1
|
Bai F, Han L, Yang J, Liu Y, Li X, Wang Y, Jiang R, Zeng Z, Gao Y, Zhang H. Integrated analysis reveals crosstalk between pyroptosis and immune regulation in renal fibrosis. Front Immunol 2024; 15:1247382. [PMID: 38343546 PMCID: PMC10853448 DOI: 10.3389/fimmu.2024.1247382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose The pathogenesis of renal fibrosis (RF) involves intricate interactions between profibrotic processes and immune responses. This study aimed to explore the potential involvement of the pyroptosis signaling pathway in immune microenvironment regulation within the context of RF. Through comprehensive bioinformatics analysis and experimental validation, we investigated the influence of pyroptosis on the immune landscape in RF. Methods We obtained RNA-seq datasets from Gene Expression Omnibus (GEO) databases and identified Pyroptosis-Associated Regulators (PARs) through literature reviews. Systematic evaluation of alterations in 27 PARs was performed in RF and normal kidney samples, followed by relevant functional analyses. Unsupervised cluster analysis revealed distinct pyroptosis modification patterns. Using single-sample gene set enrichment analysis (ssGSEA), we examined the correlation between pyroptosis and immune infiltration. Hub regulators were identified via weighted gene coexpression network analysis (WGCNA) and further validated in a single-cell RNA-seq dataset. We also established a unilateral ureteral obstruction-induced RF mouse model to verify the expression of key regulators at the mRNA and protein levels. Results Our comprehensive analysis revealed altered expression of 19 PARs in RF samples compared to normal samples. Five hub regulators, namely PYCARD, CASP1, AIM2, NOD2, and CASP9, exhibited potential as biomarkers for RF. Based on these regulators, a classifier capable of distinguishing normal samples from RF samples was developed. Furthermore, we identified correlations between immune features and PARs expression, with PYCARD positively associated with regulatory T cells abundance in fibrotic tissues. Unsupervised clustering of RF samples yielded two distinct subtypes (Subtype A and Subtype B), with Subtype B characterized by active immune responses against RF. Subsequent WGCNA analysis identified PYCARD, CASP1, and NOD2 as hub PARs in the pyroptosis modification patterns. Single-cell level validation confirmed PYCARD expression in myofibroblasts, implicating its significance in the stress response of myofibroblasts to injury. In vivo experimental validation further demonstrated elevated PYCARD expression in RF, accompanied by infiltration of Foxp3+ regulatory T cells. Conclusions Our findings suggest that pyroptosis plays a pivotal role in orchestrating the immune microenvironment of RF. This study provides valuable insights into the pathogenesis of RF and highlights potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Fengxia Bai
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Longchao Han
- Department of Gastrointestinal Oncology, Affiliated Xingtai People's Hospital of Hebei Medical University, Xingtai, China
| | - Jifeng Yang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Yuxiu Liu
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Xiangmeng Li
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Yaqin Wang
- Department of Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruijian Jiang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Zhaomu Zeng
- Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Yan Gao
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| | - Haisong Zhang
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
2
|
Sarakpi T, Mesic A, Speer T. Leukocyte-endothelial interaction in CKD. Clin Kidney J 2023; 16:1845-1860. [PMID: 37915921 PMCID: PMC10616504 DOI: 10.1093/ckj/sfad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic kidney disease (CKD) represents an independent risk factor for cardiovascular diseases (CVD). Accordingly, CKD patients show a substantial increased risk of cardiovascular mortality. Inflammation represents an important link between CKD and CVD. The interaction between endothelial cells and effector cells of the innate immune system plays a central role in the development and progression of inflammation. Vascular injury causes endothelial dysfunction, leading to augmented oxidative stress, increased expression of leukocyte adhesion molecules and chronic inflammation. CKD induces numerous metabolic changes, creating a uremic milieu resulting in the accumulation of various uremic toxins. These toxins lead to vascular injury, endothelial dysfunction and activation of the innate immune system. Recent studies describe CKD-dependent changes in monocytes that promote endothelial dysfunction and thus CKD progression and CKD-associated CVD. The NLR family pyrin domain containing 3-interleukin-1β-interleukin-6 (NLRP3-IL-1β-IL-6) signaling pathway plays a pivotal role in the development and progression of CVD and CKD alike. Several clinical trials are investigating targeted inhibition of this pathway indicating that anti-inflammatory therapeutic strategies may emerge as novel approaches in patients at high cardiovascular risk and nonresolving inflammation. CKD patients in particular would benefit from targeted anti-inflammatory therapy, since conventional therapeutic regimens have limited efficacy in this population.
Collapse
Affiliation(s)
- Tamim Sarakpi
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Armir Mesic
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thimoteus Speer
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Abdel-Wahab BA, El-Shoura EAM, Shafiuddin Habeeb M, Zafaar D. Febuxostat alleviates Arsenic Trioxide-Induced renal injury in Rats: Insights on the crosstalk between NLRP3/TLR4, Sirt-1/NF-κB/TGF-β signaling Pathways, and miR-23b-3p, miR-181a-5b expression. Biochem Pharmacol 2023; 216:115794. [PMID: 37689273 DOI: 10.1016/j.bcp.2023.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Febuxostat (FBX), a xanthine oxidase inhibitor, is known to improve renal function and can show promise as a therapeutic agent for preventing drug-induced nephrotoxicity. This study aimed to explore the protective effect of FBX in preventing renal damage caused by arsenic trioxide (ATO) toxicity and uncover the underlying mechanisms. The researchers examined how FBX (10 mg/kg, orally) affected ATO-induced kidney injury (5 mg/kg, intraperitoneally) in rats. Kidney function and toxicity parameters in serum and oxidative stress biomarkers and inflammatory cytokine levels in renal tissue were measured. H&E staining was used to detect histopathological changes in the kidney. Network the molecular mechanisms of FBX in improving kidney injury were investigated using Western blotting and PCR techniques. The findings showed that FBX improved kidney function by inhibiting the pathological changes seen in H&E staining, decreasing levels of probed kidney function and toxicity measures in serum and tissue, and exhibiting antioxidant and anti-inflammatory effects. FBX decreased MDA, MPO, TNF-α, IL-1β, IL-6, COX-II, and NADPH oxidase levels, while increased GSH, GPx, SOD, and IL-10 levels. FBX also reduced the expression of NLRP3, ASC, TLR4, and micro-RNA 181a-5b while increased the expression of IKBα, Sirt-1, and micro-RNA 23b-3p, according to Western blotting and PCR results. In conclusion, FBX can play a vital role in reducing kidney injury in cases of ATO-induced nephrotoxicity, though more clinical research needs to be conducted.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran P.O. Box 1988, Saudi Arabia.
| | - Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University of Technology, and Information, Cairo, Egypt.
| |
Collapse
|
4
|
Fang L, Ohashi K, Hayakawa S, Ogawa H, Otaka N, Kawanishi H, Takikawa T, Ozaki Y, Takahara K, Tatsumi M, Takefuji M, Shimizu Y, Bando YK, Fujishima Y, Maeda N, Shimomura I, Murohara T, Ouchi N. Adipolin protects against renal injury via PPARα-dependent reduction of inflammasome activation. iScience 2023; 26:106591. [PMID: 37250342 PMCID: PMC10214396 DOI: 10.1016/j.isci.2023.106591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 04/04/2023] [Indexed: 05/31/2023] Open
Abstract
Although chronic kidney disease (CKD) is a major health problem worldwide, its underlining mechanism is incompletely understood. We previously identified adipolin as an adipokine which provides benefits for cardiometabolic diseases. Here, we investigated the role of adipolin in the development of CKD. Adipolin-deficiency exacerbated urinary albumin excretion, tubulointerstitial fibrosis and oxidative stress of remnant kidneys in mice after subtotal nephrectomy through inflammasome activation. Adipolin positively regulated the production of ketone body, β-hydroxybutyrate (BHB) and expression of a catalytic enzyme producing BHB, HMGCS2 in the remnant kidney. Treatment of proximal tubular cells with adipolin attenuated inflammasome activation through the PPARα/HMGCS2-dependent pathway. Furthermore, systemic administration of adipolin to wild-type mice with subtotal nephrectomy ameliorated renal injury, and these protective effects of adipolin were diminished in PPARα-deficient mice. Thus, adipolin protects against renal injury by reducing renal inflammasome activation through its ability to induce HMGCS2-dependent ketone body production via PPARα activation.
Collapse
Affiliation(s)
- Lixin Fang
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Ohashi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Hayakawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hayato Ogawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoya Otaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kawanishi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonobu Takikawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Ozaki
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiko Takahara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Minako Tatsumi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuko K. Bando
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuya Fujishima
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norikazu Maeda
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Wu ZH, Chiu CH, Chen CC, Chyau CC, Cheng CH. Amelioration of Cyclosporine A-Induced Acute Nephrotoxicity by Cordyceps cicadae Mycelia via Mg +2 Reabsorption and the Inhibition of GRP78-IRE1-CHOP Pathway: In Vivo and In Vitro. Int J Mol Sci 2023; 24:ijms24010772. [PMID: 36614214 PMCID: PMC9820889 DOI: 10.3390/ijms24010772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Fruiting bodies of Cordyceps cicadae (CC) have been reported to have a therapeutic effect in chronic kidney disease. Due to the rare and expensive resources from natural habitats, artificially cultivated mycelia using submerged liquid cultivation of CC (CCM) have been recently developed as an alternative to scarce sources of CC. However, little is known regarding potential protective effects of CCM against cyclosporine A (CsA)-induced acute nephrotoxicity in vivo and in vitro. In this study, male Sprague-Dawley rats were divided into six groups: control, CCM (40 mg and 400 mg/kg, orally), CsA (10 mg/kg, oral gavage), and CsA + CCM (40 mg and 400 mg/kg, orally). At the end of the study on day 8, all rats were sacrificed, and the blood and kidneys retrieved. CsA-induced acute nephrotoxicity was evident by increased levels of blood urea nitrogen (BUN). Levels of the endoplasmic reticulum (ER) resident chaperone glucose regulated protein 78 (GRP 78) were increased significantly in rats with acute nephrotoxicity. BUN and GRP 78 were significantly ameliorated in synchronous oral groups of CCM (40 or 400 mg/kg) plus CsA. Examination of hematoxylin and eosin stained kidney tissues revealed that the combined treatment of CCM slightly improved vacuolization in renal tubules upon CsA-induced damage. CsA-induced down-regulation of protein expression of magnesium ion channel proteins and transient receptor potential melastatin 6 and 7 were abolished by the combined treatment of CCM. CCM has the potential to protect the kidney against CsA-induced nephrotoxicity by reducing magnesium ion wasting, tubular cell damage, and ER stress demonstrated further by human renal proximal tubular epithelial cell line HK-2. Our results contribute to the in-depth understanding of the role of polysaccharides and nucleobases as the main secondary metabolites of CCM in the defense system of renal functions in CsA-induced acute nephrotoxicity.
Collapse
Affiliation(s)
- Zong-Han Wu
- Research Institute of Biotechnology, Hungkuang University, Taichung 43302, Taiwan
| | - Chun-Hung Chiu
- Research Institute of Biotechnology, Hungkuang University, Taichung 43302, Taiwan
- Department of Program in Animal Healthcare, Hungkuang University, Shalu District, Taichung 43302, Taiwan
| | - Chin-Chu Chen
- Grape King Biotechnology Center, Longtan District, Taoyuan 325002, Taiwan
| | - Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, Taichung 43302, Taiwan
- Correspondence: (C.-C.C.); (C.-H.C.); Tel.: +886-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Chi-Hung Cheng
- Research Institute of Biotechnology, Hungkuang University, Taichung 43302, Taiwan
- Department of Nephrology, Catholic Mercy Hospital, Hukou Township 303032, Taiwan
- Correspondence: (C.-C.C.); (C.-H.C.); Tel.: +886-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| |
Collapse
|
6
|
Sobrano Fais R, Menezes da Costa R, Carvalho Mendes A, Mestriner F, Comerma‐Steffensen SG, Tostes RC, Simonsen U, Silva Carneiro F. NLRP3 activation contributes to endothelin-1-induced erectile dysfunction. J Cell Mol Med 2022; 27:1-14. [PMID: 36515571 PMCID: PMC9806301 DOI: 10.1111/jcmm.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 12/15/2022] Open
Abstract
In the present study, we hypothesized that endothelin (ET) receptors (ETA and ETB ) stimulation, through increased calcium and ROS formation, leads to Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3 (NLRP3) activation. Intracavernosal pressure (ICP/MAP) was measured in C57BL/6 (WT) mice. Functional and immunoblotting assays were performed in corpora cavernosa (CC) strips from WT, NLRP3-/- and caspase-/- mice in the presence of ET-1 (100 nM) and vehicle, MCC950, tiron, BAPTA AM, BQ123, or BQ788. ET-1 reduced the ICP/MAP in WT mice, and MCC950 prevented the ET-1 effect. ET-1 decreased CC ACh-, sodium nitroprusside (SNP)-induced relaxation, and increased caspase-1 expression. BQ123 an ETA receptor antagonist reversed the effect. The ETB receptor antagonist BQ788 also reversed ET-1 inhibition of ACh and SNP relaxation. Additionally, tiron, BAPTA AM, and NLRP3 genetic deletion prevented the ET-1-induced loss of ACh and SNP relaxation. Moreover, BQ123 diminished CC caspase-1 expression, while BQ788 increased caspase-1 and IL-1β levels in a concentration-dependent manner (100 nM-10 μM). Furthermore, tiron and BAPTA AM prevented ET-1-induced increase in caspase-1. In addition, BAPTA AM blocked ET-1-induced ROS generation. In conclusion, ET-1-induced erectile dysfunction depends on ETA - and ETB -mediated activation of NLRP3 in mouse CC via Ca2+ -dependent ROS generation.
Collapse
Affiliation(s)
- Rafael Sobrano Fais
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil,Division of Pulmonary, Critical Care, and Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | | | - Allan Carvalho Mendes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Fabíola Mestriner
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | | | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular PharmacologyAarhus UniversityAarhusDenmark
| | - Fernando Silva Carneiro
- Department of Pharmacology, Ribeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoBrazil
| |
Collapse
|
7
|
Baatarjav C, Komada T, Karasawa T, Yamada N, Sampilvanjil A, Matsumura T, Takahashi M. dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury. Cell Death Differ 2022; 29:2487-2502. [PMID: 35739254 PMCID: PMC9750976 DOI: 10.1038/s41418-022-01033-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/31/2023] Open
Abstract
Rhabdomyolysis is a severe condition that commonly leads to acute kidney injury (AKI). While double-stranded DNA (dsDNA) released from injured muscle can be involved in its pathogenesis, the exact mechanism of how dsDNA contributes to rhabdomyolysis-induced AKI (RIAKI) remains obscure. A dsDNA sensor, absent in melanoma 2 (AIM2), forms an inflammasome and induces gasdermin D (GSDMD) cleavage resulting in inflammatory cell death known as pyroptosis. In this study using a mouse model of RIAKI, we found that Aim2-deficiency led to massive macrophage accumulation resulting in delayed functional recovery and perpetuating fibrosis in the kidney. While Aim2-deficiency compromised RIAKI-induced kidney macrophage pyroptosis, it unexpectedly accelerated aberrant inflammation as demonstrated by CXCR3+CD206+ macrophage accumulation and activation of TBK1-IRF3/NF-κB. Kidney macrophages with intact AIM2 underwent swift pyroptosis without IL-1β release in response to dsDNA. On the other hand, dsDNA-induced Aim2-deficient macrophages escaped from swift pyroptotic elimination and instead engaged STING-TBK1-IRF3/NF-κB signalling, leading to aggravated inflammatory phenotypes. Collectively, these findings shed light on a hitherto unknown immunoregulatory function of macrophage pyroptosis. dsDNA-induced rapid macrophage cell death potentially serves as an anti-inflammatory program and determines the healing process of RIAKI.
Collapse
Affiliation(s)
- Chintogtokh Baatarjav
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Naoya Yamada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Ariunaa Sampilvanjil
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
8
|
Sung CC, Poll BG, Lin SH, Murillo-de-Ozores AR, Chou CL, Chen L, Yang CR, Chen MH, Hsu YJ, Knepper MA. Early Molecular Events Mediating Loss of Aquaporin-2 during Ureteral Obstruction in Rats. J Am Soc Nephrol 2022; 33:2040-2058. [PMID: 35918145 PMCID: PMC9678028 DOI: 10.1681/asn.2022050601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ureteral obstruction is marked by disappearance of the vasopressin-dependent water channel aquaporin-2 (AQP2) in the renal collecting duct and polyuria upon reversal. Most studies of unilateral ureteral obstruction (UUO) models have examined late time points, obscuring the early signals that trigger loss of AQP2. METHODS We performed RNA-Seq on microdissected rat cortical collecting ducts (CCDs) to identify early signaling pathways after establishment of UUO. RESULTS Vasopressin V2 receptor (AVPR2) mRNA was decreased 3 hours after UUO, identifying one cause of AQP2 loss. Collecting duct principal cell differentiation markers were lost, including many not regulated by vasopressin. Immediate early genes in CCDs were widely induced 3 hours after UUO, including Myc, Atf3, and Fos (confirmed at the protein level). Simultaneously, expression of NF-κB signaling response genes known to repress Aqp2 increased. RNA-Seq for CCDs at an even earlier time point (30 minutes) showed widespread mRNA loss, indicating a "stunned" profile. Immunocytochemical labeling of markers of mRNA-degrading P-bodies DDX6 and 4E-T indicated an increase in P-body formation within 30 minutes. CONCLUSIONS Immediately after establishment of UUO, collecting ducts manifest a stunned state with broad disappearance of mRNAs. Within 3 hours, there is upregulation of immediate early and inflammatory genes and disappearance of the V2 vasopressin receptor, resulting in loss of AQP2 (confirmed by lipopolysaccharide administration). The inflammatory response seen rapidly after UUO establishment may be relevant to both UUO-induced polyuria and long-term development of fibrosis in UUO kidneys.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Brian G. Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Adrian R. Murillo-de-Ozores
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Min-Hsiu Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat Rev Nephrol 2022; 18:762-778. [PMID: 36064794 DOI: 10.1038/s41581-022-00621-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/08/2022]
Abstract
Mortality among patients with chronic kidney disease (CKD) is largely a consequence of cardiovascular disease (CVD) and is a particular concern given the increasing prevalence of CKD. Sterile inflammation triggered by activation of the innate immune system is an important driver of both CKD and associated CVD. Several endogenous mediators, including lipoproteins, crystals such as silica, urate and cholesterol crystals, or compounds released from dying cells interact with pattern recognition receptors expressed on a variety of different cell types, leading to the release of pro-inflammatory cytokines. Disturbed regulation of the haematopoietic system by damage-associated molecular patterns, or as a consequence of clonal haematopoiesis or trained innate immunity, also contributes to the development of inflammation. In observational and genetic association studies, inflammation is linked to the progression of CKD and cardiovascular events. In 2017, the CANTOS trial of canakinumab provided evidence that inhibiting inflammation driven by NLRP3-IL-1-IL-6-mediated signalling significantly reduced cardiovascular event rates in individuals with and without CKD. Other approaches to target innate immune pathways are now under investigation for their ability to reduce cardiovascular events and slow disease progression among patients with atherosclerosis and stage 3 and 4 CKD. This Review summarizes current understanding of the role of inflammation in the pathogenesis of CKD and its associated CVD, and how this knowledge may translate into novel therapeutics.
Collapse
|
10
|
Erythropoietin prevented the decreased expression of aquaporin1-3 in ureteral obstructive kidneys in juvenile rats. Pediatr Res 2022; 93:1258-1266. [PMID: 35986150 DOI: 10.1038/s41390-022-02224-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Urinary tract obstruction is associated with impaired renal urinary concentration; even after the release of the obstruction, patients still suffer from polyuria. It has been reported that the decreased expression of aquaporins (AQPs) is associated with postobstructive polyuria, and erythropoietin (EPO) can promote the recovery of decreased AQP2 expression induced by bilateral ureteral obstruction. However, whether EPO can promote the recovery of the expression of AQP1-3 after the release of unilateral ureteral obstruction (UUO) has not yet been reported. AIMS To investigate the effects of EPO treatment on the expression of renal AQP1-3 after the release of UUO. METHODS UUO was established in rats by 24-h temporary unilateral obstruction of renal ureters. Three days following EPO treatment, the kidneys were removed to determine the expression levels of AQP1-3, NLRP3, caspase-1, and IL-1β via semiquantitative immunoblotting and immunohistochemistry. RESULTS EPO inhibited the expression of NLRP3, caspase-1, and IL-1β; reduced plasma creatinine and urea; and promoted the recovery of AQP1-3 expression in UUO rats. CONCLUSIONS EPO treatment prevented the decreased expression of renal AQPs and the development of impaired urinary concentration capacity after the release of UUO, which may partially occur by way of anti-inflammasome effects. IMPACT EPO treatment could prevent the decreased expression of renal water transporter proteins AQP1-3 and the development of impaired renal functions, which may be associated with its anti-inflammasome effects. EPO regulated the expression of renal water transporter proteins AQP1-3, which could provide the potential for the treatment of postobstructive polyuresis. EPO treatment could be one of the effective methods by participating in multiple dimensions for patients with obstructive nephropathy.
Collapse
|
11
|
Xu B, Zheng J, Tian X, Yuan F, Liu Z, Zhou Y, Yang Z, Ding X. Protective mechanism of traditional Chinese medicine guizhi fuling pills against carbon tetrachloride-induced kidney damage is through inhibiting oxidative stress, inflammation and regulating the intestinal flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154129. [PMID: 35490491 DOI: 10.1016/j.phymed.2022.154129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chemical or drug-induced kidney damage has been recognized as a critical cause of kidney failure. The oxidative stress, inflammation, and imbalance of intestinal flora caused by carbon tetrachloride (CCl4) play a fundamental role in chronic kidney damage. Guizhi Fuling pills (GZFL) is a traditional formula consisting of five traditional Chinese medicinal herbs, which can promote blood circulation and improve kidney function. The underlying mechanisms of GZFL improving kidney damage are not fully understood yet. AIM The current study aimed to explore the effects of GZFL on CCl4-induced kidney damage and intestinal microbiota in mice. METHODS Male ICR mice were intraperitoneally administered with 20% CCl4 (mixed in a ratio of 1:4 in soybean oil) twice a week, for 4 weeks to induce kidney damage. Creatinine (CRE), urea nitrogen, antioxidant enzymes, and inflammatory cytokines were measured and the histology of the kidney, jejunum, and colon examination to assess kidney and intestinal damage. The expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) family members, nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome in kidney tissues, and the tight junction proteins in colonic tissues were detected by Western blot. The gut microbiota was analyzed through 16S rRNA gene sequencing. RESULTS GZFL treatment decreased the serum CRE and urea nitrogen levels. Moreover, GZFL reduced the levels of pro-inflammatory cytokines and increased antioxidant enzyme activities in kidney and colonic tissues. GZFL improved the kidney, jejunum, and colon histology. Furthermore, GZFL inhibited the expressions of NLRP3, ASC, and cleaved-Caspase-1, while Nrf2, HO-1, NQO1, GCLM, and tight junction proteins were increased. The dysbiosis of intestinal microbiota improved after GZFL treatment. CONCLUSIONS This study showed that GZFL could improve kidney damage, which might be mainly via the integrated regulations of the Nrf2 pathway, NLRP3 inflammasome, and composition of intestinal microbiota.
Collapse
Affiliation(s)
- Baogui Xu
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Jiawen Zheng
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Xiaoxiao Tian
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Falei Yuan
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Zhongliang Liu
- Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan 316000, China
| | - Yafeng Zhou
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China
| | - Zuisu Yang
- School of Food and Pharmacy, Zhejiang Ocean University; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Zhoushan 316022, China.
| | - Xianjun Ding
- Zhoushan Hospital of Traditional Chinese Medicine, Zhoushan 316000, China.
| |
Collapse
|
12
|
Zhang D, Ji P, Sun R, Zhou H, Huang L, Kong L, Li W, Li W. Ginsenoside Rg1 attenuates LPS-induced chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice. Biomed Pharmacother 2022; 150:112936. [PMID: 35421784 DOI: 10.1016/j.biopha.2022.112936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic renal injury (CRI) is a common pathological damage in chronic renal disease, and the therapeutic options for preventing its progression are limited at present. Ginsenoside Rg1 (Rg1) is reported to have a protective effect on renal injury by improving oxidative stress and inflammation. Lipopolysaccharide (LPS) plays important roles in inducing inflammatory and high-dose LPS is often used to perform acute renal injury. However, little is known about the effect of low-dose LPS on CRI, and the protective effect of Rg1 against chronic LPS-induced CRI. Here, we reported the protective effect and mechanism of Rg1 against LPS-induced CRI in mice. In this study, the results demonstrated that low-dose LPS (0.25 mg/kg) exposure for 14 days significantly induced renal function impairment and renal injury and fibrosis. Meanwhile, LPS exposure significantly increased reactive oxygen species (ROS) generation, NADPH oxidase 4 (NOX4) and NLRP3 inflammasome expression in renal cortex. However, treatment with Rg1, tempol (a superoxide dismutase mimetic), and apocynin (a NOX inhibitor) significantly improved renal function impairment and renal fibrosis, and significantly decreased the levels of TGF-β, IL-1β, KIM-1, β-Gal, and collagen IV in the kidneys. And Rg1 treatment also significantly reduced ROS generation and inhibited the activation of NOX4 and NLRP3 inflammasome. Overall, these results suggest that Rg1 treatment can ameliorate LPS-induced chronic kidney injury and renal fibrosis, the mechanisms may be involved in reducing NOX2-mediated oxidative stress and inhibiting NLRP1 inflammasome.
Collapse
Affiliation(s)
- Duoduo Zhang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Pengmin Ji
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Ran Sun
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huimin Zhou
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Lei Huang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Liangliang Kong
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing 246052, Anhui, China.
| | - Weizu Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Hefei 230032, Anhui, China; Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
13
|
Karasawa T, Komada T, Yamada N, Aizawa E, Mizushina Y, Watanabe S, Baatarjav C, Matsumura T, Takahashi M. Cryo-sensitive aggregation triggers NLRP3 inflammasome assembly in cryopyrin-associated periodic syndrome. eLife 2022; 11:75166. [PMID: 35616535 PMCID: PMC9177154 DOI: 10.7554/elife.75166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory syndrome caused by mutations of NLRP3 gene encoding cryopyrin. Familial cold autoinflammatory syndrome (FCAS), the mildest form of CAPS, is characterized by cold-induced inflammation induced by the overproduction of IL-1β. However, the molecular mechanism of how mutated NLRP3 causes inflammasome activation in CAPS remains unclear. Here, we found that CAPS-associated NLRP3 mutants form cryo-sensitive aggregates that function as a scaffold for inflammasome activation. Cold exposure promoted inflammasome assembly and subsequent IL-1β release triggered by mutated NLRP3. While K+ efflux was dispensable, Ca2+ was necessary for mutated NLRP3-mediated inflammasome assembly. Notably, Ca2+ influx was induced during mutated NLRP3-mediated inflammasome assembly. Furthermore, caspase-1 inhibition prevented Ca2+ influx and inflammasome assembly induced by the mutated NLRP3, suggesting a feed-forward Ca2+ influx loop triggered by mutated NLRP3. Thus, the mutated NLRP3 forms cryo-sensitive aggregates to promote inflammasome assembly distinct from canonical NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
| | - Takanori Komada
- Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
| | - Naoya Yamada
- Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
| | - Emi Aizawa
- Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
| | - Yoshiko Mizushina
- Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
| | - Sachiko Watanabe
- Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
| | | | - Takayoshi Matsumura
- Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
14
|
Aranda-Rivera AK, Srivastava A, Cruz-Gregorio A, Pedraza-Chaverri J, Mulay SR, Scholze A. Involvement of Inflammasome Components in Kidney Disease. Antioxidants (Basel) 2022; 11:246. [PMID: 35204131 PMCID: PMC8868482 DOI: 10.3390/antiox11020246] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023] Open
Abstract
Inflammasomes are multiprotein complexes with an important role in the innate immune response. Canonical activation of inflammasomes results in caspase-1 activation and maturation of cytokines interleukin-1β and -18. These cytokines can elicit their effects through receptor activation, both locally within a certain tissue and systemically. Animal models of kidney diseases have shown inflammasome involvement in inflammation, pyroptosis and fibrosis. In particular, the inflammasome component nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) and related canonical mechanisms have been investigated. However, it has become increasingly clear that other inflammasome components are also of importance in kidney disease. Moreover, it is becoming obvious that the range of molecular interaction partners of inflammasome components in kidney diseases is wide. This review provides insights into these current areas of research, with special emphasis on the interaction of inflammasome components and redox signalling, endoplasmic reticulum stress, and mitochondrial function. We present our findings separately for acute kidney injury and chronic kidney disease. As we strictly divided the results into preclinical and clinical data, this review enables comparison of results from those complementary research specialities. However, it also reveals that knowledge gaps exist, especially in clinical acute kidney injury inflammasome research. Furthermore, patient comorbidities and treatments seem important drivers of inflammasome component alterations in human kidney disease.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Shrikant R. Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; (A.S.); (S.R.M.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, Odense, Denmark, and Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
15
|
Endothelial Dysfunction Accelerates Impairment of Mitochondrial Function in Ageing Kidneys via Inflammasome Activation. Int J Mol Sci 2021; 22:ijms22179269. [PMID: 34502177 PMCID: PMC8430754 DOI: 10.3390/ijms22179269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Chronic kidney disease is a common problem in the elderly and is associated with increased mortality. We have reported on the role of nitric oxide, which is generated from endothelial nitric oxide synthase (eNOS), in the progression of aged kidneys. To elucidate the role of endothelial dysfunction and the lack of an eNOS-NO pathway in ageing kidneys, we conducted experiments using eNOS and ASC-deficient mice. C57B/6 J mice (wild type (WT)), eNOS knockout (eNOS KO), and ASC knockout (ASC KO) mice were used in the present study. Then, eNOS/ASC double-knockout (eNOS/ASC DKO) mice were generated by crossing eNOS KO and ASC KO mice. These mice were sacrificed at 17-19 months old. The Masson positive area and the KIM-1 positive area tended to increase in eNOS KO mice, compared with WT mice, but not eNOS/ASC DKO mice. The COX-positive area was significantly reduced in eNOS KO mice, compared with WT and eNOS/ASC DKO mice. To determine whether inflammasomes were activated in infiltrating macrophages, the double staining of IL-18 and F4/80 was performed. IL-18 and F4/80 were found to be co-localised in the tubulointerstitial areas. Inflammasomes play a pivotal role in inflammaging in ageing kidneys. Furthermore, inflammasome activation may accelerate cellular senescence via mitochondrial dysfunction. The importance of endothelial function as a regulatory mechanism suggests that protection of endothelial function may be a potential therapeutic target.
Collapse
|
16
|
Liu Q, Kong Y, Guo X, Liang B, Xie H, Hu S, Han M, Zhao X, Feng P, Lyu Q, Dong W, Liang X, Wang W, Li C. GSK-3β inhibitor TDZD-8 prevents reduction of aquaporin-1 expression via activating autophagy under renal ischemia reperfusion injury. FASEB J 2021; 35:e21809. [PMID: 34314052 DOI: 10.1096/fj.202100549r] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 11/11/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is a main cause of acute kidney injury (AKI). Aquaporin (AQP)-1 water channel in the kidney is critical for the maintenance of water homeostasis and the urinary concentrating ability. Increasing evidence supports an important role of autophagy in the pathogenesis of AKI induced by renal I/R. The purpose of the present study is to investigate whether activation of autophagy prevents downregulation of AQP1 protein induced by renal I/R and potential molecular mechanisms. Renal I/R induced consistently reduced protein expression of AQP1, 2, and 3, as well as sodium cotransporters Na+ -K+ -2Cl- cotransporter and α-Na,K-ATPase, which was associated with increased urine output and decreased creatinine clearance in rats. Renal I/R also suppressed autophagy and increased inflammatory responses in the kidney. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), the glycogen synthase kinase-3β inhibitor, ameliorated renal injury under I/R, activated autophagy and markedly increased expression of AQPs and sodium transporters in the kidney, which was associated with improved urine output and creatinine clearance in rats. Hypoxia/reoxygenation (H/R) induced suppression of autophagy and downregulation of AQP1 in murine inner medullary collecting duct 3 (IMCD3) cells, which was fully prevented by TDZD-8 treatment. Inhibition of autophagy by 3-methyladenine or Atg5 gene knockdown attenuated recovery of AQP1 protein expression induced by TDZD-8 in IMCD3 cells with H/R. Interleukin-1 beta (IL-1β) decreased the abundance of AQP1 protein in IMCD3 cells. H/R induced increases in protein expression of nod-like receptor pyrin domain-containing 3 and IL-1β, which was reversed by TDZD-8. In conclusion, TDZD-8 treatment prevented downregulation of AQP1 expression under renal I/R injury, likely via activating autophagy and decreasing IL-1β production.
Collapse
Affiliation(s)
- Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baien Liang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Dong
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Han M, Li S, Xie H, Liu Q, Wang A, Hu S, Zhao X, Kong Y, Wang W, Li C. Activation of TGR5 restores AQP2 expression via the HIF pathway in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2021; 320:F308-F321. [PMID: 33427060 DOI: 10.1152/ajprenal.00577.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) injury is associated with markedly reduced protein expression of aquaporins (AQPs). Membrane G protein-coupled bile acid receptor-1 (TGR5) has shown protective roles in some kidney diseases. The purpose of the current study was to investigate whether activation of TGR5 prevented the decreased protein expression of AQPs in rodents with renal I/R injury and potential mechanisms. TGR5 agonist lithocholic acid (LCA) treatment reduced polyuria after renal I/R injury in rats. LCA prevented the decreased abundance of AQP2 protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression, which were associated with decreased protein abundance of NF-κB p65 and IL-1β. After renal I/R, mice with tgr5 gene deficiency exhibited further decreases in AQP2 and HIF-1α protein abundance and increases of IL-1β and NF-κB p65 protein expression compared with wild-type mice. In primary cultured inner medullary collecting duct cells with hypoxia/reoxygenation, LCA induced markedly increased protein expression of AQP2 and HIF-1α, which were partially prevented by the PKA inhibitor H89. FG4592, a prolyl-4-hydroxylase domain-containing protein inhibitor, increased HIF-1α and AQP2 protein abundance in association with decreased NF-κB p65 protein expression in inner medullary collecting duct cells with hypoxia/reoxygenation. In conclusion, TGR5 stimulation by LCA prevented downregulation of renal AQPs in kidney with I/R injury, likely through activating HIF-1α signaling and suppressing inflammatory responses.NEW & NOTEWORTHY Stimulation of the membrane G protein-coupled bile acid receptor TGR5 by lithocholic acid (LCA) reduced polyuria in rats with renal ischemia-reperfusion (I/R) injury. LCA increased abundance of aquaporin-2 (AQP2) protein and upregulated hypoxia-inducible factor (HIF)-1α protein expression in association with decreased NF-κB p65 and IL-1β. After I/R, mice with tgr5 gene deficiency exhibited more severe decreases in AQP2 and HIF-1α protein abundance and inflammatory responses. TGR5 activation exhibits a protective role in acute renal injury induced by I/R.
Collapse
Affiliation(s)
- Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haixia Xie
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ani Wang
- Cardiovascular Center, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoduo Zhao
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Nephrology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Wyczanska M, Lange-Sperandio B. DAMPs in Unilateral Ureteral Obstruction. Front Immunol 2020; 11:581300. [PMID: 33117389 PMCID: PMC7575708 DOI: 10.3389/fimmu.2020.581300] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
Damage-associated molecular patterns (DAMPs) are released from tubular and interstitial cells in the kidney after unilateral ureteral obstruction (UUO). DAMPs are recognized by pattern recognition receptors (PRRs), which mediate the initiation of an immune response and the release of inflammatory cytokines. The animal model of UUO is used for various purposes. UUO in adult mice serves as a model for accelerated renal fibrosis, which is a hallmark of progressive renal disease. UUO in adult mice enables to study cell death, inflammation, and extracellular matrix deposition in the kidney. Neonatal UUO is a model for congenital obstructive nephropathies. It studies inflammation, apoptosis, and interstitial fibrosis in the neonatal kidney, when nephrogenesis is still ongoing. Following UUO, several DAMPs as well as DAMP receptors are upregulated. In adult UUO, soluble uric acid is upregulated and activates the NOD-like receptor family, pyrin domain containing-3 (NLRP3) inflammasome, which promotes fibrosis, apoptosis, and reactive oxygen species (ROS) injury. Further DAMPs associated with UUO are uromodulin, members of the IL-1 family, and necrotic cell DNA, all of which promote sterile inflammation. In neonatal UUO, the receptor for advanced glycation endproducts (RAGE) is highly upregulated. RAGE is a ligand for several DAMPs, including high mobility group box 1 (HMGB1) and S100 proteins, which play an important role in renal fibrosis. Additionally, necroptosis is an important mechanism of cell death, besides apoptosis, in neonatal UUO. It is highly inflammatory due to release of cytokines and specific DAMPs. The release and recognition of DAMPs initiate sterile inflammation, which makes them good candidates to develop and improve diagnostic and therapeutic strategies in renal fibrosis and congenital obstructive nephropathies.
Collapse
Affiliation(s)
- Maja Wyczanska
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
19
|
Ito H, Kimura H, Karasawa T, Hisata S, Sadatomo A, Inoue Y, Yamada N, Aizawa E, Hishida E, Kamata R, Komada T, Watanabe S, Kasahara T, Suzuki T, Horie H, Kitayama J, Sata N, Yamaji-Kegan K, Takahashi M. NLRP3 Inflammasome Activation in Lung Vascular Endothelial Cells Contributes to Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2020; 205:1393-1405. [PMID: 32727891 DOI: 10.4049/jimmunol.2000217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a life-threatening complication that leads to inflammation and remote organ damage. The NLRP3 inflammasome regulates the caspase-1-dependent release of IL-1β, an early mediator of inflammation after I/R injury. In this study, we investigated the role of the NLRP3 inflammasome in mice with intestinal I/R injury. Deficiency of NLRP3, ASC, caspase-1/11, or IL-1β prolonged survival after intestinal I/R injury, but neither NLRP3 nor caspase-1/11 deficiency affected intestinal inflammation. Intestinal I/R injury caused acute lung injury (ALI) characterized by inflammation, reactive oxygen species generation, and vascular permeability, which was markedly improved by NLRP3 deficiency. Bone marrow chimeric experiments showed that NLRP3 in non-bone marrow-derived cells was the main contributor to development of intestinal I/R-induced ALI. The NLRP3 inflammasome in lung vascular endothelial cells is thought to be important to lung vascular permeability. Using mass spectrometry, we identified intestinal I/R-derived lipid mediators that enhanced NLRP3 inflammasome activation in lung vascular endothelial cells. Finally, we confirmed that serum levels of these lipid mediators were elevated in patients with intestinal ischemia. To our knowledge, these findings provide new insights into the mechanism underlying intestinal I/R-induced ALI and suggest that endothelial NLRP3 inflammasome-driven IL-1β is a novel potential target for treating and preventing this disorder.
Collapse
Affiliation(s)
- Homare Ito
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan.,Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shu Hisata
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Ai Sadatomo
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan.,Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoshiyuki Inoue
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan.,Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Naoya Yamada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Emi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Erika Hishida
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takuji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Hisanaga Horie
- Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan;
| |
Collapse
|
20
|
Huang H, Jin WW, Huang M, Ji H, Capen DE, Xia Y, Yuan J, Păunescu TG, Lu HAJ. Gentamicin-Induced Acute Kidney Injury in an Animal Model Involves Programmed Necrosis of the Collecting Duct. J Am Soc Nephrol 2020; 31:2097-2115. [PMID: 32641397 DOI: 10.1681/asn.2019020204] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Gentamicin is a potent aminoglycoside antibiotic that targets gram-negative bacteria, but nephrotoxicity limits its clinical application. The cause of gentamicin-induced AKI has been attributed mainly to apoptosis of the proximal tubule cells. However, blocking apoptosis only partially attenuates gentamicin-induced AKI in animals. METHODS Mice treated with gentamicin for 7 days developed AKI, and programmed cell death pathways were examined using pharmacologic inhibitors and in RIPK3-deficient mice. Effects in porcine and murine kidney cell lines were also examined. RESULTS Gentamicin caused a low level of apoptosis in the proximal tubules and significant ultrastructural alterations consistent with necroptosis, occurring predominantly in the collecting ducts (CDs), including cell and organelle swelling and rupture of the cell membrane. Upregulation of the key necroptotic signaling molecules, mixed lineage kinase domain-like pseudokinase (MLKL) and receptor-interacting serine/threonine-protein kinase 3 (RIPK3), was detected in gentamicin-treated mice and in cultured renal tubule cells. In addition, gentamicin induced apical accumulation of total and phosphorylated MLKL (pMLKL) in CDs in mouse kidney. Inhibiting a necroptotic protein, RIPK1, with necrostatin-1 (Nec-1), attenuated gentamicin-induced necrosis and upregulation of MLKL and RIPK3 in mice and cultured cells. Nec-1 also alleviated kidney inflammation and fibrosis, and significantly improved gentamicin-induced renal dysfunction in mice. Furthermore, deletion of RIPK3 in the Ripk3 -/- mice significantly attenuated gentamicin-induced AKI. CONCLUSIONS A previously unrecognized role of programmed necrosis in collecting ducts in gentamicin-induced kidney injury presents a potential new therapeutic strategy to alleviate gentamicin-induced AKI through inhibiting necroptosis.
Collapse
Affiliation(s)
- Huihui Huang
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - William W Jin
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Ming Huang
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Heyu Ji
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Diane E Capen
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Yin Xia
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Teodor G Păunescu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Hua A Jenny Lu
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts .,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Shen X, Dong X, Han Y, Li Y, Ding S, Zhang H, Sun Z, Yin Y, Li W, Li W. Ginsenoside Rg1 ameliorates glomerular fibrosis during kidney aging by inhibiting NOX4 and NLRP3 inflammasome activation in SAMP8 mice. Int Immunopharmacol 2020; 82:106339. [PMID: 32114413 DOI: 10.1016/j.intimp.2020.106339] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
Abstract
Aging is closely related to the progress of renal fibrosis, which eventually results in renal dysfunction. Ginsenoside Rg1 (Rg1) has been reported to have an extensive anti-aging effect. However, the role and mechanism of Rg1 in aging-related renal fibrosis remain unclear. The present study aimed to evaluate the protective effect and mechanism of Rg1 in renal fibrosis during kidney aging in a model of SAMP8 mice. Taking SAMR1 mice as the control group, SAMP8 mice were administered Apocynin (50 mg/kg), Tempol (50 mg/kg), or Rg1 (5, 10 mg/kg) intragastrically for 9 weeks as treatment groups. The results showed that the elevated levels of blood urea nitrogen, serum creatinine and senescence-associated β-galactosidase (β-Gal) were markedly decreased, the glomerular mesangial proliferation was significantly alleviated and the increased levels of collagen IV and TGF-β1 were significantly downregulated by Rg1 in SAMP8 mice. In addition, the generation of ROS and the expression of NADHP oxidase 4 (NOX4) in the renal cortex were significantly reduced by Rg1 treatment. The expression levels of NLRP3 inflammasome-related proteins and the inflammation-related cytokine IL-1β were also inhibited by Rg1 treatment in the SAMP8 mice. These results suggested that Rg1 could delay kidney aging and inhibit aging-related glomerular fibrosis by reducing NOX4-derived ROS generation and downregulating NLRP3 inflammasome expression.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Xianan Dong
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yuli Han
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yan Li
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Shixin Ding
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Han Zhang
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Zhenghao Sun
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yanyan Yin
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China
| | - Weiping Li
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing 246052, Anhui, China.
| | - Weizu Li
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
22
|
Abstract
Inflammasomes are multiprotein innate immune complexes that regulate caspase-dependent inflammation and cell death. Pattern recognition receptors, such as nucleotide-binding oligomerization domain (NOD)-like receptors and absent in melanoma 2 (AIM2)-like receptors, sense danger signals or cellular events to activate canonical inflammasomes, resulting in caspase 1 activation, pyroptosis and the secretion of IL-1β and IL-18. Non-canonical inflammasomes can be activated by intracellular lipopolysaccharides, toxins and some cell signalling pathways. These inflammasomes regulate the activation of alternative caspases (caspase 4, caspase 5, caspase 11 and caspase 8) that lead to pyroptosis, apoptosis and the regulation of other cellular pathways. Many inflammasome-related genes and proteins have been implicated in animal models of kidney disease. In particular, the NLRP3 (NOD-, LRR- and pyrin domain-containing 3) inflammasome has been shown to contribute to a wide range of acute and chronic microbial and non-microbial kidney diseases via canonical and non-canonical mechanisms that regulate inflammation, pyroptosis, apoptosis and fibrosis. In patients with chronic kidney disease, immunomodulation therapies targeting IL-1β such as canakinumab have been shown to prevent cardiovascular events. Moreover, findings in experimental models of kidney disease suggest that small-molecule inhibitors targeting NLRP3 and other inflammasome components are promising therapeutic agents.
Collapse
Affiliation(s)
- Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Daniel A Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
23
|
Fais RS, Rodrigues FL, Pereira CA, Mendes AC, Mestriner F, Tostes RC, Carneiro FS. The inflammasome NLRP3 plays a dual role on mouse corpora cavernosa relaxation. Sci Rep 2019; 9:16224. [PMID: 31700106 PMCID: PMC6838322 DOI: 10.1038/s41598-019-52831-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
NLRP3 plays a role in vascular diseases. Corpora cavernosa (CC) is an extension of the vasculature. We hypothesize that NLRP3 plays a deleterious role in CC relaxation. Male C57BL/6 (WT) and NLRP3 deficient (NLRP3−/−) mice were used. Intracavernosal pressure (ICP/MAP) measurement was performed. Functional responses were obtained from CC strips of WT and NLRP3−/− mice before and after MCC950 (NLRP3 inhibitor) or LPS + ATP (NLRP3 stimulation). NLRP3, caspase-1, IL-1β, eNOS, nNOS, guanylyl cyclase-β1 (GCβ1) and PKG1 protein expressions were determined. ICP/MAP and sodium nitroprusside (SNP)-induced relaxation in CC were decreased in NLRP3−/− mice. Caspase-1, IL-1β and eNOS activity were increased, but PKG1 was reduced in CC of NLRP3−/−. MCC950 decreased non-adrenergic non-cholinergic (NANC), acetylcholine (ACh), and SNP-induced relaxation in WT mice. MCC950 did not alter NLRP3, caspase-1 and IL-1β, but reduced GCβ1 expression. Although LPS + ATP decreased ACh- and SNP-, it increased NANC-induced relaxation in CC from WT, but not from NLRP3−/− mice. LPS + ATP increased NLRP3, caspase-1 and interleukin-1β (IL-1β). Conversely, it reduced eNOS activity and GCβ1 expression. NLRP3 plays a dual role in CC relaxation, with its inhibition leading to impairment of nitric oxide-mediated relaxation, while its activation by LPS + ATP causes decreased CC sensitivity to NO and endothelium-dependent relaxation.
Collapse
Affiliation(s)
- Rafael S Fais
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda L Rodrigues
- Departments of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Camila A Pereira
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Allan C Mendes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabíola Mestriner
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Rita C Tostes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando S Carneiro
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
24
|
Li L, Tang W, Yi F. Role of Inflammasome in Chronic Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:407-421. [DOI: 10.1007/978-981-13-8871-2_19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Crucial Role of NLRP3 Inflammasome in the Development of Peritoneal Dialysis-related Peritoneal Fibrosis. Sci Rep 2019; 9:10363. [PMID: 31316105 PMCID: PMC6637185 DOI: 10.1038/s41598-019-46504-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Long-term peritoneal dialysis (PD) therapy leads to peritoneal inflammation and fibrosis. However, the mechanism underlying PD-related peritoneal inflammation and fibrosis remains unclear. NLRP3 inflammasome regulates the caspase-1-dependent release of interleukin-1β and mediates inflammation in various diseases. Here, we investigated the role of NLRP3 inflammasome in a murine model of PD-related peritoneal fibrosis induced by methylglyoxal (MGO). Inflammasome-related proteins were upregulated in the peritoneum of MGO-treated mice. MGO induced parietal and visceral peritoneal fibrosis in wild-type mice, which was significantly reduced in mice deficient in NLRP3, ASC, and interleukin-1β (IL-1β). ASC deficiency reduced the expression of inflammatory cytokines and fibrotic factors, and the infiltration of macrophages. However, myeloid cell-specific ASC deficiency failed to inhibit MGO-induced peritoneal fibrosis. MGO caused hemorrhagic ascites, fibrin deposition, and plasminogen activator inhibitor-1 upregulation, but all of these manifestations were inhibited by ASC deficiency. Furthermore, in vitro experiments showed that MGO induced cell death via the generation of reactive oxygen species in vascular endothelial cells, which was inhibited by ASC deficiency. Our results showed that endothelial NLRP3 inflammasome contributes to PD-related peritoneal inflammation and fibrosis, and provide new insights into the mechanisms underlying the pathogenesis of this disorder.
Collapse
|
26
|
Ishikawa Y, Fedeles S, Marlier A, Zhang C, Gallagher AR, Lee AH, Somlo S. Spliced XBP1 Rescues Renal Interstitial Inflammation Due to Loss of Sec63 in Collecting Ducts. J Am Soc Nephrol 2019; 30:443-459. [PMID: 30745418 PMCID: PMC6405156 DOI: 10.1681/asn.2018060614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND SEC63 encodes a resident protein in the endoplasmic reticulum membrane that, when mutated, causes human autosomal dominant polycystic liver disease. Selective inactivation of Sec63 in all distal nephron segments in embryonic mouse kidney results in polycystin-1-mediated polycystic kidney disease (PKD). It also activates the Ire1α-Xbp1 branch of the unfolded protein response, producing Xbp1s, the active transcription factor promoting expression of specific genes to alleviate endoplasmic reticulum stress. Simultaneous inactivation of Xbp1 and Sec63 worsens PKD in this model. METHODS We explored the renal effects of postnatal inactivation of Sec63 alone or with concomitant inactivation of Xbp1 or Ire1α, specifically in the collecting ducts of neonatal mice. RESULTS The later onset of inactivation of Sec63 restricted to the collecting duct does not result in overt activation of the Ire1α-Xbp1 pathway or cause polycystin-1-dependent PKD. Inactivating Sec63 along with either Xbp1 or Ire1α in this model causes interstitial inflammation and associated fibrosis with decline in kidney function over several months. Re-expression of XBP1s in vivo completely rescues the chronic kidney injury observed after inactivation of Sec63 with either Xbp1 or Ire1α. CONCLUSIONS In the absence of Sec63, basal levels of Xbp1s activity in collecting ducts is both necessary and sufficient to maintain proteostasis (protein homeostasis) and protect against inflammation, myofibroblast activation, and kidney functional decline. The Sec63-Xbp1 double knockout mouse offers a novel genetic model of chronic tubulointerstitial kidney injury, using collecting duct proteostasis defects as a platform for discovery of signals that may underlie CKD of disparate etiologies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ann-Hwee Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Stefan Somlo
- Departments of Internal Medicine and
- Genetics, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
27
|
Sogawa Y, Nagasu H, Itano S, Kidokoro K, Taniguchi S, Takahashi M, Kadoya H, Satoh M, Sasaki T, Kashihara N. The eNOS-NO pathway attenuates kidney dysfunction via suppression of inflammasome activation in aldosterone-induced renal injury model mice. PLoS One 2018; 13:e0203823. [PMID: 30281670 PMCID: PMC6169882 DOI: 10.1371/journal.pone.0203823] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/28/2018] [Indexed: 12/22/2022] Open
Abstract
Hypertension causes vascular complications, such as stroke, cardiovascular disease, and chronic kidney disease (CKD). The relationship between endothelial dysfunction and progression of kidney disease is well known. However, the relationship between the eNOS-NO pathway and chronic inflammation, which is a common pathway for the progression of kidney disease, remains unexplored. We performed in vivo experiments to determine the role of the eNOS-NO pathway by using eNOS-deficient mice in a hypertensive kidney disease model. All mice were unilateral nephrectomized (Nx). One week after Nx, the mice were randomly divided into two groups: the aldosterone infusion groups and the vehicle groups. All mice also received a 1% NaCl solution instead of drinking water. The aldosterone infusion groups were treated with hydralazine to correct blood pressure differences. After four weeks of drug administration, all mice were euthanized, and blood and kidney tissue samples were collected. In the results, NLRP3 inflammasome activation was elevated in the kidneys of the eNOS-deficient mice, and tubulointerstitial fibrosis was accelerated. Suppression of inflammasome activation by knocking out ASC prevented tubulointerstitial injury in the eNOS knockout mice, indicating that the eNOS-NO pathway is involved in the development of kidney dysfunction through acceleration of NLRP3 inflammasome in macrophages. We revealed that endothelial function, particularly the eNOS-NO pathway, attenuates the progression of renal tubulointerstitial injury via suppression of inflammasome activation. Clinically, patients who develop vascular endothelial dysfunction have lifestyle diseases, such as hypertension or diabetes, and are known to be at risk for CKD. Our study suggests that the eNOS-NO pathway could be a therapeutic target for the treatment of chronic kidney disease associated with endothelial dysfunction.
Collapse
MESH Headings
- Aldosterone/pharmacology
- Animals
- Antihypertensive Agents/administration & dosage
- Disease Models, Animal
- Endothelium/pathology
- Endothelium/physiopathology
- Fibrosis
- Humans
- Hydralazine/administration & dosage
- Hypertension/complications
- Hypertension/metabolism
- Hypertension, Renal/drug therapy
- Hypertension, Renal/metabolism
- Hypertension, Renal/pathology
- Inflammasomes/drug effects
- Inflammasomes/metabolism
- Kidney/pathology
- Macrophages/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Targeted Therapy
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Primary Cell Culture
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Vasodilator Agents/administration & dosage
Collapse
Affiliation(s)
- Yuji Sogawa
- Department of Nephrology and Hypertension Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension Kawasaki Medical School, Kurashiki, Okayama, Japan
- * E-mail:
| | - Seiji Itano
- Department of Nephrology and Hypertension Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Shun’ichiro Taniguchi
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroyuki Kadoya
- Department of Nephrology and Hypertension Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Minoru Satoh
- Department of Nephrology and Hypertension Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
28
|
Zheng R, Zhu R, Li X, Li X, Shen L, Chen Y, Zhong Y, Deng Y. N6-(2-Hydroxyethyl) Adenosine From Cordyceps cicadae Ameliorates Renal Interstitial Fibrosis and Prevents Inflammation via TGF-β1/Smad and NF-κB Signaling Pathway. Front Physiol 2018; 9:1229. [PMID: 30233405 PMCID: PMC6131671 DOI: 10.3389/fphys.2018.01229] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023] Open
Abstract
Renal interstitial fibrosis is characterized by inflammation and an excessive accumulation of extracellular matrix, which leads to end-stage renal failure. Our previous studies have shown that a natural product from Cordyceps cicadae can ameliorate chronic kidney diseases. N6-(2-Hydroxyethyl) adenosine (HEA), a physiologically active compound in C. cicadae, has been identified as a Ca2+ antagonist and an anti-inflammatory agent in pharmacological tests. However, its role in renal interstitial fibrosis and the underlying mechanism remains unclear. Here, unilateral ureteral obstruction (UUO) was used to induce renal interstitial fibrosis in male C57BL/6 mice. Different doses of HEA (2.5, 5, and 7.5 mg/kg) were given by intraperitoneal injection 24 h before UUO, and the treatment was continued for 14 days post-operatively. Histologic changes were examined by hematoxylin & eosin, Masson’s trichrome, and picrosirius red stain. Quantitative real-time PCR analysis, enzyme-linked immunosorbent assays, immunohistochemistry, and western blot analysis were used to evaluate proteins levels. And the results showed that HEA significantly decreased UUO-induced renal tubular injury and fibrosis. In vivo, HEA apparently decreased UUO-induced inflammation and renal fibroblast activation by suppression of the NF-κB and TGF-β1/Smad signaling pathway. In vitro, HEA also obviously decreased lipopolysaccharide-induced inflammatory cytokine level in RAW 264.7 cells and TGF-β1-induced fibroblast activation in NRK-49F cells by modulating NF-κB and TGF-β1/Smad signaling. In general, our findings indicate that HEA has a beneficial effect on UUO-induced tubulointerstitial fibrosis by suppression of inflammatory and renal fibroblast activation, which may be a potential therapy in chronic conditions such as renal interstitial fibrosis.
Collapse
Affiliation(s)
- Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zhu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyun Li
- Chengjiaqiao Street Community Health Service Center, Shanghai, China
| | - Lianli Shen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Thioredoxin-interacting protein deficiency ameliorates kidney inflammation and fibrosis in mice with unilateral ureteral obstruction. J Transl Med 2018; 98:1211-1224. [PMID: 29884908 DOI: 10.1038/s41374-018-0078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 11/08/2022] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is associated with inflammation, tubulointerstitial fibrosis, and oxidative stress in diabetic kidney disease, yet the potential role of TXNIP in nondiabetic renal injury is not well known. This study aimed to investigate the effect of TXNIP on renal injury by creating a unilateral ureteral obstruction (UUO) model in TXNIP knockout (TKO) mice. We performed sham or UUO surgery in 8-week-old TXNIP KO male mice and age and sex-matched wild-type (WT) mice. Animals were killed at 3, 5, 7, or 14 days after surgery, and renal tissues were obtained for RNA, protein, and other analysis. Our results show that the expression of TXNIP was increased in a time-dependent manner in the ligated kidneys. TXNIP deletion reduced renal fibrosis, apoptosis, α-SMA, TGF-β1 and CTGF expression, and activation of Smad3, p38 MAPK, and ERK1/2 in UUO kidneys. We also found UUO-induced renal F4/80+ macrophage infiltration, MCP-1 expression and activation of NF-κB and NLRP3 inflammasome were attenuated in TKO mice. Furthermore, our study revealed that TXNIP deficiency inhibited the expression of 8-OHdG, heme oxygenase-1 (HO-1) and NADPH oxidase 4 (Nox4) in UUO kidney. In summary, our study suggests that TXNIP plays a key role in the renal inflammation and fibrosis induced by UUO. Inhibition of TXNIP may be a strategy to slow the progression of chronic kidney diseases.
Collapse
|
30
|
Wang F, Liu Q, Jin L, Hu S, Luo R, Han M, Zhai Y, Wang W, Li C. Combination exposure of melamine and cyanuric acid is associated with polyuria and activation of NLRP3 inflammasome in rats. Am J Physiol Renal Physiol 2018; 315:F199-F210. [DOI: 10.1152/ajprenal.00609.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms of melamine-induced renal toxicity have not been fully understood. The purpose of the study aimed to investigate whether melamine and cyanuric acid induced NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation in the kidney, which may contribute to abnormal water and sodium handling in a rat model. Wistar rats received melamine (Mel; 200 mg·kg body wt−1·day−1), cyanuric acid (CA; 200 mg·kg body wt−1·day−1), or Mel plus CA (Mel + CA; 100 mg·kg body wt−1·day−1, each) for 2 wk. Mel + CA caused damaged tubular epithelial structure and organelles, dilated tubular lumen, and inflammatory responses. Crystals were observed in urine and serum specimen, also in the lumen of dilated distal renal tubules. The combined ingestion of Mel and CA in rats caused a markedly impaired urinary concentration, which was associated with reduced protein expression of aquaporin (AQP)1, 2, and 3 in inner medulla and α-Na-K-ATPase and Na-K-2Cl transporters in cortex and outer medulla. Mel + CA treatment was associated with increased protein expression of CD3 and mRNA levels of CD68 and F4/80 as well as phosphorylation of NF-κB in the kidney. Mel + CA treatment increased protein and mRNA expression of NLRP3 inflammasome components apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, and IL-1β in the inner medulla of rats. NF-κB inhibitor Bay 11-7082 reduced IL-1β expression induced by Mel + CA and prevented downregulation of AQP2 in inner medullary collecting duct cell suspensions. In conclusion, Mel + CA treatment caused urinary-concentrating defects and reduced expression of renal AQPs and key sodium transporters, which is likely due to the inflammatory responses and activation of NLRP3 inflammasome induced by crystals formed in the kidney.
Collapse
Affiliation(s)
- Feifei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lizi Jin
- Department of Cardiology, The 5th Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonggong Zhai
- Life Sciences College, Beijing Normal University, Beijing, People’s Republic of China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Komada T, Chung H, Lau A, Platnich JM, Beck PL, Benediktsson H, Duff HJ, Jenne CN, Muruve DA. Macrophage Uptake of Necrotic Cell DNA Activates the AIM2 Inflammasome to Regulate a Proinflammatory Phenotype in CKD. J Am Soc Nephrol 2018; 29:1165-1181. [PMID: 29439156 DOI: 10.1681/asn.2017080863] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/19/2017] [Indexed: 11/03/2022] Open
Abstract
Nonmicrobial inflammation contributes to CKD progression and fibrosis. Absent in melanoma 2 (AIM2) is an inflammasome-forming receptor for double-stranded DNA. AIM2 is expressed in the kidney and activated mainly by macrophages. We investigated the potential pathogenic role of the AIM2 inflammasome in kidney disease. In kidneys from patients with diabetic or nondiabetic CKD, immunofluorescence showed AIM2 expression in glomeruli, tubules, and infiltrating leukocytes. In a mouse model of unilateral ureteral obstruction (UUO), Aim2 deficiency attenuated the renal injury, fibrosis, and inflammation observed in wild-type (WT) littermates. In bone marrow chimera studies, UUO induced substantially more tubular injury and IL-1β cleavage in Aim2-/- or WT mice that received WT bone marrow than in WT mice that received Aim2-/- bone marrow. Intravital microscopy of the kidney in LysM(gfp/gfp) mice 5-6 days after UUO demonstrated the significant recruitment of GFP+ proinflammatory macrophages that crawled along injured tubules, engulfed DNA from necrotic cells, and expressed active caspase-1. DNA uptake occurred in large vacuolar structures within recruited macrophages but not resident CX3CR1+ renal phagocytes. In vitro, macrophages that engulfed necrotic debris showed AIM2-dependent activation of caspase-1 and IL-1β, as well as the formation of AIM2+ ASC specks. ASC specks are a hallmark of inflammasome activation. Cotreatment with DNaseI attenuated the increase in IL-1β levels, confirming that DNA was the principal damage-associated molecular pattern in this process. Therefore, the activation of the AIM2 inflammasome by DNA from necrotic cells drives a proinflammatory phenotype that contributes to chronic injury in the kidney.
Collapse
Affiliation(s)
- Takanori Komada
- Departments of Medicine.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hyunjae Chung
- Departments of Medicine.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Lau
- Departments of Medicine.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jaye M Platnich
- Departments of Medicine.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul L Beck
- Departments of Medicine.,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hallgrimur Benediktsson
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Pathology and Laboratory Medicine
| | | | - Craig N Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.,Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada; and
| | - Daniel A Muruve
- Departments of Medicine, .,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Karasawa T, Kawashima A, Usui-Kawanishi F, Watanabe S, Kimura H, Kamata R, Shirasuna K, Koyama Y, Sato-Tomita A, Matsuzaka T, Tomoda H, Park SY, Shibayama N, Shimano H, Kasahara T, Takahashi M. Saturated Fatty Acids Undergo Intracellular Crystallization and Activate the NLRP3 Inflammasome in Macrophages. Arterioscler Thromb Vasc Biol 2018; 38:744-756. [PMID: 29437575 DOI: 10.1161/atvbaha.117.310581] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Inflammation provoked by the imbalance of fatty acid composition, such as excess saturated fatty acids (SFAs), is implicated in the development of metabolic diseases. Recent investigations suggest the possible role of the NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3) inflammasome, which regulates IL-1β (interleukin 1β) release and leads to inflammation, in this process. Therefore, we investigated the underlying mechanism by which SFAs trigger NLRP3 inflammasome activation. APPROACH AND RESULTS The treatment with SFAs, such as palmitic acid and stearic acid, promoted IL-1β release in murine primary macrophages while treatment with oleic acid inhibited SFA-induced IL-1β release in a dose-dependent manner. Analyses using polarized light microscopy revealed that intracellular crystallization was provoked in SFA-treated macrophages. As well as IL-1β release, the intracellular crystallization and lysosomal dysfunction were inhibited in the presence of oleic acid. These results suggest that SFAs activate NLRP3 inflammasome through intracellular crystallization. Indeed, SFA-derived crystals activated NLRP3 inflammasome and subsequent IL-1β release via lysosomal dysfunction. Excess SFAs also induced crystallization and IL-1β release in vivo. Furthermore, SFA-derived crystals provoked acute inflammation, which was impaired in IL-1β-deficient mice. CONCLUSIONS These findings demonstrate that excess SFAs cause intracellular crystallization and subsequent lysosomal dysfunction, leading to the activation of the NLRP3 inflammasome, and provide novel insights into the pathogenesis of metabolic diseases.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.).
| | - Akira Kawashima
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Fumitake Usui-Kawanishi
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Sachiko Watanabe
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Hiroaki Kimura
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Ryo Kamata
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Koumei Shirasuna
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Yutaro Koyama
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Ayana Sato-Tomita
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Takashi Matsuzaka
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Hiroshi Tomoda
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Sam-Yong Park
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Naoya Shibayama
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Hitoshi Shimano
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Tadashi Kasahara
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.)
| | - Masafumi Takahashi
- From the Division of Inflammation Research, Center for Molecular Medicine (T. Karasawa, A.K., F.U.-K., S.W., H.K., R.K., K.S., Y.K., T. Kasahara, M.T.) and Division of Biophysics, Department of Physiology (A.S.-T., N.S.), Jichi Medical University, Tochigi, Japan; Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, Japan (T.M., H.S.); Graduate School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan (H.T.); and Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan (S.-Y.P.).
| |
Collapse
|
33
|
Abstract
Inflammasomes influence a diverse range of kidney disease, including acute and chronic kidney diseases, and those mediated by innate and adaptive immunity. Both IL-18 and in particular IL-1β are validated therapeutic targets in several kidney diseases. In addition to leukocyte-derived inflammasomes, renal tissue cells express functional inflammasome components. Furthermore, a range of endogenous substances that directly activate inflammasomes also mediate kidney injury. Many of the functional studies have focussed on the NLRP3 inflammasome, and there is also evidence for the involvement of other inflammasomes in some conditions. While, at least in some disease, the mechanistic details of the involvement of the inflammasome remain to be elucidated, therapies focussed on inflammasomes and their products have potential in treating kidney disease in the future.
Collapse
Affiliation(s)
- Holly L Hutton
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia.
- Department of Nephrology, Monash Health, Clayton, VIC, Australia.
- Department of Paediatric Nephrology, Monash Health, Clayton, VIC, Australia.
| |
Collapse
|
34
|
Sadatomo A, Inoue Y, Ito H, Karasawa T, Kimura H, Watanabe S, Mizushina Y, Nakamura J, Kamata R, Kasahara T, Horie H, Sata N, Takahashi M. Interaction of Neutrophils with Macrophages Promotes IL-1β Maturation and Contributes to Hepatic Ischemia–Reperfusion Injury. THE JOURNAL OF IMMUNOLOGY 2017; 199:3306-3315. [DOI: 10.4049/jimmunol.1700717] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Accumulating evidence suggests that IL-1β plays a pivotal role in the pathophysiology of hepatic ischemia–reperfusion (I/R) injury; however, the mechanism by which I/R triggers IL-1β production in the liver remains unclear. Recent data have shown that neutrophils contribute to hepatic I/R injury independently of the inflammasomes regulating IL-1β maturation. Thus, we investigated the role of neutrophils in IL-1β maturation and tissue injury in a murine model of hepatic I/R. IL-1β was released from the I/R liver and its deficiency reduced reactive oxygen species generation, apoptosis, and inflammatory responses, such as inflammatory cell infiltration and cytokine expression, thereby resulting in reduced tissue injury. Depletion of either macrophages or neutrophils also attenuated IL-1β release and hepatic I/R injury. In vitro experiments revealed that neutrophil-derived proteinases process pro–IL-1β derived from macrophages into its mature form independently of caspase-1. Furthermore, pharmacological inhibition of serine proteases attenuated IL-1β release and hepatic I/R injury in vivo. Taken together, the interaction between neutrophils and macrophages promotes IL-1β maturation and causes IL-1β–driven inflammation in the I/R liver. Both neutrophils and macrophages are indispensable in this process. These findings suggest that neutrophil-macrophage interaction is a therapeutic target for hepatic I/R injury and may also provide new insights into the inflammasome-independent mechanism of IL-1β maturation in the liver.
Collapse
Affiliation(s)
- Ai Sadatomo
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
- †Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoshiyuki Inoue
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
- †Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Homare Ito
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
- †Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tadayoshi Karasawa
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Hiroaki Kimura
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Sachiko Watanabe
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Yoshiko Mizushina
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Jun Nakamura
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Ryo Kamata
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Tadashi Kasahara
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Hisanaga Horie
- †Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Naohiro Sata
- †Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masafumi Takahashi
- *Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| |
Collapse
|
35
|
Kawashima A, Karasawa T, Tago K, Kimura H, Kamata R, Usui-Kawanishi F, Watanabe S, Ohta S, Funakoshi-Tago M, Yanagisawa K, Kasahara T, Suzuki K, Takahashi M. ARIH2 Ubiquitinates NLRP3 and Negatively Regulates NLRP3 Inflammasome Activation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 199:3614-3622. [PMID: 29021376 DOI: 10.4049/jimmunol.1700184] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a molecular platform that induces caspase-1 activation and subsequent IL-1β maturation, and is implicated in inflammatory diseases; however, little is known about the negative regulation of NLRP3 inflammasome activation. In this article, we identified an E3 ligase, Ariadne homolog 2 (ARIH2), as a posttranslational negative regulator of NLRP3 inflammasome activity in macrophages. ARIH2 interacted with NLRP3 via its NACHT domain (aa 220-575) in the NLRP3 inflammasome complex. In particular, we found that while using mutants of ARIH2 and ubiquitin, the really interesting new gene 2 domain of ARIH2 was required for NLRP3 ubiquitination linked through K48 and K63. Deletion of endogenous ARIH2 using CRISPR/Cas9 genome editing inhibited NLRP3 ubiquitination and promoted NLRP3 inflammasome activation, resulting in apoptosis-associated speck-like protein containing a caspase recruitment domain oligomerization, pro-IL-1β processing, and IL-1β production. Conversely, ARIH2 overexpression promoted NLRP3 ubiquitination and inhibited NLRP3 inflammasome activation. Our findings reveal a novel mechanism of ubiquitination-dependent negative regulation of the NLRP3 inflammasome by ARIH2 and highlight ARIH2 as a potential therapeutic target for inflammatory diseases.
Collapse
Affiliation(s)
- Akira Kawashima
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan;
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Fumitake Usui-Kawanishi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Satoshi Ohta
- Department of Biochemistry, Jichi Medical University, Tochigi 329-0498, Japan
| | | | - Ken Yanagisawa
- Department of Biochemistry, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan;
| |
Collapse
|
36
|
Xiaoyu H, Si H, Li S, Wang W, Guo J, Li Y, Cao Y, Fu Y, Zhang N. Induction of heme oxygenas-1 attenuates NLRP3 inflammasome activation in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 2017; 52:185-190. [PMID: 28938188 DOI: 10.1016/j.intimp.2017.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
Mastitis is one of most prevalent production disease in dairy herds worldwide, and is responsible for enormous economic losses. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme, which is involved in the response to oxidative stress and inflammatory response. The purpose of this study was to detect the protective effect of HO-1 on LPS-induced mastitis in mice. BALB/c mice were pretreated with hemin (HO-1 inducer) and zinc protoporphyrin (ZnPP; HO-1 inhibitor) at 2h before LPS stimulation. The results showed that the mammary gland damage, production of inflammatory cytokines IL-1β, and MPO activity in mammary gland tissues were significantly reduced after pretreated with hemin compared with the group of LPS stimulation only. However, ZnPP reversed the effects of hemin. Furthermore, we found that the levels of ROS and NLRP3 inflammasome were increased after LPS stimulation. The increases were inhibited by hemin and the inhibition of hemin on ROS production and NLRP3 inflammasome activation were blocked by ZnPP. In addition, the results showed that hemin reduced the expression of thioredoxin-interacting protein (TXNIP) induced by LPS, and ZnPP attenuated these changes. In conclusion, the results suggested that overproduction of HO-1 may inhibit the activation of NLRP3 inflammasome and the expression of TXNIP. Induction of HO-1 may be served as a promising method against mastitis induced by LPS.
Collapse
Affiliation(s)
- Hu Xiaoyu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, Guangxi Province 530005, China
| | - Shumin Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Wenqing Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Jian Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yanyi Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
37
|
Karasawa T, Takahashi M. The crystal-induced activation of NLRP3 inflammasomes in atherosclerosis. Inflamm Regen 2017; 37:18. [PMID: 29259717 PMCID: PMC5725911 DOI: 10.1186/s41232-017-0050-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/13/2017] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis is an inflammatory disease, which is accompanied by the deposition of cholesterol-rich lipids and the infiltration of macrophages. Other well-known features of atherosclerotic lesions include the deposition of cholesterol crystals and calcium phosphate crystals; however, their pathophysiological role remains unclear. Recent studies suggest that cholesterol crystals play a pivotal role in activation of NLRP3 inflammasomes, which regulate caspase-1 activation and the subsequent processing of IL-1β, in atherosclerotic lesions. NLRP3 inflammasomes are essential for the initiation of vascular inflammation during the progression of atherosclerosis. Therefore, the regulatory mechanisms of NLRP3 inflammasomes are regarded as potential targets for atherosclerosis treatment. Here, we review the current knowledge regarding the role of NLRP3 inflammasomes in the progression of atherosclerosis and the prospects for therapeutic approaches targeting NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| |
Collapse
|
38
|
Sogawa Y, Nagasu H, Iwase S, Ihoriya C, Itano S, Uchida A, Kidokoro K, Taniguchi S, Takahashi M, Satoh M, Sasaki T, Suzuki T, Yamamoto M, Horng T, Kashihara N. Infiltration of M1, but not M2, macrophages is impaired after unilateral ureter obstruction in Nrf2-deficient mice. Sci Rep 2017; 7:8801. [PMID: 28821730 PMCID: PMC5562821 DOI: 10.1038/s41598-017-08054-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation can be a major driver of the failure of a variety of organs, including chronic kidney disease (CKD). The NLR family pyrin domain-containing 3 (NLRP3) inflammasome has been shown to play a pivotal role in inflammation in a mouse kidney disease model. Nuclear factor erythroid 2-related factor 2 (Nrf2), the master transcription factor for anti-oxidant responses, has also been implicated in inflammasome activation under physiological conditions. However, the mechanism underlying inflammasome activation in CKD remains elusive. Here, we show that the loss of Nrf2 suppresses fibrosis and inflammation in a unilateral ureter obstruction (UUO) model of CKD in mice. We consistently observed decreased expression of inflammation-related genes NLRP3 and IL-1β in Nrf2-deficient kidneys after UUO. Increased infiltration of M1, but not M2, macrophages appears to mediate the suppression of UUO-induced CKD symptoms. Furthermore, we found that activation of the NLRP3 inflammasome is attenuated in Nrf2-deficient bone marrow–derived macrophages. These results demonstrate that Nrf2-related inflammasome activation can promote CKD symptoms via infiltration of M1 macrophages. Thus, we have identified the Nrf2 pathway as a promising therapeutic target for CKD.
Collapse
Affiliation(s)
- Yuji Sogawa
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Chieko Ihoriya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Seiji Itano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Atsushi Uchida
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Shun'ichiro Taniguchi
- Department of Molecular Oncology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Minoru Satoh
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tiffany Horng
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| |
Collapse
|
39
|
A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β 1 pathways. Sci Rep 2017; 7:1884. [PMID: 28507324 PMCID: PMC5432497 DOI: 10.1038/s41598-017-01702-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023] Open
Abstract
Renal fibrosis is closely related to chronic inflammation and is under the control of epigenetic regulations. Because the signaling of transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) play key roles in progression of renal fibrosis, dual blockade of TGF-β1 and TNF-α is desired as its therapeutic approach. Here we screened small molecules showing anti-TNF-α activity in the compound library of indole derivatives. 11 out of 41 indole derivatives inhibited the TNF-α effect. Among them, Mitochonic Acid 35 (MA-35), 5-(3, 5-dimethoxybenzyloxy)-3-indoleacetic acid, showed the potent effect. The anti-TNF-α activity was mediated by inhibiting IκB kinase phosphorylation, which attenuated the LPS/GaIN-induced hepatic inflammation in the mice. Additionally, MA-35 concurrently showed an anti-TGF-β1 effect by inhibiting Smad3 phosphorylation, resulting in the downregulation of TGF-β1-induced fibrotic gene expression. In unilateral ureter obstructed mouse kidney, which is a renal fibrosis model, MA-35 attenuated renal inflammation and fibrosis with the downregulation of inflammatory cytokines and fibrotic gene expressions. Furthermore, MA-35 inhibited TGF-β1-induced H3K4me1 histone modification of the fibrotic gene promoter, leading to a decrease in the fibrotic gene expression. MA-35 affects multiple signaling pathways involved in the fibrosis and may recover epigenetic modification; therefore, it could possibly be a novel therapeutic drug for fibrosis.
Collapse
|
40
|
Kobayashi M, Usui-Kawanishi F, Karasawa T, Kimura H, Watanabe S, Mise N, Kayama F, Kasahara T, Hasebe N, Takahashi M. The cardiac glycoside ouabain activates NLRP3 inflammasomes and promotes cardiac inflammation and dysfunction. PLoS One 2017; 12:e0176676. [PMID: 28493895 PMCID: PMC5426608 DOI: 10.1371/journal.pone.0176676] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/14/2017] [Indexed: 12/17/2022] Open
Abstract
Cardiac glycosides such as digoxin are Na+/K+-ATPase inhibitors that are widely used for the treatment of chronic heart failure and cardiac arrhythmias; however, recent epidemiological studies have suggested a relationship between digoxin treatment and increased mortality. We previously showed that nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes, which regulate caspase-1-dependent interleukin (IL)-1β release, mediate the sterile cardiovascular inflammation. Because the Na+/K+–ATPase is involved in inflammatory responses, we investigated the role of NLRP3 inflammasomes in the pathophysiology of cardiac glycoside-induced cardiac inflammation and dysfunction. The cardiac glycoside ouabain induced cardiac dysfunction and injury in wild-type mice primed with a low dose of lipopolysaccharide (LPS), although no cardiac dysfunction was observed in mice treated with either ouabain or LPS alone. Ouabain also induced cardiac inflammatory responses, such as macrophage infiltration and IL-1β release, when mice were primed with LPS. These cardiac manifestations were all significantly attenuated in mice deficient in IL-1β. Furthermore, deficiency of NLRP3 inflammasome components, NLRP3 and caspase-1, also attenuated ouabain-induced cardiac dysfunction and inflammation. In vitro experiments revealed that ouabain induced NLRP3 inflammasome activation as well as subsequent IL-1β release from macrophages, and this activation was mediated by K+ efflux. Our findings demonstrate that cardiac glycosides promote cardiac inflammation and dysfunction through NLRP3 inflammasomes and provide new insights into the mechanisms underlying the adverse effects of cardiac glycosides.
Collapse
Affiliation(s)
- Motoi Kobayashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Fumitake Usui-Kawanishi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, Tochigi, Japan
| | - Fujio Kayama
- Department of Environmental and Preventive Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoyuki Hasebe
- Department of Medicine, Division of Cardiovascular, Respiratory and Neurology, Asahikawa Medical University, Hokkaido, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- * E-mail:
| |
Collapse
|
41
|
Fujiu K, Shibata M, Nakayama Y, Ogata F, Matsumoto S, Noshita K, Iwami S, Nakae S, Komuro I, Nagai R, Manabe I. A heart-brain-kidney network controls adaptation to cardiac stress through tissue macrophage activation. Nat Med 2017; 23:611-622. [PMID: 28394333 DOI: 10.1038/nm.4326] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
Heart failure is a complex clinical syndrome characterized by insufficient cardiac function. In addition to abnormalities intrinsic to the heart, dysfunction of other organs and dysregulation of systemic factors greatly affect the development and consequences of heart failure. Here we show that the heart and kidneys function cooperatively in generating an adaptive response to cardiac pressure overload. In mice subjected to pressure overload in the heart, sympathetic nerve activation led to activation of renal collecting-duct (CD) epithelial cells. Cell-cell interactions among activated CD cells, tissue macrophages and endothelial cells within the kidney led to secretion of the cytokine CSF2, which in turn stimulated cardiac-resident Ly6Clo macrophages, which are essential for the myocardial adaptive response to pressure overload. The renal response to cardiac pressure overload was disrupted by renal sympathetic denervation, adrenergic β2-receptor blockade or CD-cell-specific deficiency of the transcription factor KLF5. Moreover, we identified amphiregulin as an essential cardioprotective mediator produced by cardiac Ly6Clo macrophages. Our results demonstrate a dynamic interplay between the heart, brain and kidneys that is necessary for adaptation to cardiac stress, and they highlight the homeostatic functions of tissue macrophages and the sympathetic nervous system.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan.,Translational Systems Biology and Medicine Initiative, University of Tokyo, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency (JST), Research Division Gobancho Building, Tokyo, Japan
| | - Munehiko Shibata
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Yukiteru Nakayama
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Fusa Ogata
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Sahohime Matsumoto
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | - Koji Noshita
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Shingo Iwami
- PRESTO, Japan Science and Technology Agency (JST), Research Division Gobancho Building, Tokyo, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,CREST, Japan Science and Technology Agency, Research Division Gobancho Building, Tokyo, Japan
| | - Susumu Nakae
- PRESTO, Japan Science and Technology Agency (JST), Research Division Gobancho Building, Tokyo, Japan.,Laboratory of Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, University of Tokyo, Tokyo, Japan
| | | | - Ichiro Manabe
- Department of Disease Biology and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
42
|
Abstract
Inflammation with macrophage infiltration is a key feature of atherosclerosis. Although the mechanisms had been unclear, emerging evidence unveiled that NLRP3 inflammasomes, which regulate caspase-1 activation and subsequent processing of pro-IL-1β, trigger vascular wall inflammatory responses and lead to progression of atherosclerosis. NLRP3 inflammasomes are activated by various danger signals, such as cholesterol crystals, calcium phosphate crystals, and oxidized low-density lipoprotein in macrophages, to initiate inflammatory responses in the atherosclerotic lesion. Recent studies have further clarified the regulatory mechanisms and the potential therapeutic agents that target NLRP3 inflammasomes. In this study, we reviewed the present state of knowledge on the role of NLRP3 inflammasomes in the pathogenesis of atherosclerosis and discussed the therapeutic approaches that target NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
43
|
Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. Oncotarget 2017; 7:17479-91. [PMID: 27014913 PMCID: PMC4951227 DOI: 10.18632/oncotarget.8243] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Aldosterone (Aldo) is an independent risk factor for chronic kidney disease (CKD), and although Aldo directly induces renal tubular cell injury, the underlying mechanisms remain unclear. NLRP3 inflammasome and mitochondrial reactive oxygen species (ROS) have recently been implicated in various kinds of CKD. The present study hypothesized that mitochondrial ROS and NLRP3 inflammasome mediated Aldo–induced tubular cell injury. The NLRP3 inflammasome is induced by Aldo in a dose- and time-dependent manner, as evidenced by increased NLRP3, ASC, caspase-1, and downstream cytokines, such as interleukin (IL)-1β and IL-18. The activation of the NLRP3 inflammasome was significantly prevented by the selective mineralocorticoid receptor (MR) antagonist eplerenone (EPL) (P < 0.01). Mice harboring genetic knock-out of NLRP3 (NLRP3−/−) showed decreased maturation of renal IL-1β and IL-18, reduced renal tubular apoptosis, and improved renal epithelial cell phenotypic alternation, and attenuated renal function in response to Aldo-infusion. In addition, mitochondrial ROS was also increased in Aldo-stimulated HK-2 cells, as assessed by MitoSOXTM red reagent. Mito-Tempo, the mitochondria-targeted antioxidant, significantly decreased HK-2 cell apoptosis, oxidative stress, and the activation of NLRP3 inflammasome. We conclude that Aldo induces renal tubular cell injury via MR dependent, mitochondrial ROS-mediated NLRP3 inflammasome activation.
Collapse
|
44
|
Kimura H, Karasawa T, Usui F, Kawashima A, Endo Y, Kobayashi M, Sadatomo A, Nakamura J, Iwasaki Y, Yada T, Tsutsui H, Kasahara T, Takahashi M. Caspase-1 deficiency promotes high-fat diet-induced adipose tissue inflammation and the development of obesity. Am J Physiol Endocrinol Metab 2016; 311:E881-E890. [PMID: 27702746 DOI: 10.1152/ajpendo.00174.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/07/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
Caspase-1 is a cysteine protease responsible for the processing of the proinflammatory cytokine interleukin-1β and activated by the formation of inflammasome complexes. Although several investigations have found a link between diet-induced obesity and caspase-1, the relationship remains controversial. Here, we found that mice deficient in caspase-1 were susceptible to high-fat diet-induced obesity with increased adiposity as well as normal lipid and glucose metabolism. Caspase-1 deficiency clearly promoted the infiltration of inflammatory macrophages and increased the production of C-C motif chemokine ligand 2 (CCL2) in the adipose tissue. The dominant cellular source of CCL2 was stromal vascular fraction rather than adipocytes in the adipose tissue. These findings demonstrate a critical role of caspase-1 in macrophage-driven inflammation in the adipose tissue and the development of obesity. These data provide novel insights into the mechanisms underlying inflammation in the pathophysiology of obesity.
Collapse
Affiliation(s)
- Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan;
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Fumitake Usui
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Akira Kawashima
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yuka Endo
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Motoi Kobayashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Ai Sadatomo
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Jun Nakamura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yusaku Iwasaki
- Division of Integrative Physiology, Jichi Medical University, Tochigi, Japan; and
| | - Toshihiko Yada
- Division of Integrative Physiology, Jichi Medical University, Tochigi, Japan; and
| | - Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
45
|
Danggui Buxue Tang Attenuates Tubulointerstitial Fibrosis via Suppressing NLRP3 Inflammasome in a Rat Model of Unilateral Ureteral Obstruction. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9368483. [PMID: 27872860 PMCID: PMC5107862 DOI: 10.1155/2016/9368483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/22/2016] [Accepted: 04/17/2016] [Indexed: 12/27/2022]
Abstract
Inflammation significantly contributes to the progression of chronic kidney disease (CKD). This study aimed to characterize Danggui Buxue Tang (DBT) renoprotection and relationship with NOD-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome expression in rats with unilateral ureteral obstruction (UUO). Sprague-Dawley rats were subjected to UUO and randomly assigned to untreated UUO, enalapril-treated (10 mg/kg/day), and DBT-treated (9 g/kg/day) groups. Sham-operated rats served as controls, with 8 rats in each group. All rats were sacrificed for blood and renal specimen collection at 14 days after UUO. Untreated UUO rats exhibited azotemia, intense tubulointerstitial collagen deposition, upregulations of tubulointerstitial injury index, augmentation levels of collagen I (Col I), α-smooth muscle actin (α-SMA), NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, caspase-1, IL-1β, and pro-IL-1β. DBT treatment significantly attenuated interstitial collagen deposition and tubulointerstitial injury, lowering Col I and α-SMA levels. Synchronous expressions of NLRP3, ASC, pro-caspase-1, caspase-1, pro-IL-1β, and IL-1β decreased in renal tissue. In comparison to enalapril, DBT significantly reduced tubulointerstitial injury, interstitial collagen deposition, and expressions of Col I and IL-1β. Thus, DBT offers renoprotection in UUO rats, which was associated with suppressing NLRP3 inflammasome expression and following reduction of the secretion of cytokine IL-1β. The mechanisms of multitargets of traditional Chinese medicine can be better used for antifibrotic treatment.
Collapse
|
46
|
Luo R, Kakizoe Y, Wang F, Fan X, Hu S, Yang T, Wang W, Li C. Deficiency of mPGES-1 exacerbates renal fibrosis and inflammation in mice with unilateral ureteral obstruction. Am J Physiol Renal Physiol 2016; 312:F121-F133. [PMID: 27784694 DOI: 10.1152/ajprenal.00231.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022] Open
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme that converts prostaglandin H2 to prostaglandin E2 (PGE2), plays an important role in a variety of inflammatory diseases. We investigated the contribution of mPGES-1 to renal fibrosis and inflammation in unilateral ureteral obstruction (UUO) for 7 days using wild-type (WT) and mPGES-1 knockout (KO) mice. UUO induced increased mRNA and protein expression of mPGES-1 and cyclooxygenase-2 in WT mice. UUO was associated with increased renal PGE2 content and upregulated PGE2 receptor (EP) 4 expression in obstructed kidneys of both WT and mPGES-1 KO mice; EP4 expression levels were higher in KO mice with UUO than those in WT mice. Protein expression of NLRP3 inflammasome components ASC and interleukin-1β was significantly increased in obstructed kidneys of KO mice compared with that in WT mice. mRNA expression levels of fibronectin, collagen III, and transforming growth factor-β1 (TGF-β1) were significantly higher in obstructed kidneys of KO mice than that in WT mice. In KO mice, protein expression of fibronectin and collagen III was markedly increased in obstructed kidneys compared with WT mice, which was associated with increased phosphorylation of protein kinase B (AKT). EP4 agonist CAY10598 attenuated increased expression of collagen I and fibronectin induced by TGF-β1 in inner medullary collecting duct 3 cells. Moreover, CAY10598 prevented the activation of NLRP3 inflammasomes induced by angiotensin II in human proximal tubule cells (HK2). In conclusion, these findings suggested that mPGES-1 exerts a potentially protective effect against renal fibrosis and inflammation induced by UUO in mice.
Collapse
Affiliation(s)
- Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yutaka Kakizoe
- Department of Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Feifei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Fan
- Neurosurgery Department, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China;
| |
Collapse
|
47
|
Menzies RI, Tam FW, Unwin RJ, Bailey MA. Purinergic signaling in kidney disease. Kidney Int 2016; 91:315-323. [PMID: 27780585 DOI: 10.1016/j.kint.2016.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 02/04/2023]
Abstract
Nucleotides are key subunits for nucleic acids and provide energy for intracellular metabolism. They can also be released from cells to act physiologically as extracellular messengers or pathologically as danger signals. Extracellular nucleotides stimulate membrane receptors in the P2 and P1 family. P2X are ATP-activated cation channels; P2Y and P1 are G-protein coupled receptors activated by ATP, ADP, UTP, and UDP in the case of P2 or adenosine for P1. Renal P2 receptors influence both vascular contractility and tubular function. Renal cells also express ectonucleotidases that rapidly hydrolyze extracellular nucleotides. These enzymes integrate this multireceptor purinergic-signaling complex by determining the nucleotide milieu to titrate receptor activation. Purinergic signaling also regulates immune cell function by modulating the synthesis and release of various cytokines such as IL1-β and IL-18 as part of inflammasome activation. Abnormal or excessive stimulation of this intricate paracrine system can be pro- or anti-inflammatory, and is also linked to necrosis and apoptosis. Kidney tissue injury causes a localized increase in ATP concentration, and sustained activation of P2 receptors can lead to renal glomerular, tubular, and vascular cell damage. Purinergic receptors also regulate the activity and proliferation of fibroblasts, promoting both inflammation and fibrosis in chronic disease. In this short review we summarize some of the recent findings related to purinergic signaling in the kidney. We focus predominantly on the P2X7 receptor, discussing why antagonists have so far disappointed in clinical trials and how advances in our understanding of purinergic signaling might help to reposition these compounds as potential treatments for renal disease.
Collapse
Affiliation(s)
- Robert I Menzies
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Frederick W Tam
- Imperial College Renal and Transplant Centre, Department of Medicine, Imperial College London, UK
| | - Robert J Unwin
- Cardiovascular and Metabolic Diseases Biotech Unit, AstraZeneca Gothenburg, Sweden; UCL Centre for Nephrology, University College London, London, UK.
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
48
|
Abstract
Kidney injury implies danger signaling and a response by the immune system. The inflammasome is a central danger recognition platform that triggers local and systemic inflammation. In immune cells, inflammasome activation causes the release of mature IL-1β and of the alarmin IL-1α Dying cells release IL-1α also, independently of the inflammasome. Both IL-1α and IL-1β ligate the same IL-1 receptor (IL-1R) that is present on nearly all cells inside and outside the kidney, further amplifying cytokine and chemokine release. Thus, the inflammasome-IL-1α/IL-β-IL-1R system is a central element of kidney inflammation and the systemic consequences. Seminal discoveries of recent years have expanded this central paradigm of inflammation. This review gives an overview of arising concepts of inflammasome and IL-1α/β regulation in renal cells and in experimental kidney disease models. There is a pipeline of compounds that can interfere with the inflammasome-IL-1α/IL-β-IL-1R system, ranging from recently described small molecule inhibitors of NLRP3, a component of the inflammasome complex, to regulatory agency-approved IL-1-neutralizing biologic drugs. Based on strong theoretic and experimental rationale, the potential therapeutic benefits of using such compounds to block the inflammasome-IL-1α/IL-β-IL-1R system in kidney disease should be further explored.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians Universität, Munich, Germany
| |
Collapse
|
49
|
Shirasuna K, Karasawa T, Usui F, Kobayashi M, Komada T, Kimura H, Kawashima A, Ohkuchi A, Taniguchi S, Takahashi M. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy. Endocrinology 2015; 156:4281-92. [PMID: 26360504 DOI: 10.1210/en.2015-1408] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Preeclampsia is a pregnancy-specific syndrome characterized by elevated blood pressure, proteinuria, and intrauterine growth restriction (IUGR). Although sterile inflammation appears to be involved, its pathogenesis remains unclear. Recent evidence indicates that sterile inflammation is mediated through the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes, composed of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1. Here we investigated the role of the NLRP3 inflammasomes in the pathogenesis of preeclampsia using Nlrp3(-/-) and Asc(-/-) (Nlrp3 and Asc deficient) pregnant mice. During pregnancy in mice, continuous infusion of high-dose angiotensin II (AngII) induced hypertension, proteinuria, and IUGR, whereas infusion of low-dose AngII caused hypertension alone. AngII-induced hypertension was prevented in Nlrp3(-/-) mice but not in Asc(-/-), indicating that NLRP3 contributes to gestational hypertension independently of ASC-mediated inflammasomes. Although NLRP3 deficiency had no effect on IUGR, it restored the IL-6 up-regulation in the placenta and kidney of AngII-infused mice. Furthermore, treatment with hydralazine prevented the development of gestational hypertension but not IUGR or IL-6 expression in the placenta and kidney. These findings demonstrate that NLRP3 contributes to the development of gestational hypertension independently of the inflammasomes and that IUGR and kidney injury can occur independent of blood pressure elevation during pregnancy.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Fumitake Usui
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Motoi Kobayashi
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Tadanori Komada
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Akira Kawashima
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Akihide Ohkuchi
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Shun'ichiro Taniguchi
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research (K.S., T.Ka., F.U., M.K., T.Ko., H.K., A.K., M.T.), Center for Molecular Medicine, Department of Obstetrics and Gynecology (A.O.), Jichi Medical University, Tochigi 329-0498, Japan; Department of Animal Science (K.S.), Tokyo University of Agriculture, Kanagawa 243-0034, Japan; and Department of Molecular Oncology (S.T.), Shinshu University Graduate School of Medicine, Nagano 390-8621, Japan
| |
Collapse
|
50
|
Immunoproteasome subunit LMP7 Deficiency Improves Obesity and Metabolic Disorders. Sci Rep 2015; 5:15883. [PMID: 26515636 PMCID: PMC4626825 DOI: 10.1038/srep15883] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/05/2015] [Indexed: 11/08/2022] Open
Abstract
Inflammation plays an important role in the development of obesity and metabolic disorders; however, it has not been fully understood how inflammation occurs and is regulated in their pathogenesis. Low-molecular mass protein-7 (LMP7) is a proteolytic subunit of the immunoproteasome that shapes the repertoire of antigenic peptides on major histocompatibility complex class I molecule. In this study, we investigated the role of LMP7 in the development of obesity and metabolic disorders using LMP7-deficient mice. LMP7 deficiency conveyed resistant to obesity, and improved glucose intolerance and insulin sensitivity in mice fed with high-fat diet (HFD). LMP7 deficiency decreased pancreatic lipase expression, increased fecal lipid contents, and inhibited the increase of plasma triglyceride levels upon oral oil administration or HFD feeding. Using bone marrow-transferred chimeric mice, we found that LMP7 in both bone marrow- and non-bone marrow-derived cells contributes to the development of HFD-induced obesity. LMP7 deficiency decreased inflammatory responses such as macrophage infiltration and chemokine expression while it increased serum adiponection levels. These findings demonstrate a novel role for LMP7 and provide new insights into the mechanisms underlying inflammation in the pathophysiology of obesity and metabolic disorders.
Collapse
|