1
|
Bharti S, Raj A, Saratale GD, Romanholo Ferreira LF, Lucena de Souza R, Mulla SI, Bharagava RN. A critical review on the symbiotic effect of bacteria and microalgae on treatment of sewage with biofertilizer production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123704. [PMID: 39693975 DOI: 10.1016/j.jenvman.2024.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Wastes like sewage, kitchen and industrial are the major sources of environmental pollution and health hazards. Sewage contains 99.9% water and 0.1% solid waste including urinal waste and faecal matter alongwith large amounts of nitrate, nitrite, ammonium and phosphate ions. Sewage may also contain a variety of harmful contaminants like analgesics, antihypertensive drugs, antibiotics, dioxin, furans, polychlorinated biphenyls, chlorinated hydrocarbon pesticides, chlorine derivatives and plasticizers etc. making it more harmfull to environment and public health. Hence, sewage must be adequately treated by an effective process before its final discharge into the environment. Biological treatment of sewage is an emerging idea in recent years, which has diverse economic and environmental advantages. Sewage treatment by bacteria and microalgae has numerous advantages as it removes various excessive nutrients from waste with large biomass production and also prevents the utilization of toxic chemicals in conventional treatment process. Microalgae-bacterial biomass have potential to be used as biofertilizers, bio-stimulants and bio-seed primers in agricultural field as these contain various biologically active substances like polysaccharides, carotenoids, free fatty acids, phenols, and terpenoids. This review paper mainly discussing the sewage characteristics and different kinds of organic and inorganic pollutants it contained alongwith its harmfull impacts on environment and public health. It also deals the different conventional as well as emerging treatment technologies and different factors affecting the treatment efficiency. In addition, the utilization of developed microalgal and bacterial biomass as biofertilizer and its effects on crop plant alongwith future prospects has been also discussed in detail.
Collapse
Affiliation(s)
- Sandeep Bharti
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Division, Council for Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research (IITR), VishVigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | | | - Ranyere Lucena de Souza
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore-560064, Karnataka, India
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India.
| |
Collapse
|
2
|
Nguyen AQ, Mohammadi M, Alian M, Muralitharan G, Chauhan VS, Balan V. Exploring the versatility of Porphyridium sp.: A comprehensive review of cultivation, bio-product extraction, purification, and characterization techniques. Biotechnol Adv 2024; 77:108471. [PMID: 39437877 DOI: 10.1016/j.biotechadv.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Interest in red microalgae of the Porphyridium genus has surged due to their richness in phycobiliproteins, polyunsaturated fatty acids, and sulfated polysaccharides. These biomasses and their derivatives find applications across food, feed, nutraceutical, pharmaceutical, and cosmetic industries. A deeper understanding of their properties and extraction methods is essential to optimize downstream processing. This paper comprehensively reviews Porphyridium sp., focusing on cultivation techniques, bioproduct extraction, purification, and characterization. It delves into protein, lipid, and polysaccharide extraction, considering the influence of culture conditions on biomass yield. Various methods like chromatography, electrophoresis, and membrane-based techniques for cell lysis and bioproduct recovery are explored, highlighting their pros and cons. By offering diverse insights, this review aims to inspire innovative research and industry progress in red microalgae biotechnology, contributing to sustainable solutions across sectors.
Collapse
Affiliation(s)
- Anh Quynh Nguyen
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Gangatharan Muralitharan
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, Tamilnadu, India; National Repository for Microalgae and Cyanobacteria - Freshwater and Marine (NRMC - F & M), Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vikas Singh Chauhan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, Karnataka, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA.
| |
Collapse
|
3
|
Bora A, Thondi Rajan AS, Ponnuchamy K, Muthusamy G, Alagarsamy A. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174230. [PMID: 38942321 DOI: 10.1016/j.scitotenv.2024.174230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Fossil fuel limitations and their influence on climate change through atmospheric greenhouse gas emissions have made the excessive use of fossil fuels widely recognized as unsustainable. The high lipid content, carbon-neutral nature and potential as a biofuel source have made microalgae a subject of global study. Microalgae are a promising supply of biomass for third-generation biofuels production since they are renewable. They have the potential to produce significant amounts of biofuel and are considered a sustainable alternative to non-renewable energy sources. Microalgae are currently incapable to synthesize algal biofuel on an extensive basis in a sustainable manner, despite their significance in the global production of biofuels. Wastewater contains nutrients (both organic and inorganic) which is essential for the development of microalgae. Microalgae and wastewater can be combined to remediate waste effectively. Wastewater of various kinds such as industrial, agricultural, domestic, and municipal can be used as a substrate for microalgal growth. This process helps reduce carbon dioxide emissions and makes the production of biofuels more cost-effective. This critical review provides a detailed analysis of the utilization of wastewater as a growth medium for microalgal - biofuel production. The review also highlights potential future strategies to improve the commercial production of biofuels from microalgae.
Collapse
Affiliation(s)
- Abhispa Bora
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Angelin Swetha Thondi Rajan
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Arun Alagarsamy
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
4
|
Xu B, Zhang Q, Lu Z, Li Y, Zuo Y, Gan N, Zhan J, Song L. Production of eicosapentaenoic acid by Vacuoliviride crystalliferum under 20% CO 2 conditions. BIORESOURCE TECHNOLOGY 2024; 410:131307. [PMID: 39155016 DOI: 10.1016/j.biortech.2024.131307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Utilizing flue gas CO2 to co-produce eicosapentaenoic acid (EPA) with microalgae is considered an ideal approach for combating climate change and reducing cultivation costs. However, microalgal species that can efficiently produce EPA under high-CO2 conditions are scarce. This study identified that the eustigmatophycean strain Vacuoliviride crystalliferum demonstrates rapid growth under 20 % CO2 conditions (0.22 vvm), achieving a biomass concentration and productivity of 3.90 g/L and 229.26 mg/L/d, respectively. The EPA content and EPA productivity were found to be 4.28 % (w/w) and 9.80 mg/L/d, respectively. Additionally, an improved biomass concentration of 3.39 g/L and EPA content and productivity of 4.32 % (w/w) and 11.28 mg/L/d were obtained in a 30 L up-scaled cultivation system. Taken together, these findings suggest that V. crystalliferum is a promising candidate for integrating flue gas sequestration with EPA production.
Collapse
Affiliation(s)
- Baolin Xu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- National Aquatic Biological Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhe Lu
- Xiaoliang Research Station of Tropical Coastal Ecosystems, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China
| | - Yanhua Li
- YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Yanxia Zuo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqing Gan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lirong Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Yeheyo HA, Ealias AM, George G, Jagannathan U. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121409. [PMID: 38861884 DOI: 10.1016/j.jenvman.2024.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The escalating environmental concerns arising from soils contamination with heavy metals (HMs) and pesticides (PSTs) necessitate the development of sustainable and effective remediation strategies. These contaminants, known for their carcinogenic properties and toxicity even at small amounts, pose significant threats to both environmental ecology and human health. While various chemical and physical treatments are employed globally, their acceptance is often hindered by prolonged remediation times, high costs, and inefficacy in areas with exceptionally high pollutant concentrations. A promising emerging trend in addressing this issue is the utilization of microalgae for bioremediation. Bioremediation, particularly through microalgae, presents numerous benefits such as high efficiency, low cost, easy accessibility and an eco-friendly nature. This approach has gained widespread use in remediating HM and PST pollution, especially in large areas. This comprehensive review systematically explores the bioremediation potential of microalgae, shedding light on their application in mitigating soil pollutants. The paper summarizes the mechanisms by which microalgae remediate HMs and PSTs and considers various factors influencing the process, such as pH, temperature, pollutant concentration, co-existing pollutants, time of exposure, nutrient availability, and light intensity. Additionally, the review delves into the response and tolerance of various microalgae strains to these contaminants, along with their bioaccumulation capabilities. Challenges and future prospects in the microalgal bioremediation of pollutants are also discussed. Overall, the aim is to offer valuable insights to facilitate the future development of commercially viable and efficient microalgae-based solutions for pollutant bioremediation.
Collapse
Affiliation(s)
- Hillary Agaba Yeheyo
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Anu Mary Ealias
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Giphin George
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Umamaheswari Jagannathan
- Department of Civil Engineering, Priyadarshini Engineering College, Vaniyambadi, Tirupattur, TN, 635751, India.
| |
Collapse
|
6
|
Wagner H, Schad A, Höhmann S, Briol TA, Wilhelm C. Carbon and energy balance of biotechnological glycolate production from microalgae in a pre-industrial scale flat panel photobioreactor. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:42. [PMID: 38486283 PMCID: PMC10941469 DOI: 10.1186/s13068-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
Glycolate is produced by microalgae under photorespiratory conditions and has the potential for sustainable organic carbon production in biotechnology. This study explores the glycolate production balance in Chlamydomonas reinhardtii, using a custom-built 10-L flat panel bioreactor with sophisticated measurements of process factors such as nutrient supply, gassing, light absorption and mass balances. As a result, detailed information regarding carbon and energy balance is obtained to support techno-economic analyses. It is shown how nitrogen is a crucial element in the biotechnological process and monitoring nitrogen content is vital for optimum performance. Moreover, the suitable reactor design is advantageous to efficiently adjust the gas composition. The oxygen content has to be slightly above 30% to induce photorespiration while maintaining photosynthetic efficiency. The final volume productivity reached 27.7 mg of glycolate per litre per hour, thus, the total process capacity can be calculated to 13 tonnes of glycolate per hectare per annum. The exceptional volume productivity of both biomass and glycolate production is demonstrated, and consequently can achieve a yearly CO2 sequestration rate of 35 tonnes per hectare. Although the system shows such high productivity, there are still opportunities to enhance the achieved volume productivity and thus exploit the biotechnological potential of glycolate production from microalgae.
Collapse
Affiliation(s)
- Heiko Wagner
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Antonia Schad
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Sonja Höhmann
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Christian Wilhelm
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
7
|
Williamson E, Ross IL, Wall BT, Hankamer B. Microalgae: potential novel protein for sustainable human nutrition. TRENDS IN PLANT SCIENCE 2024; 29:370-382. [PMID: 37690907 DOI: 10.1016/j.tplants.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
To support a global population of ~10 billion people in 2050, dietary protein demand is forecast to increase 32-78% compared to 2017, requiring significantly higher planetary resources. Microalgae are an attractive sustainable protein source compared with current plant and animal sources. Benefits include mass scalability, low CO2 emissions, and significantly reduced land and freshwater use per unit protein. Microalgae are already used as food products and numerous species exhibit high total protein contents and well-balanced essential amino acid (EAA) compositions for human dietary requirements. Microalgae proteins are also bioavailable for human digestion, and downstream processing steps are likely to further enhance protein digestibility. Species, cultivation, and process/product optimisation are actively being developed to enhance their nutritional, social, and environmental benefits.
Collapse
Affiliation(s)
- Ellen Williamson
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian L Ross
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin T Wall
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, EX1 2LU, UK
| | - Benjamin Hankamer
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
8
|
Alavianghavanini A, Shayesteh H, Bahri PA, Vadiveloo A, Moheimani NR. Microalgae cultivation for treating agricultural effluent and producing value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169369. [PMID: 38104821 DOI: 10.1016/j.scitotenv.2023.169369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Wastewater generated within agricultural sectors such as dairies, piggeries, poultry farms, and cattle meat processing plants is expected to reach 600 million m3 yr-1 globally. Currently, the wastewater produced by these industries are primarily treated by aerobic and anaerobic methods. However, the treated effluent maintains a significant concentration of nutrients, particularly nitrogen and phosphorus. On the other hand, the valorisation of conventional microalgae biomass into bioproducts with high market value still requires expensive processing pathways such as dewatering and extraction. Consequently, cultivating microalgae using agricultural effluents shows the potential as a future technology for producing value-added products and treated water with low nutrient content. This review explores the feasibility of growing microalgae on agricultural effluents and their ability to remove nutrients, specifically nitrogen and phosphorus. In addition to evaluating the market size and value of products from wastewater-grown microalgae, we also analysed their biochemical characteristics including protein, carbohydrate, lipid, and pigment content. Furthermore, we assessed the costs of both upstream and downstream processing of biomass to gain a comprehensive understanding of the economic potential of the process. The findings from this study are expected to facilitate further techno-economic and feasibility assessments by providing insights into optimized processing pathways and ultimately leading to the reduction of costs.
Collapse
Affiliation(s)
- Arsalan Alavianghavanini
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia
| | - Hajar Shayesteh
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
9
|
Li X, Dong Y, Chen K, Perumal AB, Zhan Z, Gouda M, He Y. 13C-metabolic flux analysis of lipid accumulation in the green microalgae Tetradesmus obliquus under nitrogen deficiency stress. BIORESOURCE TECHNOLOGY 2023; 388:129740. [PMID: 37717702 DOI: 10.1016/j.biortech.2023.129740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Metabolic fluxes (MF) serve as the functional phenotypes of biochemical processes and are crucial to describe the distribution of precursors within metabolic networks. There is a lack of experimental observations for carbon flux towards lipids, which is important for biodiesel generation. Here, the accumulation of lipid, and MF in Tetradesmus obliquus under nitrogen deficiency stress (NF) using a 13C isotope tracer at different time intervals was investigated. The 13C based MF showed enhanced de novo synthesis of G3P and PEP, indicating increased carbon flux from CO2 into lipid synthesis. An increase in palmitic acid (3500 μmol/mg), linoleic acid (2100 μmol/mg), and oleic acid (2000 μmol/mg) was observed. The accumulation of C16:0 under NF was mainly related to de novo synthesis while C18:3 was accumulated through a non de novo pathway. Under NF stress, T. obliquus had higher flux in PPP and glycolysis pathway, together, it might provide more NADPH and substrate acetyl-CoA for fatty acid synthesis.
Collapse
Affiliation(s)
- Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yulun Dong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Anand Babu Perumal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Zhihao Zhan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
de Cassia Soares Brandão B, Oliveira CYB, Dos Santos EP, de Abreu JL, Oliveira DWS, da Silva SMBC, Gálvez AO. Microalgae-based domestic wastewater treatment: a review of biological aspects, bioremediation potential, and biomass production with biotechnological high-value. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1384. [PMID: 37889346 DOI: 10.1007/s10661-023-12031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
This review aims to perform an updated bibliographical survey on the cultivation of microalgae in domestic wastewater with a focus on biotechnological aspects. It was verified that the largest number of researches developed was about cultures in microalgae-bacteria consortium and mixed cultures of microalgae, followed by researches referring to the species Chlorella vulgaris and to the family Scenedesmaceae. According to published studies, these microorganisms are efficient in the biological treatment of domestic wastewater, as well as in the production of high value-added biomass, as they are capable of biosorbing the organic and inorganic compounds present in the culture medium, thus generating cells with high levels of lipids, proteins, and carbohydrates. These compounds are of great importance for different industry sectors, such as pharmaceuticals, food, and also for agriculture and aquaculture. In addition, biomolecules produced by microalgae can be extracted for several biotechnological applications; however, most studies focus on the production of biofuels, with biodiesel being the main one. There are also other emerging applications that still require more in-depth research, such as the use of biomass as a biofertilizer and biostimulant in the production of bioplastic. Therefore, it is concluded that the cultivation of microalgae in domestic wastewater is a sustainable way to promote effluent bioremediation and produce valuable biomass for the biobased industry, contributing to the development of technology for the green economy.
Collapse
Affiliation(s)
| | - Carlos Yure B Oliveira
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Jéssika Lima de Abreu
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Alfredo Olivera Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
11
|
Rollin S, Gupta A, Franco CMM, Singh S, Puri M. Development of sustainable downstream processing for nutritional oil production. Front Bioeng Biotechnol 2023; 11:1227889. [PMID: 37885455 PMCID: PMC10598382 DOI: 10.3389/fbioe.2023.1227889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Nutritional oils (mainly omega-3 fatty acids) are receiving increased attention as critical supplementary compounds for the improvement and maintenance of human health and wellbeing. However, the predominant sources of these oils have historically shown numerous limitations relating to desirability and sustainability; hence the crucial focus is now on developing smarter, greener, and more environmentally favourable alternatives. This study was undertaken to consider and assess the numerous prevailing and emerging techniques implicated across the stages of fatty acid downstream processing. A structured and critical comparison of the major classes of disruption methodology (physical, chemical, thermal, and biological) is presented, with discussion and consideration of the viability of new extraction techniques. Owing to a greater desire for sustainable industrial practices, and a desperate need to make nutritional oils more available; great emphasis has been placed on the discovery and adoption of highly sought-after 'green' alternatives, which demonstrate improved efficiency and reduced toxicity compared to conventional practices. Based on these findings, this review also advocates new forays into application of novel nanomaterials in fatty acid separation to improve the sustainability of nutritional oil downstream processing. In summary, this review provides a detailed overview of the current and developing landscape of nutritional oil; and concludes that adoption and refinement of these sustainable alternatives could promptly allow for development of a more complete 'green' process for nutritional oil extraction; allowing us to better meet worldwide needs without costing the environment.
Collapse
Affiliation(s)
- Samuel Rollin
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Adarsha Gupta
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Christopher M. M. Franco
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | | | - Munish Puri
- Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
12
|
Cruz JD, Delattre C, Felpeto AB, Pereira H, Pierre G, Morais J, Petit E, Silva J, Azevedo J, Elboutachfaiti R, Maia IB, Dubessay P, Michaud P, Vasconcelos V. Bioprospecting for industrially relevant exopolysaccharide-producing cyanobacteria under Portuguese simulated climate. Sci Rep 2023; 13:13561. [PMID: 37604835 PMCID: PMC10442320 DOI: 10.1038/s41598-023-40542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
Cyanobacterial exopolysaccharides (EPS) are potential candidates for the production of sustainable biopolymers. Although the bioactive and physicochemical properties of cyanobacterial-based EPS are attractive, their commercial exploitation is limited by the high production costs. Bioprospecting and characterizing novel EPS-producing strains for industrially relevant conditions is key to facilitate their implementation in various biotechnological applications and fields. In the present work, we selected twenty-five Portuguese cyanobacterial strains from a diverse taxonomic range (including some genera studied for the first time) to be grown in diel light and temperature, simulating the Portuguese climate conditions, and evaluated their growth performance and proximal composition of macronutrients. Synechocystis and Cyanobium genera, from marine and freshwater origin, were highlighted as fast-growing (0.1-0.2 g L-1 day-1) with distinct biomass composition. Synechocystis sp. LEGE 07367 and Chroococcales cyanobacterium LEGE 19970, showed a production of 0.3 and 0.4 g L-1 of released polysaccharides (RPS). These were found to be glucan-based polymers with high molecular weight and a low number of monosaccharides than usually reported for cyanobacterial EPS. In addition, the absence of known cyanotoxins in these two RPS producers was also confirmed. This work provides the initial steps for the development of cyanobacterial EPS bioprocesses under the Portuguese climate.
Collapse
Affiliation(s)
- José Diogo Cruz
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Hugo Pereira
- GreenCoLab - Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Guillaume Pierre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - João Morais
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Emmanuel Petit
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT d'Amiens, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products S.A, Rua 25 de Abril 19, 2445-287, Pataias, Portugal
| | - Joana Azevedo
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - Redouan Elboutachfaiti
- UMRT INRAE 1158 BioEcoAgro, BIOlogie des Plantes et Innovation (BIOPI), Université de Picardie Jules Verne, IUT d'Amiens, Avenue des Facultés, Le Bailly, 80025, Amiens, France
| | - Inês B Maia
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139, Gambelas, Faro, Portugal
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, 63000, Clermont-Ferrand, France
| | - Vitor Vasconcelos
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
13
|
Lima ADSP, Cahú TB, Dantas DMM, Veras BO, Oliveira CYB, Souza RS, Moraes LBS, Silva FCO, Araújo MIF, Gálvez AO, Souza RB. Accessing the biotechnological potential of a novel isolated microalga from a semi-arid region of Brazil. FOOD SCI TECHNOL INT 2023:10820132231186171. [PMID: 37408365 DOI: 10.1177/10820132231186171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The use of microalgae as a source of food and pharmaceutical ingredients has garnered growing interest in recent years. Despite the rapid growth of the nutraceutical market, knowledge about the potential of bioactive molecules from microalgae remains insufficient. The present study aimed to investigate the biotechnological potential of the green microalga Desmodesmus armatus isolated from a semi-arid region of Brazil. The algal biomass was characterized in terms of gross biochemical composition, exopolysaccharide content, enzymatic inhibition capacity, and antioxidant, antibacterial, and hemolytic activities from solvents of different polarities (water, ethanol, acetone, and hexane). D armatus biomass had 40% of crude protein content, 25.94% of lipids, and 25.03% of carbohydrates. The prebiotic potential of exopolysaccharides from D armatus was demonstrated, which stimulated the growth of Lacticaseibacillus rhamnosus and Lactiplantibacillus plantarum bacteria strains. Moreover, the enzyme inhibition capacity for the proteases chymotrypsin (34.78%-45.8%) and pepsin (16.64%-27.27%), in addition to α-amylase (24.79%) and lipase (31.05%) was confirmed. The antioxidant potential varied between the different extracts, with 2,2-diphenyl-1-picrylhydrazyl sequestration values varying between 17.51% and 63.12%, and those of the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method between 6.82% and 22.89%. In the antibacterial activity test, only the ethanolic extract showed inhibition against Listeria sp. (at minimum inhibitory concentration [MIC] = 256 µg mL-1). This fraction also presented the highest significant levels of hemolysis (31.88%-52.45%). In summary, the data presented in the study suggest the presence of biocompounds with biotechnological and nutraceutical potential in the D armatus biomass. Future studies may evaluate the inclusion of this biomass in foods in order to increase their biological value.
Collapse
Affiliation(s)
- Alysson de Sá P Lima
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Thiago B Cahú
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Danielli M M Dantas
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Bruno O Veras
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Carlos Y B Oliveira
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Rayanna S Souza
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Laenne B S Moraes
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Francisca C O Silva
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Maria I F Araújo
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Alfredo O Gálvez
- Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Ranilson B Souza
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| |
Collapse
|
14
|
Dini I. The Potential of Algae in the Nutricosmetic Sector. Molecules 2023; 28:molecules28104032. [PMID: 37241773 DOI: 10.3390/molecules28104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Seaweeds or algae are marine autotrophic organisms. They produce nutrients (e.g., proteins, carbohydrates, etc.) essential for the survival of living organisms as they participate in biochemical processes and non-nutritive molecules (such as dietary fibers and secondary metabolites), which can improve their physiological functions. Seaweed polysaccharides, fatty acids, peptides, terpenoids, pigments, and polyphenols have biological properties that can be used to develop food supplements and nutricosmetic products as they can act as antibacterial, antiviral, antioxidant, and anti-inflammatory compounds. This review examines the (primary and secondary) metabolites produced by algae, the most recent evidence of their effect on human health conditions, with particular attention to what concerns the skin and hair's well-being. It also evaluates the industrial potential of recovering these metabolites from biomass produced by algae used to clean wastewater. The results demonstrate that algae can be considered a natural source of bioactive molecules for well-being formulations. The primary and secondary metabolites' upcycling can be an exciting opportunity to safeguard the planet (promoting a circular economy) and, at the same time, obtain low-cost bioactive molecules for the food, cosmetic, and pharmaceutical industries from low-cost, raw, and renewable materials. Today's lack of methodologies for recovering bioactive molecules in large-scale processes limits practical realization.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
15
|
Parmar P, Kumar R, Neha Y, Srivatsan V. Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. FRONTIERS IN PLANT SCIENCE 2023; 14:1073546. [PMID: 37063190 PMCID: PMC10101342 DOI: 10.3389/fpls.2023.1073546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/05/2023] [Indexed: 06/19/2023]
Abstract
Sustainable agriculture practices involve the application of environment-friendly plant growth promoters and additives that do not negatively impact the health of the ecosystem. Stringent regulatory frameworks restricting the use of synthetic agrochemicals and the increase in demand for organically grown crops have paved the way for the development of novel bio-based plant growth promoters. In this context, microalgae biomass and derived agrochemicals offer novel sources of plant growth promotors that enhance crop productivity and impart disease resistance. These beneficial effects could be attributed to the presence of wide range of biomolecules such as soluble amino acid (AA), micronutrients, polysaccharides, phytohormones and other signaling molecules in microalgae biomass. In addition, their phototrophic nature, high photosynthetic efficiency, and wide environmental adaptability make them an attractive source of biostimulants, biofertilizers and biopesticides. The present review aims to describe the various plant growth promoting metabolites produced by microalgae and their effects on plant growth and productivity. Further, the effects elicited by microalgae biostimulants with respect to different modes of applications such as seed treatments, foliar spray and soil/root drenching is reviewed in detail. In addition, the ability of microalgae metabolites to impart tolerance against various abiotic and biotic stressors along with the mechanism of action is discussed in this paper. Although the use of microalgae based biofertilizers and biostimulants is gaining popularity, the high nutrient and water requirements and energy intensive downstream processes makes microalgae based technology commercially unsustainable. Addressing this challenge, we propose a circular economy model of microalgae mediated bioremediation coupled with biorefinery approaches of generating high value metabolites along with biofertilizer applications. We discuss and review new trends in enhancing the sustainability of microalgae biomass production by co-cultivation of algae with hydroponics and utilization of agriculture effluents.
Collapse
Affiliation(s)
- Priyanka Parmar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Raman Kumar
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| | - Yograj Neha
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Council of Scientific and Industrial Research (CSIR)- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research -Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
16
|
Barsanti L, Gualtieri P. Glucans, Paramylon and Other Algae Bioactive Molecules. Int J Mol Sci 2023; 24:ijms24065844. [PMID: 36982916 PMCID: PMC10059136 DOI: 10.3390/ijms24065844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Algae (macro- and micro-algae) can be defined as light-driven cell factories that synthesize bioactive compounds consisting of primary metabolites (i [...].
Collapse
Affiliation(s)
- Laura Barsanti
- Istituto di Biofisica, Area della Ricerca CNR, via Moruzzi 1, 56124 Pisa, Italy
| | - Paolo Gualtieri
- Istituto di Biofisica, Area della Ricerca CNR, via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
17
|
Aratboni HA, Rafiei N, Allaf MM, Abedini S, Rasheed RN, Seif A, Wang S, Ramirez JRM. Nanotechnology: An outstanding tool for increasing and better exploitation of microalgae valuable compounds. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
18
|
Pessi BA, Baroukh C, Bacquet A, Bernard O. A universal dynamical metabolic model representing mixotrophic growth of Chlorella sp. on wastes. WATER RESEARCH 2023; 229:119388. [PMID: 36462256 DOI: 10.1016/j.watres.2022.119388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/02/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
An emerging idea is to couple wastewater treatment and biofuel production using microalgae to achieve higher productivities and lower costs. This paper proposes a metabolic modeling of Chlorella sp. growing on fermentation wastes (blend of acetate, butyrate and other acids) in mixotrophic conditions, accounting also for the possible inhibitory substrates. This model extends previous works by modifying the metabolic network to include the consumption of glycerol and glucose by Chlorella sp., with the goal to test the addition of these substrates in order to overcome butyrate inhibition. The metabolic model was built using the DRUM framework and consists of 188 reactions and 173 metabolites. After a calibration phase, the model was successfully challenged with data from 122 experiments collected from scientific literature in autotrophic, heterotrophic and mixotrophic conditions. The optimal feeding strategy estimated with the model reduces the time to consume the volatile fatty acids from 16 days to 2 days. The high prediction capability of this model opens new routes for enhancing design and operation in waste valorization using microalgae.
Collapse
Affiliation(s)
| | - Caroline Baroukh
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet Tolosan, France
| | - Anais Bacquet
- LOV, UMR 7093, Sorbonne university, CNRS, Villefranche-sur-mer, France
| | - Olivier Bernard
- Biocore, INRIA, Université Côte d'Azur, Sophia Antipolis, France; LOV, UMR 7093, Sorbonne university, CNRS, Villefranche-sur-mer, France
| |
Collapse
|
19
|
Bader AN, Sanchez Rizza L, Consolo VF, Curatti L. Bioprospecting for fungal enzymes for applications in microalgal biomass biorefineries. Appl Microbiol Biotechnol 2023; 107:591-607. [PMID: 36527478 DOI: 10.1007/s00253-022-12328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Microalgal biomass is a promising feedstock for biofuels, feed/food, and biomaterials. However, while production and commercialization of single-product commodities are still not economically viable, obtaining multiple products in a biomass biorefinery faces several techno-economic challenges. The aim of this study was to identify a suitable source of hydrolytic enzymes for algal biomass saccharification. Screening of twenty-six fungal isolates for secreted enzymes activity on Chlamydomonas reinhardtii biomass resulted in the identification of Aspergillus niger IB-34 as a candidate strain. Solid-state fermentation on wheat bran produced the most active enzyme preparations. From sixty-five proteins identified by liquid chromatography coupled to mass spectrometry (LC-MS) (ProteomeXchange, identifier PXD034998) from A. niger IB-34, the majority corresponded to predicted secreted proteins belonging to the Gene Ontology categories of catalytic activity/hydrolase activity on glycosyl and O-glycosyl compounds. Skimmed biomass of biotechnologically relevant strains towards the production of commodities, Chlorella sorokiniana and Scenedesmus obliquus, was fully saccharified after a mild pretreatment at 80 °C for 10 min, at a high biomass load of 10% (w/v). The soluble liquid stream, after skimming and saccharification of biomass of both strains, was further converted into ethanol by fermentation with Saccharomyces cerevisiae at a theoretical maximum efficiency, in a separated saccharification and fermentation assays. The resulting insoluble protein, after biomass skimming with an organic solvent and enzymatic saccharification, was highly digestible in an in vitro digestion assay. Proof of concept is presented for an enzyme-assisted biomass biorefinery recovering 81% of the main biomass fractions in a likely suitable form for the conversion of lipids and carbohydrates into biofuels and proteins into feed/food. KEY POINTS: • Twenty-six fungal extracts were analyzed for saccharification of microalgal biomass. • Skimmed biomass was fully enzymatically saccharified and fermented into ethanol. • Up to 81% recovery of biomass fractions suitable for biofuels and feed/food.
Collapse
Affiliation(s)
- Araceli Natalia Bader
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Lara Sanchez Rizza
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Verónica Fabiana Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Leonardo Curatti
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina.
| |
Collapse
|
20
|
Velasco A, Murillo-Martínez MM, Granada-Moreno CI, Aizpuru A, Vigueras-Ramírez G, González-Sánchez A. Short-term tuning of microalgal composition by exposition to different irradiance and small doses of sulfide. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04338-8. [PMID: 36689159 DOI: 10.1007/s12010-023-04338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Suitability of microalgae valorization mainly depends on its biochemical composition. Overall, among all microalgal derivatives, pigments currently stand out as the major added-value component. While it is well recognized that microalgal growth conditions strongly affect biomass composition, final tuning of already grown microalgae has been scarcely studied. Herein, pigment crude extract and debris biomass composition of an already grown microalgal consortium was evaluated after a short-term exposure (90 min) to different levels of irradiance (15, 50, 120 μmol m-2 s-1) and sulfide concentrations (0, 3.2, 16 mg L-1). Although lipid, protein, and carbohydrate contents of debris biomass were not decisively modified by the short-term exposures, pigments content of the crude extracts were strongly modified after 90-min exposure at given sulfide and irradiance conditions. Particularly, a higher content of chlorophyll a, chlorophyll b, and total carotenoids was estimated at an optimal sulfide concentration of 5 mg L-1, and the higher irradiance of 120 μmol m-2 s-1. Contrarily, the average irradiation level of 50 μmol m-2 s-1 and the absence of sulfide stimulated the production of phycoerythrin and phycocyanin which could be increased by 65 and 50%, respectively. Thus, a final qualitative and quantitative tuning of pigment content is plainly achievable on grown microalgal biomass, in a reduced exposure time, at given irradiance or sulfide conditions.
Collapse
Affiliation(s)
- Antonio Velasco
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - María M Murillo-Martínez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Claudia I Granada-Moreno
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Aitor Aizpuru
- Universidad del Mar, Campus Puerto Ángel, San Pedro Pochutla, 70902, Oaxaca, Mexico
| | - Gabriel Vigueras-Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, Cuajimalpa de Morelos, 05348, Mexico City, Mexico
| | - Armando González-Sánchez
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510, Mexico City, Mexico.
| |
Collapse
|
21
|
Lee TM, Lin JY, Tsai TH, Yang RY, Ng IS. Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. BIORESOURCE TECHNOLOGY 2023; 368:128350. [PMID: 36414139 DOI: 10.1016/j.biortech.2022.128350] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide is the major greenhouse gas and regards as the critical issue of global warming and climate changes. The inconspicuous microalgae are responsible for 40% of carbon fixation among all photosynthetic plants along with a higher photosynthetic efficiency and convert the carbon into lipids, protein, pigments, and bioactive compounds. Genetic approach and metabolic engineering are applied to accelerate the growth rate and biomass of microalgae, hence achieve the mission of carbon neutrality. Meanwhile, CRISPR/Cas9 is efficiently to enhance the productivity of high-value compounds in microalgae for it is easier operation, more affordable and is able to regulate multiple genes simultaneously. The genetic engineering strategies provide the multidisciplinary concept to evolute and increase the CO2 fixation rate through Calvin-Benson-Bassham cycle. Therefore, the technologies, bioinformatics tools, systematic engineering approaches for carbon neutrality and circular economy are summarized and leading one step closer to the decarbonization society in this review.
Collapse
Affiliation(s)
- Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Han Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
22
|
Marine macroalgae polysaccharides-based nanomaterials: an overview with respect to nanoscience applications. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Exploration of marine macroalgae poly-saccharide-based nanomaterials is emerging in the nanotechnology field, such as wound dressing, water treatment, environmental engineering, biosensor, and food technology.
Main body
In this article, the current innovation and encroachments of marine macroalgae polysaccharide-based nanoparticles (NPs), and their promising opportunities, for future prospect in different industries are briefly reviewed. The extraction and advancement of various natural sources from marine polysaccharides, including carrageenan, agarose, fucoidan, and ulvan, are highlighted in order to provide a wide range of impacts on the nanofood technology. Further, seaweed or marine macroalgae is an unexploited natural source of polysaccharides, which involves numerous different phytonutrients in the outermost layer of the cell and is rich in sulphated polysaccharides (SP), SP-based nanomaterial which has an enhanced potential value in the nanotechnology field.
Conclusion
At the end of this article, the promising prospect of SP-based NPs and their applications in the food sector is briefly addressed.
Collapse
|
23
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
24
|
Pulgarin A, Decker J, Chen J, Giannakis S, Ludwig C, Refardt D, Pick H. Effective removal of the rotifer Brachionus calyciflorus from a Chlorella vulgaris microalgal culture by homogeneous solar photo-Fenton at neutral pH. WATER RESEARCH 2022; 226:119301. [PMID: 36369688 DOI: 10.1016/j.watres.2022.119301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this study, a citrate-modified photo-Fenton process was successfully applied to decontaminate a Chlorella vulgaris microalgae culture spiked with the rotifer Brachionus calyciflorus (5 individuals mL-1). The applied treatment (1 mg L-1 Fe2+, 20 mg L-1 H2O2, 17.5 mg L-1 citric acid) had only moderate effects on viability and regrowth of the microalgae since, after a short post-treatment delay of a few days, they reached final cell densities similar to that obtained for microalgae cultures that were not spiked. The decontamination was effective as no regrowth of rotifers was observed in the microalgae cultures after treatment. The efficacy of the citrate-modified photo-Fenton treatment was also studied with a higher starting concentration of 20 rotifers mL-1 and was compared with a solar light/H2O2 treatment. Results show that both treatments had similar efficacies on the rotifer elimination, but that the citrate-modified photo-Fenton treatment had a lower negative impact on the regrowth of microalgae than the solar light/H2O2 treatment. However, when microalgae cultures were spiked with 20 rotifers mL-1, rotifers were only partially inactivated and post-treatment regrowth occurred, which highlights the importance to apply the photo-Fenton process at an early stage of a contamination to achieve full rotifer elimination. In any case, a contamination with 5 rotifers mL-1 is already a significant threat as numbers above 1000 rotifers mL-1 were reached after 14 days and caused the microalgae culture to fail. Overall, our treatment suggests that the citrate-modified solar photo-Fenton process is an environmentally friendly solution to support the maintenance of contaminant-free microalgal cultures.
Collapse
Affiliation(s)
- Adrian Pulgarin
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland
| | - Jérémie Decker
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland
| | - Jiahua Chen
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/ Profesor Aranguren, s/n, ES-28040 Madrid, Spain.
| | - Christian Ludwig
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland; Paul Scherrer Institute (PSI), Energy and Environment Research Division (ENE), Bioenergy and Catalysis Laboratory (LBK), Chemical Processes and Materials Group (CPM), CH-5232, Villigen PSI, Switzerland
| | - Dominik Refardt
- Zurich University of Applied Sciences (ZHAW), Institute of Natural Resource Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland
| | - Horst Pick
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), GR-LUD, Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
25
|
Calijuri ML, Silva TA, Magalhães IB, Pereira ASADP, Marangon BB, Assis LRD, Lorentz JF. Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. CHEMOSPHERE 2022; 305:135508. [PMID: 35777544 DOI: 10.1016/j.chemosphere.2022.135508] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microalgae are a potential feedstock for several bioproducts, mainly from its primary and secondary metabolites. Lipids can be converted in high-value polyunsaturated fatty acids (PUFA) such as omega-3, carbohydrates are potential biohydrogen (bioH2) sources, proteins can be converted into biopolymers (such as bioplastics) and pigments can achieve high concentrations of valuable carotenoids. This work comprehends the current practices for the production of such products from microalgae biomass, with insights on technical performance, environmental and economical sustainability. For each bioproduct, discussion includes insights on bioprocesses, productivity, commercialization, environmental impacts and major challenges. Opportunities for future research, such as wastewater cultivation, arise as environmentally attractive alternatives for sustainable production with high potential for resource recovery and valorization. Still, microalgae biotechnology stands out as an attractive topic for it research and market potential.
Collapse
Affiliation(s)
- Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Thiago Abrantes Silva
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Iara Barbosa Magalhães
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Alexia Saleme Aona de Paula Pereira
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bianca Barros Marangon
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Letícia Rodrigues de Assis
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Juliana Ferreira Lorentz
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Advanced Environmental Research Group - NPA, Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
26
|
Ivušić F, Rezić T, Šantek B. Heterotrophic Cultivation of Euglena gracilis in Stirred Tank Bioreactor: A Promising Bioprocess for Sustainable Paramylon Production. Molecules 2022; 27:molecules27185866. [PMID: 36144601 PMCID: PMC9502384 DOI: 10.3390/molecules27185866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Paramylon is a valuable intracellular product of the microalgae Euglena gracilis, and it can accumulate in Euglena cells according to the cultivation conditions. For the sustainable production of paramylon and appropriate cell growth, different bioreactor processes and industrial byproducts can be considered as substrates. In this study, a complex medium with corn steep solid (CSS) was used, and various bioreactor processes (batch, fed batch, semicontinuous and continuous) were performed in order to maximize paramylon production in the microalgae Euglena gracilis. Compared to the batch, fed batch and repeated batch bioprocesses, during the continuous bioprocess in a stirred tank bioreactor (STR) with a complex medium containing 20 g/L of glucose and 25 g/L of CSS, E. gracilis accumulated a competitive paramylon content (67.0%), and the highest paramylon productivity of 0.189 g/Lh was observed. This demonstrated that the application of a continuous bioprocess, with corn steep solid as an industrial byproduct, can be a successful strategy for efficient and economical paramylon production.
Collapse
Affiliation(s)
- Franjo Ivušić
- Croatian Academy of Sciences and Arts, Vlaha Bukovca 14, 20000 Dubrovnik, Croatia
| | - Tonči Rezić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence:
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
27
|
Ubando AT, Anderson S Ng E, Chen WH, Culaba AB, Kwon EE. Life cycle assessment of microalgal biorefinery: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2022; 360:127615. [PMID: 35840032 DOI: 10.1016/j.biortech.2022.127615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Microalgal biorefineries represent an opportunity to economically and environmentally justify the production of bioproducts. The generation of bioproducts within a biorefinery system must quantitatively demonstrate its viability in displacing traditional fossil-based refineries. To this end, several works have conducted life cycle analyses on microalgal biorefineries and have shown technological bottlenecks due to energy-intensive processes. This state-of-the-art review covers different studies that examined microalgal biorefineries through life cycle assessments and has identified strategic technologies for the sustainable production of microalgal biofuels through biorefineries. Different metrics were introduced to supplement life cycle assessment studies for the sustainable production of microalgal biofuel. Challenges in the comparison of various life cycle assessment studies were identified, and the future design choices for microalgal biorefineries were established.
Collapse
Affiliation(s)
- Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Earle Anderson S Ng
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Alvin B Culaba
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering and Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
28
|
Comparative study between immobilized and suspended Chlorella sp in treatment of pollutant sites in Dhiba port Kingdom of Saudi Arabia. Heliyon 2022; 8:e10766. [PMID: 36193529 PMCID: PMC9526162 DOI: 10.1016/j.heliyon.2022.e10766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Dhiba port has a strategic location near the Neom project. Various anthropogenic activities contributed to the discharge of metals, metalloids and oil spills in the aquatic system and caused environmental pollution. Microalgae are the best microorganisms in aquatic conditions known to be capable of eliminating contaminants. In this work the Chlorella sp. was isolated from seawater, the metals, metalloids were determine using ICP- OES (Inductively Coupled Plasma-Optical Emission Spectrometer) and hydrocarbons were determine using GC-MS in different five sites in Dhiba port, after and before treated with Chlorella sp, and immobilized Chlorella sp. The growth parameters (optical density and pigment contents) of Chlorella sp and immobilized Chlorella sp. were investigated during 14 days of grown. The results showed that the most contaminated site by metals and metalloids was site no 3, by Sb, As, Be, Se, and Zn with concentrations 0.07546, 0.05709, 0.09326, 0.4618, and 0.00979 mg/L respectively, and site no 1 was the most contamination by organic compounds, so the site no 1 and site no 3 were chosen to test the efficiency of Chlorella sp. and immobilized Chlorella sp. to remove hydrocarbons and both metals and metalloids. Chlorella sp. and immobilized Chlorella sp. had completely removed metals and metalloids that were present in site 3. There were only 6 compounds remained, after treatments with immobilized alga in site 1. Immobilized Chlorella sp. is the most effective than suspended Chlorella sp in reduces the number of organic compounds in contaminated area. It is an economic tool due to simplifying harvesting and then retaining for further processing.
Collapse
|
29
|
Loke Show P. Global market and economic analysis of microalgae technology: Status and perspectives. BIORESOURCE TECHNOLOGY 2022; 357:127329. [PMID: 35589045 DOI: 10.1016/j.biortech.2022.127329] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Microalgae have been a promising alternative source of high-value compounds to replace the non-sustainable fossil fuels resource. The recent research development of algae-based bioproducts has remarkable impact various industries section for its renewability, efficiency, and environmentally friendly crops over those synthetic-made product. However, by utilizing microalgae biomass toward their full potential is still limited due to lack of research funding, social acceptability and challenges in policy implementation. This present review highlights the various microalgae biotechnology with consideration of economical aspect for the global potential of algae market, comparison between the microalgae market in Malaysia and international countries. In addition, the cultivation technologies and feasibility of microalgae biomass production globally, followed by insightful challenges and future development of microalgae industry are mentioned. The current study will contribute to the understanding of upstream and downstream of microalgae processing along with technical economical understandings for the successful commercialisation of microalgae products.
Collapse
Affiliation(s)
- Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
30
|
Barsanti L, Birindelli L, Gualtieri P. Paramylon and Other Bioactive Molecules in Micro and Macroalgae. Int J Mol Sci 2022; 23:ijms23158301. [PMID: 35955428 PMCID: PMC9368671 DOI: 10.3390/ijms23158301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Many algae synthesize compounds that have exceptional properties of nutraceutical, pharmacological, and biomedical interest. Pigments, fatty acids, phenols, and polysaccharides are among the main compounds investigated so far. Polysaccharides are the most exploited compounds, widely used in pharmaceutical, food, and chemical industries, which are at present entering into more advanced applications by gaining importance, from a therapeutic point of view, as antioxidant, antimicrobial, antitumor, and immunomodulatory agents. Establishing algae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being. This review focuses on the proprieties and uses of the main micro- and macroalgae metabolites, describing their potential for application in the different industrial sectors, from food/feed to chemical and pharmacological. Further, current technologies involved in bioactive molecule extraction strategies are documented.
Collapse
|
31
|
Thevarajah B, Nishshanka GKSH, Premaratne M, Nimarshana P, Nagarajan D, Chang JS, Ariyadasa TU. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Torres-Díaz M, Abreu-Takemura C, Díaz-Vázquez LM. Microalgae Peptide-Stabilized Gold Nanoparticles as a Versatile Material for Biomedical Applications. Life (Basel) 2022; 12:life12060831. [PMID: 35743862 PMCID: PMC9224969 DOI: 10.3390/life12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microalgae peptides have many medical and industrial applications due to their functional properties. However, the rapid degradation of peptides not naturally present in biological samples represents a challenge. A strategy to increase microalgae peptide stability in biological samples is to use carriers to protect the active peptide and regulate its release. This study explores the use of gold nanoparticles (AuNPs) as carriers of the Chlorella microalgae peptide (VECYGPNRPQF). The potential of these peptide biomolecules as stabilizing agents to improve the colloidal stability of AuNPs in physiological environments is also discussed. Spectroscopic (UV-VIS, DLS) and Microscopic (TEM) analyses confirmed that the employed modification method produced spherical AuNPs by an average 15 nm diameter. Successful peptide capping of AuNPs was confirmed with TEM images and FTIR spectroscopy. The stability of the microalgae peptide increased when immobilized into the AuNPs surface, as confirmed by the observed thermal shifts in DSC and high zeta-potential values in the colloidal solution. By optimizing the synthesis of AuNPs and tracking the conferred chemical properties as AuNPs were modified with the peptide via various alternative methods, the synthesis of an effective peptide-based coating system for AuNPs and drug carriers was achieved. The microalgae peptide AuNPs showed lower ecotoxicity and better viability than the regular AuNPs.
Collapse
Affiliation(s)
- Marielys Torres-Díaz
- Department of Chemistry, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico;
| | - Caren Abreu-Takemura
- Department of Biology, University of Puerto Rico-Mayagüez Campus, Mayagüez 00680, Puerto Rico;
| | - Liz M. Díaz-Vázquez
- Department of Chemistry, University of Puerto Rico-Río Piedras Campus, San Juan 00925, Puerto Rico;
- Correspondence:
| |
Collapse
|
33
|
Perković L, Djedović E, Vujović T, Baković M, Paradžik T, Čož-Rakovac R. Biotechnological Enhancement of Probiotics through Co-Cultivation with Algae: Future or a Trend? Mar Drugs 2022; 20:142. [PMID: 35200671 PMCID: PMC8880515 DOI: 10.3390/md20020142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/18/2022] Open
Abstract
The diversity of algal species is a rich source of many different bioactive metabolites. The compounds extracted from algal biomass have various beneficial effects on health. Recently, co-culture systems between microalgae and bacteria have emerged as an interesting solution that can reduce the high contamination risk associated with axenic cultures and, consequently, increase biomass yield and synthesis of active compounds. Probiotic microorganisms also have numerous positive effects on various aspects of health and represent potent co-culture partners. Most studies consider algae as prebiotics that serve as enhancers of probiotics performance. However, the extreme diversity of algal organisms and their ability to produce a plethora of metabolites are leading to new experimental designs in which these organisms are cultivated together to derive maximum benefit from their synergistic interactions. The future success of these studies depends on the precise experimental design of these complex systems. In the last decade, the development of high-throughput approaches has enabled a deeper understanding of global changes in response to interspecies interactions. Several studies have shown that the addition of algae, along with probiotics, can influence the microbiota, and improve gut health and overall yield in fish, shrimp, and mussels aquaculture. In the future, such findings can be further explored and implemented for use as dietary supplements for humans.
Collapse
Affiliation(s)
- Lucija Perković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Elvis Djedović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tamara Vujović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Marija Baković
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
| | - Tina Paradžik
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (L.P.); (E.D.); (T.V.); (M.B.); (R.Č.-R.)
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
34
|
Application of Pulsed Electric Fields and High-Pressure Homogenization in Biorefinery Cascade of C. vulgaris Microalgae. Foods 2022; 11:foods11030471. [PMID: 35159621 PMCID: PMC8834027 DOI: 10.3390/foods11030471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, a cascaded cell disintegration process, based on pulsed electric fields (PEF - 20 kV/cm, 100 kJ/kgSUSP.) and high-pressure homogenization (HPH - 150 MPa, 5 passes) was designed for the efficient and selective release of intracellular compounds (water-soluble proteins, carbohydrates, and lipids) from C. vulgaris suspensions during extraction in water (25 °C, 1 h) and ethyl acetate (25 °C, 3 h). Recovery yields of target compounds from cascaded treatments (PEF + HPH) were compared with those observed when applying PEF and HPH treatments individually. Particle size distribution and scanning electron microscopy analyses showed that PEF treatment alone did not induce any measurable effect on cell shape/structure, whereas HPH caused complete cell fragmentation and debris formation, with an undifferentiated release of intracellular matter. Spectra measurements demonstrated that, in comparison with HPH alone, cascaded treatments increased the selectivity of extraction and improved the yields of carbohydrates and lipids, while higher yields of water-soluble proteins were measured for HPH alone. This work, therefore, demonstrates the feasibility of sequentially applying PEF and HPH treatments in the biorefinery of microalgae, projecting a beneficial impact in terms of process economics due to the potential reduction of the energy requirements for separation/purification stages.
Collapse
|
35
|
Does temperature shift justify microalgae production under greenhouse? ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Wang C, Qi M, Guo J, Zhou C, Yan X, Ruan R, Cheng P. The Active Phytohormone in Microalgae: The Characteristics, Efficient Detection, and Their Adversity Resistance Applications. Molecules 2021; 27:46. [PMID: 35011277 PMCID: PMC8746318 DOI: 10.3390/molecules27010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/12/2023] Open
Abstract
Phytohormones are a class of small organic molecules that are widely used in higher plants and microalgae as chemical messengers. Phytohormones play a regulatory role in the physiological metabolism of cells, including promoting cell division, increasing stress tolerance, and improving photosynthetic efficiency, and thereby increasing biomass, oil, chlorophyll, and protein content. However, traditional abiotic stress methods for inducing the accumulation of energy storage substances in microalgae, such as high light intensity, high salinity, and heavy metals, will affect the growth of microalgae and will ultimately limit the efficient accumulation of energy storage substances. Therefore, the addition of phytohormones not only helps to reduce production costs but also improves the efficiency of biofuel utilization. However, accurate and sensitive phytohormones determination and analytical methods are the basis for plant hormone research. In this study, the characteristics of phytohormones in microalgae and research progress for regulating the accumulation of energy storage substances in microalgae by exogenous phytohormones, combined with abiotic stress conditions at home and abroad, are summarized. The possible metabolic mechanism of phytohormones in microalgae is discussed, and possible future research directions are put forward, which provide a theoretical basis for the application of phytohormones in microalgae.
Collapse
Affiliation(s)
- Chun Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
| | - Mei Qi
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
| | - Jiameng Guo
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA;
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (C.W.); (M.Q.); (J.G.); (C.Z.)
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA;
| |
Collapse
|
37
|
Taylor GM, Hitchcock A, Heap JT. Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria. Nucleic Acids Res 2021; 49:e123. [PMID: 34554258 PMCID: PMC8643660 DOI: 10.1093/nar/gkab791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria are simple, efficient, genetically-tractable photosynthetic microorganisms which in principle represent ideal biocatalysts for CO2 capture and conversion. However, in practice, genetic instability and low productivity are key, linked problems in engineered cyanobacteria. We took a massively parallel approach, generating and characterising libraries of synthetic promoters and RBSs for the cyanobacterium Synechocystis sp. PCC 6803, and assembling a sparse combinatorial library of millions of metabolic pathway-encoding construct variants. Genetic instability was observed for some variants, which is expected when variants cause metabolic burden. Surprisingly however, in a single combinatorial round without iterative optimisation, 80% of variants chosen at random and cultured photoautotrophically over many generations accumulated the target terpenoid lycopene from atmospheric CO2, apparently overcoming genetic instability. This large-scale parallel metabolic engineering of cyanobacteria provides a new platform for development of genetically stable cyanobacterial biocatalysts for sustainable light-driven production of valuable products directly from CO2, avoiding fossil carbon or competition with food production.
Collapse
Affiliation(s)
- George M Taylor
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.,School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
38
|
Castillo T, Ramos D, García-Beltrán T, Brito-Bazan M, Galindo E. Mixotrophic cultivation of microalgae: An alternative to produce high-value metabolites. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
D'Elia L, Imbimbo P, Liberti D, Bolinesi F, Mangoni O, Pollio A, Olivieri G, Monti DM. Thermo resistant antioxidants from photoautotrophic microorganisms: screening and characterization. World J Microbiol Biotechnol 2021; 37:215. [PMID: 34762205 DOI: 10.1007/s11274-021-03180-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The demand for natural antioxidants to be used in food industry is increasing, as synthetic antioxidants are toxic and have high production costs. Specifically, food processing and preservation require antioxidants resistant to thermal sterilization processes. In this study, twenty-five strains among microalgae and cyanobacteria were screened as antioxidants producers. The species Enallax sp., Synechococcus bigranulatus and Galdieria sulphuraria showed the highest content of chlorophyll a and total carotenoids. In vitro stability and antioxidant activity of the ethanolic extracts were performed. The results revealed that pigments present in the extracts, obtained from the previously mentioned species, were stable at room temperature and exhibited in vitro free radical scavenging potential with IC50 values of 0.099 ± 0.001, 0.048 ± 0.001 and 0.13 ± 0.02 mg mL-1, respectively. Biocompatibility assay showed that the extracts were not toxic on immortalized cell lines. The antioxidant activity was also tested on a cell-based model by measuring intracellular ROS levels after sodium arsenite treatment. Noteworthy, extracts were able to exert the same protective effect, before and after the pasteurization process. Results clearly indicate the feasibility of obtaining biologically active and thermostable antioxidants from microalgae. Green solvents can be used to obtain thermo-resistant antioxidants from cyanobacteria and microalgae which can be used in the food industry. Thus, the substitution of synthetic pigments with natural ones is now practicable.
Collapse
Affiliation(s)
- Luigi D'Elia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Davide Liberti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Francesco Bolinesi
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Giuseppe Olivieri
- Bioprocess Engineering Group, Wageningen University and Research, Droevendaalsesteeg 1, 6700AA, Wageningen, The Netherlands. .,Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125, Naples, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy.
| |
Collapse
|
40
|
Behera B, Venkata Supraja K, Paramasivan B. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. BIORESOURCE TECHNOLOGY 2021; 339:125588. [PMID: 34298244 DOI: 10.1016/j.biortech.2021.125588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/13/2023]
Abstract
Adverse detrimental impacts of environmental pollution over the health regimen of people has driven a shift in lifestyle towards cleaner and natural resources, especially in the aspects of food production and consumption. Microalgae are considered a rich source of high value metabolites to be utilized as plant growth biostimulants. These organisms however, are underrated compared to other microbial counterparts, due to inappropriate knowledge on the technical, enviro-economical constrains leading to low market credibility. Thus, to avert these issues, the present review comprehensively discusses the biostimulatory potential of microalgae interactively combined with circular bio-economy perspectives. The biochemical content and intracellular action mechanism of microalgal biostimulants were described. Furthermore, detailed country-wise market trends along with the description of the existing regulatory policies are included. Enviro-techno-economic challenges are discussed, and the consensus need for shift to biorefinery and circular bio-economy concept are emphasized to achieve sustainable impacts during the commercialization of microalgal biostimulants.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Kolli Venkata Supraja
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
41
|
|
42
|
di Cicco MR, Iovinella M, Palmieri M, Lubritto C, Ciniglia C. Extremophilic Microalgae Galdieria Gen. for Urban Wastewater Treatment: Current State, the Case of “POWER” System, and Future Prospects. PLANTS 2021; 10:plants10112343. [PMID: 34834705 PMCID: PMC8622319 DOI: 10.3390/plants10112343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Over the past decades, wastewater research has increasingly focused on the use of microalgae as a tool to remove contaminants, entrapping nutrients, and whose biomass could provide both material and energy resources. This review covers the advances in the emerging research on the use in wastewater sector of thermoacidophilic, low-lipid microalgae of the genus Galdieria, which exhibit high content of protein, reserve carbohydrates, and other potentially extractable high-value compounds. The natural tolerance of Galdieria for high toxic environments and hot climates recently made it a key player in a single-step process for municipal wastewater treatment, biomass cultivation and production of energetic compounds using hydrothermal liquefaction. In this system developed in New Mexico, Galdieria proved to be a highly performing organism, able to restore the composition of the effluent to the standards required by the current legislation for the discharge of treated wastewater. Future research efforts should focus on the implementation, in the context of wastewater treatment, of more energetically efficient cultivation systems, potentially capable of generating water with increasingly higher purity levels.
Collapse
Affiliation(s)
- Maria Rosa di Cicco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.R.d.C.); (M.P.); (C.L.); (C.C.)
| | - Manuela Iovinella
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- Correspondence:
| | - Maria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.R.d.C.); (M.P.); (C.L.); (C.C.)
| | - Carmine Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.R.d.C.); (M.P.); (C.L.); (C.C.)
- INFN—Sezione di Napoli, Complesso Universitario di Monte S. Angelo, ed. 6, Via Cintia, 80126 Napoli, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (M.R.d.C.); (M.P.); (C.L.); (C.C.)
| |
Collapse
|
43
|
Chauton MS, Forbord S, Mäkinen S, Sarno A, Slizyte R, Mozuraityte R, Standal IB, Skjermo J. Sustainable resource production for manufacturing bioactives from micro- and macroalgae: Examples from harvesting and cultivation in the Nordic region. PHYSIOLOGIA PLANTARUM 2021; 173:495-506. [PMID: 33751623 DOI: 10.1111/ppl.13391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Micro- and macroalgae are a great and important source of raw material for manufacturing of bioactives and ingredients for food, feed, cosmetics, or pharmaceuticals. Macroalgae (or seaweeds) have been harvested locally from wild stocks in smaller volumes for a long time, and a production chain based on cultivated seaweed for the harvest of considerably larger amounts is in progress for several species. Microalgae and cyanobacteria such as Spirulina have been produced in "backyard ponds" for use in food and feed also for a long time, and now we see the establishment of large production plants to control the cultivation process and increase the production yields. There is also a shift from harvesting or cultivation centered in warmer, sunnier areas to increasing exploitation of natural resources in temperate to boreal regions. In locations with strong seasonal variations in solar irradiance and temperatures, we need to develop procedures to maximize the biomass production in the productive seasons and ensure efficient stabilization of the biomass for year-round processing and product manufacturing. Industrialized biomass production and large-scale manufacturing of bioactives also mean that we must employ sustainable, cost-effective, and environmentally friendly processing methods, including stabilization and extraction methods such as ensiling and subcritical water extraction (SWE) and advanced analytic tools to characterize the products. These topics are focus areas of the Nordic Centre of Excellence (NCoE) NordAqua, and here we present a review of current activities in the field of micro- and macroalgae biomass production sectors illustrated with some of our experiences from the NordAqua consortium.
Collapse
Affiliation(s)
| | - Silje Forbord
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Sari Mäkinen
- LUKE, Natural Resources Institute Finland, Jokioinen, Finland
| | - Antonio Sarno
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Revilija Mozuraityte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Inger Beate Standal
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Jorunn Skjermo
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| |
Collapse
|
44
|
Skjånes K, Aesoy R, Herfindal L, Skomedal H. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity. PHYSIOLOGIA PLANTARUM 2021; 173:612-623. [PMID: 34085279 DOI: 10.1111/ppl.13472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
In addition to the rapidly expanding field of using microalgae for food and feed, microalgae represent a tremendous potential for new bioactive compounds with health-promoting effects. One field where new therapeutics is needed is cancer therapy. As cancer therapy often cause severe side effects and loose effect due to development of drug resistance, new therapeutic agents are needed. Treating cancer by modulating the immune response using peptides has led to unprecedented responses in patients. In this review, we want to elucidate the potential for microalgae as a source of new peptides for possible use in cancer management. Among the limited studies on anti-cancer effects of peptides, positive results were found in a total of six different forms of cancer. The majority of studies have been performed with different strains of Chlorella, but effects have also been found using peptides from other species. This is also the case for peptides with immunomodulating effects and peptides with other health-promoting effects (e.g., role in cardiovascular diseases). However, the active peptide sequence has been determined in only half of the studies. In many cases, the microalga strain and the cultivation conditions used for producing the algae have not been reported. The low number of species that have been explored, as opposed to the large number of species available, is a clear indication that the potential for new discoveries is large. Additionally, the availability and cost-effectiveness of microalgae make them attractive in the search for bioactive peptides to prevent cancer.
Collapse
Affiliation(s)
- Kari Skjånes
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Reidun Aesoy
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Hanne Skomedal
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
45
|
Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review. ENERGIES 2021. [DOI: 10.3390/en14196137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Meeting the increasing global energy demand in a sustainable way is a major challenge for humanity. One of the solutions in the transportation sector is ethanol, which is currently the only economically viable direct fuel substitute. In addition to the first-generation technology, which provides the vast majority of production, better results can be continuously realized by using advanced technologies. This study aims to investigate the economic aspects and sustainability issues of ethanol production with a systematic literature review. During the selection process, 64 studies from a total of 16,141 identified articles were analyzed in-depth. There is a consensus that first-generation production methods cannot result in a long-term solution. However, advanced technologies are currently immature, and ethanol production is more expensive with them. The use of wastes/residues and coproducts can improve both the economic outlook and sustainability of the advanced technologies. Overall, the newer generations of technological advancements are constantly improving the environmental performance, whereas the economic performance is deteriorating. Considering low oil prices (0.36 USD/L), none of the ethanol production methods can be competitive on a purely cost basis. This increases the importance of coproducts (further processing and more valuable coproducts). Regarding sustainability, a complex analysis is essential, which must cover at least the environmental, social, and economic aspects. At the methodology level, a complex life cycle analysis seems to be the best tool, as it can take into account these relevant aspects (environmental, economic, and social).
Collapse
|
46
|
Colusse GA, Carneiro J, Duarte MER, Carvalho JCD, Noseda MD. Advances in microalgal cell wall polysaccharides: a review focused on structure, production, and biological application. Crit Rev Biotechnol 2021; 42:562-577. [PMID: 34320897 DOI: 10.1080/07388551.2021.1941750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microalgae have been shown to be useful in several biotechnological fields due to their feasible cultivation and high-value biomolecules production. Several substances of interest produced by microalgae, such as: proteins, lipids, and natural colorants, have already been explored. Based on the continuing demand for new natural molecules, microalgae could also be a valuable source of polysaccharides. Polysaccharides are extremely important in aquaculture, cosmetics, pharmaceutical, and food industries, and have great economic impact worldwide. Despite this, reviews on microalgal polysaccharide production, biological activity, and chemical structure are not abundant. Moreover, techniques of microalgal cultivation, coupled with carbohydrate production, need to be clarified in order to develop forward-looking technologies. The present review provides an overview of the main advances in microalgal cell wall polysaccharide production, as well as their associated potential biological applications and chemical structure. Several studies on future prospects, related to microalgae are presented, highlighting the key challenges in microalgal polysaccharide production.
Collapse
Affiliation(s)
- Guilherme Augusto Colusse
- Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil.,Biochemistry and Molecular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | - Jaqueline Carneiro
- Biochemistry and Molecular Biology Department, Federal University of Paraná, Curitiba, Brazil
| | | | - Julio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná, Curitiba, Brazil
| | - Miguel Daniel Noseda
- Biochemistry and Molecular Biology Department, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
47
|
Nada HG, Ali HEA, El-Behery RR, Shanab SMM, Elshatoury EH. Nanoparticles Biosynthesized by Bacillus cereus Filtrate and Gamma Rays Enhancing Chlorella vulgaris Biomass and Lipid Production. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02122-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Isolation and Characterization of Euglena gracilis-Associated Bacteria, Enterobacter sp. CA3 and Emticicia sp. CN5, Capable of Promoting the Growth and Paramylon Production of E. gracilis under Mixotrophic Cultivation. Microorganisms 2021; 9:microorganisms9071496. [PMID: 34361931 PMCID: PMC8303684 DOI: 10.3390/microorganisms9071496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Euglena gracilis produces paramylon, which is a feedstock for high-value functional foods and nutritional supplements. The enhancement of paramylon productivity is a critical challenge. Microalgae growth-promoting bacteria (MGPB) can improve microalgal productivity; however, the MGPB for E. gracilis remain unclear. This study isolated bacteria capable of enhancing E. gracilis growth and paramylon production under mixotrophic conditions. Enterobacter sp. CA3 and Emticicia sp. CN5 were isolated from E. gracilis grown with sewage-effluent bacteria under mixotrophic conditions at pH 4.5 or 7.5, respectively. In a 7-day E. gracilis mixotrophic culture with glucose, CA3 increased E. gracilis biomass and paramylon production 1.8-fold and 3.5-fold, respectively (at pH 4.5), or 1.9-fold and 3.5-fold, respectively (at pH 7.5). CN5 increased E. gracilis biomass and paramylon production 2.0-fold and 4.1-fold, respectively (at pH 7.5). However, the strains did not show such effects on E. gracilis under autotrophic conditions without glucose. The results suggest that CA3 and CN5 promoted both E. gracilis growth and paramylon production under mixotrophic conditions with glucose at pH 4.5 and 7.5 (CA3) or pH 7.5 (CN5). This study also provides an isolation method for E. gracilis MGPB that enables the construction of an effective E. gracilis–MGPB-association system for increasing the paramylon yield of E. gracilis.
Collapse
|
49
|
Yukesh Kannah R, Kavitha S, Parthiba Karthikeyan O, Rene ER, Kumar G, Rajesh Banu J. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. BIORESOURCE TECHNOLOGY 2021; 332:125055. [PMID: 33813179 DOI: 10.1016/j.biortech.2021.125055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is considered as a renewable and sustainable biomass to produce bioenergy and other high-value products. Besides, the cultivation of microalgae does not need any fertile land and it provides opportunities for climate change mitigation by sequestering atmospheric carbon-dioxide (CO2), facilitating nutrient recovery from wastewater and regulating industrial pollutions/emissions. Algal biomass harvested from different technologies are unique in their physio-chemical properties that require critical understanding prior to value-addition or bioenergy recovery. In this review, we elaborate the importance of cell wall weakening followed by pretreatment as a key process step and strategy to reduce the energy cost of converting algal biomass into bioenergy. From the energy-calculations, it was measured that the cell wall weakening significantly improves the net-energy ratio from 0.68 to 1.02. This approach could be integrated with any pre-treatment options, while it reduces the time of pre-treatment and costs of energy/chemicals required for hydrolysis of algal biomass.
Collapse
Affiliation(s)
- R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | | | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, The Netherlands
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
50
|
Liyanaarachchi VC, Premaratne M, Ariyadasa TU, Nimarshana P, Malik A. Two-stage cultivation of microalgae for production of high-value compounds and biofuels: A review. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|