1
|
Sun H, Yan S, Wu C, Ma J, Lu K, Cheng X, Yan W, Zhang S, Chen XD, Wu WD. Dandelion inspired microparticles with highly efficient drug delivery to deep lung. Colloids Surf B Biointerfaces 2024; 244:114134. [PMID: 39121569 DOI: 10.1016/j.colsurfb.2024.114134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Active pharmaceutical ingredient (API) embedded dry powder for inhalation (AeDPI) shows higher drug loading and delivery dose for directly treating various lung infections. Inspired by the dandelion, we propose a novel kind of AeDPI microparticle structure fabricated by spray freeze drying technology, which would potentially enhance the alveoli deposition efficiency. When inhaling, such microparticles are expected to be easily broken-up into fragments containing API that acts as 'seed' and could be delivered to alveoli aided by the low density 'pappus' composed of excipient. Herein, itraconazole (ITZ), a first-line drug for treating pulmonary aspergillosis, was selected as model API. TPGS, an amphiphilic surfactant, was used to achieve stable primary ITZ nanocrystal (INc) suspensions for spray freeze drying. A series of microparticles were prepared, and the dandelion-like structure was successfully achieved. The effects of feed liquid compositions and freezing parameters on the microparticle size, morphology, surface energy, crystal properties and in vitro aerosol performance were systematically investigated. The optimal sample (SF(-50)D-INc7Leu3-2) in one-way experiment showed the highest fine particle fraction of ∼ 68.96 % and extra fine particle fraction of ∼ 36.87 %, equivalently ∼ 4.60 mg and ∼ 2.46 mg could reach the lung and alveoli, respectively, when inhaling 10 mg dry powders. The response surface methodology (RSM) analysis provided the optimized design space for fabricating microparticles with higher deep lung deposition performance. This study demonstrates the advantages of AeDPI microparticle with dandelion-like structure on promoting the delivery efficiency of high-dose drug to the deep lung.
Collapse
Affiliation(s)
- Huan Sun
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Shen Yan
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Chaojie Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Jingye Ma
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Kangwei Lu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Xi Cheng
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Wenqi Yan
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Shengyu Zhang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China
| | - Winston Duo Wu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| |
Collapse
|
2
|
Sahin M, Yilmaz M, Mert A, Emecen AN, Rahman S. Al Maslamani MA, Mahmoud A. Hashim S, Ittaman AV, Wadi Al Ramahi J, Gergely Szabo B, Konopnicki D, Baskol Elik D, Lakatos B, Sipahi OR, Khedr R, Jalal S, Pshenichnaya N, Magdalena DI, El-Kholy A, Khan EA, Alkan S, Hakamifard A, Sincan G, Esmaoglu A, Makek MJ, Gurbuz E, Liskova A, Albayrak A, Stebel R, Unver Ulusoy T, Ripon RK, Moroti R, Dascalu C, Rashid N, Cortegiani A, Bahadir Z, Erdem H. Factors affecting mortality in COVID-19-associated pulmonary aspergillosis: An international ID-IRI study. Heliyon 2024; 10:e34325. [PMID: 39082033 PMCID: PMC11284427 DOI: 10.1016/j.heliyon.2024.e34325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Background This study aimed to identify factors that influence the mortality rate of patients with coronavirus disease (COVID-19)-associated pulmonary aspergillosis (CAPA). Methods In this cross-sectional study, data from 23 centers across 15 countries, spanning the period of March 2020 to December 2021, were retrospectively collected. The study population comprised patients who developed invasive pulmonary aspergillosis while being treated for COVID-19 in the intensive care unit. Cox regression and decision tree analyses were used to identify factors associated with mortality in patients with CAPA. Results A total of 162 patients (males, 65.4 %; median age: 64 [25th-75th: 54.0-73.8] years) were included in the study, of whom 113 died during the 90-day follow-up period. The median duration from CAPA diagnosis to death was 12 (25th-75th: 7-19) days. In the multivariable Cox regression model, an age of ≥65 years (hazard ratio [HR]: 2.05, 95 % confidence interval [CI]: 1.37-3.07), requiring vasopressor therapy at the time of CAPA diagnosis (HR: 1.80, 95 % CI: 1.17-2.76), and receiving renal replacement therapy at the time of CAPA diagnosis (HR: 2.27, 95 % CI: 1.35-3.82) were identified as predictors of mortality. Decision tree analysis revealed that patients with CAPA aged ≥65 years who received corticosteroid treatment for COVID-19 displayed higher mortality rates (estimated rate: 1.6, observed in 46 % of patients). Conclusion This study concluded that elderly patients with CAPA who receive corticosteroids are at a significantly higher risk of mortality, particularly if they experience multiorgan failure.
Collapse
Affiliation(s)
- Meyha Sahin
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Mesut Yilmaz
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Ali Mert
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Ahmet Naci Emecen
- Dokuz Eylul University, Research and Application Hospital, Izmir, Turkey
| | | | - Samar Mahmoud A. Hashim
- Communicable Disease Center / Infectious Disease – Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Balint Gergely Szabo
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Deborah Konopnicki
- Université Libre de Bruxelles, Saint-Pierre University Hospital, Infectious Diseases Department, Bruxelles, Belgium
| | - Dilsah Baskol Elik
- Ege University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Oguz Resat Sipahi
- Ege University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Reham Khedr
- National Cancer Institute - Cairo University / Children's Cancer Hospital Egypt, Department of Pediatric Oncology, Cairo, Egypt
| | | | - Natalia Pshenichnaya
- Central Research Institute of Epidemiology, Department of Infectious Diseases, Moscow, Russia
| | | | - Amani El-Kholy
- Cairo University, Faculty of Medicine, Department of Clinical Pathology, Cairo, Egypt
| | - Ejaz Ahmed Khan
- Shifa Tameer-e-Millat University and Shifa International Hospital, Infectious Diseases Division, Islamabad, Pakistan
| | - Sevil Alkan
- Canakkale Onsekiz Mart University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Canakkale, Turkey
| | - Atousa Hakamifard
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gulden Sincan
- Ataturk University, Faculty of Medicine, Department of Haematology, Erzurum, Turkey
| | - Aliye Esmaoglu
- Erciyes University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Kayseri, Turkey
| | - Mateja Jankovic Makek
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinic for Lung Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Esra Gurbuz
- University of Health Sciences, Van Training and Research Hospital, Van, Turkey
| | - Anna Liskova
- Hospital Nitra, Department of Clinical Microbiology, St. Elizabeth University of Health and Social Sciences Bratislava, Slovakia
| | - Ayse Albayrak
- Ataturk University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Erzurum, Turkey
| | - Roman Stebel
- University Hospital Brno and Faculty of Medicine, Masaryk University, Department of Infectious Diseases, Brno, Czech Republic
| | - Tulay Unver Ulusoy
- University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Rezaul Karim Ripon
- Jahangirnagar University, Department of Public Health and Informatics, Savar, Dhaka, Bangladesh
| | - Ruxandra Moroti
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases Matei Bals, Bucharest, Romania
| | - Cosmin Dascalu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Naveed Rashid
- Shifa Tameer-e-Millat University and Shifa International Hospital, Infectious Diseases Division, Islamabad, Pakistan
| | - Andrea Cortegiani
- Department of Surgical Oncological and Oral Science (Di.Chir.On.S.), University of Palermo. Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico “Paolo Giaccone”, Palermo, Italy
| | - Zeynep Bahadir
- Istanbul Medipol University Medical School, Istanbul, Turkey
| | - Hakan Erdem
- University of Health Sciences, Gulhane School of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| |
Collapse
|
3
|
Cai X, Sun C, Zhong H, Cai Y, Cao M, Wang L, Sun W, Tao Y, Ma G, Huang B, Yan S, Zhong J, Wang J, Lu Y, Guan Y, Song M, Wang Y, Li Y, Su X. The value of metagenomic next-generation sequencing with different nucleic acid extracting methods of cell-free DNA or whole-cell DNA in the diagnosis of non-neutropenic pulmonary aspergillosis. Front Cell Infect Microbiol 2024; 14:1398190. [PMID: 39135636 PMCID: PMC11317373 DOI: 10.3389/fcimb.2024.1398190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose Metagenomic next-generation sequencing(mNGS) is a novel molecular diagnostic technique. For nucleic acid extraction methods, both whole-cell DNA (wcDNA) and cell-free DNA (cfDNA) are widely applied with the sample of bronchoalveolar lavage fluid (BALF). We aim to evaluate the clinical value of mNGS with cfDNA and mNGS with wcDNA for the detection of BALF pathogens in non-neutropenic pulmonary aspergillosis. Methods mNGS with BALF-cfDNA, BALF-wcDNA and conventional microbiological tests (CMTs) were performed in suspected non-neutropenic pulmonary aspergillosis. The diagnostic value of different assays for pulmonary aspergillosis was compared. Results BALF-mNGS (cfDNA, wcDNA) outperformed CMTs in terms of microorganisms detection. Receiver operating characteristic (ROC) analysis indicated BALF-mNGS (cfDNA, wcDNA) was superior to culture and BALF-GM. Combination diagnosis of either positive for BALF-mNGS (cfDNA, wcDNA) or CMTs is more sensitive than CMTs alone in the diagnosis of pulmonary aspergillosis (BALF-cfDNA+CMTs/BALF-wcDNA+CMTs vs. CMTs: ROC analysis: 0.813 vs.0.66, P=0.0142/0.796 vs.0.66, P=0.0244; Sensitivity: 89.47% vs. 47.37%, P=0.008/84.21% vs. 47.37%, P=0.016). BALF-cfDNA showed a significantly greater reads per million (RPM) than BALF-wcDNA. The area under the ROC curve (AUC) for RPM of Aspergillus detected by BALF-cfDNA, used to predict "True positive" pulmonary aspergillosis patients, was 0.779, with a cut-off value greater than 4.5. Conclusion We propose that the incorporation of BALF-mNGS (cfDNA, wcDNA) with CMTs improves diagnostic precision in the identification of non-neutropenic pulmonary aspergillosis when compared to CMTs alone. BALF-cfDNA outperforms BALF-wcDNA in clinical value.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Sun
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huanhuan Zhong
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Yuchen Cai
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Cao
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenkui Sun
- Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital, The First Affiliated of Nanjing Medical University, Nanjing, China
| | - Yujian Tao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Guoer Ma
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Baoju Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengmei Yan
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinjin Zhong
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiamei Wang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuanlin Guan
- Department of Research and Development, Hugobiotech Co., Ltd., Beijing, China
| | - Mengyue Song
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Yujie Wang
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuanyuan Li
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Su
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Respiratory and Critical Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Jiang Z, Gai W, Zhang X, Zheng Y, Jin X, Han Z, Ao G, He J, Shu D, Liu X, Zhou Y, Hua Z. Clinical performance of metagenomic next-generation sequencing for diagnosis of pulmonary Aspergillus infection and colonization. Front Cell Infect Microbiol 2024; 14:1345706. [PMID: 38606292 PMCID: PMC11007027 DOI: 10.3389/fcimb.2024.1345706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Background Investigations assessing the value of metagenomic next-generation sequencing (mNGS) for distinguish Aspergillus infection from colonization are currently insufficient. Methods The performance of mNGS in distinguishing Aspergillus infection from colonization, along with the differences in patients' characteristics, antibiotic adjustment, and lung microbiota, were analyzed. Results The abundance of Aspergillus significantly differed between patients with Aspergillus infection (n=36) and colonization (n=32) (P < 0.0001). Receiver operating characteristic (ROC) curve result for bronchoalveolar lavage fluid (BALF) mNGS indicated an area under the curve of 0.894 (95%CI: 0.811-0.976), with an optimal threshold value of 23 for discriminating between Aspergillus infection and colonization. The infection group exhibited a higher proportion of antibiotic adjustments in comparison to the colonization group (50% vs. 12.5%, P = 0.001), with antibiotic escalation being more dominant. Age, length of hospital stay, hemoglobin, cough and chest distress were significantly positively correlated with Aspergillus infection. The abundance of A. fumigatus and Epstein-Barr virus (EBV) significantly increased in the infection group, whereas the colonization group exhibited higher abundance of A. niger. Conclusion BALF mNGS is a valuable tool for differentiating between colonization and infection of Aspergillus. Variations in patients' age, length of hospital stay, hemoglobin, cough and chest distress are observable between patients with Aspergillus infection and colonization.
Collapse
Affiliation(s)
- Ziwei Jiang
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Wei Gai
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Xiaojing Zhang
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Yafeng Zheng
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Xuru Jin
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zhiqiang Han
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Geriletu Ao
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Jiahuan He
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Danni Shu
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Xianbing Liu
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Yingying Zhou
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| | - Zhidan Hua
- Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
5
|
Larrosa-Garcia M, Terradas Campanario S, Fernández Polo A, Cañete Ramírez C, Parra AP, Campany Herrero D. Characterization and real-live results of nebulized voriconazole: A single-center observational study. FARMACIA HOSPITALARIA 2024; 48:T29-T33. [PMID: 37858518 DOI: 10.1016/j.farma.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVE Pulmonary administration of voriconazole involves advantages, including optimization of lung penetration and reduction of adverse effects and interactions. However, there is scarce evidence about its use and there are no commercial presentations for nebulization. We aim to characterize a compounded voriconazole solution for nebulization and describe its use in our center. METHOD This is a retrospective observational study including patients who received nebulized voriconazole to treat fungal lung diseases (infection or colonization). Voriconazole solution was prepared from commercial vials for intravenous administration. RESULTS The pH and osmolarity of voriconazole solutions were adequate for nebulization. Ten patients were included, nine adults and a child. The dosage was 40 mg in adults and 10 mg in the pediatric patient, diluted to a final concentration of 10 mg/ml, administered every 12-24 hours. The median duration of treatment was 139 (range: 26-911) days. There were no reported adverse effects and the drug was not detected in plasma when nebulized only. CONCLUSION Voriconazole nebulization is well tolerated and it is not absorbed into the systemic circulation; further research is needed to assess its efficacy.
Collapse
Affiliation(s)
- Maria Larrosa-Garcia
- Departamento de Farmacia, Hospital Universitario Vall d'Hebron, Barcelona, España.
| | | | | | - Carme Cañete Ramírez
- Departamento de Farmacia, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Alba Pau Parra
- Departamento de Farmacia, Hospital Universitario Vall d'Hebron, Barcelona, España
| | | |
Collapse
|
6
|
Larrosa-Garcia M, Campanario ST, Polo AF, Ramírez CC, Parra AP, Herrero DC. Characterization and real-live results of nebulized voriconazole: A single-center observational study. FARMACIA HOSPITALARIA 2024; 48:29-33. [PMID: 37612182 DOI: 10.1016/j.farma.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE Pulmonary administration of voriconazole involves advantages, including optimization of lung penetration and reduction of adverse effects and interactions. However, there is scarce evidence about its use and there are no commercial presentations for nebulization. We aim to characterize a compounded voriconazole solution for nebulization and describe its use in our center. METHOD This is a retrospective observational study including patients who received nebulized voriconazole to treat fungal lung diseases (infection or colonization). Voriconazole solution was prepared from commercial vials for intravenous administration. RESULTS The pH and osmolarity of voriconazole solutions were adequate for nebulization. Ten patients were included, 9 adults and a child. The dosage was 40 mg in adults and 10 mg in the pediatric patient, diluted to a final concentration of 10 mg/ml, administered every 12-24 h. The median duration of treatment was 139 (range: 26-911) days. There were no reported adverse effects and the drug was not detected in plasma when nebulized only. CONCLUSION Voriconazole nebulization is well-tolerated and it is not absorbed into the systemic circulation; further research is needed to assess its efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Alba Pau Parra
- Pharmacy Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | | |
Collapse
|
7
|
Zeng M, Zhou X, Yang C, Liu Y, Zhang J, Xin C, Qin G, Liu F, Song Z. Comparative analysis of the biological characteristics and mechanisms of azole resistance of clinical Aspergillus fumigatus strains. Front Microbiol 2023; 14:1253197. [PMID: 38029222 PMCID: PMC10665732 DOI: 10.3389/fmicb.2023.1253197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Aspergillus fumigatus is a common causative pathogen of aspergillosis. At present, triazole resistance of A. fumigatus poses an important challenge to human health globally. In this study, the biological characteristics and mechanisms of azole resistance of five A. fumigatus strains (AF1, AF2, AF4, AF5, and AF8) were explored. There were notable differences in the sporulation and biofilm formation abilities of the five test strains as compared to the standard strain AF293. The ability of strain AF1 to avoid phagocytosis by MH-S cells was significantly decreased as compared to strain AF293, while that of strains AF2, AF4, and AF5 were significantly increased. Fungal burden analysis with Galleria mellonella larvae revealed differences in pathogenicity among the five strains. Moreover, the broth microdilution and E-test assays confirmed that strains AF1 and AF2 were resistant to itraconazole and isaconazole, while strains AF4, AF5, and AF8 were resistant to voriconazole and isaconazole. Strains AF1 and AF2 carried the cyp51A mutations TR34/L98H/V242I/S297T/F495I combined with the hmg1 mutation S541G, whereas strains AF4 and AF8 carried the cyp51A mutation TR46/Y121F/V242I/T289A, while strain AF5 had no cyp51A mutation. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis revealed differences in the expression levels of genes associated with ergosterol synthesis and efflux pumps among the five strains. In addition, transcriptomics, RT-qPCR, and the NAD+/NADH ratio demonstrated that the mechanism of voriconazole resistance of strain AF5 was related to overexpression of genes associated with energy production and efflux pumps. These findings will help to further elucidate the triazole resistance mechanism in A. fumigatus.
Collapse
Affiliation(s)
- Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chunhong Yang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yanfei Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Porta G, JohnBritto JS, Bonfrate L. Editorial to 'A score for predicting invasive pulmonary aspergillosis in immunocompetent critically ill patients'. Eur J Clin Invest 2023; 53:e14080. [PMID: 37606368 DOI: 10.1111/eci.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Affiliation(s)
- G Porta
- Department of Emergency Medicine, Santa Maria Delle Grazie Hospital, Naples, Italy
| | - J S JohnBritto
- Clinica Medica 'A. Murri', Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University 'Aldo Moro', Policlinico Hospital, Bari, Italy
| | - L Bonfrate
- Clinica Medica 'A. Murri', Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University 'Aldo Moro', Policlinico Hospital, Bari, Italy
| |
Collapse
|
9
|
Zhu N, Zhou D, Xiong W, Zhang X, Li S. Performance of mNGS in bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in non-neutropenic patients. Front Cell Infect Microbiol 2023; 13:1271853. [PMID: 38029249 PMCID: PMC10644336 DOI: 10.3389/fcimb.2023.1271853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
The diagnosis of invasive pulmonary aspergillosis (IPA) diseases in non-neutropenic patients remains challenging. It is essential to develop optimal non-invasive or minimally invasive detection methods for the rapid and reliable diagnosis of IPA. Metagenomic next-generation sequencing (mNGS) in bronchoalveolar lavage fluid (BALF) can be a valuable tool for identifying the microorganism. Our study aims to evaluate the performance of mNGS in BALF in suspected IPA patients and compare it with other detection tests, including serum/BALF galactomannan antigen (GM) and traditional microbiological tests (BALF fungal culture and smear and lung biopsy histopathology). Ninety-four patients with suspicion of IPA were finally enrolled in our study. Thirty-nine patients were diagnosed with IPA, and 55 patients were non-IPA. There was significance between the IPA and non-IPA groups, such as BALF GM (P < 0.001), history of glucocorticoid use (P = 0.004), and pulmonary comorbidities (P = 0.002), as well as no significance of the other demographic data including age, sex, BMI, history of cigarette, blood GM assay, T-SPOT.TB, and NEUT#/LYMPH#. The sensitivity of the BALF mNGS was 92.31%, which was higher than that of the traditional tests or the GM assays. The specificity of BALF mNGS was 92.73%, which was relatively similar to that of the traditional tests. The AUC of BALF mNGS was 0.925, which presented an excellent performance compared with other traditional tests or GM assays. Our study demonstrated the important role of BALF detection by the mNGS platform for pathogen identification in IPA patients with non-neutropenic states, which may provide an optimal way to diagnose suspected IPA disease.
Collapse
Affiliation(s)
| | | | | | | | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Jia H, Liu H, Tu M, Wang Y, Wang X, Li J, Zhang G. Diagnostic efficacy of metagenomic next generation sequencing in bronchoalveolar lavage fluid for proven invasive pulmonary aspergillosis. Front Cell Infect Microbiol 2023; 13:1223576. [PMID: 37692168 PMCID: PMC10484620 DOI: 10.3389/fcimb.2023.1223576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Objective To assess the diagnostic efficacy of metagenomic next generation sequencing (mNGS) for proven invasive pulmonary aspergillosis (IPA). Methods A total of 190 patients including 53 patients who had been diagnosed with proven IPA were retrospectively analyzed. Using the pathological results of tissue biopsy specimens as gold standard, we ploted the receiver operating characteristic (ROC) curve to determine the optimal cut-off value of mNGS species-specific read number (SSRN) of Aspergillus in bronchoalveolar lavage fluid (BALF)for IPA. Furthermore, we evaluated optimal cut-off value of mNGS SSRN in different populations. Results The optimal cut-off value of Aspergillus mNGS SSRN in BALF for IPA diagnosis was 2.5 for the whole suspected IPA population, and 1 and 4.5 for immunocompromised and diabetic patients, respectively. The accuracy of mNGS was 80.5%, 73.7% and 85.3% for the whole population, immunocompromised and diabetic patients, respectively. Conclusions The mNGS in BALF has a high diagnostic efficacy for proven IPA, superioring to Aspergillus culture in sputum and BALF and GM test in blood and BALF. However, the cut-off value of SSRN should be adjusted when in different population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Meli M, Spicuzza L, Comella M, La Spina M, Trobia GL, Parisi GF, Di Cataldo A, Russo G. The Role of Ultrasound in the Diagnosis of Pulmonary Infection Caused by Intracellular, Fungal Pathogens and Mycobacteria: A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13091612. [PMID: 37175003 PMCID: PMC10177819 DOI: 10.3390/diagnostics13091612] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Lung ultrasound (LUS) is a widely available technique allowing rapid bedside detection of different respiratory disorders. Its reliability in the diagnosis of community-acquired lung infection has been confirmed. However, its usefulness in identifying infections caused by specific and less common pathogens (e.g., in immunocompromised patients) is still uncertain. METHODS This systematic review aimed to explore the most common LUS patterns in infections caused by intracellular, fungal pathogens or mycobacteria. RESULTS We included 17 studies, reporting a total of 274 patients with M. pneumoniae, 30 with fungal infection and 213 with pulmonary tuberculosis (TB). Most of the studies on M. pneumoniae in children found a specific LUS pattern, mainly consolidated areas associated with diffuse B lines. The typical LUS pattern in TB consisted of consolidation and small subpleural nodes. Only one study on fungal disease reported LUS specific patterns (e.g., indicating "halo sign" or "reverse halo sign"). CONCLUSIONS Considering the preliminary data, LUS appears to be a promising point-of-care tool, showing patterns of atypical pneumonia and TB which seem different from patterns characterizing common bacterial infection. The role of LUS in the diagnosis of fungal disease is still at an early stage of exploration. Large trials to investigate sonography in these lung infections are granted.
Collapse
Affiliation(s)
- Mariaclaudia Meli
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Lucia Spicuzza
- Pulmology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Mattia Comella
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Milena La Spina
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Gian Luca Trobia
- Pediatrics and Pediatric Emergency Room, Cannizzaro Emergency Hospital, 95126 Catania, Italy
| | - Giuseppe Fabio Parisi
- Pediatric Pulmology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Andrea Di Cataldo
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Giovanna Russo
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
Zhan W, Liu Q, Yang C, Zhao Z, Yang L, Wang Y, Feng J. Evaluation of metagenomic next-generation sequencing diagnosis for invasive pulmonary aspergillosis in immunocompromised and immunocompetent patients. Mycoses 2023; 66:331-337. [PMID: 36541064 DOI: 10.1111/myc.13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Invasive pulmonary aspergillosis (IPA) can occur in both immunocompromised and non-immunocompromised hosts, and early diagnosis of IPA is difficult. Metagenomic next-generation sequencing (mNGS) is a novel non-migratory pathogen detection method; however, utilising this method for IPA diagnosis is challenging due to the current lack of a unified clinical interpretation standard following Aspergillus detection using mNGS. OBJECTIVES To investigate the accuracy of IPA diagnosis by positive bronchoalveolar lavage fluid (BALF) mNGS results in immunocompromised and immunocompetent patients. METHODS We retrospectively included patients with confirmed pulmonary infections having a BALF mNGS result of Aspergillus reads ≥1. We compared the accuracy of using mNGS for IPA diagnosis in patients with different immune statuses based on the revised EORTC/MSG criteria. RESULTS Overall, 62 mNGS Aspergillus-positive patients were divided into two groups: with (41) and without IPA (21). In univariate logistic regression analysis, immunocompromised function, fever, halo sign on CT image, and multiple masses or nodules were associated with mNGS Aspergillus-positive IPA diagnosis. In multivariate logistic regression analysis, immunocompromised function (OR = 6.68, 95% CI: 1.73-25.87, p = .006) and a halo sign (OR = 7.993, 95% CI: 2.07-30.40, p = .003) were independent risk factors. The concordance rate of IPA diagnosis was significantly higher in immunocompromised patients [82.1% (23/28)] than in non-immunocompromised patients [52.9% (18/34); p = .016]. CONCLUSIONS For immunocompromised patients, a combination of mNGS testing and lung CT imaging can be used for IPA diagnosis. However, caution is required in IPA diagnosis based on positive mNGS results in non-immunocompromised patients.
Collapse
Affiliation(s)
- Wenyu Zhan
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingjun Liu
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Changqing Yang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhan Zhao
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Yang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yubao Wang
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Feng
- Respiratory Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Curtis A, Walshe K, Kavanagh K. Prolonged Subculturing of Aspergillus fumigatus on Galleria Extract Agar Results in Altered Virulence and Sensitivity to Antifungal Agents. Cells 2023; 12:1065. [PMID: 37048138 PMCID: PMC10093746 DOI: 10.3390/cells12071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Aspergillus fumigatus is an environmental saprophyte and opportunistic fungal pathogen of humans. The aim of the work presented here was to examine the effect of serially subculturing A. fumigatus on agar generated from Galleria mellonella larvae in order to characterize the alterations in the phenotypes that might occur. The passaged strains showed alterations in virulence, antifungal susceptibility, and in protein abundances that may indicate adaptation after 25 passages over 231 days on Galleria extract agar. Passaged strains demonstrated reduced virulence in G. mellonella larvae and increased tolerance to hemocyte-mediated killing, hydrogen peroxide, itraconazole, and amphotericin B. A label-free proteomic analysis of control and passaged A. fumigatus strains revealed a total of 3329 proteins, of which 1902 remained following filtration, and 32 proteins were statistically significant as well as differentially abundant. Proteins involved in the response to oxidative stress were altered in abundance in the passaged strain and included (S)-S-oxide reductase (+2.63-fold), developmental regulator FlbA (+2.27-fold), and histone H2A.Z (-1.82-fold). These results indicate that the prolonged subculturing of A. fumigatus on Galleria extract agar results in alterations in the susceptibility to antifungal agents and in the abundance of proteins associated with the oxidative stress response. The phenomenon may be a result of selection for survival in adverse conditions and highlight how A. fumigatus may adapt to tolerate the pulmonary immune response in cases of human infection.
Collapse
Affiliation(s)
| | | | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
14
|
Current and Future Pathways in Aspergillus Diagnosis. Antibiotics (Basel) 2023; 12:antibiotics12020385. [PMID: 36830296 PMCID: PMC9952630 DOI: 10.3390/antibiotics12020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores.
Collapse
|
15
|
Guo L, Wu X, Wu X. Aspergillus infection in chronic obstructive pulmonary diseases. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:129-138. [PMID: 36710403 PMCID: PMC9978918 DOI: 10.1111/crj.13585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/07/2022] [Accepted: 12/31/2022] [Indexed: 01/31/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic airway non-specific inflammatory disease characterised by airway obstruction and alveolar destruction. In recent years, due to the extensive use of antibiotics, glucocorticoids, immunosuppressants and other drugs, pulmonary fungal infection in patients with AECOPD, especially aspergillus infection, has gradually increased. The forms of aspergillus infection present in COPD patients include sensitisation, chronic pulmonary aspergillosis (CPA) and invasive pulmonary aspergillosis (IPA). This review will summarise diagnostic and treatment of aspergillus in COPD patients.
Collapse
Affiliation(s)
- Liang Guo
- Institute of Respiratory DiseaseThe Second Affiliated Hospital (Xinqiao Hospital), Army Medical UniversityChongqingChina
| | - Xiulin Wu
- Department of Geriatrics and Special Service medicineThe First Affiliated Hospital (Xinan Hospital), Army Medical UniversityChongqingChina
| | - Xueling Wu
- Department of Respiratory MedicineRenji Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
16
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
17
|
Crossen AJ, Ward RA, Reedy JL, Surve MV, Klein BS, Rajagopal J, Vyas JM. Human Airway Epithelium Responses to Invasive Fungal Infections: A Critical Partner in Innate Immunity. J Fungi (Basel) 2022; 9:40. [PMID: 36675861 PMCID: PMC9862202 DOI: 10.3390/jof9010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The lung epithelial lining serves as the primary barrier to inhaled environmental toxins, allergens, and invading pathogens. Pulmonary fungal infections are devastating and carry high mortality rates, particularly in those with compromised immune systems. While opportunistic fungi infect primarily immunocompromised individuals, endemic fungi cause disease in immune competent and compromised individuals. Unfortunately, in the case of inhaled fungal pathogens, the airway epithelial host response is vastly understudied. Furthering our lack of understanding, very few studies utilize primary human models displaying pseudostratified layers of various epithelial cell types at air-liquid interface. In this review, we focus on the diversity of the human airway epithelium and discuss the advantages and disadvantages of oncological cell lines, immortalized epithelial cells, and primary epithelial cell models. Additionally, the responses by human respiratory epithelial cells to invading fungal pathogens will be explored. Future investigations leveraging current human in vitro model systems will enable identification of the critical pathways that will inform the development of novel vaccines and therapeutics for pulmonary fungal infections.
Collapse
Affiliation(s)
- Arianne J. Crossen
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Manalee V. Surve
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Liu KW, Grau MS, Jones JT, Wang X, Vesely EM, James MR, Gutierrez-Perez C, Cramer RA, Obar JJ. Postinfluenza Environment Reduces Aspergillus fumigatus Conidium Clearance and Facilitates Invasive Aspergillosis In Vivo. mBio 2022; 13:e0285422. [PMID: 36377895 PMCID: PMC9765436 DOI: 10.1128/mbio.02854-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Aspergillus fumigatus is a human fungal pathogen that is most often avirulent in immunecompetent individuals because the innate immune system is efficient at eliminating fungal conidia. However, recent clinical observations have shown that severe influenza A virus (IAV) infection can lead to secondary A. fumigatus infections with high mortality. Little is currently known about how IAV infection alters the innate antifungal immune response. Here, we established a murine model of IAV-induced A. fumigatus (IAV-Af) superinfection by inoculating mice with IAV followed 6 days later by A. fumigatus conidia challenge. We observed increased mortality in the IAV-Af-superinfected mice compared to mice challenged with either IAV or A. fumigatus alone. A. fumigatus conidia were able to germinate and establish a biofilm in the lungs of the IAV-Af superinfection group, which was not seen following fungal challenge alone. While we did not observe any differences in inflammatory cell recruitment in the IAV-Af superinfection group compared to single-infection controls, we observed defects in Aspergillus conidial uptake and killing by both neutrophils and monocytes after IAV infection. pHrodo Green zymosan bioparticle (pHrodo-zymosan) and CM-H2DCFDA [5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate] staining, indicators of phagolysosome maturation and reactive oxygen species (ROS) production, respectively, revealed that the fungal killing defect was due in part to reduced phagolysosome maturation. Collectively, our data demonstrate that the ability of neutrophils and monocytes to kill and clear Aspergillus conidia is strongly reduced in the pulmonary environment of an IAV-infected lung, which leads to invasive pulmonary aspergillosis and increased overall mortality in our mouse model, recapitulating what is observed clinically in humans. IMPORTANCE Influenza A virus (IAV) is a common respiratory virus that causes seasonal illness in humans, but can cause pandemics and severe infection in certain patients. Since the emergence of the 2009 H1N1 pandemic strains, there has been an increase in clinical reports of IAV-infected patients in the intensive care unit (ICU) developing secondary pulmonary aspergillosis. These cases of flu-Aspergillus superinfections are associated with worse clinical outcomes than secondary bacterial infections in the setting of IAV. To date, we have a limited understanding of the cause(s) of secondary fungal infections in immunocompetent hosts. IAV-induced modulation of cytokine production and innate immune cellular function generates a unique immune environment in the lung, which could make the host vulnerable to a secondary fungal infection. Our work shows that defects in phagolysosome maturation in neutrophils and monocytes after IAV infection impair the ability of these cells to kill A. fumigatus, thus leading to increased fungal germination and growth and subsequent invasive aspergillosis. Our work lays a foundation for future mechanistic studies examining the exact immune modulatory events occurring in the respiratory tract after viral infection leading to secondary fungal infections.
Collapse
Affiliation(s)
- Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Madeleine S. Grau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jane T. Jones
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Cecilia Gutierrez-Perez
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
19
|
Wang C, You Z, Fu J, Chen S, Bai D, Zhao H, Song P, Jia X, Yuan X, Xu W, Zhao Q, Pang F. Application of metagenomic next-generation sequencing in the diagnosis of pulmonary invasive fungal disease. Front Cell Infect Microbiol 2022; 12:949505. [PMID: 36237437 PMCID: PMC9551268 DOI: 10.3389/fcimb.2022.949505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/05/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundMetagenomic next-generation sequencing (mNGS) is increasingly being used to detect pathogens directly from clinical specimens. However, the optimal application of mNGS and subsequent result interpretation can be challenging. In addition, studies reporting the use of mNGS for the diagnosis of invasive fungal infections (IFIs) are rare.ObjectiveWe critically evaluated the performance of mNGS in the diagnosis of pulmonary IFIs, by conducting a multicenter retrospective analysis. The methodological strengths of mNGS were recognized, and diagnostic cutoffs were determined.MethodsA total of 310 patients with suspected pulmonary IFIs were included in this study. Conventional microbiological tests (CMTs) and mNGS were performed in parallel on the same set of samples. Receiver operating characteristic (ROC) curves were used to evaluate the performance of the logarithm of reads per kilobase per million mapped reads [lg(RPKM)], and read counts were used to predict true-positive pathogens.ResultThe majority of the selected patients (86.5%) were immunocompromised. Twenty species of fungi were detected by mNGS, which was more than was achieved with standard culture methods. Peripheral blood lymphocyte and monocyte counts, as well as serum albumin levels, were significantly negatively correlated with fungal infection. In contrast, C-reactive protein and procalcitonin levels showed a significant positive correlation with fungal infection. ROC curves showed that mNGS [and especially lg(RPKM)] was superior to CMTs in its diagnostic performance. The area under the ROC curve value obtained for lg(RPKM) in the bronchoalveolar lavage fluid of patients with suspected pulmonary IFIs, used to predict true-positive pathogens, was 0.967, and the cutoff value calculated from the Youden index was −5.44.ConclusionsIn this study, we have evaluated the performance of mNGS-specific indicators that can identify pathogens in patients with IFIs more accurately and rapidly than CMTs, which will have important clinical implications.
Collapse
Affiliation(s)
- Chengtan Wang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Zhiqing You
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Juanjuan Fu
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Shuai Chen
- Department of Clinical Laboratory, Liaocheng Third People’s Hospital, Liaocheng, China
- Department of Virology, School of Public Health, Shandong University, Jinan, China
| | - Di Bai
- Department of Clinical Laboratory, Liaocheng Third People’s Hospital, Liaocheng, China
| | - Hui Zhao
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Pingping Song
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiuqin Jia
- The Key Laboratory of Molecular Pharmacology, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiaoju Yuan
- Department of Gastroenterology, Liaocheng People’s Hospital, Liaocheng, China
| | - Wenbin Xu
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Qigang Zhao
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Feng Pang, ; Qigang Zhao,
| | - Feng Pang
- Department of Clinical Laboratory, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Feng Pang, ; Qigang Zhao,
| |
Collapse
|
20
|
Endovascular embolization for Rasmussen's aneurysm with massive hemoptysis: 3 case reports and literature review. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Atypical Presentation of Aspergillus niger Infection in the Oral Cavity as a Prediction of Invasive Pulmonary Aspergillosis in a Patient with COVID-19: Case Report and Literature Review. Microorganisms 2022; 10:microorganisms10081630. [PMID: 36014048 PMCID: PMC9413179 DOI: 10.3390/microorganisms10081630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/23/2022] Open
Abstract
Coinfections between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens such as Aspergillus have become challenging, as well as being associated with high morbidity and mortality in patients with COVID-19. Aspergillus niger is a common environmental mold. Before the emergence of COVID-19, it was considered a very rare cause of invasive pulmonary aspergillosis (IPA), occurring mainly in immunocompromised patients. The aim of this study was to describe a very rare case of IPA caused by A. niger found in the oral cavity of a mechanically ventilated COVID-19 patient. A. niger detected in the gingival pocket was diagnosed earlier than in the bronchial lavage, and without treatment, passed into the lungs of the patient, causing serious complications. The swab from the oral cavity of mechanically ventilated COVID-19 patients can be a predictor of the subsequent severity of inflammatory lesions and the development of suspected IPA.
Collapse
|
22
|
Bao S, Song H, Chen Y, Zhong C, Tang H. Metagenomic next-generation sequencing for the diagnosis of pulmonary aspergillosis in non-neutropenic patients: a retrospective study. Front Cell Infect Microbiol 2022; 12:925982. [PMID: 35979088 PMCID: PMC9376315 DOI: 10.3389/fcimb.2022.925982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
This study aimed to obtain further in-depth information on the value of metagenomic next-generation sequencing (mNGS) for diagnosing pulmonary aspergillosis in non-neutropenic patients. We did a retrospective study, in which 33 non-neutropenic patients were included, of which 12 were patients with pulmonary aspergillosis and 21 were diagnosed with non-pulmonary aspergillosis. Fungi and all other co-pathogens in bronchoalveolar lavage fluid (BALF) (27 cases), blood (6 cases), and/or pleural fluid (1 case) samples were analyzed using mNGS. One of the patients submitted both BALF and blood samples. We analyzed the clinical characteristics, laboratory tests, and radiologic features of pulmonary aspergillosis patients and compared the diagnostic accuracy, including sensitivity, specificity, positive predictive value, and negative predictive value of mNGS with conventional etiological methods and serum (1,3)-β-D-glucan. We also explored the efficacy of mNGS in detecting mixed infections and co-pathogens. We further reviewed modifications of antimicrobial therapy for patients with pulmonary aspergillosis according to the mNGS results. Finally, we compared the detection of Aspergillus in BALF and blood samples from three patients using mNGS. In non-neutropenic patients, immunocompromised conditions of non-pulmonary aspergillosis were far less prevalent than in patients with pulmonary aspergillosis. More patients with pulmonary aspergillosis received long-term systemic corticosteroids (50% vs. 14.3%, p < 0.05). Additionally, mNGS managed to reach a sensitivity of 91.7% for diagnosing pulmonary aspergillosis, which was significantly higher than that of conventional etiological methods (33.3%) and serum (1,3)-β-D-glucan (33.3%). In addition, mNGS showed superior performance in discovering co-pathogens (84.6%) of pulmonary aspergillosis; bacteria, bacteria-fungi, and bacteria-PJP-virus were most commonly observed in non-neutropenic patients. Moreover, mNGS results can help guide effective treatments. According to the mNGS results, antimicrobial therapy was altered in 91.7% of patients with pulmonary aspergillosis. The diagnosis of Aspergillus detected in blood samples, which can be used as a supplement to BALF samples, seemed to show a higher specificity than that in BALF samples. mNGS is a useful and effective method for the diagnosis of pulmonary aspergillosis in non-neutropenic patients, detection of co-pathogens, and adjustment of antimicrobial treatment.
Collapse
|
23
|
Zuzarte M, Salgueiro L. Essential Oils in Respiratory Mycosis: A Review. Molecules 2022; 27:molecules27134140. [PMID: 35807386 PMCID: PMC9268412 DOI: 10.3390/molecules27134140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 01/08/2023] Open
Abstract
Respiratory mycosis is a major health concern, due to the expanding population of immunosuppressed and immunocompromised patients and the increasing resistance to conventional antifungals and their undesired side-effects, thus justifying the development of new therapeutic strategies. Plant metabolites, namely essential oils, represent promising preventive/therapeutic strategies due to their widely reported antifungal potential. However, regarding fungal infections of the respiratory tract, information is disperse and no updated compilation on current knowledge is available. Therefore, the present review aims to gather and systematize relevant information on the antifungal effects of several essential oils and volatile compounds against the main type of respiratory mycosis that impact health care systems. Particular attention is paid to Aspergillus fumigatus, the main pathogen involved in aspergillosis, Candida auris, currently emerging as a major pathogen in certain parts of the world, and Cryptococcus neoformans, one of the main pathogens involved in pulmonary cryptococcosis. Furthermore, the main mechanisms of action underlying essential oils’ antifungal effects and current limitations in clinical translation are presented. Overall, essential oils rich in phenolic compounds seem to be very effective but clinical translation requires more comprehensive in vivo studies and human trials to assess the efficacy and tolerability of these compounds in respiratory mycosis.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
- Correspondence:
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- Faculty of Sciences and Technology, Department of Chemical Engineering, Chemical Process Engineering and Forest Products Research Centre (CIEPQPF), University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
24
|
Caggiano G, Apollonio F, Consiglio M, Gasparre V, Trerotoli P, Diella G, Lopuzzo M, Triggiano F, Stolfa S, Mosca A, Montagna MT. Tendency in Pulmonary Aspergillosis Investigation during the COVID-19 Era: What Is Changing? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127079. [PMID: 35742328 PMCID: PMC9222563 DOI: 10.3390/ijerph19127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 01/08/2023]
Abstract
Aspergillosis is a disease caused by Aspergillus, and invasive pulmonary aspergillosis (IPA) is the most common invasive fungal infection leading to death in severely immuno-compromised patients. The literature reports Aspergillus co-infections in patients with COVID-19 (CAPA). Diagnosing CAPA clinically is complex since the symptoms are non-specific, and performing a bronchoscopy is difficult. Generally, the microbiological diagnosis of aspergillosis is based on cultural methods and on searching for the circulating antigens galactomannan and 1,3-β-D-glucan in the bronchoalveolar lavage fluid (bGM) or serum (sGM). In this study, to verify whether the COVID-19 period has stimulated clinicians to pay greater attention to IPA in patients with respiratory tract infections, we evaluated the number of requests for GM-Ag research and the number of positive tests found during the pre-COVID-19 and COVID-19 periods. Our data show a significant upward trend in GM-Ag requests and positivity from the pre-COVID to COVID period, which is attributable in particular to the increase in IPA risk factors as a complication of COVID-19. In the COVID period, parallel to the increase in requests, the number of positive tests for GM-Ag also increased, going from 2.5% in the first period of 2020 to 12.3% in the first period of 2021.
Collapse
Affiliation(s)
- Giuseppina Caggiano
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
- Correspondence: ; Tel.: +39-(0)-80-5478-475
| | - Francesca Apollonio
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Mila Consiglio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.); (V.G.); (M.L.); (F.T.)
| | - Valentina Gasparre
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.); (V.G.); (M.L.); (F.T.)
| | - Paolo Trerotoli
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Giusy Diella
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.); (V.G.); (M.L.); (F.T.)
| | - Francesco Triggiano
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (M.C.); (V.G.); (M.L.); (F.T.)
| | - Stefania Stolfa
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Adriana Mosca
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| | - Maria Teresa Montagna
- Interdisciplinary Department of Medicine, Hygiene Section, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.A.); (P.T.); (G.D.); (S.S.); (A.M.); (M.T.M.)
| |
Collapse
|
25
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
26
|
Razafindrasoa ZA, Ravahatra K, Tiaray HM, Nandimbiniaina AM, Andriamahenina FPP, Razafimpihanina SM, Andriarimanga DO, Rakotomizao JR, Rakotoson JL, Raharimanana RN. COVID‐19 complicated with chronic necrotizing pulmonary aspergillosis and aspergilloma progressing to fibrosing aspergillosis: A case report. Clin Case Rep 2022; 10:e05814. [PMID: 35540712 PMCID: PMC9069368 DOI: 10.1002/ccr3.5814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Aspergillosis superinfections have been reported as acute complications of COVID‐19. We report a rare case of combined chronic necrotizing pulmonary aspergillosis, aspergilloma, and fibrosing aspergillosis in a 31‐year‐old woman with a history of COVID‐19. Chest scan remains an important imaging method assisting in the diagnosis and management of post‐COVID‐19 patients.
Collapse
Affiliation(s)
| | - Kiady Ravahatra
- Pulmonology Department Centre Hospitalier Universitaire de Fenoarivo Antananarivo Madagascar
| | - Harison Michel Tiaray
- Pulmonology Department Centre Hospitalier Universitaire Joseph Raseta Befelatanana Antananarivo Madagascar
| | | | | | | | | | - Jocelyn Robert Rakotomizao
- Pulmonology Department Centre Hospitalier Universitaire Joseph Raseta Befelatanana Antananarivo Madagascar
| | | | | |
Collapse
|
27
|
Qian X, Rong H, Wei X, Rong G, Yao M. Value of CT Radiomics Combined with Clinical Features in the Diagnosis of Allergic Bronchopulmonary Aspergillosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5317509. [PMID: 35572830 PMCID: PMC9098310 DOI: 10.1155/2022/5317509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
Objective Early diagnosis of allergic bronchopulmonary aspergillosis (ABPA) and targeted treatment can block the process of the disease. This study explores the diagnostic value of CT radiomics combined with clinical features in allergic ABPA. Methods A total of 40 patients with ABPA were studied retrospectively, divided into training set (n = 28) and test set (n = 12). Based on CT imaging, the radiomics features are extracted and combined with clinical features to build a diagnostic model. The diagnosis model was based on support vector machine algorithm. The receiver operating characteristic curve (ROC) and area under the curve (AUC) were used to evaluate the diagnostic efficiency of the model. Results There was no significant difference in general information and clinical data between the training and test sets (P > 0.05). The AUC of the training set and the test set is 0.896 (95% CI: 0.836-0.963) and 0.886 (95% CI: 0.821-0.952), respectively. Conclusion Based on the CT radiomics model combined with clinical data, it has high efficiency in the diagnosis of ABPA.
Collapse
Affiliation(s)
- Xiaojun Qian
- Department of Allergy, The Third People's Hospital of Hefei, The Third Clinical College of Hefei of Anhui Medical University, Hefei, China
| | - Hengmo Rong
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xue Wei
- Department of Allergy, The Third People's Hospital of Hefei, The Third Clinical College of Hefei of Anhui Medical University, Hefei, China
| | - Guangsheng Rong
- Department of Allergy, The Third People's Hospital of Hefei, The Third Clinical College of Hefei of Anhui Medical University, Hefei, China
| | - Mengxing Yao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Anhui Medical University, Anhui, China
| |
Collapse
|
28
|
Ali W, Elsahn A, Ting DSJ, Dua HS, Mohammed I. Host Defence Peptides: A Potent Alternative to Combat Antimicrobial Resistance in the Era of the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:475. [PMID: 35453226 PMCID: PMC9032040 DOI: 10.3390/antibiotics11040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/07/2022] Open
Abstract
One of the greatest challenges facing the medical community today is the ever-increasing trajectory of antimicrobial resistance (AMR), which is being compounded by the decrease in our antimicrobial armamentarium. From their initial discovery to the current day, antibiotics have seen an exponential increase in their usage, from medical to agricultural use. Benefits aside, this has led to an exponential increase in AMR, with the fear that over 10 million lives are predicted to be lost by 2050, according to the World Health Organisation (WHO). As such, medical researchers are turning their focus to discovering novel alternatives to antimicrobials, one being Host Defence Peptides (HDPs). These small cationic peptides have shown great efficacy in being used as an antimicrobial therapy for currently resistant microbial variants. With the sudden emergence of the SARS-CoV-2 variant and the subsequent global pandemic, the great versatility and potential use of HDPs as an alternative to conventional antibiotics in treating as well as preventing the spread of COVID-19 has been reviewed. Thus, to allow the reader to have a full understanding of the multifaceted therapeutic use of HDPs, this literature review shall cover the association between COVID-19 and AMR whilst discussing and evaluating the use of HDPs as an answer to antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | | | | | | | - Imran Mohammed
- Section of Ophthalmology, Larry A. Donoso Laboratory for Eye Research, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Queens Medical Centre, Eye and ENT Building, Nottingham NG7 2UH, UK; (W.A.); (A.E.); (D.S.J.T.); (H.S.D.)
| |
Collapse
|
29
|
Brineman R, Nichols L. Educational case: Coccidioidomycosis. Acad Pathol 2022; 9:100042. [PMID: 35983308 PMCID: PMC9379517 DOI: 10.1016/j.acpath.2022.100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Larry Nichols
- Corresponding author. Mercer University School of Medicine, Macon, GA 31207, USA.
| |
Collapse
|
30
|
Livermore JM. COVID-19-Associated Pulmonary Aspergillosis in the Critical Care Setting. AACN Adv Crit Care 2021; 32:398-403. [PMID: 34879133 DOI: 10.4037/aacnacc2021226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The first confirmed case of COVID-19 in the United States was reported on January 20, 2020. Most infected individuals experience a mild illness with loss of taste and smell, body aches, fatigue, cough, and fever. However, about 5% of patients become critically ill and experience more serious symptoms such as respiratory distress, pulmonary emboli, or even multisystem organ failure. Those who become critically ill with COVID-19 are at high risk for superinfections, including pulmonary, bloodstream, and urinary tract infections. Invasive aspergillosis is emerging as a serious secondary pulmonary infection in patients with COVID-19 who experience respiratory distress syndrome. If these patients are not accurately diagnosed and subsequently treated, the infection can be fatal. This case study describes COVID-19-associated pulmonary aspergillosis in the critically ill patient.
Collapse
Affiliation(s)
- Jennifer M Livermore
- Jennifer M. Livermore is Advanced Practice Registered Nurse in Infectious Disease, CHI St Elizabeth, 555 South 70th St, Lincoln, NE 68506
| |
Collapse
|
31
|
COVID-19-Associated Pulmonary Aspergillosis in Patients with Acute Leukemia: A Single-Center Study. J Fungi (Basel) 2021; 7:jof7110890. [PMID: 34829179 PMCID: PMC8625614 DOI: 10.3390/jof7110890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 12/21/2022] Open
Abstract
Patients with coronavirus disease 19 (COVID-19) have increased susceptibility to secondary respiratory infections including invasive pulmonary aspergillosis (IPA). COVID-19-associated pulmonary aspergillosis (CAPA) is difficult to diagnose and can be associated with increased mortality especially in severe immunodeficiency such as hematological malignancies. Our study evaluates IPA in COVID-19 patients defined as COVID-19-CAPA among patients with acute leukemia (AL). A retrospective single-center study analyzed 46 patients with COVID-19 infection and acute leukemia, admitted to the Clinic for Haematology, Clinical Center of Serbia, Belgrade between the 2 April 2020 and 15 May 2021. During hospitalization, all participants were diagnosed with probable IPA according to the previous consensus definitions. Positive serology and galactomannan (GM) detection values in bronchoalveolar lavage (BAL) and serum were used as microbiological criteria. COVID-19 associated probable IPA was found in 22% (9/41) tested patients, where serum GM and IgM anti-Aspergillus antibodies were positive in 12% (5/41) and 10% (4/41) had positive serology for aspergillosis. One patient died while eight recovered during follow-up. Our study showed that COVID-19 might be a risk factor for IPA development in patients with AL. Early diagnosis and prompt treatment are required as reported mortality rates are high.
Collapse
|
32
|
Wilmes D, Coche E, Rodriguez-Villalobos H, Kanaan N. Fungal pneumonia in kidney transplant recipients. Respir Med 2021; 185:106492. [PMID: 34139578 DOI: 10.1016/j.rmed.2021.106492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Fungal pneumonia is a dreaded complication encountered after kidney transplantation, complicated by increased mortality and often associated with graft failure. Diagnosis can be challenging because the clinical presentation is non-specific and diagnostic tools have limited sensitivity and specificity in kidney transplant recipients and must be interpreted in the context of the clinical setting. Management is difficult due to the increased risk of dissemination and severity, multiple comorbidities, drug interactions and reduced immunosuppression which should be applied as an important adjunct to therapy. This review will focus on the main causes of fungal pneumonia in kidney transplant recipients including Pneumocystis, Aspergillus, Cryptococcus, mucormycetes and Histoplasma. Epidemiology, clinical presentation, laboratory and radiographic features, specific characteristics will be discussed with an update on diagnostic procedures and treatment.
Collapse
Affiliation(s)
- D Wilmes
- Division of Internal Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - E Coche
- Division of Radiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - H Rodriguez-Villalobos
- Division of Microbiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - N Kanaan
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
33
|
Chong WH, Ibrahim A, Saha BK. The evolution of invasive pulmonary aspergillosis on chest imaging in response to antifungal therapy. BMJ Case Rep 2021; 14:e242576. [PMID: 33753398 PMCID: PMC7986943 DOI: 10.1136/bcr-2021-242576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Woon H Chong
- Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, New York, USA
| | - Ammoura Ibrahim
- Department of Pathology, Albany Medical Center, Albany, New York, USA
| | - Biplab Kumar Saha
- Pulmonary and Critical Care Medicine, Ozarks Medical Center, West Plains, Missouri, USA
| |
Collapse
|
34
|
Lai CC, Yu WL. COVID-19 associated with pulmonary aspergillosis: A literature review. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:46-53. [PMID: 33012653 PMCID: PMC7513876 DOI: 10.1016/j.jmii.2020.09.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/01/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
Bacterial or virus co-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in many studies, however, the knowledge on Aspergillus co-infection among patients with coronavirus disease 2019 (COVID-19) was limited. This literature review aims to explore and describe the updated information about COVID-19 associated with pulmonary aspergillosis. We found that Aspergillus spp. can cause co-infections in patients with COVID-19, especially in severe/critical illness. The incidence of IPA in COVID-19 ranged from 19.6% to 33.3%. Acute respiratory distress syndrome requiring mechanical ventilation was the common complications, and the overall mortality was high, which could be up to 64.7% (n = 22) in the pooled analysis of 34 reported cases. The conventional risk factors of invasive aspergillosis were not common among these specific populations. Fungus culture and galactomannan test, especially from respiratory specimens could help early diagnosis. Aspergillus fumigatus was the most common species causing co-infection in COVID-19 patients, followed by Aspergillus flavus. Although voriconazole is the recommended anti-Aspergillus agent and also the most commonly used antifungal agent, aspergillosis caused by azole-resistant Aspergillus is also possible. Additionally, voriconazole should be used carefully in the concern of complicated drug-drug interaction and enhancing cardiovascular toxicity on anti-SARS-CoV-2 agents. Finally, this review suggests that clinicians should keep alerting the possible occurrence of pulmonary aspergillosis in severe/critical COVID-19 patients, and aggressively microbiologic study in addition to SARS-CoV-2 via respiratory specimens should be indicated.
Collapse
Affiliation(s)
- Chih-Cheng Lai
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Tainan Branch, Tainan, Taiwan
| | - Weng-Liang Yu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
35
|
Ozyigit LP, Monteiro W, Rick EM, Satchwell J, Pashley CH, Wardlaw AJ. Fungal bronchitis is a distinct clinical entity which is responsive to antifungal therapy. Chron Respir Dis 2021; 18:1479973120964448. [PMID: 33472416 PMCID: PMC7829604 DOI: 10.1177/1479973120964448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic productive cough in the context of exacerbations of airway disease can be
associated with positive sputum cultures for fungi, in particular
Aspergillus fumigatus and Candida spp.,
suggesting fungal bronchitis, a condition not widely recognised, as a possible
cause for the exacerbation. Our objective was to determine the response to
antifungal therapy in patients with suspected fungal bronchitis. Retrospective
analysis of data extracted from case records of patients under secondary care
respiratory clinics who had been treated with triazole therapy for suspected
fungal bronchitis between 2010–2017. Primary outcome was lung function response
after 1 month of treatment. Nineteen patients with fungal bronchitis due to
A. fumigatus and 12 patients due to
Candida spp., were included in the study. Most of the
patients, particularly in the Aspergillus group, had allergic
fungal airway disease on a background of asthma. All but one of the patients in
each group were recorded as showing clinical improvement with antifungal
therapy. In the majority of patients this was reflected in an improvement in
lung function. Aspergillus group: FEV1 (1.44 ± 0.8 L
vs 1.6 ± 0.8 L: p < 0.02), FVC (2.49 ± 1.08 L vs 2.8 ± 1.1 L: p = 0.01), and
PEF (260 ± 150L/min vs 297 ± 194ml/min: p < 0.02). Candida
group: FEV1 (1.6 ± 0.76 L vs 2.0 ± 0.72 L: p < 0.004), FVC (2.69 ±
0.91 L vs 3.13 ± 0.7 L: p = 0.05), and PEF (271± 139L/min vs 333 ± 156 L/min: p
= 0.01). Side effects of treatment were common, but resolved on stopping
treatment. This service improvement project supports the idea that fungal
bronchitis is a distinct clinical entity which is responsive to treatment.
Controlled clinical trials to confirm the clinical impression that this is
relatively common and treatable complication of complex airway disease are
required.
Collapse
Affiliation(s)
- Leyla Pur Ozyigit
- Institute for Lung Health, Department of Allergy and Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Will Monteiro
- Institute for Lung Health, Department of Respiratory Sciences, 4488University of Leicester, Leicester, UK
| | - Eva-Maria Rick
- Institute for Lung Health, Department of Respiratory Sciences, 4488University of Leicester, Leicester, UK
| | - Jack Satchwell
- Institute for Lung Health, Department of Respiratory Sciences, 4488University of Leicester, Leicester, UK
| | - Catherine Helen Pashley
- Institute for Lung Health, Department of Respiratory Sciences, 4488University of Leicester, Leicester, UK
| | - Andrew John Wardlaw
- Institute for Lung Health, Department of Allergy and Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK.,Institute for Lung Health, Department of Respiratory Sciences, 4488University of Leicester, Leicester, UK
| |
Collapse
|
36
|
Nichols L, Armstrong J, Atkinson C. The grim reaper evading modern medicine: aspergillosis, adenovirus, and Hodgkin lymphoma. Autops Case Rep 2020; 10:e2020191. [PMID: 33344318 PMCID: PMC7703463 DOI: 10.4322/acr.2020.191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Illustrative cases of diseases that are difficult to suspect and diagnose can serve as useful reminders. Invasive pulmonary aspergillosis and adenovirus hepatitis are two such diseases, both revealed by autopsy in this case of Hodgkin lymphoma refractory to chemotherapy treated with allogeneic hematopoietic stem cell transplantation complicated by these two fatal infections. This patient was cured of Hodgkin lymphoma, Clostridioides difficile colitis and thrombotic thrombocytopenic purpura using the marvels of modern medicine. This case illustrates many features of aspergillosis and adenovirus hepatitis, shows the value of autopsy in revealing diagnoses, and illustrates the limits of modern medicine, which should serve as a mental spur in our efforts to advance medical science, to try to defeat the numerous demons of disease, who seem to keep outwitting us.
Collapse
Affiliation(s)
- Larry Nichols
- Mercer University School of Medicine, Department of Pathology. Macon, GA, USA
| | | | - Cody Atkinson
- Mercer University, School of Medicine. Macon, GA, USA
| |
Collapse
|
37
|
Lattanzi C, Messina G, Fainardi V, Tripodi MC, Pisi G, Esposito S. Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis: An Update on the Newest Diagnostic Tools and Therapeutic Approaches. Pathogens 2020; 9:E716. [PMID: 32878014 PMCID: PMC7559707 DOI: 10.3390/pathogens9090716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis (CF), the most common autosomal-recessive genetic disease in the Caucasian population, is characterized by frequent respiratory infections and progressive lung disease. Fungal species are commonly found in patients with CF, and among them, Aspergillus fumigatus is the most frequently isolated. While bacteria, particularly Pseudomonas aeruginosa, have a well-established negative effect on CF lung disease, the impact of fungal infections remains unclear. In patients with CF, inhalation of Aspergillus conidia can cause allergic bronchopulmonary aspergillosis (ABPA), a Th2-mediated lung disease that can contribute to disease progression. Clinical features, diagnostic criteria and treatment of ABPA are still a matter of debate. Given the consequences of a late ABPA diagnosis or the risk of ABPA overdiagnosis, it is imperative that the diagnostic criteria guidelines are reviewed and standardized. Along with traditional criteria, radiological features are emerging as tools for further classification as well as novel immunological tests. Corticosteroids, itraconazole and voriconazole continue to be the bedrock of ABPA therapy, but other molecules, such as posaconazole, vitamin D, recombinant INF-γ and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) modulators, have been showing positive results. However, few studies have been conducted recruiting CF patients, and more research is needed to improve the prevention and the classification of clinical manifestations as well as to personalize treatment. Early recognition and early treatment of fungal infections may be fundamental to prevent progression of CF disease. The aim of this narrative review is to give an update on ABPA in children with CF.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.L.); (G.M.); (V.F.); (M.C.T.); (G.P.)
| |
Collapse
|
38
|
Bongomin F, Asio LG, Baluku JB, Kwizera R, Denning DW. Chronic Pulmonary Aspergillosis: Notes for a Clinician in a Resource-Limited Setting Where There Is No Mycologist. J Fungi (Basel) 2020; 6:E75. [PMID: 32498415 PMCID: PMC7345130 DOI: 10.3390/jof6020075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pulmonary aspergillosis (CPA) is a spectrum of several progressive disease manifestations caused by Aspergillus species in patients with underlying structural lung diseases. Duration of symptoms longer than three months distinguishes CPA from acute and subacute invasive pulmonary aspergillosis. CPA affects over 3 million individuals worldwide. Its diagnostic approach requires a thorough Clinical, Radiological, Immunological and Mycological (CRIM) assessment. The diagnosis of CPA requires (1) demonstration of one or more cavities with or without a fungal ball present or nodules on chest imaging, (2) direct evidence of Aspergillus infection or an immunological response to Aspergillus species and (3) exclusion of alternative diagnoses, although CPA and mycobacterial disease can be synchronous. Aspergillus antibody is elevated in over 90% of patients and is the cornerstone for CPA diagnosis. Long-term oral antifungal therapy improves quality of life, arrests haemoptysis and prevents disease progression. Itraconazole and voriconazole are alternative first-line agents; voriconazole is preferred for patients with contra-indications to itraconazole and in those with severe disease (including large aspergilloma). In patients co-infected with tuberculosis (TB), it is not possible to treat TB with rifampicin and concurrently administer azoles, because of profound drug interactions. In those with pan-azole resistance or intolerance or progressive disease while on oral triazoles, short-term courses of intravenous liposomal amphotericin B or micafungin is used. Surgery benefits patients with well-circumscribed simple aspergillomas and should be offered earlier in low-resource settings.
Collapse
Affiliation(s)
- Felix Bongomin
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Gulu University, Gulu P.O. Box 166, Uganda;
| | - Lucy Grace Asio
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Gulu University, Gulu P.O. Box 166, Uganda;
| | - Joseph Baruch Baluku
- Division of Pulmonology, Mulago National Referral Hospital, Kampala P.O. Box 7051, Uganda;
| | - Richard Kwizera
- Translational Research Laboratory, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala P.O. Box 22418, Uganda;
| | - David W. Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK;
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|