1
|
Vermelho AB, Moreira JV, Akamine IT, Cardoso VS, Mansoldo FRP. Agricultural Pest Management: The Role of Microorganisms in Biopesticides and Soil Bioremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2762. [PMID: 39409632 PMCID: PMC11479090 DOI: 10.3390/plants13192762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Pesticide use in crops is a severe problem in some countries. Each country has its legislation for use, but they differ in the degree of tolerance for these broadly toxic products. Several synthetic pesticides can cause air, soil, and water pollution, contaminating the human food chain and other living beings. In addition, some of them can accumulate in the environment for an indeterminate amount of time. The agriculture sector must guarantee healthy food with sustainable production using environmentally friendly methods. In this context, biological biopesticides from microbes and plants are a growing green solution for this segment. Several pests attack crops worldwide, including weeds, insects, nematodes, and microorganisms such as fungi, bacteria, and viruses, causing diseases and economic losses. The use of bioproducts from microorganisms, such as microbial biopesticides (MBPs) or microorganisms alone, is a practice and is growing due to the intense research in the world. Mainly, bacteria, fungi, and baculoviruses have been used as sources of biomolecules and secondary metabolites for biopesticide use. Different methods, such as direct soil application, spraying techniques with microorganisms, endotherapy, and seed treatment, are used. Adjuvants like surfactants, protective agents, and carriers improve the system in different formulations. In addition, microorganisms are a tool for the bioremediation of pesticides in the environment. This review summarizes these topics, focusing on the biopesticides of microbial origin.
Collapse
Affiliation(s)
- Alane Beatriz Vermelho
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
- Center of Excellence in Fertilizers and Plant Nutrition (Cefenp), SEDEICS, Rio de Janeiro 21941-850, RJ, Brazil
| | - Jean Vinícius Moreira
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Ingrid Teixeira Akamine
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Veronica S. Cardoso
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| | - Felipe R. P. Mansoldo
- Bioinovar Laboratory, General Microbiology Department, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (J.V.M.); (I.T.A.); (V.S.C.); (F.R.P.M.)
| |
Collapse
|
2
|
Fathy WA, Al-Qahtani WH, Abdel-Maksoud MA, Khanghahi MY, Elsayed KNM. Green solutions: evaluating the impact of Chlorella sorokiniana and Anabaena laxa on captan phycoremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2278-2289. [PMID: 39109632 DOI: 10.1080/15226514.2024.2387219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This study explores the use of algae for phycoremediation, focusing on how Chlorella sorokiniana and Anabaena laxa detoxify water contaminated with captan, a common fungicide. The efficiency of these species in absorbing captan and the associated biochemical changes were evaluated to assess their potential for environmental protection. Microalgae were exposed to captan concentrations of 15 and 30 mg/L, and various parameters, including captan uptake, chlorophyll (Chl) a, carotenoid levels, and changes in metabolic profiles (soluble carbohydrates, organic acids, amino acids, and fatty acids), were measured. Results showed Anabaena had a higher captan absorption capacity (141.7 µg/g at 15 mg/L and 239.3 µg/g at 30 mg/L) compared to Chlorella (74.43 µg/g and 162 µg/g). Increased captan uptake reduced the growth of both species, as indicated by lower Chl a levels. Both species accumulated osmo-protectants and antioxidants as defense mechanisms, with soluble sugars increasing by 83.49% in Chlorella and 68.87% in Anabaena, and carotenoids increasing by 60.42% and 46.24%, respectively. Principal component analysis revealed distinct species-level responses, with Anabaena showing greater tolerance. The study concludes that both species can effectively remediate captan, with Anabaena being more efficient, indicating their potential for mitigating agrochemical impacts in aquatic environments and promoting sustainable agriculture and water management.
Collapse
Affiliation(s)
- Wael A Fathy
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Wahidah H Al-Qahtani
- Department of Food Sciences & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Khaled N M Elsayed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Samantaray A, Chattaraj S, Mitra D, Ganguly A, Kumar R, Gaur A, Mohapatra PK, Santos-Villalobos SDL, Rani A, Thatoi H. Advances in microbial based bio-inoculum for amelioration of soil health and sustainable crop production. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100251. [PMID: 39165409 PMCID: PMC11334944 DOI: 10.1016/j.crmicr.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
The adoption of sustainable agricultural practices is increasingly imperative in addressing global food security and environmental concerns, with microbial based bio-inoculums emerging as a promising approach for nurturing soil health and fostering sustainable crop production.This review article explores the potential of microbial based bio-inoculumsor biofertilizers as a transformative approach toenhance plant disease resistance and growth. It explores the commercial prospects of biofertilizers, highlighting their role in addressing environmental concerns associated with conventional fertilizers while meeting the growing demand for eco-friendly agricultural practices. Additionally, this review discusses the future prospects of biofertilizers, emphasizing the ongoing advancements in biotechnology and formulation techniques that are expected to enhance their efficacy and applicability. Furthermore, this article provides insights into strategies for the successful acceptance of biofertilizers among farmers, including the importance of quality control, assurance, and education initiatives to raise awareness about their benefits and overcome barriers to adoption. By synthesizing the current research findings and industrial developments, this review offers valuable guidance for stakeholders seeking to exploit the potential of biofertilizers or beneficial microbes to promote soil health, ensure sustainable crop production, and addressing the challenges of modern agriculture.
Collapse
Affiliation(s)
- Aurodeepa Samantaray
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Sourav Chattaraj
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Arindam Ganguly
- Department of Microbiology, Bankura Sammilani College, Bankura, West Bengal 722102, India
| | - Rahul Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Ashish Gaur
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Pradeep K.Das Mohapatra
- Department of Microbiology, Raiganj University, Uttar Dinajpur, Raiganj, West Bengal 733134, India
| | | | - Anju Rani
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Hrudayanath Thatoi
- Centre for Industrial Biotechnology Research, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, Deemed to be University, Kalinga Nagar, Bhubaneswar, Odisha 751003, India
| |
Collapse
|
4
|
Xu K, Zhao L, Juneau P, Chen Z, Zheng X, Lian Y, Li W, Huang P, Yan Q, Chen X, He Z. The photosynthetic toxicity of nano-polystyrene to Microcystis aeruginosa is influenced by surface modification and light intensity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124206. [PMID: 38795819 DOI: 10.1016/j.envpol.2024.124206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
It is known that nanoplastics can cause membrane damage and production of reactive oxygen species (ROS) in cyanobacteria, negatively impacting their photosynthetic reactions and growth. However, the synergistic effect of light intensity on nanoplastics' toxicity to cyanobacteria is rarely investigated. Here, we investigated the impact of nano-polystyrene particles (PS) and amino-modified nano-polystyrene particles (PS-NH2) on cyanobacterium Microcystis aeruginosa cultivated under two light intensities. We discovered that PS-NH2 was more toxic to M. aeruginosa compared to PS with more damage of cell membranes by PS-NH2. The membrane damage was found by scanning electron microscope and atomic force microscopy. Under low light, PS-NH2 inhibited the photosynthesis of M. aeruginosa by decreasing the PSII quantum yield, photosynthetic electron transport rate and pigment content, but increasing non-photochemical quenching and Car/chl a ratio to cope with this stress condition. Moreover, high light appeared to increase the toxicity of PS-NH2 to M. aeruginosa by increasing its in vitro and intracellular ROS content. Specifically, on the one hand, high visible light (without UV) and PS-NH2 induced more in vitro singlet oxygen, hydroxyl radical and superoxide anion measured by electron paramagnetic resonance spectrometer in vitro, which could be another new toxic mechanism of PS-NH2 to M. aeruginosa. On the other hand, high light and PS-NH2 might increase intracellular ROS by inhibiting more photosynthetic electron transfer and accumulating more excess energy and electrons in M. aeruginosa. This research broadens our comprehension of the toxicity mechanisms of nanoplastics to cyanobacteria under varied light conditions and suggests a new toxic mechanism of nanoplastics involving in vitro ROS under visible light, providing vital information for assessing ecotoxicological effects of nanoplastics in the freshwater ecosystem.
Collapse
Affiliation(s)
- Kui Xu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Libin Zhao
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Jiangsu Huanghai Ecological Environment Detection Co., Ltd., Yancheng, 224008, China
| | - Philippe Juneau
- Department of Biological Sciences, GRIL-EcotoQ-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succursale Centre-Ville, Montréal, Québec, Canada
| | - Zhen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Xiafei Zheng
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingli Lian
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weizhi Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Peihuan Huang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiongwen Chen
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, 435002, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Ren Y, Wang G, Su Y, Li J, Zhang H, Han J. Response of antioxidant activity, active constituent and rhizosphere microorganisms of Salvia miltiorrhiza to combined application of microbial inoculant, microalgae and biochar under Cu stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171812. [PMID: 38508267 DOI: 10.1016/j.scitotenv.2024.171812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Salvia miltiorrhiza, a widely used medicinal herb renowned for its properties in promoting blood circulation, removing blood stasis and alleviating pain, is currently facing quality degradation due to excessive heavy metal levels, posing a threat to medication safety. In order to investigate the effects of microbial inoculant, microalgae and biochar on the growth of Salvia miltiorrhiza under copper (Cu) stress, as well as its Cu absorption, antioxidant activity, active component contents and rhizosphere microbial community, a pot experiment was conducted. Salvia miltiorrhiza plants were cultivated in the soil containing 400 mg/kg of Cu for six months and treated with microbial inoculant, microalgae and biochar, either individually or in combination. Almost all soil amendment treatments led to an increase in root biomass. Notably, co-application of microbial inoculant and microalgae had the optimal effect with a 63.07 % increase compared to the group treated solely with Cu. Moreover, when microbial inoculant was applied alone or in combination with microalgae, the Cu content in plant roots was reduced by 19.29 % and 25.37 %, respectively, whereas other treatments failed to show a decreasing trend. Intriguingly, Cu stress increased the active component contents in plant roots, and they could also be enhanced beyond non-stress levels when microbial inoculant and microalgae were applied together or in combination with biochar. Analyses of plant antioxidant activity, soil properties and rhizosphere microorganisms indicated that these amendments may alleviate Cu stress by enhancing peroxidase activity, facilitating plant nutrient absorption, and enriching beneficial microorganisms capable of promoting plant growth and mitigating heavy metal-induced damage. This study suggests that the combined application of microbial inoculant and microalgae can reduce Cu levels in Salvia miltiorrhiza while enhancing its quality under Cu stress.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinfeng Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
6
|
Zheng S, Lee V, Meza-Padilla I, Nissimov JI. Antiviral discovery in toxic cyanobacteria: Low hanging fruit in the age of pandemics. JOURNAL OF PHYCOLOGY 2024; 60:574-580. [PMID: 38174634 DOI: 10.1111/jpy.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The power of novel vaccination technologies and their rapid development were elucidated clearly during the COVID-19 pandemic. At the same time, it also became clear that there is an urgent need to discover and manufacture new antivirals that target emerging viral threats. Toxic species of cyanobacteria produce a range of bioactive compounds that makes them good candidates for drug discovery. Nevertheless, few studies demonstrate the antiviral potential of cyanobacteria. This is partly due to the lack of specific and simple protocols designed for the rapid detection of antiviral activity in cyanobacteria and partly because specialized facilities for work with pathogenic viruses are few and far between. We therefore developed an easy method for the screening of cyanobacterial cultures for antiviral activity and used our private culture collection of non-pathogenic virus isolates to show that antiviral activity is a prominent feature in the cyanobacterium Microcystis aeruginosa. In this proof-of-concept study, we show that M. aeruginosa extracts from three different cyanobacterial strains delay infection of diatom-infecting single-stranded DNA and single-stranded RNA viruses by up to 2 days. Our work shows the ease with which cyanobacteria from culture collections can be screened for antiviral activity and highlights the potential of cyanobacteria as an excellent source for the discovery of novel antiviral compounds, warranting further investigation.
Collapse
Affiliation(s)
- Sally Zheng
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Victoria Lee
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Isaac Meza-Padilla
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Joseph J, Ray JG. A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. JOURNAL OF PHYCOLOGY 2024; 60:229-253. [PMID: 38502571 DOI: 10.1111/jpy.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024]
Abstract
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.
Collapse
Affiliation(s)
- Jebin Joseph
- Department of Botany, St Berchmans College, Changanacherry, Kerala, India
- Laboratory of Ecology and Plant Science, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Joseph George Ray
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
8
|
Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC. Towards circular economy: Potential of microalgae - bacterial-based biofertilizer on plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119445. [PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
Collapse
Affiliation(s)
- Zheng Yang Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aaronn Avit Ajeng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wai Yan Cheah
- Centre for Research in Development, Social and Environment (SEEDS) Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Eng-Poh Ng
- School of Chemical Sciences, Universiti Sains Malaysia, USM, Penang, 11800, Malaysia
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Parvin N, Mandal S, Rath J. Microbiome of seventh-century old Parsurameswara stone monument of India and role of desiccation-tolerant cyanobacterium Lyngbya corticicola on its biodeterioration. BIOFOULING 2024; 40:40-53. [PMID: 38359904 DOI: 10.1080/08927014.2024.2305381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The Parsurameswara stone monument, built in the seventh century, is one of the oldest stone monuments in Odisha, India. Metagenomic analysis of the biological crust samples collected from the stone monument revealed 17 phyla in the microbiome, with Proteobacteria being the most dominant phylum, followed by cyanobacteria. Eight cyanobacteria were isolated. Lyngbya corticicola was the dominant cyanobacterium in all crust samples and could tolerate six months of desiccation in vitro. With six months of desiccation, chlorophyll-a decreased; however, carotenoid and cellular carbohydrate contents of this organism increased in the desiccated state. Resistance to desiccation, high carotenoid content, and effective trehalose biosynthesis in this cyanobacterium provide a distinct advantage over other microbiomes. Comparative metabolic profiles of the biological crust and L. corticicola show strongly corrosive organic acids such as dichloroacetic acid, which might be responsible for the biocorrosion of stone monuments.
Collapse
Affiliation(s)
- Nousi Parvin
- Department of Botany, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| | - Sikha Mandal
- Department of Botany, Sree Chaitanya College, Habra, West Bengal, India
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati (A Central University), Santiniketan, West Bengal, India
| |
Collapse
|
10
|
Asif A, Ali M, Qadir M, Karthikeyan R, Singh Z, Khangura R, Di Gioia F, Ahmed ZFR. Enhancing crop resilience by harnessing the synergistic effects of biostimulants against abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1276117. [PMID: 38173926 PMCID: PMC10764035 DOI: 10.3389/fpls.2023.1276117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Plants experience constant exposed to diverse abiotic stresses throughout their growth and development stages. Given the burgeoning world population, abiotic stresses pose significant challenges to food and nutritional security. These stresses are complex and influenced by both genetic networks and environmental factors, often resulting in significant crop losses, which can reach as high as fifty percent. To mitigate the effects of abiotic stresses on crops, various strategies rooted in crop improvement and genomics are being explored. In particular, the utilization of biostimulants, including bio-based compounds derived from plants and beneficial microbes, has garnered considerable attention. Biostimulants offer the potential to reduce reliance on artificial chemical agents while enhancing nutritional efficiency and promoting plant growth under abiotic stress condition. Commonly used biostimulants, which are friendly to ecology and human health, encompass inorganic substances (e.g., zinc oxide and silicon) and natural substances (e.g., seaweed extracts, humic substances, chitosan, exudates, and microbes). Notably, prioritizing environmentally friendly biostimulants is crucial to prevent issues such as soil degradation, air and water pollution. In recent years, several studies have explored the biological role of biostimulants in plant production, focusing particularly on their mechanisms of effectiveness in horticulture. In this context, we conducted a comprehensive review of the existing scientific literature to analyze the current status and future research directions concerning the use of various biostimulants, such as plant-based zinc oxide, silicon, selenium and aminobutyric acid, seaweed extracts, humic acids, and chitosan for enhancing abiotic stress tolerance in crop plants. Furthermore, we correlated the molecular modifications induced by these biostimulants with different physiological pathways and assessed their impact on plant performance in response to abiotic stresses, which can provide valuable insights.
Collapse
Affiliation(s)
- Anam Asif
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Muslim Qadir
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Balochistan, Pakistan
| | - Rajmohan Karthikeyan
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Zora Singh
- Horticulture, School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Ravjit Khangura
- Department of Primary Industries and Regional Development, Government of Western Australia, Kensington, WA, Australia
| | - Francesco Di Gioia
- Department of Plant Science, College of Agricultural Sciences, The Pennsylvania State University, College State, PA, United States
| | - Zienab F. R. Ahmed
- Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Wu S, Zheng H, Wang Y, Wang L, Chen W. Cyanobacterial bioreporter of nitrate bioavailability in aquatic ecosystems. WATER RESEARCH 2023; 247:120749. [PMID: 37918203 DOI: 10.1016/j.watres.2023.120749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
The water eutrophication, resulting from the discharge of industrial and agricultural wastewater, leads to ecological degradation. However, to date, how to assess and manage the risks of water pollution, especially nitrogen pollution, remains a particularly noteworthy issue. Nitrate, the most important nitrogen compound, has become a bottleneck restricting total nitrogen management. The development of bioreporters monitoring nitrate pollution contributes to the estimation of water quality, especially the availability of nutrients. In this study, we obtained 9 bioreporters from 40 cyanobacterial derivatives which were constructed based on different hosts, copy numbers, and sensing elements and evaluated the performance of bioreporters. The results showed that single-celled Synechocystis was more sensitive to nitrate than filamentous Anabaena, that the reporter gene luxABCDE responded faster than sfgfp in most bioreporters, and that relatively medium-copy plasmid improved the performance of sensing elements. Nine bioreporters performed well in bioavailable nitrate detection, of which AD-AS-X and AR-NI-X, activated by nitrate repletion, had the shortest response time (2 h) and the widest response range (20-800 μM), respectively. Moreover, SR-GLN-SG, activated by nitrate deficiency, exhibited the best linear response (R2 = 0.998). After parameter optimization, exponential growth phase bioreporters, culture temperature of 30 °C, sample volume of 200 μL were determined as optimal monitoring conditions. We found that common water contaminants (copper, cadmium, and phosphorus) had no impact on the performance of bioreporters, indicating the stability of bioreporters. Six out of 9 bioreporters, especially the SR-NB-X, were highly effective in detecting the bioavailable nitrate in wastewater sample. This study provides valuable references for developing more cyanobacterial bioreporters and their practical application in nitrate detection.
Collapse
Affiliation(s)
- Shanyu Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongyan Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuwei Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
12
|
Liu S, Liu Y, Cai Y. Incubation study on remediation of nitrate-contaminated soil by Chroococcus sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117637-117653. [PMID: 37870669 DOI: 10.1007/s11356-023-30383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The possibility of using the non-nitrogen-fixing cyanobacterium (Chroococcus sp.) for the reduction of soil nitrate contamination was tested through Petri dish experiments. The application of 0.03, 0.05 and 0.08 mg/cm2 Chroococcus sp. efficiently removed NO3--N from the soil through assimilation of nitrate nutrient and promotion of soil denitrification. At the optimal application dose of 0.05 mg/cm2, 44.06%, 36.89% and 36.17% of NO3--N were removed at initial NO3--N concentrations of 60, 90 and 120 mg/kg, respectively. The polysaccharides released by Chroococcus sp. acted as carbon sources for bacterial denitrification and facilitated the reduction of soil salinity, which significantly (p < 0.05) stimulated the growth of denitrifying bacteria (Hyphomicrobium denitrificans and Hyphomicrobium sp.) as well as significantly (p < 0.05) elevated the activities of nitrate reductase and nitrite reductase by 1.07-1.23 and 1.15-1.22 times, respectively. The application of Chroococcus sp. promoted the dominance of Nocardioides maradonensis in soil microbial community, which resulted in elevated phosphatase activity and increased available phosphorus content. The application of Chroococcus sp. positively regulated the growth of soil bacteria belonging to the genera Chitinophaga, Prevotella and Tumebacillus, which may contribute to increased soil fertility through the production of beneficial enzymes such as invertase, urease and catalase. To date, this is the first study verifying the remediation effect of non-nitrogen-fixing cyanobacteria on nitrate-contaminated soil.
Collapse
Affiliation(s)
- Shuaitong Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yong Cai
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
13
|
Bauer F, Wolfschlaeger I, Geist J, Fastner J, Schmalz CW, Raeder U. Occurrence, Distribution and Toxins of Benthic Cyanobacteria in German Lakes. TOXICS 2023; 11:643. [PMID: 37624149 PMCID: PMC10458227 DOI: 10.3390/toxics11080643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
Cyanobacteria are favored by climate change and global warming; however, to date, most research and monitoring programs have focused on planktic cyanobacteria. Benthic cyanobacteria blooms also increase and pose a risk to animal and human health; however, there is limited knowledge of their occurrence, distribution and the toxins involved, especially in relation to their planktic conspecifics. Therefore, we analyzed the benthic and planktic life forms of cyanobacterial communities in 34 lakes in Germany, including a monitoring of cyanotoxins. Community analyses were based on microscopic examination and Illumina sequencing of the 16S rRNA gene. The analyses of cyanotoxins were carried out using LC-MS/MS and ELISA. Observed benthic mats containing cyanobacteria consisted mainly of Nostocales and Oscillatoriales, being present in 35% of the lakes. Anatoxin was the most abundant cyanotoxin in the benthic samples, reaching maximum concentrations of 45,000 µg/L, whereas microcystin was the predominate cyanotoxin in the open-water samples, reaching concentrations of up to 18,000 µg/L. Based on the results, specific lakes at risk of toxic cyanobacteria could be identified. Our findings suggest that monitoring of benthic cyanobacteria and their toxins should receive greater attention, ideally complementing existing open-water sampling programs with little additional effort.
Collapse
Affiliation(s)
- Franziska Bauer
- Aquatic Systems Biology Unit, Limnological Research Station Iffeldorf, Technical University of Munich, Hofmark 1–3, 82393 Iffeldorf, Germany (U.R.)
| | - Immanuel Wolfschlaeger
- Aquatic Systems Biology Unit, Limnological Research Station Iffeldorf, Technical University of Munich, Hofmark 1–3, 82393 Iffeldorf, Germany (U.R.)
| | - Juergen Geist
- Aquatic Systems Biology Unit, Limnological Research Station Iffeldorf, Technical University of Munich, Hofmark 1–3, 82393 Iffeldorf, Germany (U.R.)
| | - Jutta Fastner
- German Environment Agency, Schichauweg 58, 12307 Berlin, Germany
| | - Carina Wiena Schmalz
- Aquatic Systems Biology Unit, Limnological Research Station Iffeldorf, Technical University of Munich, Hofmark 1–3, 82393 Iffeldorf, Germany (U.R.)
| | - Uta Raeder
- Aquatic Systems Biology Unit, Limnological Research Station Iffeldorf, Technical University of Munich, Hofmark 1–3, 82393 Iffeldorf, Germany (U.R.)
| |
Collapse
|
14
|
Abo-Shady AM, Osman MEAH, Gaafar RM, Ismail GA, El-Nagar MMF. Cyanobacteria as a Valuable Natural Resource for Improved Agriculture, Environment, and Plant Protection. WATER, AIR, AND SOIL POLLUTION 2023; 234:313. [PMID: 37192997 PMCID: PMC10156578 DOI: 10.1007/s11270-023-06331-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/21/2023] [Indexed: 05/18/2023]
Abstract
Taking into consideration, the challenges faced by the environment and agro-ecosystem make increased for suggestions more reliable methods to help increase food security and deal with difficult environmental problems. Environmental factors play a critical role in the growth, development, and productivity of crop plants. Unfavorable changes in these factors, such as abiotic stresses, can result in plant growth deficiencies, yield reductions, long-lasting damage, and even death of the plants. In reflection of this, cyanobacteria are now considered important microorganisms that can improve the fertility of soils and the productivity of crop plants due to their different features like photosynthesis, great biomass yield, ability to fix the atmospheric N2, capability to grow on non-arable lands, and varied water sources. Furthermore, numerous cyanobacteria consist of biologically active substances like pigments, amino acids, polysaccharides, phytohormones, and vitamins that support plant growth enhancement. Many studies have exposed the probable role of these compounds in the alleviation of abiotic stress in crop plants and have concluded with evidence of physiological, biochemical, and molecular mechanisms that confirm that cyanobacteria can decrease the stress and induce plant growth. This review discussed the promising effects of cyanobacteria and their possible mode of action to control the growth and development of crop plants as an effective method to overcome different stresses. Graphical Abstract
Collapse
Affiliation(s)
- Atef M. Abo-Shady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Reda M. Gaafar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Gehan A. Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | |
Collapse
|
15
|
Ajeng AA, Rosli NSM, Abdullah R, Yaacob JS, Qi NC, Loke SP. Resource recovery from hydroponic wastewaters using microalgae-based biorefineries: A circular bioeconomy perspective. J Biotechnol 2022; 360:11-22. [PMID: 36272573 DOI: 10.1016/j.jbiotec.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
As the world's population grows, it is necessary to rethink how countries throughout the world produce food in order to replace the conventional and unsustainable agricultural techniques. Microalgae cultivation using a nutrient-rich solution from hydroponic systems not only presents a novel approach to solving problems pertaining to the impact of the discharges on the natural environment but also provides a plethora of other biotechnological applications particularly in the productions of high value-added products and plants growth stimulants, which can be potentially assimilated into the circular bioeconomy (CBE) in the hydroponic sector. In this review, the potential and practicability of microalgae to be merged into hydroponics CBE are reviewed. Overall, the integration of microalgal biorefineries in hydroponics systems can be realized after considering their Technology Readiness Level and System Readiness Level beforehand. Several suggestions on strains and hydroponics system improvement using existing biotechnological tools, Artificial Intelligence (AI) and nanobiotechnology in support of the CBE will be covered.
Collapse
Affiliation(s)
- Aaronn Avit Ajeng
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Noor Sharina Mohd Rosli
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ng Cai Qi
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Show Pau Loke
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
16
|
Mechanisms of Stress Tolerance in Cyanobacteria under Extreme Conditions. STRESSES 2022. [DOI: 10.3390/stresses2040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobacteria are oxygen-evolving photoautotrophs with worldwide distribution in every possible habitat, and they account for half of the global primary productivity. Because of their ability to thrive in a hostile environment, cyanobacteria are categorized as “extremophiles”. They have evolved a fascinating repository of distinct secondary metabolites and biomolecules to promote their development and survival in various habitats, including severe conditions. However, developing new proteins/enzymes and metabolites is mostly directed by an appropriate gene regulation system that results in stress adaptations. However, only few proteins have been characterized to date that have the potential to improve resistance against abiotic stresses. As a result, studying environmental stress responses to post-genomic analysis, such as proteome changes using latest structural proteomics and synthetic biology techniques, is critical. In this regard, scientists working on these topics will benefit greatly from the stress of proteomics research. Progress in these disciplines will aid in understanding cyanobacteria’s physiology, biochemical, and metabolic systems. This review summarizes the most recent key findings of cyanobacterial proteome study under various abiotic stresses and the application of secondary metabolites formed during different abiotic conditions.
Collapse
|
17
|
Blanco-Vieites M, Suárez-Montes D, Hernández Battez A, Rodríguez E. Enhancement of Arthrospira sp. culturing for sulfate removal and mining wastewater bioremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1116-1126. [PMID: 36263990 DOI: 10.1080/15226514.2022.2135680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sulfate content in mining wastewater can reach concentrations over 2,000 mg·L-1, which is considered as a pollutant of concern. In this article, two cyanobacteria species were cultured using highly sulfated wastewater (3,000 mg·L-1) as the culture medium. This investigation aimed to analyze the sulfate bioremediation potential of microalgae while enhancing the uptaking of this pollutant through the design of a novel nutritional medium. The results obtained show the suitability of Arthrospira maxima as a bioremediation organism of sulfated wastewater. The appropriateness of this organism is based on its great growth performance when cultured in this residue, 2.16 times higher than the initial value. Moreover, the initially obtained sulfate reduction, 23.3%, was significantly enhanced to a final removal of 73% (2,247 mg·L-1). In addition, scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to evaluate sulfur crystallization. To the best of our knowledge, there are no previous works focused on microalgal sulfate removal that have reached such an uptaking rate. Accordingly, this study presents the highest performance on sulfate microalgal bioremediation published to date. Our findings suggest that A. maxima can be cultured for sulfated wastewater bioremediation while showing a removal yield that is theoretically sufficient for industrial applications.
Collapse
Affiliation(s)
- M Blanco-Vieites
- Neoalgae Micro Seaweeds Products, Calle Carmen Leal Mata, Gijon, Spain
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| | - D Suárez-Montes
- Neoalgae Micro Seaweeds Products, Calle Carmen Leal Mata, Gijon, Spain
| | - A Hernández Battez
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| | - E Rodríguez
- Department of Construction and Manufacturing Engineering, University of Oviedo, Gijon, Spain
| |
Collapse
|
18
|
Mohammadi SA, Najafi H, Zolgharnian S, Sharifian S, Asasian-Kolur N. Biological oxidation methods for the removal of organic and inorganic contaminants from wastewater: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157026. [PMID: 35772531 DOI: 10.1016/j.scitotenv.2022.157026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Enzyme-based bioremediation is a simple, cost-effective, and environmentally friendly method for isolating and removing a wide range of environmental pollutants. This study is a comprehensive review of recent studies on the oxidation of pollutants by biological oxidation methods, performed individually or in combination with other methods. The main bio-oxidants capable of removing all types of pollutants, such as organic and inorganic molecules, from fungi, bacteria, algae, and plants, and different types of enzymes, as well as the removal mechanisms, were investigated. The use of mediators and modification methods to improve the performance of microorganisms and their resistance under harsh real wastewater conditions was discussed, and numerous case studies were presented and compared. The advantages and disadvantages of conventional and novel immobilization methods, and the development of enzyme engineering to adjust the content and properties of the desired enzymes, were also explained. The optimal operating parameters such as temperature and pH, which usually lead to the best performance, were presented. A detailed overview of the different combination processes was also given, including bio-oxidation in coincident or consecutive combination with adsorption, advanced oxidation processes, and membrane separation. One of the most important issues that this study has addressed is the removal of both organic and inorganic contaminants, taking into account the actual wastewaters and the economic aspect.
Collapse
Affiliation(s)
- Seyed Amin Mohammadi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Hanieh Najafi
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Sheida Zolgharnian
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Seyedmehdi Sharifian
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran
| | - Neda Asasian-Kolur
- Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman 43581-39115, Iran.
| |
Collapse
|
19
|
Hatakeyama M, Nakamura S. Intrinsic Nature of the Ultrafast Deexcitation Pathway of Mycosporine-like Amino Acid Porphyra-334. J Phys Chem A 2022; 126:7460-7467. [PMID: 36205073 DOI: 10.1021/acs.jpca.2c05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porphyra-334 is a member of natural UV-screening compounds named mycosporine-like amino acids found in several marine organisms. The UV excited porphyra-334 has been identified to deexcite quickly by puckering the intramolecular cyclohexenimine ring; however, the reason for such a ring-puckering occurrence is yet unclear. In this study, we show the ring-puckering to be the relaxation pathway of the UV excited π electron which shifts from the in-ring bond to the out-of-ring bond. The ring-puckering is characterized by the torsion among the in-ring and out-of-ring bonds. Since the π electron shift is possible in two different directions at the Franck-Condon UV excited state, it enables two ring-puckering pathways: the previously reported pathway and another one newly identified at present. We also examine the ring-unpuckering pathways which are an analogy of cis/trans photoisomerization, and we find them to be not suited for the π electron shift character of the UV excited state and thus not related to the deexcitation pathway. The present study provides insight into how porphyra-334 exerts the UV-screening ability based on its cyclohexenimine ring structure.
Collapse
Affiliation(s)
- Makoto Hatakeyama
- Sanyo-Onoda City University, 1-1-1 Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | | |
Collapse
|
20
|
Gaur A, Pant G, Jalal AS. Computer-aided cyanobacterial harmful algae blooms (CyanoHABs) studies based on fused artificial intelligence (AI) models. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
21
|
A Novel Application of Laser in Biocontrol of Plant Pathogenic Bacteria. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of laser radiation has never been tested on the antimicrobial activity of cyanobacterial extracts. In order to investigate this, aqueous extracts from three cyanobacterial strains identified as Thermoleptolyngbya sp., Leptolyngbya sp., and Synechococcus elongatus were exposed to laser radiation. The aqueous extracts both directly exposed to the laser and those derived from pre-exposed biomass were tested for their antimicrobial activity to select the most active extracts under different exposure times and distances from the laser source. Methods: A fixed weight of one-month old cyanobacterial biomass was used in extraction. Another similar biomass was exposed to laser before aqueous extraction. The laser treatment was performed using two distances, 5 and 10 cm, with three exposure times, 4, 16, and 32 min. The antimicrobial assay was performed against the bacterial plant pathogen, whose identity was confirmed by molecular analysis and cell wall structure by a Gram stain. Results: The pathogenic bacterium was identified as Gram-negative Pantoae vagans. The aqueous extract that was not exposed to laser treatment (control) was mostly ineffective against the pathogenic bacterium, whereas a significant increase in the antimicrobial effect was observed for the extract directly exposed to the laser followed by the extract derived from laser-pre-exposed cyanobacterial biomass. In the case of Synechococcus elongatus extracts, the extract that was directly exposed to the laser showed the highest statistically significant antimicrobial activity against Pantoea vagans, with an inhibition zone of 15.5 mm, at 10 cm and 4 min of laser treatment. Conclusions: This is the first report on the effect of laser on enhancing the antimicrobial profile of cyanobacterial extracts. The direct exposure of cyanobacterial extracts to the laser was more effective and biologically safer than exposing the biomass itself prior to extraction. The laser used was a monochromatic red light within the visible range. This radiation increased the antimicrobial activity of cyanobacterial extracts and can be used as an eco-friendly biocontrol strategy.
Collapse
|
22
|
El-Adl MF, Deyab MA, Ghazal MA, Elsadany AY. Impact of the microalga Dunaliella salina (Dunal) Teodoresco culture and its β-carotene extract on the development of salt-stressed squash ( Cucurbita pepo L. cv. Mabrouka). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:749-762. [PMID: 35592476 PMCID: PMC9110587 DOI: 10.1007/s12298-022-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/20/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Salinity is a major threat to crop production and global food security. Algae and their extracts containing bioactive compounds can enhance the salt tolerance of plants, including the salt-sensitive plants. The current study evaluated the efficacy of Dunaliella salina (Dunal) Teodoresco culture and/or its β-carotene extract in improving the salt tolerance of squash (Cucurbita pepo L. cv. Mabrouka). Amendment of C. pepo with D. salina culture and/or its β-carotene extract was more effective in alleviating the impact of moderate salinity imposed by seawater dilution of 2.5 dS m-1 than either low (0.55 dS m-1) or high (3.5 dS m-1) salinity, with a comparable effect to that of salicylic acid (SA). Plants that received a combination of D. salina culture and its β-carotene extract showed significantly higher growth (total biomass, fruit productivity) and physiological attributes (photosynthetic pigments, nitrogen (N), phosphorus (P), and potassium (K+) contents) than those receiving either amendment alone, reaching up to 80-90% of the SA-treated plants at moderate salinity (2.5 dS m-1). The combination could enhance the antioxidant activity of moderately salt-stressed C. pepo via increasing carotenoids and phenolics contents, suggesting that this combination could enhance the adaptation of C. pepo to the moderate salinity. The present study recommends using the blooms of D. salina and its β-carotene that is naturally secreted in situ in natural or synthetic open systems in improving the salt tolerance of C. pepo instead of using the expensive synthetic hormones. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01176-6.
Collapse
Affiliation(s)
- Magda F. El-Adl
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta City, 34517 Egypt
| | - Mohamed A. Deyab
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta City, 34517 Egypt
| | - Mai A. Ghazal
- Cyanobacteria Research Laboratory, Microbiology Department, Sakha Agricultural Research Station-Soils, Water and Environment Research Institute, Giza, Egypt
| | - Abdelgawad Y. Elsadany
- Cyanobacteria Research Laboratory, Microbiology Department, Sakha Agricultural Research Station-Soils, Water and Environment Research Institute, Giza, Egypt
| |
Collapse
|
23
|
Microalgal Biorefinery Concepts’ Developments for Biofuel and Bioproducts: Current Perspective and Bottlenecks. Int J Mol Sci 2022; 23:ijms23052623. [PMID: 35269768 PMCID: PMC8910654 DOI: 10.3390/ijms23052623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023] Open
Abstract
Microalgae have received much interest as a biofuel feedstock. However, the economic feasibility of biofuel production from microalgae does not satisfy capital investors. Apart from the biofuels, it is necessary to produce high-value co-products from microalgae fraction to satisfy the economic aspects of microalgae biorefinery. In addition, microalgae-based wastewater treatment is considered as an alternative for the conventional wastewater treatment in terms of energy consumption, which is suitable for microalgae biorefinery approaches. The energy consumption of a microalgae wastewater treatment system (0.2 kW/h/m3) was reduced 10 times when compared to the conventional wastewater treatment system (to 2 kW/h/m3). Microalgae are rich in various biomolecules such as carbohydrates, proteins, lipids, pigments, vitamins, and antioxidants; all these valuable products can be utilized by nutritional, pharmaceutical, and cosmetic industries. There are several bottlenecks associated with microalgae biorefinery. Hence, it is essential to promote the sustainability of microalgal biorefinery with innovative ideas to produce biofuel with high-value products. This review attempted to bring out the trends and promising solutions to realize microalgal production of multiple products at an industrial scale. New perspectives and current challenges are discussed for the development of algal biorefinery concepts.
Collapse
|
24
|
Biological control of Fusarium tomato-wilt disease by cyanobacteria Nostoc spp. Arch Microbiol 2022; 204:116. [PMID: 34985603 DOI: 10.1007/s00203-021-02673-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/06/2023]
Abstract
This study investigated the effect of foliar application of extract and culture of Nostoc calcicola and Nostoc linckia on the Fusarium oxysporum f. sp. lycopersici (FOL) that infects tomatoes (Solanum lycopersicum) plant in vitro and in vivo. Cyanobacterial isolates were isolated from saline soils at El-Hamoul and Seidy Salem locations Kafr Elsheikh, Egypt, and identified to be N. calcicola and N. linckia Bioactive compounds of extract were analyzed by Gas chromatography-mass spectrometry (GC-MS). Dry weight, carotene, chlorophyll content, and total phenolic compounds of isolates were measured. Plant height, dry weight, fruit number, and fruit weight of tomatoes were estimated. GC/MS analysis showed 49 and 35 bioactive compounds in extracts of N. calcicola and N. linckia, respectively. N. calcicola possesses the highest values of chlorophyll a, carotenoid, and total phenol contents in dry weight compared with N. linckia. After 100 days of tomato growth, the results showed the highest yield of tomato fruits with the application of N. calcicola and N. linckia compared with the untreated plants and the plants which were infected with Fusarium, suggesting that N. calcicola and N. linckia can serve as a new bioagent for biological control of the soil fungus Fusarium oxysporum f. sp. lycopersici (FOL).
Collapse
|
25
|
Behera B, Venkata Supraja K, Paramasivan B. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. BIORESOURCE TECHNOLOGY 2021; 339:125588. [PMID: 34298244 DOI: 10.1016/j.biortech.2021.125588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/13/2023]
Abstract
Adverse detrimental impacts of environmental pollution over the health regimen of people has driven a shift in lifestyle towards cleaner and natural resources, especially in the aspects of food production and consumption. Microalgae are considered a rich source of high value metabolites to be utilized as plant growth biostimulants. These organisms however, are underrated compared to other microbial counterparts, due to inappropriate knowledge on the technical, enviro-economical constrains leading to low market credibility. Thus, to avert these issues, the present review comprehensively discusses the biostimulatory potential of microalgae interactively combined with circular bio-economy perspectives. The biochemical content and intracellular action mechanism of microalgal biostimulants were described. Furthermore, detailed country-wise market trends along with the description of the existing regulatory policies are included. Enviro-techno-economic challenges are discussed, and the consensus need for shift to biorefinery and circular bio-economy concept are emphasized to achieve sustainable impacts during the commercialization of microalgal biostimulants.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Kolli Venkata Supraja
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
26
|
Bridging Cyanobacteria to Neurodegenerative Diseases: A New Potential Source of Bioactive Compounds against Alzheimer's Disease. Mar Drugs 2021; 19:md19060343. [PMID: 34208482 PMCID: PMC8235772 DOI: 10.3390/md19060343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/02/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a drawback in society given the ageing population. Dementias are the most prevalent NDs, with Alzheimer’s disease (AD) representing around 70% of all cases. The current pharmaceuticals for AD are symptomatic and with no effects on the progression of the disease. Thus, research on molecules with therapeutic relevance has become a major focus for the scientific community. Cyanobacteria are a group of photosynthetic prokaryotes rich in biomolecules with confirmed activity in pathologies such as cancer, and with feasible potential in NDs such as AD. In this review, we aimed to compile the research works focused in the anti-AD potential of cyanobacteria, namely regarding the inhibition of the enzyme β-secretase (BACE1) as a fundamental enzyme in the generation of β-amyloid (Aβ), the inhibition of the enzyme acetylcholinesterase (AChE) lead to an increase in the availability of the neurotransmitter acetylcholine in the synaptic cleft and the antioxidant and anti-inflammatory effects, as phenomena associated with neurodegeneration mechanisms.
Collapse
|
27
|
Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D. Unconventional high-value products from microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 329:124895. [PMID: 33713898 DOI: 10.1016/j.biortech.2021.124895] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Microalgae have gained significant importance in biotechnology development, providing valuable goods and services in multiple applications. Although there is a rising market for most of these applications, the incorporation and introduction of microalgae into new venues will extend in the near future. These advances are due to the vast biodiversity of microalgal species, recent genetic engineering tools, and culture techniques. There are three main possible approaches for novel algal compounds from: (1) recently isolated yet less known microalgae; (2) selectively stressed conditions; and (3) enzymatically adjusted compounds from conventional molecules. All these approaches can be combined in a specific manner. This review discusses the opportunities, potential and limitations of introducing novel microalgae-based products, and how the recent technologies can be deployed to make these products financially viable. To give an outlook to the future, an analysis of the developments and predicted future market that further enlarge the promise of cultivating microalgae for commercial purposes are considered.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Zvy Dubinsky
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vitor Verdelho
- General Manager of the European Algae Biomass Association (EABA), Portugal
| | - David Iluz
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Environmental Sciences and Agriculture, Beit Berl Academic College, Israel; Talpiot academic College, Holon, Israel
| |
Collapse
|
28
|
Kapoore RV, Wood EE, Llewellyn CA. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv 2021; 49:107754. [PMID: 33892124 DOI: 10.1016/j.biotechadv.2021.107754] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
For the growing human population to be sustained during present climatic changes, enhanced quality and quantity of crops are essential to enable food security worldwide. The current consensus is that we need to make a transition from a petroleum-based to a bio-based economy via the development of a sustainable circular economy and biorefinery approaches. Both macroalgae (seaweeds) and microalgae have been long considered a rich source of plant biostimulants with an attractive business opportunity in agronomy and agro-industries. To date, macroalgae biostimulants have been well explored. In contrast, microalgal biostimulants whilst known to have positive effects on development, growth and yields of crops, their commercial implementation is constrained by lack of research and cost of production. The present review highlights the current knowledge on potential biostimulatory compounds, key sources and their quantitative information from algae. Specifically, we provide an overview on the prospects of microalgal biostimulants to advance crop production and quality. Key aspects such as specific biostimulant effects caused by extracts of microalgae, feasibility and potential of co-cultures and later co-application with other biostimulants/biofertilizers are highlighted. An overview of the current knowledge, recent advances and achievements on extraction techniques, application type, application timing, current market and regulatory aspects are also discussed. Moreover, aspects involved in circular economy and biorefinery approaches are also covered, such as: integration of waste resources and implementation of high-throughput phenotyping and -omics tools in isolating novel strains, exploring synergistic interactions and illustrating the underlying mode of microalgal biostimulant action. Overall, this review highlights the current and future potential of microalgal biostimulants, algal biochemical components behind these traits and finally bottlenecks and prospects involved in the successful commercialisation of microalgal biostimulants for sustainable agricultural practices.
Collapse
Affiliation(s)
- Rahul Vijay Kapoore
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK.
| | - Eleanor E Wood
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Carole A Llewellyn
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
29
|
Toribio AJ, Jurado MM, Suárez-Estrella F, López MJ, López-González JA, Moreno J. Seed biopriming with cyanobacterial extracts as an eco-friendly strategy to control damping off caused by Pythium ultimum in seedbeds. Microbiol Res 2021; 248:126766. [PMID: 33873139 DOI: 10.1016/j.micres.2021.126766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/21/2021] [Accepted: 04/03/2021] [Indexed: 11/19/2022]
Abstract
This work highlights the ability of various cyanobacterial extracts from Anabaena spp., Tolypothrix spp., Nostoc or Trichormus, among others genera, to control the incidence of damping-off caused by Pythium ultimum in cucumber seedlings. Protocols applied aimed at the preliminary characterization of the cyanobacterial collection were very useful for predicting their phytotoxic, phytostimulating and biopesticidal capacity. First, the phytostimulatory or phytotoxic potential of a collection of 31 sonicated cyanobacterial extracts was analyzed by calculating the germination index in watercress seeds and the increase or loss of seedling weight. Likewise, the collection was characterized according to its ability to inhibit the growth of P. ultimum by dual culture bioassays and detached-leaf test. Finally, after selecting the most effective extracts, a preventive damping-off bioassay was performed based on cucumber seed biopriming. The strain SAB-M465 showed to be the most efficient strain against the in vitro growth of P. ultimum, while SAB-B912 was more discreet in this regard, but proved to be the most effective as a germination stimulator. Seed biopriming strategy with sonicated extracts of cyanobacteria revealed a remarkable promoter effect in the early stages of plant development, although only SAB-M465 was positioned as an effective control agent against damping-off caused by P. ultimum in cucumber seedbeds.
Collapse
Affiliation(s)
- A J Toribio
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M M Jurado
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - F Suárez-Estrella
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain.
| | - M J López
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - J A López-González
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - J Moreno
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| |
Collapse
|
30
|
Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102200] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Lee SM, Ryu CM. Algae as New Kids in the Beneficial Plant Microbiome. FRONTIERS IN PLANT SCIENCE 2021; 12:599742. [PMID: 33613596 PMCID: PMC7889962 DOI: 10.3389/fpls.2021.599742] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/13/2021] [Indexed: 05/08/2023]
Abstract
Previously, algae were recognized as small prokaryotic and eukaryotic organisms found only in aquatic habitats. However, according to a recent paradigm shift, algae are considered ubiquitous organisms, occurring in plant tissues as well as in soil. Accumulating evidence suggests that algae represent a member of the plant microbiome. New results indicate that plants respond to algae and activate related downstream signaling pathways. Application of algae has beneficial effects on plant health, such as plant growth promotion and disease control. Although accumulating evidence suggests that secreted compounds and cell wall components of algae induce physiological and structural changes in plants that protect against biotic and abiotic stresses, knowledge of the underlying mechanisms and algal determinants is limited. In this review, we discuss recent studies on this topic, and highlight the bioprotectant and biostimulant roles of algae as a new member of the plant beneficial microbiome for crop improvement.
Collapse
Affiliation(s)
- Sang-Moo Lee
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
32
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
33
|
El-Gendy NS, Nassar HN. Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. J Appl Microbiol 2021; 131:1621-1638. [PMID: 33386652 DOI: 10.1111/jam.14989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
The discharge of the toxic phenol-polluted petro-industrial effluents (PPPIE) has severe environmental negative impacts, thus it is mandatory to be treated before its discharge. The objective of this review was to discuss the sustainable application of microalgae in phenols degradation, with a special emphasis on the enzymes involved in this bioprocess and the factors affecting the success of PPPIE phycoremediation. Moreover, it confers the microalgae bioenergetic strategies to degrade different forms of phenols in PPPIE. It also points out the advantages of the latest application of bacteria, fungi and microalgae as microbial consortia in phenols biodegradation. Briefly, phycoremediation of PPPIE consumes carbon dioxide emitted from petro-industries for; valorization of the polluted water to be reused and production of algal biomass which can act as a source of energy for such integrated bioprocess. Besides, the harvested algal biomass can feasibly produce; third-generation biofuels, biorefineries, bioplastics, fish and animal feed, food supplements, natural dyes, antioxidants and many other valuable products. Consequently, this review precisely confirms that the phycoremediation of PPPIE is a win-win process for a green environment and a sustainable future. Thus, to achieve the three pillars of sustainability; social, environmental and economic; it is recommendable to integrate PPPIE treatment with algal cultivation. This integrated process would overcome the problem of greenhouse gas emissions, global warming and climate change, solve the problem of water-scarce, and protect the environment from the harmful negative impacts of PPPIE.
Collapse
Affiliation(s)
- N Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| | - H N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| |
Collapse
|
34
|
Ratha SK, Renuka N, Rawat I, Bux F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition 2020; 83:111089. [PMID: 33412367 PMCID: PMC7680017 DOI: 10.1016/j.nut.2020.111089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023]
Abstract
The outbreak of the coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 that has created huge trepidation worldwide, has a mortality rate of 0.5% to 1% and is growing incessantly. There are currently no therapies and/or vaccines that may help abate this viral disease, but the use of masks and social distancing can limit the spread. Boosting immunity has been a simple way to resist viral infection and limit fatalities. In this context, the use of nutraceuticals appears to be a potential panacea. The ability of algae-based nutraceuticals, mainly Spirulina, to boost immunity against viral diseases has already been reported clinically. Spirulina-based nutraceuticals boost the adaptive and innate immunity, and bioactive compounds, such as angiotensin-converting enzyme (ACE) inhibitor peptides, phycobiliproteins, sulfated polysaccharides, and calcium-Spirulan, can serve as antiviral agents. The presence of these molecules indicates its potential role in resisting infection and COVID-19 disease progression. This review focuses on the potential role of algal nutraceuticals as immune boosters to combat the human coronavirus and other viral diseases. The potential use of Spirulina-based nutraceuticals for combating COVID-19, its mechanism, and future directions have also been discussed.
Collapse
Affiliation(s)
- Sachitra K Ratha
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Nirmal Renuka
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
35
|
Scarlett KR, Kim S, Lovin LM, Chatterjee S, Scott JT, Brooks BW. Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139807. [PMID: 32585507 PMCID: PMC8204307 DOI: 10.1016/j.scitotenv.2020.139807] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 05/03/2023]
Abstract
Cylindrospermopsin (CYN), a cyanotoxin produced by harmful algal blooms, has been reported worldwide; however, there remains limited understanding of its potential risks to surface water quality. In the present study, we critically reviewed available literature regarding the global occurrence, bioaccumulation, and toxicity of CYN in aquatic systems with a particular focus on freshwater. We subsequently developed environmental exposure distributions (EEDs) for CYN in surface waters and performed probabilistic environmental hazard assessments (PEHAs) using guideline values (GVs). PEHAs were performed by geographic region, type of aquatic system, and matrix. CYN occurrence was prevalent in North America, Europe, and Asia/Pacific, with lakes being the most common system. Many global whole water EEDs exceeded guideline values (GV) previously developed for drinking water (e.g., 0.5 μg L-1) and recreational water (e.g., 1 μg L-1). GV exceedances were higher in the Asia/Pacific region, and in rivers and reservoirs. Rivers in the Asia/Pacific region exceeded the lowest drinking water GV 73.2% of the time. However, lack of standardized protocols used for analyses was alarming, which warrants improvement in future studies. In addition, bioaccumulation of CYN has been reported in mollusks, crustaceans, and fish, but such exposure information remains limited. Though several publications have reported aquatic toxicity of CYN, there is limited chronic aquatic toxicity data, especially for higher trophic level organisms. Most aquatic toxicity studies have not employed standardized experimental designs, failed to analytically verify treatment levels, and did not report purity of CYN used for experiments; therefore, existing data are insufficient to derive water quality guidelines. Considering such elevated exceedances of CYN in global surface waters and limited aquatic bioaccumulation and toxicity data, further aquatic monitoring, environmental fate and mechanistic toxicology studies are warranted to robustly assess and manage water quality risks to public health and the environment.
Collapse
Affiliation(s)
- Kendall R Scarlett
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Lea M Lovin
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
36
|
Gheda SF, Ismail GA. Natural products from some soil cyanobacterial extracts with potent antimicrobial, antioxidant and cytotoxic activities. AN ACAD BRAS CIENC 2020; 92:e20190934. [PMID: 32785444 DOI: 10.1590/0001-3765202020190934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022] Open
Abstract
The ethyl acetate, n hexane and methanol extracts of six cyanobacterial species isolated from paddy fields in Egypt were assessed for their antimicrobial activity, using disc diffusion method. Oscillatoria acuminata, Oscillatoria amphigranulata and Spirulina platensis methanolic extracts showed the highest inhibition zones. Minimum inhibitory concentration of O. amphigranulata extract recorded lower values using agar streak dilution method. O. acuminata methanolic extract exhibited the highest antioxidant activity (6.58 and 34.60 % using DPPH (2, 2- diphenyl-1- picrylhydrazyl) and ABTS+ (2, 2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) methods, respectively, followed by O. amphigranulata then S. platensis. Similarly, O. acuminata methanolic extract showed very strong cytotoxicity activity against HepG2 and HCT-116 cell lines and strong activity with MCF-7 cell lines. O. amphigranulata extract showed strong cytotoxicity for HepG2 and HCT-116 as well as moderate cytotoxicity for MCF-7 cell line. Whereas, S. platensis extract exhibited moderate cytotoxicity for all cell lines. Results of gas chromatography/mass spectroscopy analysis pointed out that the potential activity of these cyanobacterial extracts might be attributed to a synergistic effect between their pronounced contents of fatty acids, alkaloids, phytol, hydrocarbons, phenolics and phthalates, especially fatty acids. We recommend cyanobacteria as a rich source of natural products with potent pharmacological and medical applications.
Collapse
Affiliation(s)
- Saly F Gheda
- Department of Botany, Tanta University, Tanta, Egypt
| | | |
Collapse
|
37
|
Xu Q, Ma H, Zhang H, Fan J, Yin C, Liu X, Liu Y, Wang H, Yan H. Purification and activity of the first recombinant enzyme for biodegrading hepatotoxin by Sphingopyxis sp. USTB-05. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int J Biol Macromol 2020; 156:691-703. [PMID: 32315680 DOI: 10.1016/j.ijbiomac.2020.04.082] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 11/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) have been actively studied in academia and industry for their properties comparable to petroleum-derived plastics and high biocompatibility. However, the major limitation for commercialization is their high cost. Feedstock costs, especially carbon costs, account for the majority of the final cost. Finding cheap feedstocks for PHA production and associated process development are critical for a cost-effective PHA production. In this study, waste materials from different sources, particularly lignocellulosic biomass, were proposed as suitable feedstocks for PHA production. Strains involved in the conversion of these feedstocks into PHA were reviewed. Newly isolated strains were emphasized. Related process development, including the factors that affect PHA production, fermentation modes and downstream processing, was elaborated upon.
Collapse
|
39
|
Iglesias MJ, Soengas R, Martins CB, Correia MJ, Ferreira JD, Santos LMA, Ortiz FL. Chemotaxonomic Profiling Through NMR 1. JOURNAL OF PHYCOLOGY 2020; 56:521-539. [PMID: 31876290 DOI: 10.1111/jpy.12959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
A metabolite screening of cyanobacteria was performed by nuclear magnetic resonance (NMR) analysis of the soluble material obtained through sequential extraction of the biomass with three different extractive ability solvents (hexane, ethyl acetate, and methanol). Twenty-five strains from the Coimbra Collection of Algae (ACOI) belonging to different orders in the botanical code that represent three subsections of the Stainer-Rippka classification were used. The 1 H NMR spectra of hexane extracts showed that only two strains of Nostoc genus accumulated triacylglycerols. Monogalactosyldiacylglycerols and digalactosyldiacylglycerols were the major components of the ethyl acetate extracts in a mono- to digalactosyldiacylglycerols ratio of 4.5 estimated by integration of the signals at δ 3.99 and 3.94 ppm (sn3 glycerol methylene). Oligosaccharides of sucrose and mycosporine-like amino acids, among other polar metabolites, were detected in the methanolic extracts. Strains of Nostocales order contained heterocyst glycolipids, whereas sulphoquinovosyldiacylglycerols were absent in one of the studied strains (Microchaete tenera ACOI 1451). Phosphathidylglycerol was identified as the major phospholipid in the methanolic extracts together with minor amounts of phosphatidylcholine based on 1 H, 31 P 2D correlation experiments. Chemotaxonomic information could be easily obtained through the analysis of the δ 3.0-0.5 ppm (fatty acid distribution) and δ 1.2-1.1 ppm (terminal methyl groups of the aglycons in heterocyst glycolipids) regions of the 1 H NMR spectra of the ethyl acetate and methanol extracts, respectively.
Collapse
Affiliation(s)
- María José Iglesias
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Raquel Soengas
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - Clara B Martins
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria João Correia
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Joana D Ferreira
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lilia M A Santos
- Coimbra Collection of Algae (ACOI), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Fernando López Ortiz
- Área de Química Orgánica, Research Centre CIAIMBITAL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería, Spain
| |
Collapse
|
40
|
Sharma V, Prasanna R, Hossain F, Muthusamy V, Nain L, Das S, Shivay YS, Kumar A. Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. 3 Biotech 2020; 10:154. [PMID: 32181116 PMCID: PMC7054569 DOI: 10.1007/s13205-020-2141-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/15/2020] [Indexed: 01/10/2023] Open
Abstract
Biofilm formation of a nitrogen-fixing cyanobacterium Anabaena torulosa with a beneficial fungus Trichoderma viride (An-Tr) was examined under laboratory conditions. A gradual enhancement in growth over A. torulosa alone was recorded in the biofilm, with 15-20% higher values in nitrogen fixation, IAA and exopolysaccharide production illustrating the synergism among the partners in the biofilm. To investigate the role of such biofilms in priming seed attributes, mesocosm studies using primed seeds of two maize inbred lines (V6, V7) were undertaken. Beneficial effects of biofilm (An-Tr) were recorded, as compared to uninoculated treatment and cyanobacterial consortium (Anabaena-Nostoc; BF 1-4) at both stages (7 and 21 DAS, days after sowing) with a significant increase of more than 20% in seedling attributes, along with 5-15% increment in seed enzyme activities. More than three- to fivefold higher values in nitrogen fixation and C-N mobilizing enzyme activities, and significant increases in leaf chlorophyll, proteins and PEP carboxylase activity were observed with V7-An-Tr biofilm. Cyanobacterial inoculation brought about distinct changes in the soil phospholipid fatty acid profiles (PLFA); particularly, significant changes in those representing eukaryotes and anaerobic bacteria. Principal component analyses illustrated the significant role of dehydrogenase activity and microbial biomass carbon and distinct elicited effects on soil microbial communities, as evidenced by the PLFA. This investigation highlighted the promise of cyanobacteria as valuable priming options to improve mobilization of nutrients at seed stage, modulating the abundance and activities of various soil microbial communities, thereby, enhanced plant growth and vigour of maize plants.
Collapse
Affiliation(s)
- Vikas Sharma
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Firoz Hossain
- Maize Genetics Section, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vignesh Muthusamy
- Maize Genetics Section, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012 India
| | - Shrila Das
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Yashbir Singh Shivay
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
41
|
Industrial Production of Poly-β-hydroxybutyrate from CO2: Can Cyanobacteria Meet this Challenge? Processes (Basel) 2020. [DOI: 10.3390/pr8030323] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The increasing impact of plastic materials on the environment is a growing global concern. In regards to this circumstance, it is a major challenge to find new sources for the production of bioplastics. Poly-β-hydroxybutyrate (PHB) is characterized by interesting features that draw attention for research and commercial ventures. Indeed, PHB is eco-friendly, biodegradable, and biocompatible. Bacterial fermentation processes are a known route to produce PHB. However, the production of PHB through the chemoheterotrophic bacterial system is very expensive due to the high costs of the carbon source for the growth of the organism. On the contrary, the production of PHB through the photoautotrophic cyanobacterium system is considered an attractive alternative for a low-cost PHB production because of the inexpensive feedstock (CO2 and light). This paper regards the evaluation of four independent strategies to improve the PHB production by cyanobacteria: (i) the design of the medium; (ii) the genetic engineering to improve the PHB accumulation; (iii) the development of robust models as a tool to identify the bottleneck(s) of the PHB production to maximize the production; and (iv) the continuous operation mode in a photobioreactor for PHB production. The synergic effect of these strategies could address the design of the optimal PHB production process by cyanobacteria. A further limitation for the commercial production of PHB via the biotechnological route are the high costs related to the recovery of PHB granules. Therefore, a further challenge is to select a low-cost and environmentally friendly process to recover PHB from cyanobacteria.
Collapse
|
42
|
Velu C, Cirés S, Brinkman DL, Heimann K. Bioproduct Potential of Outdoor Cultures of Tolypothrix sp.: Effect of Carbon Dioxide and Metal-Rich Wastewater. Front Bioeng Biotechnol 2020; 8:51. [PMID: 32117931 PMCID: PMC7026013 DOI: 10.3389/fbioe.2020.00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/22/2020] [Indexed: 11/13/2022] Open
Abstract
Rising CO2 levels, associated climatic instability, freshwater scarcity and diminishing arable land exacerbate the challenge to maintain food security for the fast growing human population. Although coal-fired power plants generate large amounts of CO2 emissions and wastewater, containing environmentally unsafe concentrations of metals, they ensure energy security. Nitrogen (N2)-fixation by cyanobacteria eliminate nitrogen fertilization costs, making them promising candidates for remediation of waste CO2 and metals from macronutrient-poor ash dam water and the biomass is suitable for phycocyanin and biofertilizer product development. Here, the effects of CO2 and metal mixtures on growth, bioproduct and metal removal potential were investigated for the self-flocculating, N2-fixing freshwater cyanobacterium Tolypothrix sp. Tolypothrix sp. was grown outdoors in simulated ash dam wastewater (SADW) in 500 L vertical bag suspension cultures and as biofilms in modified algal-turf scrubbers. The cultivation systems were aerated with air containing either 15% CO2 (v/v) or not. CO2-fertilization resulted in ∼1.25- and 1.45-fold higher biomass productivities and ∼40 and 27% increased phycocyanin and phycoerythrin contents for biofilm and suspension cultures, respectively. CO2 had no effect on removal of Al, As, Cu, Fe, Sr, and Zn, while Mo removal increased by 37% in both systems. In contrast, Ni removal was reduced in biofilm systems, while Se removal increased by 73% in suspension cultures. Based on biomass yields and biochemical data obtained, net present value (NPV) and sensitivities analyses used four bioproduct scenarios: (1) phycocyanin sole product, (2) biofertilizer sole product, (3) 50% phycocyanin and 50% biofertilizer, and (4) 100% phycocyanin and 100% biofertilizer (residual biomass) for power station co-located and not co-located 10 ha facilities over a 20-year period. Economic feasibility for the production of food-grade phycocyanin either as a sole product or with co-production of biofertilizer was demonstrated for CO2-enriched vertical and raceway suspension cultures raised without nitrogen-fertilization and co-location with power stations significantly increased profit margins.
Collapse
Affiliation(s)
- Chinnathambi Velu
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Samuel Cirés
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diane L. Brinkman
- Australian Institute of Marine Science (AIMS), Townsville, QLD, Australia
| | - Kirsten Heimann
- North Queensland Algal Identification Facility, Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Centre for Marine Bioproducts Development (CMBD), College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
43
|
Liu G, Zhang G, Zhang S, Xu Y, Yang X, Zhang X. Degradation and mechanism of microcystin-LR by PbCrO 4 nanorods driven by visible light. CHEMOSPHERE 2020; 239:124739. [PMID: 31527000 DOI: 10.1016/j.chemosphere.2019.124739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
This work focuses on the photocatalytic removal of recalcitrant organic pollutants in water treatment. Based on facile precipitation reaction, we fabricated a photocatalyst (PbCrO4) in single crystals that present evident response to visible light and employed the catalyst in the photocatalytic decomposition of microcystin-LR (MC-LR). In the degradation test using the nanorods with prepared PbCrO4 photocatalyst, a 100% removal efficiency (27 min reaction) and a kinetics constant of 0.1356 min-1 were achieved. Such a high performance of PbCrO4 in photocatalytic conversion of MC-LR was ascribed to its high carrier separation efficiency, positive valence band (VB) position, and good delocalization of VB and conduction band (CB). The test of electron spin-resonance resonance (ESR) demonstrated that excessive free OH radicals were produced during the PbCrO4 photocatalysis of MC-LR. The density functional theory (DFT) and LC/MS/MS technology were employed to ascertain the intermediates during the MC-LR photocatalytic degradation. The major intermediates were resulted from the attack of hydroxyl radicals to the ADDA side chains of MC-LR structure. This study provides a proof-of-concept strategy to develop effective photocatalysts to efficiently produce OH radicals for the visible-light induced photocatalytic degradation of MC-LR in water.
Collapse
Affiliation(s)
- Guoshuai Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600, GA, Delft, Netherlands
| | - Guoqiang Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.
| | - Shuo Zhang
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600, GA, Delft, Netherlands
| | - Yangsen Xu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xun Yang
- School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Xuedong Zhang
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, PO Box 5048, 2600, GA, Delft, Netherlands
| |
Collapse
|
44
|
Hatakeyama M, Koizumi K, Boero M, Nobusada K, Hori H, Misonou T, Kobayashi T, Nakamura S. Unique Structural Relaxations and Molecular Conformations of Porphyra-334 at the Excited State. J Phys Chem B 2019; 123:7649-7656. [PMID: 31430154 DOI: 10.1021/acs.jpcb.9b03744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum chemistry based simulations were used to examine the excited state of porphyra-334, one of the fundamental mycosporine-like amino acids present in a wide variety of aqueous organisms. Our calculations reveal three characteristic aspects of porphyra-334 related to either its ground or excited state. Specifically, (i) the ground state (S0) structure consists of a planar geometry in which three units can be identified, the central cyclohexene ring, the glycine branch, and the threonine branch, reflecting the π conjugation of the system; (ii) the first singlet excited state (S1) shows a large oscillator strength and a typical ππ* excitation character; and (iii) upon relaxation at S1, the originally ground state planar structure undergoes a relaxation to a nonplanar one, S1, especially at the carbon-nitrogen (CN) groups linking the cyclohexene ring to the glycine or threonine arm. The induced nonplanarity can be ascribed to the fact that the carbon atoms of the CN groups prefer an sp3 hybridization in the S1 state. At the singlet state, these processes are unlikely to be trapped by singlet-triplet intersystem crossing especially when these occur in the hydrophilic zwitter-ion forms of porphyra-334. These results provide the missing information for thorough interpretation of the stability of porphyra-334 upon UV irradiation.
Collapse
Affiliation(s)
- Makoto Hatakeyama
- Sanyo-Onoda City University , 1-1-1 Daigakudori , Sanyo-Onoda , Yamaguchi 756-0884 , Japan.,Cluster for Science, Technology and Innovation Hub , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Kenichi Koizumi
- Cluster for Science, Technology and Innovation Hub , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Mauro Boero
- University of Strasbourg , Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS, UMR 7504 , 23 rue du Loess , F-67034 Strasbourg , France
| | - Katsuyuki Nobusada
- Department of Theoretical and Computational Molecular Science , Institute for Molecular Science , Myodaiji, Okazaki 444-8585 , Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Katsura, Kyoto 615-8520 , Japan
| | - Hirokazu Hori
- Graduate School of University of Yamanashi , 4-4-37 Takeda , Kofu , Yamanashi 400-8510 , Japan
| | - Taku Misonou
- Graduate School of University of Yamanashi , 4-4-37 Takeda , Kofu , Yamanashi 400-8510 , Japan
| | - Takao Kobayashi
- Mitsubishi Chemical Corporation , MCC-Group Science and Technology Research Center Inc. , 1000 Kamoshida-cho , Aoba-ku, Yokohama 227-8502 , Japan
| | - Shinichiro Nakamura
- Cluster for Science, Technology and Innovation Hub , RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Computational Chemistry Applications Unit, Advanced Center for Computing and Communication , RIKEN , 2-1, Hirosawa , Wako , Saitama 351-0198 , Japan
| |
Collapse
|
45
|
Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:258-272. [PMID: 30878933 DOI: 10.1016/j.scitotenv.2019.03.104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Natural and human activities lead to soil degradation and soil salinization. The decrease of farmlands threatens food security. There are approximately 1 billion ha salt-affected soils all over of world, which can be made available resources after chemical, physical and biological remediation. Nostoc, Anabaena and other cyanobacterial species have outstanding capabilities, such as the ability to fix nitrogen from the air, produce an extracellular matrix and produce compatible solutes. The remediation of salt-affected soil is a complex and difficult task. During the past years, much new research has been conducted that shows that cyanobacteria are effective for salt-affected soil remediation in laboratory studies and field trials. The related mechanisms for both salt tolerance and salt-affected soil remediation were also evaluated from the perspective of biochemistry, molecular biology and systems biology. The effect of cyanobacteria on salt-affected soil is related to nitrogen fixation and other mechanisms. There are complicated interactions among cyanobacteria, bacteria, fungi and the soil. The interaction between cyanobacteria and salt-tolerant plants should be considered if the cyanobacterium is utilized to improve the soil fertility in addition to performing soil remediation. It is critical to re-establish the micro-ecology in salt-affected soils and improve the salt affected soil remediation efficiency. The first challenge is the selection of suitable cyanobacterial strain. The co-culture of cyanobacteria and bacteria is also potential approach. The cultivation of cyanobacteria on a large scale should be optimized to improve productivity and decrease cost. The development of bio-remediating agents for salt-affected soil remediation also relies on other technical problems, such as harvesting and contamination control. The application of cyanobacteria in salt-affected soil remediation will reconstruct green agriculture and promote the sustainable development of human society.
Collapse
Affiliation(s)
- Han Li
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| | - He Huang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| |
Collapse
|
46
|
Farrokh P, Sheikhpour M, Kasaeian A, Asadi H, Bavandi R. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review. Biotechnol Prog 2019; 35:e2835. [PMID: 31063628 DOI: 10.1002/btpr.2835] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/07/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms which can be found in various environmental habitats. These photosynthetic bacteria are considered as promising feedstock for the production of the third- and the fourth-generation biofuels. The main subject of this review is highlighting the significant aspects of the biofuel production from cyanobacteria. The most recent investigations about the extraction or separation of the bio-oil from cyanobacteria are also adduced in the present review. Moreover, the genetic engineering of cyanobacteria for improving biofuel production and the impact of bioinformatics studies on the designing better-engineered strains are mentioned. The large-scale biofuel production is challenging, so the economic considerations to provide inexpensive biofuels are also cited. It seems that the future of biofuels is strongly dependent to the following items; understanding the metabolic pathways of the cyanobacterial species, progression in the construction of the engineered cyanobacteria, and inexpensive large-scale cultivation of them.
Collapse
Affiliation(s)
- Parisa Farrokh
- Department of cell and molecular biology, School of Biology, Damghan University, Damghan, Iran.,Institute of Biological Sciences, Damghan University, Damghan, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Asadi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Roya Bavandi
- Branch-Marine Science and Technology Faculty, Islamic Azad University North Tehran, Tehran, Iran
| |
Collapse
|
47
|
Li M, Eskridge KM, Wilkins MR. Optimization of polyhydroxybutyrate production by experimental design of combined ternary mixture (glucose, xylose and arabinose) and process variables (sugar concentration, molar C:N ratio). Bioprocess Biosyst Eng 2019; 42:1495-1506. [DOI: 10.1007/s00449-019-02146-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
|
48
|
Kultschar B, Dudley E, Wilson S, Llewellyn CA. Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure. Metabolites 2019; 9:E74. [PMID: 30995751 PMCID: PMC6523833 DOI: 10.3390/metabo9040074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/23/2022] Open
Abstract
Cyanobacteria have many defence strategies to overcome harmful ultraviolet (UV) stress including the production of secondary metabolites. Metabolomics can be used to investigate this altered metabolism via targeted and untargeted techniques. In this study we assessed the changes in the intra- and extracellular low molecular weight metabolite levels of Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR) supplemented with UV-B (15 µmol m-2 s-1 of PAR plus 3 µmol m-2 s-1 of UV-B) and intracellular levels during 48 h of PAR only (15 µmol m-2 s-1) with sampling points at 0, 2, 6, 12, 24 and 48 h. Gas chromatography-mass spectrometry (GC-MS) was used as a metabolite profiling tool to investigate the global changes in metabolite levels. The UV-B time series experiment showed an overall significant reduction in intracellular metabolites involved with carbon and nitrogen metabolism such as the amino acids tyrosine and phenylalanine which have a role in secondary metabolite production. Significant accumulation of proline was observed with a potential role in stress mitigation as seen in other photosynthetic organisms. 12 commonly identified metabolites were measured in both UV-B exposed (PAR + UV-B) and PAR only experiments with differences in significance observed. Extracellular metabolites (PAR + UV-B) showed accumulation of sugars as seen in other cyanobacterial species as a stress response to UV-B. In conclusion, a snapshot of the metabolome of C. fritschii was measured. Little work has been undertaken on C. fritschii, a novel candidate for use in industrial biotechnology, with, to our knowledge, no previous literature on combined intra- and extracellular analysis during a UV-B treatment time-series. This study is important to build on experimental data already available for cyanobacteria and other photosynthetic organisms exposed to UV-B.
Collapse
Affiliation(s)
- Bethan Kultschar
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Ed Dudley
- Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | - Steve Wilson
- Unilever Corporate Research, Colworth Park, Sharnbrook, Bedfordshire MK44 1LQ, UK.
| | - Carole A Llewellyn
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
49
|
Volatile Compounds Produced by Cyanobacteria Isolated from Mangrove Environment. Curr Microbiol 2019; 76:575-582. [DOI: 10.1007/s00284-019-01658-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
50
|
Costa JAV, Freitas BCB, Cruz CG, Silveira J, Morais MG. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:366-375. [PMID: 30729858 DOI: 10.1080/03601234.2019.1571366] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The loss of yields from agricultural production due to the presence of pests has been treated over the years with synthetic pesticides, but the use of these substances negatively affects the environment and presents health risks for consumers and animals. The development of agroecological systems using biopesticides represents a safe alternative that contributes to the reduction of agrochemical use and sustainable agriculture. Microalgae are able to biosynthesize a number of metabolites with potential biopesticidal action and can be considered potential biological agents for the control of harmful organisms to soils and plants. The present work aims to provide a critical perspective on the consequences of using synthetic pesticides, offering as an alternative the biopesticides obtained from microalgal biomass, which can be used together with the implementation of environmentally friendly agricultural systems.
Collapse
Affiliation(s)
- Jorge Alberto Vieira Costa
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Bárbara Catarina Bastos Freitas
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Camila Gonzales Cruz
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Jéssica Silveira
- a College of Chemistry and Food Engineering, Laboratory of Biochemical Engineering , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| | - Michele Greque Morais
- b College of Chemistry and Food Engineering, Laboratory of Microbiology and Biochemistry , Federal University of Rio Grande , Rio Grande , Rio Grande do Sul , Brazil
| |
Collapse
|