1
|
Neves L, Smeby K, Broch OJ, Johnsen G, Ardelan MV, Skjermo J. Particulate and dissolved organic carbon losses in high latitude seaweed farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179677. [PMID: 40388871 DOI: 10.1016/j.scitotenv.2025.179677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/23/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
The role of macroalgae as natural sinks for carbon dioxide (CO2) has long been recognized, and interest for climate mitigating solutions from seaweed cultivation is quickly rising. Erosion of biomass provides natural avenues for carbon sequestration at sea, yet data is still lacking for important European cultivars, particularly combining particulate (POC) and dissolved (DOC) organic carbon losses. In this study, data is provided on carbon uptake, lamina growth and erosion over two consecutive seasons for the kelp Saccharina latissima (Phaeophyceae) deployed in Autumn and Winter in Hitra, Norway. A short-term carbon exudation experiment was performed with the same kelp in 2023. By April, the typical harvest time for food applications, average losses to POC and DOC pools amounted to 15 and 34 g C m-2 yr-1, respectively, or 9 % and 19 % of the carbon net primary production (C-NPP) of the farm. Combined POC and DOC losses reached 101-247 g C m-2 yr-1 (40-47 % of C-NPP) by June. DOC exudation rates reached 4.1-7.6 mg C g-1 h-1 after 4 h incubation, reducing significantly after 24 h. On average, 29 % and 12 % of the carbon fixed by S. latissima was released as DOC from Autumn and Winter deployments, respectively, before the progression of bryozoan biofouling. POC and DOC losses provide a continuous source for carbon deposition, burial or further breakdown into RDOC, crucial for environmental impact assessments and carbon accounting methodologies. The study provides valuable data for future research on macroalgae cultivation and its contribution to global carbon mitigation efforts.
Collapse
Affiliation(s)
- Luiza Neves
- Department of Chemistry, Norwegian University of Science and Technology NTNU, Trondheim, Norway; Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway.
| | - Kristin Smeby
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Ole Jacob Broch
- Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway
| | - Geir Johnsen
- Department of Biology, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Murat Van Ardelan
- Department of Chemistry, Norwegian University of Science and Technology NTNU, Trondheim, Norway
| | - Jorunn Skjermo
- Fisheries and New Biomarine Industries, SINTEF Ocean AS, Trondheim, Norway
| |
Collapse
|
2
|
Dhakal S, Jüterbock AO, Lei X, Khanal P. Application of the brown macroalga Saccharina latissima (Laminariales, Phaeophyceae) as a feed ingredient for livestock: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:153-165. [PMID: 39635414 PMCID: PMC11615894 DOI: 10.1016/j.aninu.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 12/07/2024]
Abstract
In recent years, marine macroalgae have been recognized as potential alternative and sustainable feeding resources for livestock. Differences in nutritional values and biomass yield across macroalgal species are critical factors while aiming to utilize them as animal feed components. A brown macroalga, Saccharina latissima, also known as sugar kelp, has a promising biomass yield and high nutritional and bioactive compounds that can benefit both ruminant and monogastric animals. For example, the dietary inclusion of S. latissima in dairy and beef cattle can enhance milk yield, meat quality, and iodine content in milk and meat while reducing enteric methane emissions in vitro. However, high iodine content and the presence of some potentially toxic elements (arsenic, cadmium, etc.) lead to critical challenges, demanding careful consideration while determining the inclusion level of S. latissima in the livestock feed. To address these challenges, effective post-harvest biomass processing techniques, particularly hydrothermal treatments, have shown promise in reducing heavy metals and minerals of concern (e.g., iodine) and enhancing their safety as animal feed. It is thus essential to evaluate the sustainability of post-harvest processing techniques as they are usually energy-demanding and can negatively influence nutrient utilization in animals as certain digestible fractions can disappear during processing. Furthermore, variations in the nutritional and bioactive composition of S. latissima due to seasonal and spatial factors can create challenges for commercial exploitation. In this context, multiple harvesting of biomass and choosing the appropriate harvesting seasons can maximize the nutritional potential of S. latissima. In conclusion, S. latissima can be a novel feed ingredient for livestock, but year-round biomass availability and identifying cost-effective and energy-efficient post-harvest biomass processing methods that optimize both nutritional values and digestibility of S. latissima are critical for improving animal production, performance, and health.
Collapse
Affiliation(s)
- Sachin Dhakal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture (FBA), Nord University, Steinkjer 7713, Norway
| | - Alexander Oliver Jüterbock
- Algal and Microbial Technology Division, Faculty of Biosciences and Aquaculture (FBA), Nord University, Bodø 8049, Norway
| | - Xingen Lei
- Department of Animal Science, College of Agriculture and Life Sciences (CALS), Cornell University, Ithaca, NY 14853, USA
| | - Prabhat Khanal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture (FBA), Nord University, Steinkjer 7713, Norway
| |
Collapse
|
3
|
Zeb L, Gerhardt AS, Johannesen BA, Underhaug J, Jordheim M. Ultrasonic-Assisted Water-Rich Natural Deep Eutectic Solvents for Sustainable Polyphenol Extraction from Seaweed: A Case Study on Cultivated Saccharina latissima. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:14921-14929. [PMID: 39391092 PMCID: PMC11462601 DOI: 10.1021/acssuschemeng.4c06736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
This case study introduces a green, 1 h single-step method using water-rich natural deep eutectic solvent (WRNADES) for ultrasound-assisted extraction (UAE) of polyphenols fromSaccharina latissima, a commercially cultivated brown seaweed. The extraction efficiency was evaluated using a selective quantitative NMR method (s-qNMR) and the traditional nonselective colorimetric total phenolic content assay (TPC). Initial 6 h extractions in traditional solvents (methanol, ethanol, acetone, and ethyl acetate) showed a 40-60% increase in polyphenolic yields in 50% aqueous solutions measured by the TPC method. Six different water-rich (50%) NADES (WRNADES) combinations were tested (choline chloride/betaine with lactic acid, citric acid, and 1,3-butanediol), with betaine and 1,3-butanediol (1:1) proving most effective. Parameters for the WRNADES were optimized using Box-Behnken design response surface methodology, resulting in a 1:20 w/w biomass to solvent ratio and a 1 h extraction time at 50 °C. The WRNADES extraction process was refined into a scalable, single-step procedure and compared with traditional solvent extractions (6 h, 50% aqueous methanol and acetone). A final XAD-7 polyphenol recovery step was included in all extractions. The optimized WRNADES extraction yielded 15.97 mg GAE/g of the dry weight recovered polyphenolic extract (s-qNMR), exceeding the 6 h 50% aqueous methanol (12.4 mg GAE/g) and acetone (11.4 mg GAE/g) extractions. Thus, the UAE-WRNADES method presented in this case study provides a cost-effective, sustainable, and eco-friendly alternative for the extraction of phenolic compounds from seaweed. It promotes the development of environmentally friendly production processes within the seaweed biorefinery.
Collapse
Affiliation(s)
- Liaqat Zeb
- Department of Chemistry, University of Bergen, Bergen 5007, Norway
| | | | | | - Jarl Underhaug
- Department of Chemistry, University of Bergen, Bergen 5007, Norway
| | - Monica Jordheim
- Department of Chemistry, University of Bergen, Bergen 5007, Norway
| |
Collapse
|
4
|
Hanna GS, Findlay VJ, Turner DP, Hamann MT. Quantitative NMR Analysis of Marine Macroalgae for AGE Inhibition by Methylglyoxal Scavenging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21905-21911. [PMID: 39298668 DOI: 10.1021/acs.jafc.4c04367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Reactive carbonyl species (RCS) induce a fundamental form of biological stress that has driven the evolution of diverse mechanisms for minimizing its impact on organismal health. The complications that accompany uncontrolled hyperglycemia exemplify the health implications when RCS stress exceeds the body's capacity to prevent the excessive formation of advanced glycation end-products. Presented here is a novel quantitative NMR (qNMR) technique for evaluating scavengers of the prominent sugar-derived carbonyl methylglyoxal (MGO). This tool was employed to screen the chemical diversity of marine macroalgae extracts, with a focus on species that have a history of consumption by the World's healthiest populations and are subject to global scale aquacultural production. Fucus vesiculosus demonstrated the highest capacity for inhibiting glycation and scavenging MGO. Additionally, the Chondrus cripsus, Gracilaria vermiculophyla, and Gracilaria tikvahiae extracts had a high capacity for scavenging MGO, representing the first report of this activity. This new qNMR methodology presented is highly applicable for screening extracts and compounds from diverse sources, and the results highlight the potential of macroalgae extracts to be employed as RCS and AGE targeting therapeutics and food additives.
Collapse
Affiliation(s)
- George S Hanna
- Department of Biomedical Sciences and Drug Discovery, Medical University of South Carolina, Charleston, South Carolina 29425, United States
- Department of Public Health, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Victoria J Findlay
- Department of Surgery, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - David P Turner
- Department of Surgery, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Mark T Hamann
- Department of Biomedical Sciences and Drug Discovery, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
5
|
Sunwoo IY, Cho H, Kim T, Koh EJ, Jeong GT. Evaluation of Antioxidant Activity of Residue from Bioethanol Production Using Seaweed Biomass. Mar Drugs 2024; 22:340. [PMID: 39195456 DOI: 10.3390/md22080340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
This study explores the potential of producing bioethanol from seaweed biomass and reusing the residues as antioxidant compounds. Various types of seaweed, including red (Gelidium amansii, Gloiopeltis furcata, Pyropia tenera), brown (Saccharina japonica, Undaria pinnatifida, Ascophyllum nodosum), and green species (Ulva intestinalis, Ulva prolifera, Codium fragile), were pretreated with dilute acid and enzymes and subsequently processed to produce bioethanol with Saccharomyces cerevisiae BY4741. Ethanol production followed the utilization of sugars, resulting in the highest yields from red algae > brown algae > green algae due to their high carbohydrate content. The residual biomass was extracted with water, ethanol, or methanol to evaluate its antioxidant activity. Among the nine seaweeds, the A. nodosum bioethanol residue extract (BRE) showed the highest antioxidant activity regarding the 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity, ferric reducing antioxidant power (FRAP), and reactive oxygen species (ROS) inhibition of H2O2-treated RAW 264.7 cells. These by-products can be valorized, contributing to a more sustainable and economically viable biorefinery process. This dual approach not only enhances the utilization of marine resources but also supports the development of high-value bioproducts.
Collapse
Affiliation(s)
- In-Yung Sunwoo
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Hyunjin Cho
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Taeho Kim
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Eun-Jeong Koh
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Gwi-Taek Jeong
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Eliasson E, Sun L, Cervin G, Pavia H, Tällberg G, Ellström P, Ivarsson E. No colonization resistance to Campylobacter jejuni in broilers fed brown algal extract-supplemented diets. Front Microbiol 2024; 15:1396949. [PMID: 38993493 PMCID: PMC11236747 DOI: 10.3389/fmicb.2024.1396949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Campylobacter jejuni gastroenteritis is the most commonly reported zoonosis within the EU, with poultry products regarded as the primary source of transmission to humans. Therefore, finding strategies to reduce Campylobacter colonization in broilers holds importance for public health. Recent studies suggest that supplementation of broiler feed with brown algal extracts, particularly laminarin, can provide beneficial effects on broiler gut health, growth performance, and gut microbiota. However, its effect on gut microbiota development and subsequent reduction of Campylobacter loads in broiler caeca during the later stages of the birds' lives remains unclear. Methods Experimental colonization of Ross 308 broilers with two different strains of C. jejuni was conducted, with groups fed either a basal diet or the same basal diet supplemented with 725 ppm algal extract from Saccharina latissima to provide 290 ppm laminarin. Fecal samples were collected for bacterial enumeration, and caecal samples were obtained before and after the C. jejuni challenge for the determination of microbiota development. Results and discussion No significant differences in fecal C. jejuni concentrations between the groups fed different diets or exposed to different C. jejuni strains were observed. This suggests that both strains colonized the birds equally well and that the laminarin rich algal extract did not have any inhibitory effect on C. jejuni colonization. Notably, 16S rRNA amplicon sequencing revealed detailed data on the caecal microbiota development, likely influenced by both bird age and C. jejuni colonization, which can be valuable for further development of broiler feed formulations aimed at promoting gut health.
Collapse
Affiliation(s)
- Eliška Eliasson
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Li Sun
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Cervin
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Gustav Tällberg
- Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Emma Ivarsson
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
7
|
Bouzenad N, Ammouchi N, Chaib N, Messaoudi M, Bousabaa W, Bensouici C, Sawicka B, Atanassova M, Ahmad SF, Zahnit W. Exploring Bioactive Components and Assessing Antioxidant and Antibacterial Activities in Five Seaweed Extracts from the Northeastern Coast of Algeria. Mar Drugs 2024; 22:273. [PMID: 38921584 PMCID: PMC11205126 DOI: 10.3390/md22060273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.
Collapse
Affiliation(s)
- Nawal Bouzenad
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology (LIBEB), University 20 August 1955, Skikda 21000, Algeria
| | - Nesrine Ammouchi
- Department of Sciences and Technology, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria;
- Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces (LRPCSI), University 20 August 1955, Skikda 21000, Algeria
| | - Nadjla Chaib
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Catalysis, Bioprocesses and Environment (LCBE), University 20 August 1955, Skikda 21000, Algeria
| | | | - Walid Bousabaa
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), BP384, Bou-Ismail 42004, Algeria;
| | - Chawki Bensouici
- Laboratory of Biochemistry, Biotechnology and Health Division, Center for Research in Biotechnology, Constantine 25000, Algeria;
| | - Barbara Sawicka
- Department of Plant Production Technology and Commoditties Science, University of Life Sciences in Lublin, Akademicka 15 Str., 20-950 Lublin, Poland;
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, Ouargla 30000, Algeria
| |
Collapse
|
8
|
Ribeiro EEV, Nobre IGM, Silva DRO, da Silva WMX, Sousa SKO, Holanda TBL, Lima CG, de Lima ACA, Araújo MLH, da Silva FLF, Matos WO. Profile of inorganic elements of seaweed from the Brazilian Northeast coast. MARINE POLLUTION BULLETIN 2024; 202:116413. [PMID: 38677104 DOI: 10.1016/j.marpolbul.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
The contents of 24 elements were determined in seven species of macroalgae collected in Ceara-Brazil, in the rainy and dry seasons of 2022. The samples were digested, and the analytes were quantified by ICP-OES and Hg by direct analyzer. The CRM CD-200 was analyzed for accuracy and obtained recoveries were higher than 95 %. The seaweed species have different inorganic element profiles with predominant elements being: Ca, K, Na, Mg and P. The Sargassum vulgare species stood out for its Hg and As contents (1.479 ± 0.005 mg kg-1 and 172 ± 6 mg kg-1, both in the rainy seasons). Ulva lactuca attracted attention for its high concentration of V (46.4 ± 3.4 mg kg-1, rainy season). In general, the elemental content levels in the macroalgae samples were higher in the rainy season. Long-term studies to comprehend the effect of seasonality on the elemental composition of seaweed must be carried out.
Collapse
Affiliation(s)
- Emanuelle E V Ribeiro
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Iago G M Nobre
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Débora R O Silva
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - William M X da Silva
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Samile K O Sousa
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Ticiana B L Holanda
- Laboratory of Algae Biotechnology and Bioprocesses (BioAP), Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Cleidiane G Lima
- Industrial Technology Center of Ceara Foundation (Núcleo de Tecnologia e Qualidade Industrial do Ceará - NUTEC), Fortaleza, CE 60440-552, Brazil
| | - Ari C A de Lima
- Industrial Technology Center of Ceara Foundation (Núcleo de Tecnologia e Qualidade Industrial do Ceará - NUTEC), Fortaleza, CE 60440-552, Brazil
| | - Marjory L H Araújo
- Laboratory of Algae Biotechnology and Bioprocesses (BioAP), Department of Biochemistry and Molecular Biology, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil
| | - Francisco L F da Silva
- Faculty of Integrated Sciences and Education of Crateus, State University of Ceara, Crateus, CE 63704-155, Brazil
| | - Wladiana O Matos
- Laboratory for Applied Chemistry Studies (LEQA), Department of Analytical and Physical Chemistry, Science Center, Federal University of Ceara, Fortaleza, CE 60455-760, Brazil.
| |
Collapse
|
9
|
Reynaga-Navarro W, Wijffels RH, Eppink MHM, Kazbar A. Isolation and quantification of alginate in choline chloride-based deep eutectic solvents. Int J Biol Macromol 2024; 262:130103. [PMID: 38346616 DOI: 10.1016/j.ijbiomac.2024.130103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Extraction of seaweed compounds using Deep Eutectic Solvents (DES) has shown high interest. Quantification, however, is challenging due to interactions with DES components. In this research work, three chemical separation techniques were investigated to isolate and quantify alginate from a set of choline chloride-based DES. While choline chloride served as the hydrogen bond acceptor (HBA); Urea, Ethylene Glycol, Propylene Glycol, Glycerol, Sorbitol, Xylitol and Glucose were used as hydrogen bond donors (HBD). DES containing sodium alginate were subjected to precipitation with sulfuric acid 0.2 M (pH 1.6), ethanol-water mixture (80 % v/v) and calcium chloride (1 % w/v CaCl2·2H2O). Alginate in precipitates was quantified and used to evaluate the performance of each separation technique. The highest recovery yields (51.2 ± 1.3 %) were obtained using the ethanol-water mixture followed by calcium chloride (45.7 ± 1.2 %), except for polyols (e.g. sorbitol). The lowest recovery yields were obtained with acid, with a particularly low recovery yield when urea was used as HBD (9.6 ± 1.3 %). Estimations of ManA/GulA ratios showed lower values for precipitates from DES compared to the ones obtained from water. This research shows ethanolic precipitation as a suitable method for alginate separation from the studied set of choline chloride-based DES.
Collapse
Affiliation(s)
- Wimar Reynaga-Navarro
- Bioprocess Engineering, Wageningen University, PO Box 16, Wageningen 6700 AA, the Netherlands.
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University, PO Box 16, Wageningen 6700 AA, the Netherlands; Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Michel H M Eppink
- Bioprocess Engineering, Wageningen University, PO Box 16, Wageningen 6700 AA, the Netherlands
| | - Antoinette Kazbar
- Bioprocess Engineering, Wageningen University, PO Box 16, Wageningen 6700 AA, the Netherlands
| |
Collapse
|
10
|
Ivarsson E, Wall H, Boyner M, Cervin G, Pavia H, Wattrang E. Effects of algal supplementation in feed to broiler breeders on transfer of nutrients and antibodies to chicks and quality of hatchlings. Animal 2023; 17:101020. [PMID: 37988995 DOI: 10.1016/j.animal.2023.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
Breeder nutrition is an important factor for chick quality since the chick embryo relies on nutrients available in the egg for growth and development. In addition, the egg is providing the chick with important antibodies that are vital during the first weeks of life. Brown algae contains several bioactive compounds, and dietary supplementation with algal extracts have shown improved gut health and immune responses in both pigs and poultry. The aim of this study was to investigate if feeding the brown algae Saccharina latissima, intact or as an extract, to broiler breeders can affect breeder hens' antibody responses to vaccination, egg quality and transfer of antibodies and nutrients to the egg and thereby improve the quality of newly hatched chicks. Forty-five hens and nine roosters of the parent lines of the fast-growing broiler Ross 308 were included in the experiment where hens were 31 weeks at the start. The hens were housed individually and fed one of three dietary treatments for seven weeks; (a) control, (b) addition of 0.6% algal meal or (c) addition of 0.08% algal extract. The hens were given a booster vaccination against infectious bronchitis virus (IBV) 21 days after the start of experiment. During experimental days 32-42, hens were naturally mated every 5th day and hatching eggs were collected. A total of 255 chicks were hatched, and chick quality was assessed. Moreover, on chick day three, blood was collected from 48 focal chickens and total immunoglobulin Y levels and specific titres to IBV in serum were determined. The results showed that feeding the brown algae Saccharina latissima, intact or as an extract to broiler breeders did not affect egg production, egg quality, antibody responses to vaccination or transfer of antibodies from hen to chick. However, feeding intact algae significantly increased the levels of iodine and decreased the level of selenium in the eggs and resulted in a lower proportion of chicks with maximum quality score. Interestingly, algal feeding, both intact and as an extract, increased the abdominal fat pad in broiler breeders by about 17% without affecting BW. In conclusion, supplementation of broiler breeder diets with algal extract from Saccharina latissima, but not intact algal meal is a promising dietary strategy to increase the abdominal fat pad without causing any adverse effects on nutrient level in eggs or chick quality.
Collapse
Affiliation(s)
- E Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. 7024, SE 750 07 Uppsala, Sweden.
| | - H Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. 7024, SE 750 07 Uppsala, Sweden
| | - M Boyner
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. 7024, SE 750 07 Uppsala, Sweden
| | - G Cervin
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - H Pavia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE 452 96 Strömstad, Sweden
| | - E Wattrang
- Department of Microbiology, National Veterinary Institute, SE 751 89 Uppsala, Sweden
| |
Collapse
|
11
|
Nepper-Davidsen J, Glasson CRK, Lawton RJ, Magnusson M. High spatial and temporal variation in biomass composition of the novel aquaculture target Ecklonia radiata. JOURNAL OF APPLIED PHYCOLOGY 2023; 35:1-14. [PMID: 37360290 PMCID: PMC10144899 DOI: 10.1007/s10811-023-02969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 06/28/2023]
Abstract
The biomass composition of kelp varies within species both spatially and temporally. However, this variation in biomass quality has not yet been investigated for the native kelp Ecklonia radiata within New Zealand, where the kelp is a target for the emerging seaweed aquaculture industry. In this study we quantified spatial and temporal variation in the composition of E. radiata biomass, collected from 12 sites around the North Island of New Zealand and from 12 months across a full year at a single site (n = 138). High spatial variation was detected for most components, including alginate (range: 16.6 - 22.7% DW, n = 12), fucoidan (range: 1.2 - 1.6% DW, n = 12), phlorotannins (range: 4.8 - 9.3% DW, n = 72), and glucose (range: 9.3 - 22.6% DW, n = 12). The biomass composition of E. radiata varied significantly among sites but with no clear patterns among regions, indicating that geographic differences were mostly local rather than regional, possibly due to site-specific environmental conditions. Significant temporal variation (measured by positive autocorrelation between months) was detected in the content of lipids, proteins, glucose, guluronic acid, nitrogen, phosphorous, iodine, arsenic, and mercury, and for the mannuronic to guluronic acid (M:G) ratio. Overall, E. radiata had comparable biomass composition to that of commercially grown northern hemisphere species but with substantially higher phlorotannin content. These results demonstrate that E. radiata could be a viable southern hemisphere alternative for a broad range of commercial applications. Supplementary Information The online version contains supplementary material available at 10.1007/s10811-023-02969-2.
Collapse
Affiliation(s)
- Jacob Nepper-Davidsen
- Coastal Marine Field Station, School of Science, University of Waikato, Tauranga, New Zealand
- Environmental Research Institute, The University of Waikato, Tauranga, New Zealand
| | - Christopher R. K. Glasson
- Coastal Marine Field Station, School of Science, University of Waikato, Tauranga, New Zealand
- Environmental Research Institute, The University of Waikato, Tauranga, New Zealand
| | - Rebecca J. Lawton
- Coastal Marine Field Station, School of Science, University of Waikato, Tauranga, New Zealand
- Environmental Research Institute, The University of Waikato, Tauranga, New Zealand
| | - Marie Magnusson
- Coastal Marine Field Station, School of Science, University of Waikato, Tauranga, New Zealand
- Environmental Research Institute, The University of Waikato, Tauranga, New Zealand
| |
Collapse
|
12
|
A Review of Biohydrogen Production from Saccharina japonica. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Saccharina japonica (known as Laminaria japonica or Phaeophyta japonica), one of the largest macroalgae, has been recognized as food and medicine for a long time in some Asian countries, such as China, South Korea, Japan, etc. In recent years, S. japonica has also been considered the most promising third-generation biofuel feedstock to replace fossil fuels, contributing to solving the challenges people face regarding energy and the environment. In particular, S. japonica-derived biohydrogen (H2) is expected to be a major fuel source in the future because of its clean, high-yield, and sustainable properties. Therefore, this review focuses on recent advances in bio-H2 production from S. japonica. The cutting-edge biological technologies with suitable operating parameters to enhance S. japonica’s bio-H2 production efficiency are reviewed based on the Scopus database. In addition, guidelines for future developments in this field are discussed.
Collapse
|
13
|
Life Cycle Assessment of pilot scale production of seaweed-based bioplastic. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
14
|
Rhein-Knudsen N, Reyes-Weiss D, Horn SJ. Extraction of high purity fucoidans from brown seaweeds using cellulases and alginate lyases. Int J Biol Macromol 2023; 229:199-209. [PMID: 36584780 DOI: 10.1016/j.ijbiomac.2022.12.261] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Fucoidans are fucose rich sulfated polysaccharides that are found in the cell wall of brown seaweeds and have been shown to have several beneficial bioactivities. In the present study, we report a new enzymatic extraction technique for the production of pure and intact fucoidans from the two brown seaweeds Saccharina latissima and Alaria esculenta. This new extraction protocol uses the commercial cellulase blend Cellic® CTec2 in combination with endo- and exo-acting thermophilic alginate lyases. The fucoidans obtained by this extraction technique are compared to traditionally extracted fucoidans in terms of chemical compositions and molecular weights and are shown to contain significantly higher amounts of fucose and sulfate, the main components of fucoidans, while cellulose, laminarin, and alginate contamination is low. Thus, by using this combination of enzymes, the extracted fucoidans do not undergo depolymerization during extraction and additional purification steps are not needed. The high purity fucoidans isolated by this new enzymatic extraction technique can be used to provide insight into the different fucoidan structures and biological activities.
Collapse
Affiliation(s)
- Nanna Rhein-Knudsen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Diego Reyes-Weiss
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway.
| |
Collapse
|
15
|
Teixeira-Guedes C, Gomes-Dias JS, Cunha SA, Pintado ME, Pereira R, Teixeira JA, Rocha CM. Enzymatic approach for the extraction of bioactive fractions from red, green and brown seaweeds. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:97-152. [PMID: 36245550 PMCID: PMC9547092 DOI: 10.1007/s10311-022-01520-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 05/02/2023]
Abstract
The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Israa M. A. Mohamed
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555 Japan
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| |
Collapse
|
17
|
Birgersson PS, Oftebro M, Strand WI, Aarstad OA, Sætrom GI, Sletta H, Arlov Ø, Aachmann FL. Sequential extraction and fractionation of four polysaccharides from cultivated brown algae Saccharina latissima and Alaria esculenta. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Bojorges H, Fabra MJ, López-Rubio A, Martínez-Abad A. Alginate industrial waste streams as a promising source of value-added compounds valorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156394. [PMID: 35660439 DOI: 10.1016/j.scitotenv.2022.156394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The alginate industry processes more than hundred thousand tons per year of algae in Europe, discarding around 80% of the algae biomass as different solid/liquid residual streams. In this work, Saccharina latissima and Ascophyllum nodosum, their generated alginates and all residual fractions generated in the process were characterized in terms of lipid, ash, protein content, and the carbohydrate composition and antioxidant capacities analyzed. The first fraction after acid treatment (ca. 50% of the initial dry biomass) was rich in phlorotannins (15 mg GAE/g) and bioactive fucoidans (15-70%), with a high sulfation degree in A. nodosum. Two fractions generated from the solid residue, one soluble and another insoluble (Ra and Rb, respectively), constituted 9% and 5-8% of the initial biomass and showed great potential as a source of soluble protein (30% for S. latissima), and cellulose (70%) or fucoidan, respectively. Valorization strategies are suggested for these waste streams, evidencing their high potential as bioactive, texturizing or nutritional added-value ingredients for cosmetic, food, feed or pharmaceutical applications.
Collapse
Affiliation(s)
- Hylenne Bojorges
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain
| | - Maria José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Avda. Agustín escardin, 7, 46980, Paterna, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy- Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
19
|
Wu J, Rogers SW, Schaummann R, Higgins C, Price N. Bioextractive aquaculture as an alternative nutrient management strategy for water resource recovery facilities. WATER RESEARCH 2022; 212:118092. [PMID: 35123380 DOI: 10.1016/j.watres.2022.118092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/04/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Advanced nutrient removal in water resource recovery facilities (WRRFs) can reduce coastal eutrophication, but can increase economic costs and indirect environmental impacts associated with energy and materials usage for WRRF construction and operation. A strategy of interest to reduce coastal eutrophication is the cultivation of seaweeds in proximity to WRRF discharge plumes to bioextract nutrients from coastal waters. We report economic and environmental trade-offs of this proposed strategy for a 1,170 m3·d-1 (0.31 mgd) WRRF in Boothbay Harbor, Maine, targeting a Water Environment Research Federation (WERF) level 2 effluent nitrogen goal of 3 mg-N·L-1. The scenarios investigated include WRRF upgrade and year-round nutrient bioextractive aquaculture (Saccharina latissima and Gracilaria tikvahiae cultivation) with end uses of bioenergy feedstock, fertilizer, or food. Based on biomass production characteristics and tissue nitrogen contents in Boothbay Harbor, an aquaculture site of 5.4 hectares would bioextract equivalent nitrogen mass as WRRF upgrade to meet level 2 nitrogen effluent goals. Using a techno-economic analysis, the cost of a WRRF upgrade was estimated to be $0.31 m-3 wastewater treated. The cost of bioextractive seaweed aquaculture depended on beneficial use of seaweed. If dried and sold as sea vegetables (for human consumption), a net revenue of $0.72 m-3 wastewater treated could be generated. If dried and sold as commercial fertilizer, the net cost of nutrient removal would be $0.26 m-3 wastewater treated, less than the WRRF upgrade. However, if anaerobically digested to produce biogas, the net cost of treatment was estimated to be $0.499 m-3 wastewater treated. WRRF upgrade and bioextractive aquaculture significantly reduced marine eutrophication. Bioextractive aquaculture with use as biofuel feedstock had the best performance on human carcinogenic toxicity, global warming, and fossil resource scarcity, marine ecotoxicity, and freshwater ecotoxicity. Use of seaweed product as sea vegetables was favorable considering human non-carcinogenic toxicity, marine eutrophication, freshwater eutrophication, and terrestrial ecotoxicity. The study results imply that nutrient bioextraction by seaweed aquaculture may be attractive as an alternative to advanced nutrient removal technologies in small coastal WRRFs, providing potential economic and environmental benefits for nutrient management.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam, NY 13699-5710, United States
| | - Shane W Rogers
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam, NY 13699-5710, United States.
| | - Rebekah Schaummann
- Department of Civil and Environmental Engineering, Clarkson University, 8 Clarkson Ave, Potsdam, NY 13699-5710, United States
| | - Chris Higgins
- Boothbay Harbor Sewer District, Boothbay Harbor, ME, United States
| | - Nichole Price
- Bigelow Laboratories for Ocean Sciences, Boothbay Harbor, ME, United States
| |
Collapse
|
20
|
Blikra MJ, Henjum S, Aakre I. Iodine from brown algae in human nutrition, with an emphasis on bioaccessibility, bioavailability, chemistry, and effects of processing: A systematic review. Compr Rev Food Sci Food Saf 2022; 21:1517-1536. [PMID: 35233943 DOI: 10.1111/1541-4337.12918] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 11/29/2022]
Abstract
Brown algae are becoming increasingly popular as a food source and dietary supplement in Europe and other Western countries. As they are highly rich in iodine, they represent a potential new dietary iodine source. Iodine deficiency has been re-emerging in Europe, and it is important to ensure adequate intake through one's diet. However, macroalgae, and especially brown algae, may contain very high amounts of iodine, and both iodine deficiency and excessive iodine may increase the risk of negative health effects. The iodine content of algae or foods containing algae is currently not regulated in the European Union. The aim of this paper is to review the literature to determine the chemical species of iodine in brown algae, the loss of iodine during processing, and the bioavailability and bioaccessibility of iodine. A systematic search of the literature was performed in April 2021, via the databases Web of Science and PubMed. The review includes studies of iodine in brown macroalgae in relation to bioavailability, bioaccessibility, processing and speciation. A meta-analysis was conducted in relation to the following topics: (i) the correlation between total iodine and iodide (I- ) content in brown algae; (ii) the correlation between the loss of iodine during processing and the I- content; and (iii) the correlation between bioavailability and the I- content. The bioavailability of iodine from brown algae was generally high, with in vivo bioavailability ranging from 31% to 90%. The in vitro bioavailability of iodine (2%-28%) was systematically lower than in vivo bioavailability (31%-90%), indicating an inadequate in vitro methodology. Processing may reduce the iodine content of brown algae, and a higher I- content was positively correlated with increased iodine loss during processing. Although processing strategies may reduce the iodine content of brown algae significantly, the iodine content may still be high after processing. These findings may be used in food safety evaluations of brown algae as well as in the development of macroalgae-containing foods with iodine contents suitable for human consumption. Further research on processing techniques to reduce the iodine content in brown macroalgae are warranted.
Collapse
Affiliation(s)
| | - Sigrun Henjum
- Department of Nursing and Health Promotion, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Inger Aakre
- Department of Seafood and Nutrition, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
21
|
Schultze-Jena A, Vroon R, Macleod A, Hreggviðsson G, Adalsteinsson B, Engelen-Smit N, de Vrije T, Budde M, van der Wal H, López-Contreras A, Boon M. Production of acetone, butanol, and ethanol by fermentation of Saccharina latissima: Cultivation, enzymatic hydrolysis, inhibitor removal, and fermentation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Stokvis L, Rayner C, van Krimpen M, Kals J, Hendriks W, Kwakkel R. A Proteolytic Enzyme Treatment to Improve Ulva laetevirens and Solieria chordalis Seaweed Co-Product Digestibility, Performance and Health in Broilers. Poult Sci 2022; 101:101777. [PMID: 35320758 PMCID: PMC8943295 DOI: 10.1016/j.psj.2022.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/13/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022] Open
Abstract
To explore the potential use of seaweed co-products for broiler diets, this study investigates whether an enzyme treatment of seaweed co-products improves performance, in vivo digestibility and health in broilers. In total, 360 Ross 308 male broilers were fed one of 5 experimental diets: a basal diet, or a basal diet including the U. laetevirens or S. chordalis co-product, with or without proteolytic enzyme treatment of the seaweed, using 6 replicate pens of 12 birds each. The starter (d 0–13) and grower (d 14–21) diet contained 5 and 10% (w/w) seaweed product, respectively. A general linear model with contrast statements was used after model assumptions and goodness of fit were evaluated through normal distribution of residuals. Inclusion of seaweed in the broiler diets increased body weight gain (+14%; P = 0.002), and feed intake (+12%; P = 0.001) in the third week of the experiment. Birds fed the U. laetevirens compared to the S. chordalis diets had a higher body weight gain (+11%; P = 0.007), and a lower feed conversion ratio (FCR; -7%; P < 0.001). Seaweed inclusion reduced apparent pre-cecal digestibility of all nutrients (P < 0.05). Birds fed U. laetevirens vs. S. chordalis diets had a 10% reduced villus length (P < 0.001). Enzymatic treatment reduced the digestibility of most nutrients, and increased crypt depth in birds fed the U. laetevirens diets, whereas the opposite was observed for the birds fed the S. chordalis diets (Seaweed × Enzyme P = 0.035). Untreated vs. treated seaweed in the diets led to lower (−60%) plasma Interleukin-13 levels (P = 0.035). In conclusion, the proteolytic enzyme treatment of the seaweed co-products did not improve performance nor health-related parameters, and reduced digestibility of the diets. Dietary inclusion of U. laetevirens co-products did improve performance based on growth and FCR, whereas inclusion of S. chordalis did not. Inclusion of U. laetevirens in broiler diets slightly reduced duodenal villus length and crypt depth. The inflammation response was strongly reduced, specifically in birds fed the untreated U. laetevirens diet, making the U. laetevirens co-product of interest for future research.
Collapse
|
23
|
Cebrián-Lloret V, Metz M, Martínez-Abad A, Knutsen SH, Ballance S, López-Rubio A, Martínez-Sanz M. Valorization of alginate-extracted seaweed biomass for the development of cellulose-based packaging films. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Bizzaro G, Vatland AK, Pampanin DM. The One-Health approach in seaweed food production. ENVIRONMENT INTERNATIONAL 2022; 158:106948. [PMID: 34695653 DOI: 10.1016/j.envint.2021.106948] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Seaweeds are rich in macronutrients, micronutrients, and bioactive components and have great potential as sustainable resources in terms of both production and consumption of a desirable food. Still, the seaweed aquaculture industry's rapid growth points out challenges that need to be taken into consideration when assessing environmental integrity, animal, and human health. In this review, the seaweed aquaculture's potential impact on the wildlife and human welfare and the environmental integrity has been evaluated using the One Health approach, a principle in which human, animal, and environmental health outcomes are considered as strictly connected. This is the first effort to implement the One Health concept into the seaweed cultivation assessment, and it is meant to give new perspectives for the growth of this industry.
Collapse
Affiliation(s)
- Gianluca Bizzaro
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway; Kvitsøy Seaweed AS, Langøyveien 8, NO-4180 Kvitsøy, Norway.
| | - Ann Kristin Vatland
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway; Kvitsøy Seaweed AS, Langøyveien 8, NO-4180 Kvitsøy, Norway
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, NO-4036 Stavanger, Norway
| |
Collapse
|
25
|
Blikra MJ, Altintzoglou T, Løvdal T, Rognså G, Skipnes D, Skåra T, Sivertsvik M, Noriega Fernández E. Seaweed products for the future: Using current tools to develop a sustainable food industry. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Rhein-Knudsen N, Guan C, Mathiesen G, Horn SJ. Expression and production of thermophilic alginate lyases in Bacillus and direct application of culture supernatant for seaweed saccharification. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes (Basel) 2021. [DOI: 10.3390/pr9111953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Seaweeds are gaining momentum as novel and functional food and feed products. From whole consumption to small bioactive compounds, seaweeds have remarkable flexibility in their applicability, ranging from food production to fertilizers or usages in chemical industries. Regarding food production, there is an increasing interest in the development of novel foods that, at the same time, present high nutritious content and are sustainably developed. Seaweeds, because they require no arable land, no usage of fresh water, and they have high nutritious and bioactive content, can be further explored for the development of newer and functional food products. Fermentation, especially performed by lactic acid bacteria, is a method used to produce functional foods. However, fermentation of seaweed biomass remains an underdeveloped topic that nevertheless demonstrates high potential for the production of new alimentary products that hold and further improve the organoleptic and beneficial properties that these organisms are characterized for. Although further research has to be deployed in this field, the prebiotic and probiotic potential demonstrated by fermented seaweed can boost the development of new functional foods.
Collapse
|
28
|
Food-Grade Biorefinery Processing of Macroalgae at Scale: Considerations, Observations and Recommendations. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Using brown seaweed kelp species Saccharina latissima and Laminaria digitata as feedstocks, a set of pilot-scale macroalgae processing batches were conducted (50–200 kg per batch) for the production of a range of food-grade liquid and solid fractions. The aim of this communication is to relay a number of lessons learnt during this period in combination with previous relevant observations and considerations for others who are intending to process macroalgae at scale. The novelty of this paper is thus to form a bridge between academic findings and practical know-how. Considerations covers material diversity; abiotic and biotic impact and variation; and supply chain considerations. Observations covers milling and cutting; equipment requirements; and acids including their effects on heavy metals, especially lead. Recommendations summarises key points from this pilot-scale and previous work. These include: harvest seasonality, water quality and proximity to processing facilities; minimising contaminants within the macroalgae such as stones and shells; considering equipment composition and volume for all steps and processes including final product quality; acid choice and its effects on both the equipment used and the metals bioaccumulated within the macroalgae.
Collapse
|
29
|
Stokvis L, van Krimpen M, Kwakkel R, Bikker P. Evaluation of the nutritional value of seaweed products for broiler chickens’ nutrition. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Samarasinghe M, van der Heide M, Weisbjerg M, Sehested J, Sloth J, Bruhn A, Vestergaard M, Nørgaard J, Hernández-Castellano L. A descriptive chemical analysis of seaweeds, Ulva sp., Saccharina latissima and Ascophyllum nodosum harvested from Danish and Icelandic waters. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Jordbrekk Blikra M, Wang X, James P, Skipnes D. Saccharina latissima Cultivated in Northern Norway: Reduction of Potentially Toxic Elements during Processing in Relation to Cultivation Depth. Foods 2021; 10:foods10061290. [PMID: 34199830 PMCID: PMC8227645 DOI: 10.3390/foods10061290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
There is an increasing interest in the use of Saccharina latissima (sugar kelp) as food, but the high iodine content in raw sugar kelp limits the daily recommended intake to relatively low levels. Processing strategies for iodine reduction are therefore needed. Boiling may reduce the iodine content effectively, but not predictably, since reductions from 38-94% have been reported. Thus, more information on which factors affect the reduction of iodine are needed. In this paper, sugar kelp cultivated at different depths were rinsed and boiled, to assess the effect of cultivation depth on the removal efficacy of potentially toxic elements (PTEs), especially iodine, cadmium, and arsenic, during processing. Raw kelp cultivated at 9 m contained significantly more iodine than kelp cultivated at 1 m, but the difference disappeared after processing. Furthermore, the content of cadmium and arsenic was not significantly affected by cultivation depth. The average reduction during rinsing and boiling was 85% for iodine and 43% for arsenic, but no significant amount of cadmium, lead, or mercury was removed. Cultivation depths determined the relative effect of processing on the iodine content, with a higher reduction for kelp cultivated at 9 m (87%) compared to 1 m (82%). When not taken into consideration, cultivation depth could mask small reductions in iodine content during rinsing or washing. Furthermore, since the final content of PTEs was not dependent on the cultivation depth, the type and extent of processing determines whether cultivation depth should be considered as a factor in cultivation infrastructure design and implementation, or alternatively, in product segmentation.
Collapse
Affiliation(s)
- Marthe Jordbrekk Blikra
- Department of Processing Technology, Seafood Division, Nofima AS, P.O. Box 8034, NO-4068 Stavanger, Norway;
- Correspondence:
| | - Xinxin Wang
- Department of Aquaculture Production, Aquaculture Division, Nofima AS, P.O. Box 6122, NO-9291 Tromsø, Norway; (X.W.); (P.J.)
| | - Philip James
- Department of Aquaculture Production, Aquaculture Division, Nofima AS, P.O. Box 6122, NO-9291 Tromsø, Norway; (X.W.); (P.J.)
| | - Dagbjørn Skipnes
- Department of Processing Technology, Seafood Division, Nofima AS, P.O. Box 8034, NO-4068 Stavanger, Norway;
| |
Collapse
|
32
|
Bonde CS, Bornancin L, Lu Y, Simonsen HT, Martínez-Valladares M, Peña-Espinoza M, Mejer H, Williams AR, Thamsborg SM. Bio-Guided Fractionation and Molecular Networking Reveal Fatty Acids to Be Principal Anti-Parasitic Compounds in Nordic Seaweeds. Front Pharmacol 2021; 12:674520. [PMID: 34149425 PMCID: PMC8206555 DOI: 10.3389/fphar.2021.674520] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 01/25/2023] Open
Abstract
Widespread use of antimicrobial drugs has led to high levels of drug-resistance in pathogen populations and a need for novel sources of anti-bacterial and anti-parasitic compounds. Macroalgae (seaweed) are potentially a rich source of bioactive compounds, and several species have traditionally been used as vermifuges. Here, we investigated the anti-parasitic properties of four common cold-water Nordic seaweeds; Palmaria palmata (Rhodophyta), Laminaria digitata, Saccharina latissima and Ascophyllum nodosum (Ochrophyta, Phaeophyceae). Screening of organic extracts against helminths of swine (Ascaris suum) and sheep (Teladorsagia circumcincta) revealed that S. latissima and L. digitata had particularly high biological activity. A combination of molecular networking and bio-guided fractionation led to the isolation of six compounds from extracts of these two species identified in both fermented and non-fermented samples. The six isolated compounds were tentatively identified by using MS-FINDER as five fatty acids and one monoglyceride: Stearidonic acid (1), Eicosapentaenoic acid (2), Alpha-Linolenic acid (3), Docosahexaenoic acid (4), Arachidonic acid (5), and Monoacylglycerol (MG 20:5) (6). Individual compounds showed only modest activity against A. suum, but a clear synergistic effect was apparent when selected compounds were tested in combination. Collectively, our data reveal that fatty acids may have a previously unappreciated role as natural anti-parasitic compounds, which suggests that seaweed products may represent a viable option for control of intestinal helminth infections.
Collapse
Affiliation(s)
- Charlotte Smith Bonde
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Louis Bornancin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Department of Animal Health, León, Spain
| | - Miguel Peña-Espinoza
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
33
|
Influence of preservation methods on biochemical composition and downstream processing of cultivated Saccharina latissima biomass. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Lomartire S, Cotas J, Pacheco D, Marques JC, Pereira L, Gonçalves AMM. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar Drugs 2021; 19:245. [PMID: 33926129 PMCID: PMC8146014 DOI: 10.3390/md19050245] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweeds are a potential source of bioactive compounds that are useful for biotechnological applications and can be employed in different industrial areas in order to replace synthetic compounds with components of natural origin. Diverse studies demonstrate that there is a solid ground for the exploitation of seaweed bioactive compounds in order to prevent illness and to ensure a better and healthier lifestyle. Among the bioactive algal molecules, phenolic compounds are produced as secondary metabolites with beneficial effects on plants, and also on human beings and animals, due to their inherent bioactive properties, which exert antioxidant, antiviral, and antimicrobial activities. The use of phenolic compounds in pharmaceutical, nutraceutical, cosmetics, and food industries may provide outcomes that could enhance human health. Through the production of healthy foods and natural drugs, bioactive compounds from seaweeds can help with the treatment of human diseases. This review aims to highlight the importance of phenolic compounds from seaweeds, the scope of their production in nature and the impact that these compounds can have on human and animal health through nutraceutical and pharmaceutical products.
Collapse
Affiliation(s)
- Silvia Lomartire
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - João Cotas
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Diana Pacheco
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - João Carlos Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Leonel Pereira
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
| | - Ana M. M. Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (J.C.); (D.P.); (J.C.M.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Monteiro JP, Melo T, Skjermo J, Forbord S, Broch OJ, Domingues P, Calado R, Domingues MR. Effect of harvesting month and proximity to fish farm sea cages on the lipid profile of cultivated Saccharina latissima. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
The Potential of Locally-Sourced European Protein Sources for Organic Monogastric Production: A Review of Forage Crop Extracts, Seaweed, Starfish, Mussel, and Insects. SUSTAINABILITY 2021. [DOI: 10.3390/su13042303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Organic monogastric agriculture is challenged because of a limited availability of regional and organic protein-rich ingredients to fulfill the amino acid requirements. The development of novel feed ingredients is therefore essential. The use of starfish (Asterias rubens), mussel (Mytilus edilus), insect, green and brown seaweed, and forage crop extracts exhibits different approaches to increase protein availability in a sustainable manner through improving the protein quality of existing ingredients, better use of under- or unutilized material, or development of circular bioeconomy. This review assessed limitations and opportunities of producing, processing, and using these novel ingredients in feed. The use of non-renewable resources and the effect on the environment of production and processing the feed ingredients are described. Protein concentration and amino acid quality of the feed ingredients are evaluated to understand their substitution potential compared with protein-rich soya bean and fishmeal. Feedstuffs’ effect on digestibility and animal performance is summarized. With the exception of seaweed, all novel ingredients show potential to partly substitute fishmeal or soya bean fulfilling part of the protein requirement in organic monogastric production. However, improvements during production and processing can be made to enhance protein quality, sustainability of the novel ingredients, and nutrient utilization of novel feed ingredients.
Collapse
|
37
|
Sardari RRR, Prothmann J, Gregersen O, Turner C, Nordberg Karlsson E. Identification of Phlorotannins in the Brown Algae, Saccharina latissima and Ascophyllum nodosum by Ultra-High-Performance Liquid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry. Molecules 2020; 26:E43. [PMID: 33374856 PMCID: PMC7795173 DOI: 10.3390/molecules26010043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022] Open
Abstract
Phlorotannins are bioactive polyphenols in brown macroalgae that make these algae interesting as healthy food. Specific phlorotannins are, however, seldom identified, and extracts from different species are often only analysed for total phenolic content (TPC). In this study, our focus was to identify phlorotannin molecules from Saccharina latissima and Ascophyllum nodosum (a species rich in these compounds) using ultra-high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS2). Water and ethanol (30 and 80% v/v) were used at solid:liquid ratios, extraction times and temperatures, proposed to result in high TPC in extracts from other species. The S. latissima extracts, however, did not allow phlorotannin detection by either UHPLC-UV/Vis or UHPLC-HRMS2, despite a TPC response by the Folin-Ciocalteu assay, pinpointing a problem with interference by non-phenolic compounds. Purification by solid phase extraction (SPE) led to purer, more concentrated fractions and identification of four phlorotannin species in A. nodosum and one in S. latissima by UHPLC-HRMS2, using extracts in ethanol 80% v/v at a solid:liquid ratio of 1:10 for 20 h at 25 °C with an added 10 h at 65 °C incubation of remaining solids. The phlorotannin with the formula C12H10O7 (corresponding to bifuhalol) is the first identified in S. latissima.
Collapse
Affiliation(s)
- Roya R. R. Sardari
- Division of Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| | - Jens Prothmann
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 118, 221 00 Lund, Sweden; (J.P.); (C.T.)
| | - Olavur Gregersen
- Ocean Rainforest Sp/F, 20 Mjólkargøta, FO-180 Kaldbak, Faroe Islands;
| | - Charlotta Turner
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 118, 221 00 Lund, Sweden; (J.P.); (C.T.)
| | - Eva Nordberg Karlsson
- Division of Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| |
Collapse
|
38
|
Nhlane LT, Mnisi CM, Mlambo V, Madibana MJ. Effect of seaweed-containing diets on visceral organ sizes, carcass characteristics, and meat quality and stability of Boschveld indigenous hens. Poult Sci 2020; 100:949-956. [PMID: 33518148 PMCID: PMC7858179 DOI: 10.1016/j.psj.2020.11.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 10/26/2022] Open
Abstract
Seaweeds are functional feed ingredients that have antioxidant, antimicrobial, and growth-boosting properties that can improve poultry product quality. This study, therefore, investigated the effect of graded levels of green seaweed meal (Ulva spp.) (SWM) on visceral organ sizes, carcass characteristics, and meat quality and stability of Boschveld indigenous hens. A total of 275, four-week-old female chicks (202.4 ± 6.65 g of live weight) were reared on 5 isocaloric and isonitrogenous diets formulated by adding SWM at a concentration of 0 (SW0), 2 (SW20), 2.5 (SW25), 3 (SW30), and 3.5% (SW35). Birds were humanely slaughtered at 14 wk of age. Cecum weight linearly increased (R2 = 0.366, P = 0.002), whereas proventriculus (R2 = 0.205, P = 0.025) and duodenum (R2 = 0.242, P = 0.010) weights linearly decreased with SWM levels. Neither linear nor quadratic trends (P > 0.05) were observed for carcass traits, meat quality parameters, and shelf life indicators in response to dietary SWM levels. Repeated-measures analysis showed a significant time × diet interaction effect on meat redness (a∗). After 24 h of storage, meat from hens fed with SW35 (2.47) diet had a higher a∗ value than meat from hens fed with SW30 diet (0.48). However, the inclusion of SWM promoted similar (P > 0.05) shelf life indicators as the control diet for the rest of the 7-d storage period at room temperature. In conclusion, dietary inclusion of SWM had no adverse effect on visceral organ size, carcass and meat quality traits, and meat stability of Boschveld indigenous hens.
Collapse
Affiliation(s)
- L T Nhlane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa
| | - C M Mnisi
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa; Food Security and Safety Niche area, Faculty of Natural and Agricultural Science, North-West University, Mafikeng 2745, South Africa.
| | - V Mlambo
- School of Agricultural Sciences, Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Mbombela 1200, South Africa
| | - M J Madibana
- Department of Environment, Forestry and Fisheries, Marine Research Aquarium, Sea Point, 8005, South Africa
| |
Collapse
|
39
|
Zhang L, Cao Z, Liang G, Li X, Wu H, Yang G. Comparative Transcriptome Analysis Reveals Candidate Genes Related to Structural and Storage Carbohydrate Biosynthesis in Kelp Saccharina japonica (Laminariales, Phaeophyceae). JOURNAL OF PHYCOLOGY 2020; 56:1168-1183. [PMID: 32408392 DOI: 10.1111/jpy.13016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Saccharina japonica is a brown macroalga that has been commercially cultivated in China for almost a century. As a natural raw material, it is widely used in the food and pharmaceutical industries, and it may potentially be useful for biofuel production. However, little is known about the genes involved in carbohydrate biosynthesis, and their regulation is less understood. In this study, the analysis of growth traits and alginate and mannitol contents suggested that sporophyte development could be divided into four stages. Accordingly, we performed transcriptome analysis of the S. japonica sporophyte. In total, 589 million clean reads were generated, and 4,514 novel genes were identified. Gene expression analysis revealed that 2,542 genes were differentially expressed. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that these genes were significantly enriched in "Carbon metabolism," "Photosynthesis," and "Photosynthesis-antenna proteins" pathways, which are important for metabolism of various carbohydrates during sporophyte development. Systematic analysis identified the genes encoding enzymes for the biosynthesis of cell wall carbohydrates (including alginate, fucoidan, and cellulose) and cytoplasm storage carbohydrates (mannitol, laminarin, and trehalose). Among them, some key genes associated with carbohydrate content were further identified based on detailed expression profiling, representing good candidates for further functional studies. This study provides a global view of the carbohydrate metabolism process and an important resource for functional genomics studies in S. japonica. The results obtained lay the basis for elucidating the molecular mechanism of carbohydrate biosynthesis and for genetic breeding of carbohydrates-related traits in kelp.
Collapse
Affiliation(s)
- Linan Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zengmei Cao
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd., Yantai, 264003, China
| | - Guangjin Liang
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd., Yantai, 264003, China
| | - Xiaojie Li
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-tech Co., Ltd., Yantai, 264003, China
| | - Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
40
|
The Effect of Ensiling on the Nutritional Composition and Fermentation Characteristics of Brown Seaweeds as a Ruminant Feed Ingredient. Animals (Basel) 2020; 10:ani10061019. [PMID: 32545350 PMCID: PMC7341188 DOI: 10.3390/ani10061019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In recent years, there has emerged a renewed interest in the inclusion of seaweed as an animal feed ingredient. Due to annual fluctuations in the availability and biochemical composition of seaweeds, effective preservation methods are needed. These are currently restricted to thermal processing methods. Ensiling is a commonly applied preservation technique for terrestrial forages intended for livestock feed but little is known about the characteristics of silage made from seaweeds. This study considered the potential of ensiling two brown seaweed species (Fucus vesiculosus and Saccharina latissimi) with or without the use of a microbial inoculant. The potential applications of seaweed silage as a feed ingredient in ruminant diets were considered. The results showed that, depending on the species, ensiling may be a suitable preservation method for brown seaweeds. Abstract Ensiling could be an effective method to preserve seaweeds for animal feed applications, however, there is limited scientific knowledge in this area. Seaweeds are a promising ruminant feed ingredient, in part due to the content of phenolic compounds, which are receiving considerable interest as alternative antimicrobial agents in feed. The aim of the study was to compare the effect of ensiling on the nutritional composition and fermentation characteristics of two brown seaweed species, Fucus vesiculosus (FV) and Saccharina latissimi (SL) with or without the use of a Lactobacillus plantarum (LAB) inoculant. The effect of ensiling on the stability of phlorotannin was also investigated using nuclear magnetic resonance (NMR). After harvesting, the seaweeds were wilted for 24 h and subsequently ensiled in laboratory-scaled silos for 90 days. SL silage showed a stronger fermentation pattern (pH < 4), dominated by lactic acid (50–60 g/kg Dry Matter (DM)), and a slightly higher acetic acid content compared to FV silages (p < 0.05). The fermentability of FV was limited (pH > 4.8) with low lactic acid production (<5 g/kg DM). The addition of the LAB inoculant showed no effect on the fermentation process but a modest effect on the chemical composition of both species was observed after the 90-day ensiling period. The results showed no losses in the nutrient content of FV after ensiling, however losses in the Crude Protein (CP, −32%), ash (−36%), Neutral Detergent Fibre (NDF, −77%) and Acid Detergent Fibre (ADF, −58%) content of SL were observed. The ensiling process had a limited effect on the in vitro true dry matter digestibility and phenolic content of either species. Therefore, ensilage may be a suitable preservation method for the use of brown seaweeds as a ruminant feed; however, species-specific differences were observed.
Collapse
|
41
|
Ashayerizadeh O, Dastar B, Pourashouri P. Study of antioxidant and antibacterial activities of depolymerized fucoidans extracted from Sargassum tenerrimum. Int J Biol Macromol 2020; 151:1259-1266. [PMID: 31760029 DOI: 10.1016/j.ijbiomac.2019.10.172] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/02/2019] [Accepted: 10/20/2019] [Indexed: 02/02/2023]
Abstract
This work was performed to compare the effect of two water-extraction methods of fucoidan from Sargassum tenerrimum on their chemical composition, antioxidant capacity and antimicrobial activity after hydrothermal depolymerization. The number of extraction steps and ethanol concentration used for extraction were different between the two methods. Extraction yield of fucoidan obtained from the first method (DFM1) and the second method (DFM2) were 3.68 and 1.09%, respectively (P < 0.05). The IC50 value of DPPH radical scavenging activity for DFM1 was 1.93 times more than DFM2. The Fe+2 ions chelating activity were 78.3% for DFM1 and 89.4% for DFM2 at 10 mg/mL concentration. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of DFM2 were lower compared to DFM1 for Enterococcus faecalis and Escherichia coli The DFM2 was more effective to decrease the MIC value of chloramphenicol on the gram negative strains than DFM1. Both of the fucoidans showed a synergistic effect in combination with chloramphenicol to inhibit the growth of Escherichia coli Based on the results of this study, depolymerized fucoidans can also be more considered as effective antibacterial agent with synergistic potential in combination with antibiotics to decrease the prescribed doses of antibiotic drugs in humans and animals.
Collapse
Affiliation(s)
- Omid Ashayerizadeh
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Behrouz Dastar
- Department of Animal and Poultry Nutrition, Faculty of Animal Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Parastoo Pourashouri
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
42
|
Bikker P, Stokvis L, van Krimpen M, van Wikselaar P, Cone J. Evaluation of seaweeds from marine waters in Northwestern Europe for application in animal nutrition. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114460] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Del Río PG, Gomes-Dias JS, Rocha CMR, Romaní A, Garrote G, Domingues L. Recent trends on seaweed fractionation for liquid biofuels production. BIORESOURCE TECHNOLOGY 2020; 299:122613. [PMID: 31870706 DOI: 10.1016/j.biortech.2019.122613] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/18/2023]
Abstract
Concerns about fossil fuels depletion has led to seek for new sources of energy. The use of marine biomass (seaweed) to produce biofuels presents widely recognized advantages over terrestrial biomasses such as higher production ratio, higher photosynthetic efficiency or carbon-neutral emissions. In here, interesting seaweed sources as a whole or as a residue from seaweed processing industries for biofuel production were identified and their diverse composition and availability compiled. In addition, the pretreatments used for seaweed fractionation were thoroughly revised as this step is pivotal in a seaweed biorefinery for integral biomass valorization and for enabling biomass-to-biofuel economic feasibility processes. Traditional and emerging technologies were revised, with particular emphasis on green technologies, relating pretreatment not only with the type of biomass but also with the final target product(s) and yields. Current hurdles of marine biomass-to-biofuel processes were pinpointed and discussed and future perspectives on the development of these processes given.
Collapse
Affiliation(s)
- Pablo G Del Río
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Joana S Gomes-Dias
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Cristina M R Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal.
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, University of Vigo Campus Ourense, As Lagoas, 32004 Ourense, Spain
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
44
|
Monteiro JP, Rey F, Melo T, Moreira ASP, Arbona JF, Skjermo J, Forbord S, Funderud J, Raposo D, Kerrison PD, Perrineau MM, Gachon C, Domingues P, Calado R, Domingues MR. The Unique Lipidomic Signatures of Saccharina latissima Can Be Used to Pinpoint Their Geographic Origin. Biomolecules 2020; 10:E107. [PMID: 31936373 PMCID: PMC7023228 DOI: 10.3390/biom10010107] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/05/2023] Open
Abstract
The aquaculture of macroalgae for human consumption and other high-end applications is experiencing unprecedented development in European countries, with the brown algae Saccharina latissima being the flag species. However, environmental conditions in open sea culture sites are often unique, which may impact the biochemical composition of cultured macroalgae. The present study compared the elemental compositions (CHNS), fatty acid profiles, and lipidomes of S. latissima originating from three distinct locations (France, Norway, and the United Kingdom). Significant differences were found in the elemental composition, with Norwegian samples displaying twice the lipid content of the others, and significantly less protein (2.6%, while French and UK samples contained 6.3% and 9.1%, respectively). The fatty acid profiles also differed considerably, with UK samples displaying a lower content of n-3 fatty acids (21.6%), resulting in a higher n-6/n-3 ratio. Regarding the lipidomic profile, samples from France were enriched in lyso lipids, while those from Norway displayed a particular signature of phosphatidylglycerol, phosphatidylinositol, and phosphatidylcholine. Samples from the UK featured higher levels of phosphatidylethanolamine and, in general, a lower content of galactolipids. These differences highlight the influence of site-specific environmental conditions in the shaping of macroalgae biochemical phenotypes and nutritional value. It is also important to highlight that differences recorded in the lipidome of S. latissima make it possible to pinpoint specific lipid species that are likely to represent origin biomarkers. This finding is relevant for future applications in the field of geographic origin traceability and food control.
Collapse
Affiliation(s)
- João P. Monteiro
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (A.S.P.M.); (P.D.); (M.R.D.)
- Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (A.S.P.M.); (P.D.); (M.R.D.)
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Tânia Melo
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (A.S.P.M.); (P.D.); (M.R.D.)
- Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana S. P. Moreira
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (A.S.P.M.); (P.D.); (M.R.D.)
- Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Jorunn Skjermo
- Department of Environment and New Resources, SINTEF Ocean, 7465 Trondheim, Norway; (J.S.); (S.F.)
| | - Silje Forbord
- Department of Environment and New Resources, SINTEF Ocean, 7465 Trondheim, Norway; (J.S.); (S.F.)
| | - Jon Funderud
- Seaweed Energy Solution AS, Bynesveien 48, 7018 Trondheim, Norway; (J.F.); (D.R.)
| | - Diogo Raposo
- Seaweed Energy Solution AS, Bynesveien 48, 7018 Trondheim, Norway; (J.F.); (D.R.)
| | - Philip D. Kerrison
- Scottish Association for Marine Science, Oban PA37 1QA, UK; (P.D.K.); (M.-M.P.); (C.G.)
| | | | - Claire Gachon
- Scottish Association for Marine Science, Oban PA37 1QA, UK; (P.D.K.); (M.-M.P.); (C.G.)
| | - Pedro Domingues
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (A.S.P.M.); (P.D.); (M.R.D.)
| | - Ricardo Calado
- Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - M. Rosário Domingues
- Centro de Espetrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.R.); (T.M.); (A.S.P.M.); (P.D.); (M.R.D.)
- Departamento de Química & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
45
|
Kirkholt EM, Dikiy A, Shumilina E. Changes in the Composition of Atlantic Salmon upon the Brown Seaweed ( Saccharina latissima) Treatment. Foods 2019; 8:E625. [PMID: 31795426 PMCID: PMC6963436 DOI: 10.3390/foods8120625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/16/2022] Open
Abstract
This study shows the potential of improving the taste and shelf life of salmon by storing it in conjunction with sugar kelp. The influence of the addition of wet sugar kelp to Atlantic salmon fillet was assessed using a Nuclear Magnetic Resonance (NMR) metabolomics approach. Seaweed treatment caused significant changes in the polar and non-polar metabolic composition of salmon muscle upon its storage. The mutual diffusion of sugar kelp and salmon metabolites caused a significant decrease of the formation of the off-smelling compound trimethylamine and the biogenic amines, along with an increase of umami-related compounds (aspartate and succinic acid). Carotenoid composition of the seaweed-treated samples significantly differs from the reference samples. The amount of wet seaweeds used for the treatment and the time passed after the fish slaughter influence salmon quality parameters.
Collapse
Affiliation(s)
| | | | - Elena Shumilina
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; (E.M.K.); (A.D.)
| |
Collapse
|
46
|
Bak UG, Nielsen CW, Marinho GS, Gregersen Ó, Jónsdóttir R, Holdt SL. The seasonal variation in nitrogen, amino acid, protein and nitrogen-to-protein conversion factors of commercially cultivated Faroese Saccharina latissima. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Zhang X, Thomsen M. Biomolecular Composition and Revenue Explained by Interactions between Extrinsic Factors and Endogenous Rhythms of Saccharina latissima. Mar Drugs 2019; 17:E107. [PMID: 30744162 PMCID: PMC6409931 DOI: 10.3390/md17020107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023] Open
Abstract
This review provides a systematic overview of the spatial and temporal variations in the content of biomolecular constituents of Saccharina latissima on the basis of 34 currently-available scientific studies containing primary measurements. We demonstrate the potential revenue of seaweed production and biorefinery systems by compiling a product portfolio of high-value extract products. An investigation into the endogenous rhythms and extrinsic factors that impact the biomolecular composition of S. latissima is presented, and key performance factors for optimizing seaweed production are identified. Besides the provisioning ecosystem service, we highlight the contribution of green-engineered seaweed production systems to the mitigation of the ongoing and historical anthropogenic disturbances of the climate balance and nutrient flows. We conclude that there are risks of mismanagement, and we stress the importance and necessity of creating an adaptive ecosystem-based management framework within a triple-helix partnership for balancing the utilization of ecosystem services and long-term resilience of aquatic environment.
Collapse
Affiliation(s)
- Xueqian Zhang
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Marianne Thomsen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| |
Collapse
|
48
|
Øverland M, Mydland LT, Skrede A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:13-24. [PMID: 29797494 PMCID: PMC6585948 DOI: 10.1002/jsfa.9143] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 05/05/2023]
Abstract
Marine macroalgae are considered as promising sustainable alternatives to conventional terrestrial animal feed resources. The advantages include high growth rate, potential cultivation in saltwater, and no occupation of arable land. Macroalgae are broadly classified as brown (Phaeophyta), red (Rhodophyta) and green (Chlorophyta) algae, and are a diverse group of marine organisms. The nutritional value of macroalgae is highly variable. The protein and essential amino acid content can be low, especially in brown species, and indigestible polysaccharides adversely affect the energy value. Optimal use of macroalgae in feeds requires suitable processing, and biorefinery approaches may increase protein content and improve nutrient availability. Macroalgae are rich in unique bioactive components and there is a growing interest in the potentially beneficial health effects of compounds such as laminarin and fucoidan in different macroalgal and macroalgal products. This review summarizes current literature on different aspects of the use of macroalgae as sources of protein and health-promoting bioactive compounds in feed for monogastric animal species. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Margareth Øverland
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| | - Liv T Mydland
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| | - Anders Skrede
- Department of Animal and Aquacultural SciencesFaculty of Biosciences, Norwegian University of Life SciencesAasNorway
| |
Collapse
|
49
|
Neto RT, Marçal C, Queirós AS, Abreu H, Silva AMS, Cardoso SM. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as Functional Ingredients. Int J Mol Sci 2018; 19:E2987. [PMID: 30274353 PMCID: PMC6212801 DOI: 10.3390/ijms19102987] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023] Open
Abstract
The intent of the present work was to evaluate the potential of four macroalgae prevalent in Europe, namely Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima, for application in functional foods, either in the direct form or as extracts. Accordingly, nutritional composition, the content of phytochemical antioxidants, and the inhibitory ability of key enzymes with impacts on obesity and diabetes (α-glucosidase and pancreatic lipase) or on arterial pressure (angiotensin-I converting enzyme), were evaluated. Overall, protein, lipid, ash and fiber contents of the macroalgae ranged from 9⁻24% dw, 0.5⁻3.0% dw, 20⁻32% dw, and 37⁻45% dw, respectively, making them good candidates for nutritional supplementation of several foods, particularly due to their mineral and fiber contents. In addition, brown macroalgae, in particular F. vesiculosus, stood out for its superior phenolic content, which was reflected by its high antioxidant ability and inhibition towards α-glucosidase activity (0.032 mg/mL of hydroacetonic extract inhibited 50% of the enzyme activity).
Collapse
Affiliation(s)
- Rodrigo T Neto
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Catarina Marçal
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana S Queirós
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Helena Abreu
- Algaplus-Prod. e comercialização de algas e seus derivados, Lda, 3830-196 Ílhavo, Portugal.
| | - Artur M S Silva
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Susana M Cardoso
- QOPNA, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|