delayed wound healing. The purpose of this study was to characterize the expression and the function of Serpine1 and other components of urokinase plasminogen activator (uPA)-proteolytic system in delayed epithelial wound healing in diabetic mouse corneas. METHODS Mice of the strain C57BL/6 were induced to develop diabetes by streptozotocin, and wound-healing assays were performed 10 weeks afterward. Gene expression and/or distribution were assessed by real-time PCR, Western blotting, and/or immunohistochemistry. The role of Serpine1 in mediating epithelial wound closure was determined by subconjunctival injections of neutralizing antibodies in either normal or recombinant protein in diabetic corneas. Enzyme assay for matrix metalloproteinase (MMP)-3 was also performed. RESULTS The expressions of Serpine1 (PAI-1), Plau (uPA), and Plaur (uPA receptor) were upregulated in response to wounding, and these upregulations were significantly suppressed by hyperglycemia. In healing epithelia, Plau and Serpine1 were abundantly expressed at the leading edge of the healing epithelia of normal and, to a lesser extent, diabetic corneas. Inhibition of Serpine1 delayed epithelial wound closure in normal corneas, whereas recombinant Serpine1 accelerated it in diabetic corneas. The Plau and MMP-3 mRNA levels and MMP-3 enzymatic activities were correlated to Serpine1 levels and/or the rates of epithelial wound closure. CONCLUSIONS Serpine1 plays a role in mediating epithelial wound healing and its impaired expression may contribute to delayed wound healing in DM corneas. Hence, modulating uPA proteolytic pathway may represent a new approach for treating diabetic keratopathy.
Collapse
|
43
|
Yu FS, Yin J, Lee P, Hwang FS, McDermott M. Sensory nerve regeneration after epithelium wounding in normal and diabetic cornea. EXPERT REVIEW OF OPHTHALMOLOGY 2015; 10:383-392. [PMID: 28446923 DOI: 10.1586/17469899.2015.1049157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cornea is the most densely innervated mammalian tissue. The sensory nerves are responsible for sensations of dryness, temperature, touch, and pain, and play important roles in the blink reflex, wound healing, and tear production. Many ocular and systemic diseases can adversely affect corneal sensory nerve and consequently impair their function. One of such systemic diseases is diabetes mellitus (DM) which causes sensory degeneration, neurotrophic keratopathy (DNK), and delayed wound healing. In this review, we summarize recent discoveries revealing mechanisms underlying the pathogenesis of DNK and the impairment of sensory nerve regeneration in post wound diabetic corneas in using animal model of human diabetes. Because it is generally believed that common mechanisms are operative in the pathogenesis of diabetic peripheral neuropathy in different tissues, the findings in the corneas have implications in in other tissues such as the skin, which often leads to foot ulceration and amputation in diabetic patients.
Collapse
Affiliation(s)
- Fu-Shin Yu
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Jia Yin
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Patrick Lee
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Frank S Hwang
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Mark McDermott
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
44
|
Yang L, Di G, Qi X, Qu M, Wang Y, Duan H, Danielson P, Xie L, Zhou Q. Substance P promotes diabetic corneal epithelial wound healing through molecular mechanisms mediated via the neurokinin-1 receptor. Diabetes 2014; 63:4262-74. [PMID: 25008176 DOI: 10.2337/db14-0163] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Substance P (SP) is a neuropeptide, predominantly released from sensory nerve fibers, with a potentially protective role in diabetic corneal epithelial wound healing. However, the molecular mechanism remains unclear. We investigated the protective mechanism of SP against hyperglycemia-induced corneal epithelial wound healing defects, using type 1 diabetic mice and high glucose-treated corneal epithelial cells. Hyperglycemia induced delayed corneal epithelial wound healing, accompanied by attenuated corneal sensation, mitochondrial dysfunction, and impairments of Akt, epidermal growth factor receptor (EGFR), and Sirt1 activation, as well as decreased reactive oxygen species (ROS) scavenging capacity. However, SP application promoted epithelial wound healing, recovery of corneal sensation, improvement of mitochondrial function, and reactivation of Akt, EGFR, and Sirt1, as well as increased ROS scavenging capacity, in both diabetic mouse corneal epithelium and high glucose-treated corneal epithelial cells. The promotion of SP on diabetic corneal epithelial healing was completely abolished by a neurokinin-1 (NK-1) receptor antagonist. Moreover, the subconjunctival injection of NK-1 receptor antagonist also caused diabetic corneal pathological changes in normal mice. In conclusion, the results suggest that SP-NK-1 receptor signaling plays a critical role in the maintenance of corneal epithelium homeostasis, and that SP signaling through the NK-1 receptor contributes to the promotion of diabetic corneal epithelial wound healing by rescued activation of Akt, EGFR, and Sirt1, improvement of mitochondrial function, and increased ROS scavenging capacity.
Collapse
Affiliation(s)
- Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Guohu Di
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Mingli Qu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yao Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Haoyun Duan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Patrik Danielson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Lixin Xie
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
45
|
Bettahi I, Sun H, Gao N, Wang F, Mi X, Chen W, Liu Z, Yu FSX. Genome-wide transcriptional analysis of differentially expressed genes in diabetic, healing corneal epithelial cells: hyperglycemia-suppressed TGFβ3 expression contributes to the delay of epithelial wound healing in diabetic corneas. Diabetes 2014; 63:715-27. [PMID: 24306208 PMCID: PMC3900551 DOI: 10.2337/db13-1260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Patients with diabetes mellitus (DM) may develop corneal complications and delayed wound healing. The aims of this study are to characterize the molecular signatures and biological pathways leading to delayed epithelial wound healing and to delineate the involvement of TGFβ3 therein. Genome-wide cDNA microarray analysis revealed 1,888 differentially expressed genes in the healing epithelia of normal (NL) versus type 1 DM rat corneas. Gene ontology and enrichment analyses indicated TGFβ signaling as a major altered pathway. Among three TGFβ isoforms, TGF-β1 and β3 were upregulated in response to wounding in NL corneal epithelial cells (CECs), whereas the latter was greatly suppressed by hyperglycemia in rat type 1 and 2 and mouse type 1 DM models. Functional analysis indicated that TGF-β3 contributed to wound healing in NL corneas. Moreover, exogenously added TGF-β3 accelerated epithelial wound closure in type 2 rat and type 1 mouse DM corneas via Smad and PI3K-AKT signaling pathways, autoregulation, and/or upregulation of Serpine1, a well-known TGFβ target gene. Taken together, our study for the first time provides a comprehensive list of genes differentially expressed in the healing CECs of NL versus diabetic corneas and suggests the therapeutic potential of TGF-β3 for treating corneal and skin wounds in diabetic patients.
Collapse
Affiliation(s)
- Ilham Bettahi
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Haijing Sun
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Feng Wang
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Xiaofan Mi
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
| | - Weiping Chen
- Genomic Core Laboratory of National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Zuguo Liu
- Xiamen Eye Center, Key Laboratory of Ophthalmology and Visual Science of Fujian Province, Xiamen University, Xiamen, Fujian, China
| | - Fu-Shin X. Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI
- Corresponding author: Fu-Shin X. Yu,
| |
Collapse
|
46
|
Kang WS, Choi HT, Ahn M, You IC. The Change of Tear Film in Classification of Diabetic Retinopathy. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2014. [DOI: 10.3341/jkos.2014.55.4.486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Wan Seok Kang
- Department of Ophthalmology, Chonbuk National University College of Medicine, Jeonju, Korea
| | - Hyun Tae Choi
- Department of Ophthalmology, Chonbuk National University College of Medicine, Jeonju, Korea
| | - Min Ahn
- Department of Ophthalmology, Chonbuk National University College of Medicine, Jeonju, Korea
| | - In Cheon You
- Department of Ophthalmology, Chonbuk National University College of Medicine, Jeonju, Korea
| |
Collapse
|
47
|
Saghizadeh M, Epifantseva I, Hemmati DM, Ghiam CA, Brunken WJ, Ljubimov AV. Enhanced wound healing, kinase and stem cell marker expression in diabetic organ-cultured human corneas upon MMP-10 and cathepsin F gene silencing. Invest Ophthalmol Vis Sci 2013; 54:8172-80. [PMID: 24255036 DOI: 10.1167/iovs.13-13233] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Diabetic corneas overexpress proteinases including matrix metalloproteinase-10 (M10) and cathepsin F (CF). Our purpose was to assess if silencing M10 and CF in organ-cultured diabetic corneas using recombinant adenovirus (rAV)-driven small hairpin RNA (rAV-sh) would normalize slow wound healing, and diabetic and stem cell marker expression. METHODS Sixteen pairs of organ-cultured autopsy human diabetic corneas (four per group) were treated with rAV-sh. Proteinase genes were silenced either separately, together, or both, in combination (Combo) with rAV-driven c-met gene overexpression. Fellow control corneas received rAV-EGFP. Quantitative RT-PCR confirmed small hairpin RNA (shRNA) silencing effect. Ten days after transfection, 5-mm epithelial wounds were made with n-heptanol and healing time recorded. Diabetic, signaling, and putative stem cell markers were studied by immunofluorescence of corneal cryostat sections. RESULTS Proteinase silencing reduced epithelial wound healing time versus rAV-enhanced green fluorescent protein (EGFP) control (23% for rAV-shM10, 31% for rAV-shCF, and 36% for rAV-shM10 + rAV-shCF). Combo treatment was even more efficient (55% reduction). Staining patterns of diabetic markers (α₃β₁ integrin and nidogen-1), and of activated epidermal growth factor receptor and its signaling target activated Akt were normalized upon rAV-sh treatment. Combo treatment also restored normal staining for activated p38. All treatments, especially the combined ones, increased diabetes-altered staining for putative limbal stem cell markers, ΔNp63α, ABCG2, keratins 15 and 17, and laminin γ3 chain. CONCLUSIONS Small hairpin RNA silencing of proteinases overexpressed in diabetic corneas enhanced corneal epithelial and stem cell marker staining and accelerated wound healing. Combined therapy with c-met overexpression was even more efficient. Specific corneal gene therapy has a potential for treating diabetic keratopathy.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Eye Program, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
48
|
Ishibashi F, Kawasaki A, Yamanaka E, Kosaka A, Uetake H. Morphometric features of corneal epithelial basal cells, and their relationship with corneal nerve pathology and clinical factors in patients with type 2 diabetes. J Diabetes Investig 2013; 4:492-501. [PMID: 24843700 PMCID: PMC4025101 DOI: 10.1111/jdi.12083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/09/2013] [Accepted: 02/26/2013] [Indexed: 01/19/2023] Open
Abstract
AIMS/INTRODUCTION We compared the morphometric features of corneal epithelial basal cells between patients with type 2 diabetes mellitus and healthy controls, and analyzed the relationship of these features with corneal nerve fiber pathology and clinical factors in the patients. MATERIALS AND METHODS Corneal epithelial basal cells and corneal nerve fibers were visualized by corneal confocal microscopy in 75 patients with type 2 diabetes and 42 age-matched controls. Density, area and area variability of corneal epithelial basal cells, as well as the width of the intercellular space between neighboring cells, were evaluated for both groups. RESULTS Patients showed decreased density (P < 0.02) and area (P < 0.0001), larger area variability (P < 0.0001) and a wider intercellular space (P < 0.0001) compared with controls. Density correlated inversely with area (P < 0.0001), width of intercellular space (P < 0.03) and beading frequency (P < 0.03), whereas it correlated directly with prothrombin time (P < 0.002) and activated partial thromboplastin time (P < 0.03). Area correlated inversely with duration of diabetes (P < 0.05) and coefficient of variation of area (P < 0.01), whereas it correlated directly with beading frequency (P < 0.05). Area variability correlated inversely with area (P < 0.01) and prothrombin time (P < 0.01), whereas it correlated directly with fibrinogen level (P < 0.0001). CONCLUSIONS Type 2 diabetes induces morphometric changes in corneal epithelial basal cells; this seems to be related to the morbid period of diabetes, beading frequency of corneal nerve fibers and blood coagulation state.
Collapse
|