1
|
Jóźwiak B, Domin R, Krzywicka M, Laudańska-Krzemińska I. Effect of exercise alone and in combination with time-restricted eating on cardiometabolic health in menopausal women. J Transl Med 2024; 22:957. [PMID: 39434160 PMCID: PMC11494798 DOI: 10.1186/s12967-024-05738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
There is a need to investigate the effect of lifestyle modifications on cardiometabolic health-related issues that occur during menopause. The aim of this study was to compare the effect of resistance and endurance circuit training program alone (exercise group, n = 34) with the effect of time-restricted eating (16:8) combined with a training program (combination group, n = 28) on cardiometabolic health in 62 menopausal women (aged 51.3 ± 4.69 years). Testing was conducted before and after a 12-week period and included an assessment of body composition, glycemic control, lipid panel, blood pressure, and anthropometric measurements. Decreases in body mass index and systolic blood pressure were significantly greater in the combination group than in the exercise group (F(1,60) = 4.482, p = 0.038, η2 = 0.07; F(1,57) = 5.215, p = 0.026, η2 = 0.08, respectively, indicating moderate effects). There were significant decreases in fat mass (p = 0.001, r = 0.654), glucose level (p = 0.017, r = 0.459), insulin level (p = 0.013, r = 0.467), homeostatic model assessment for insulin resistance (p = 0.009, r = 0.499), waist circumference (p = 0.002, r = 0.596), and waist-to-height ratio (p = 0.003, r = 0.588) (indicating moderate effect) in the combination group, while there were no significant changes in the exercise group. There were no changes in lipid panel indicators in either group. This is the first study to investigate the effect of time-restricted eating combined with exercise in menopausal women. The results of the study provide evidence that the combination of time-restricted eating and exercise leads to a greater body mass index reduction than exercise alone in menopausal women.Trial registration: ClinicalTrials.gov, NCT06138015 registered 18 November 2023-Retrospectively registered, https://clinicaltrials.gov/study/NCT06138015 .
Collapse
Affiliation(s)
- Beata Jóźwiak
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, 61-871, Poznan, Poland.
| | - Remigiusz Domin
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355, Poznan, Poland
| | - Monika Krzywicka
- Department of Cardiological and Rheumatological Rehabilitation, Poznan University of Physical Education, 61-871, Poznan, Poland
| | - Ida Laudańska-Krzemińska
- Department of Physical Activity and Health Promotion Science, Poznan University of Physical Education, 61-871, Poznan, Poland
| |
Collapse
|
2
|
Lu H, Xu P, Sun G, Chen B, Zheng Y, Zhang J, Wang G. Early-life exposure to polystyrene micro- and nanoplastics disrupts metabolic homeostasis and gut microbiota in juvenile mice with a size-dependent manner. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176802. [PMID: 39395493 DOI: 10.1016/j.scitotenv.2024.176802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Early-life exposure to different sizes of micro- and nanoplastics (MNPs) affects biotoxicity, which is related not only to the dose but also directly to particle size. In this study, pregnant ICR mice received drinking water containing 5 μm polystyrene microplastics (5 μm PS-MPs) or 0.05 μm polystyrene nanoplastics (0.05 μm PS-NPs) from pregnancy to the end of lactation. Histopathological and molecular biological detection, 16s rRNA sequencing for intestinal flora analysis, and targeted metabolomics analysis were used to look into how early-life exposure to MNPs of various sizes affects young mice's growth and development, gut flora, and metabolism. The outcomes showed that 0.05 μm and 5 μm PS-MNPs can pass through the placental and mammary barriers, and MNPs accumulating in various organs were size-dependent: the greater the accumulation in organs, the smaller the particle size. Further studies found that the larger 5 μm PS-MPs caused only small accumulation in organs, with the main health hazard being the disruption of intestinal barrier and liver function, indirectly causing gut dysbiosis and metabolic disorders. In contrast, the smaller 0.05 μm PS-NPs caused excessive accumulation in organs, not only impaired the function of the intestine and liver, but also caused direct mechanical damage to physical tissues, and ultimately resulted in more severe intestinal and metabolic disorders. Our findings underline the size-dependent risks associated with micro- and nanoplastics exposure early in life and highlight the necessity for tailored approaches to address health damages from early MNPs exposure.
Collapse
Affiliation(s)
- Hao Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Peng Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Guobing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Bingxie Chen
- Department of Food Hygiene and Nutrition, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Yuncan Zheng
- Department of Clinical Medicine ("5+3" Integration), School of Second Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Jiaqi Zhang
- Department of Anesthesiology, School of Second Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China
| | - Guoxiu Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|
3
|
Niclou AM, Cabre HE, Flanagan EW, Redman LM. Precision Interventions Targeting the Maternal Metabolic Milieu for Healthy Pregnancies in Obesity. Curr Diab Rep 2024; 24:227-235. [PMID: 39162956 DOI: 10.1007/s11892-024-01550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
PURPOSE OF REVIEW Entering pregnancy with obesity increases the risk of adverse health outcomes for parent and child. As such, research interventions are largely focused on limiting excess gestational weight gain during pregnancy, especially in those with obesity. Yet, while many lifestyle interventions are successful in reducing GWG, few affect pregnancy outcomes. Here we review work targeting the metabolic milieu instead of focusing solely on weight. RECENT FINDINGS Work done in non-pregnant populations suggests that specifically targeting glucose, triglyceride, and leptin levels or inflammatory makers improves the metabolic milieu and overall health. We posit that precision interventions that include strategies such as time restricted eating, following the 24 h movement guidelines, or reducing sedentary behavior during pregnancy can be successful approaches benefiting the maternal metabolic milieu and minimize the risk of adverse pregnancy outcomes. Personalized tools such as continuous glucose monitors or community-based approaches play an important role in pre-conception health and should be extrapolated to pregnancy interventions to directly benefit the metabolic milieu optimizing health outcomes for both parent and child.
Collapse
Affiliation(s)
- Alexandra M Niclou
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Hannah E Cabre
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Emily W Flanagan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA
| | - Leanne M Redman
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
4
|
Tang W, Yin X, Liu K, Shao T, Gao Q, Shen H, Zhong X, Zhang Z. The reduction of imidazole propionate induced by intermittent fasting promotes recovery of peripheral nerve injury by enhancing migration of Schwann cells. Exp Cell Res 2024; 442:114261. [PMID: 39303838 DOI: 10.1016/j.yexcr.2024.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Peripheral nerve injury (PNI) accompanied with sensory and motor dysfunction has serious effect on the quality of life of patients. Intermittent fasting (IF), as a dietary pattern, has rarely been reported to influence imidazole propionate (ImP), a microbial metabolite, in vivo. To date, the link between ImP and PNI is unknown. This study aimed to explore the impact of ImP on the recovery after PNI and determine whether IF could reduce the concentration of ImP in vivo. Sciatic nerve injury rat model and RSC96 cells were utilized with 16s RNA seq, HE staining, CCK-8 assay, Western blot (WB), Transmission electron microscopy (TEM), immunofluorescence, transwell and scratch wound healing assays as read outs. WB, TEM, transwell and wound healing assay showed an inhibitory effect of ImP on autophagy and migration of Schwann cells. This negative effect on migration was reversed by rapamycin. Detection of p-Erk and p-mTOR confirmed that the MAPK/Erk/mTOR pathway was involved in this process. In vivo, IF changed the composition of gut microbiome, including bacteria related to ImP production and reduced the concentration of ImP in serum. In sum, IF influenced the composition of gut microbiome and reduced the concentration of ImP in vivo. The reduction of ImP promoted migration of SCs through enhancing autophagy which involved MAPK/Erk/mTOR pathway.
Collapse
Affiliation(s)
- Weilong Tang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Yin
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kunyu Liu
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tuo Shao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qichang Gao
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongtao Shen
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Zhenyu Zhang
- Department of Orthopaedics, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Ma RX. A detective story of intermittent fasting effect on immunity. Immunology 2024; 173:227-247. [PMID: 38922825 DOI: 10.1111/imm.13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Intermittent fasting (IF) refers to periodic fasting routines, that caloric intake is minimized not by meal portion size reduction but by intermittently eliminating ingestion of one or several consecutive meals. IF can instigate comprehensive and multifaceted alterations in energy metabolism, these metabolic channels may aboundingly function as primordial mechanisms that interface with the immune system, instigating intricate immune transformations. This review delivers a comprehensive understanding of IF, paying particular attention to its influence on the immune system, thus seeking to bridge these two research domains. We explore how IF effects lipid metabolism, hormonal levels, circadian rhythm, autophagy, oxidative stress, gut microbiota, and intestinal barrier integrity, and conjecture about the mechanisms orchestrating the intersect between these factors and the immune system. Moreover, the review includes research findings on the implications of IF on the immune system and patients burdened with autoimmune diseases.
Collapse
Affiliation(s)
- Ru-Xue Ma
- School of Medical, Qinghai University, Xining, China
| |
Collapse
|
6
|
Fu J, Liu S, Li M, Guo F, Wu X, Hu J, Wen L, Wang J, Li X. Optimal fasting duration for mice as assessed by metabolic status. Sci Rep 2024; 14:21509. [PMID: 39277628 PMCID: PMC11401862 DOI: 10.1038/s41598-024-72695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
In the study of obesity and diabetes, mice are widely used for experimental research, and fasting is a common procedure used to reset metabolism in mouse models. The fasting duration for experimental mice varies greatly in nutritional and metabolic studies, ranging from 2 to 48 h. This study aims to assess the optimal fasting duration for mice fed low- and high-fat diets over a short period of time. C57BL/6J mice were fed a low-fat diet (LFD) or high-fat diet (HFD) and fasted for 4, 6, 8, 10, 12, or 24 h. The effects of different conditions after fasting on the metabolic level of mice were explored, and the data were collected for analysis. Our data indicate that fasting has inconsistent effects on mice fed a low-fat or high-fat diet. To compare the metabolic differences between mice in different dietary levels and thereby secure better scientific data, mice should fast for 6 h in animal experiments. Fasting for 6 h is also recommended when comparing glucose tolerance with insulin tolerance.
Collapse
Affiliation(s)
- Jian Fu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Sha Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Fangrui Guo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaoran Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jiahao Hu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaowen Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.
- Animal Epidemic Prevention Department, Changsha Agriculture and Rural Affairs Bureau, Changsha, China.
| |
Collapse
|
7
|
Diab R, Dimachkie L, Zein O, Dakroub A, Eid AH. Intermittent Fasting Regulates Metabolic Homeostasis and Improves Cardiovascular Health. Cell Biochem Biophys 2024; 82:1583-1597. [PMID: 38847940 PMCID: PMC11445340 DOI: 10.1007/s12013-024-01314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 10/02/2024]
Abstract
Obesity is a leading cause of morbidity and mortality globally. While the prevalence of obesity has been increasing, the incidence of its related complications including dyslipidemia and cardiovascular disease (CVD) has also been rising. Recent research has focused on modalities aimed at reducing obesity. Several modalities have been suggested including behavioral and dietary changes, medications, and bariatric surgery. These modalities differ in their effectiveness and invasiveness, with dietary changes gaining more interest due to their minimal risks compared to other modalities. Specifically, intermittent fasting (IF) has been gaining interest in the past decade. IF is characterized by cycles of alternating fasting and eating windows, with several different forms practiced. IF has been shown to reduce weight and alleviate obesity-related complications. Our review of clinical and experimental studies explores the effects of IF on the lipid profile, white adipose tissue (WAT) dynamics, and the gut microbiome. Notably, IF corrects dyslipidemia, reduces WAT accumulation, and decreases inflammation, which reduces CVD and obesity. This comprehensive analysis details the protective metabolic role of IF, advocating for its integration into public health practices.
Collapse
Affiliation(s)
- Rawan Diab
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, NY, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
8
|
Hoffman RK, Donze LF, Agurs-Collins T, Belay B, Berrigan D, Blanck HM, Brandau A, Chue A, Czajkowski S, Dillon G, Kompaniyets L, Kowtha B, Li R, Mujuru P, Mudd L, Nebeling L, Tomoyasu N, Young-Hyman D, Zheng X(T, Pratt C. Adult obesity treatment and prevention: A trans-agency commentary on the research landscape, gaps, and future opportunities. Obes Rev 2024; 25:e13769. [PMID: 38830619 PMCID: PMC11309895 DOI: 10.1111/obr.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/30/2024] [Accepted: 04/06/2024] [Indexed: 06/05/2024]
Abstract
Given the high and growing prevalence of obesity among adults in the United States, obesity treatment and prevention are important topics in biomedical and public health research. Although researchers recognize the significance of this problem, much remains unknown about safe and effective prevention and treatment of obesity in adults. In response to the worsening obesity epidemic and the many unknowns regarding the disease, a group of key scientific and program staff members of the National Institutes of Health (NIH) and other federal and non-government agencies gathered virtually in September 2021 to discuss the current state of obesity research, research gaps, and opportunities for future research in adult obesity prevention and treatment. The current article synthesizes presentations given by attendees and shares their organizations' current initiatives and identified gaps and opportunities. By integrating the information discussed in the meeting and current initiatives, we identify potential targets and overlapping priorities for future research, including health equity and disparities in obesity, the heterogeneity of obesity, and the use of technological and innovative approaches in interventions.
Collapse
Affiliation(s)
- Rebecca K. Hoffman
- Pacific Institute for Research and Evaluation, Beltsville, Maryland, USA
| | - Laurie Friedman Donze
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tanya Agurs-Collins
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brook Belay
- Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David Berrigan
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Heidi M. Blanck
- Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- United States Public Health Service, Rockville, Maryland, USA
| | - Andrea Brandau
- Patient-Centered Outcomes Research Institute, Washington, DC, USA
| | - Amanda Chue
- Patient-Centered Outcomes Research Institute, Washington, DC, USA
| | - Susan Czajkowski
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Lyudmyla Kompaniyets
- Division of Nutrition, Physical Activity, and Obesity, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bramaramba Kowtha
- Office of Disease Prevention, National Institutes of Health, Bethesda, Maryland, USA
| | - Rui Li
- Maternal and Health Child Bureau, Health Resources and Services Administration, Rockville, Maryland, USA
| | - Priscah Mujuru
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland, USA
| | - Lanay Mudd
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Linda Nebeling
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Naomi Tomoyasu
- Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, Rockville, Maryland, USA
| | - Deborah Young-Hyman
- Office of Behavioral and Social Sciences Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Xincheng (Ted) Zheng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charlotte Pratt
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Saidi O, Rochette E, Dambel L, St-Onge MP, Duché P. Chrono-nutrition and sleep: lessons from the temporal feature of eating patterns in human studies - A systematic scoping review. Sleep Med Rev 2024; 76:101953. [PMID: 38788519 DOI: 10.1016/j.smrv.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
An emerging field of research has revealed a bidirectional relationship between sleep and diet, highlighting the potential role of a healthy diet in improving sleep. However, the impact of chrono-nutrition on sleep remains less explored. Here we conducted a systematic scoping review, considering the multiple dimensions of chrono-nutrition, to describe the extent, range, and nature of the existing literature in this area (PROSPERO: CRD42021274637). There has been a significant increase in the literature exploring this topic over the past six years (almost 67 % of the evolving literature). A breakdown of the included studies was performed according to three major chrono-nutritional dimensions: meal timing [n = 35], irregular eating patterns [n = 84], and frequency of eating occasions [n = 3]. Meal timing included three sub-dimensions: breakfast skipping [n = 13], late eating [n = 16], and earlier vs later meals schedules [n = 6]. Irregular meal patterns included three sub-dimensions: diurnal fasting [n = 65], intermittent fasting [n = 16], and daily meal patterns [n = 3]. Frequency was the least studied dimension (n = 3). We provided a synthetic and illustrative framework underlining important preliminary evidence linking the temporal characteristics of eating patterns to various facets of sleep health. Nonetheless, much work remains to be done to provide chrono-nutrition guidelines to improve sleep health in the general population.
Collapse
Affiliation(s)
- Oussama Saidi
- JAP2S Laboratory, Toulon University, F-83041, Toulon, France.
| | - Emmanuelle Rochette
- JAP2S Laboratory, Toulon University, F-83041, Toulon, France; Department of Pediatrics, Clermont-Ferrand University Hospital, F-63000, Clermont-Ferrand, France; Clermont Auvergne University, INSERM, CIC 1405, CRECHE Unit, F-63000, Clermont-Ferrand, France
| | - Lou Dambel
- JAP2S Laboratory, Toulon University, F-83041, Toulon, France
| | - Marie-Pierre St-Onge
- Center of Excellence for Sleep & Circadian Research and Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA, 10032
| | - Pascale Duché
- JAP2S Laboratory, Toulon University, F-83041, Toulon, France
| |
Collapse
|
10
|
Liang X, Chen J, An X, Ren Y, Liu Q, Huang L, Zhang P, Qu P, Li J. The optimal time restricted eating interventions for blood pressure, weight, fat mass, glucose, and lipids: A meta-analysis and systematic review. Trends Cardiovasc Med 2024; 34:389-401. [PMID: 37838299 DOI: 10.1016/j.tcm.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND No previous systematic review or meta-analysis has evaluated the effect of optimal time-restricted eating (TRE) interventions on cardiovascular (CVD) risk factors. This meta-analysis aimed to illustrate the effect of a suitable TRE on CVD risk factors. METHODS A systematic review was performed to identify trials reporting the effects of TRE, relative to non-diet controls, on CVD risk factors in humans. A random-effects model was used to evaluate the effect sizes, and the results are expressed as the mean difference (MD) and 95% confidence intervals (CIs). Subgroup analyses were performed to examine the influence of the study population, age, duration of intervention, and baseline mean BMI on the CVD indexes. RESULTS TRE intervention significantly reduced systolic pressure (SBP) (MD: -3.45 mmHg; 95%CI:(-6.20,-0.71) mmHg; P = 0.01), body weight (MD: -1.63 Kg; 95%CI:(-2.09,-1.17) Kg; P<0.001), body mass index (BMI) (MD: -0.47 Kg/m2; 95% CI: (-0.72, -0.22) Kg/m2; P<0.001), and fat mass (MD: -0.98 Kg; 95% CI: (-1.51,-0.44) Kg; P<0.001), and reduced blood glucose levels. Based on the results of subgroup analysis, this meta-analysis identified the optimal TRE for BP (with a 6 h feeding window, last eating time point at 6-8 PM, and male participants with obesity and aged ≥ 45 years), obesity (with a 6 h feeding window, last eating time point at 6-8 PM, and female participants aged ≥ 45 years), lipids (with an 8 h feeding window, last eating time point at 6-8 PM, and male participants aged < 45 years), and glucose (with a 10-12 h feeding window, last eating time point before 6 PM, and female participants aged < 45years). CONCLUSIONS Relative to a non-diet control, TRE is effective for the improvement of CVD risks. Moreover, individual TRE interventions should be developed for different populations to achieve the most effective health improvement for CVD risk factors.
Collapse
Affiliation(s)
- Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China.
| | - Jingyu Chen
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Xizou An
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Yanling Ren
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Qin Liu
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Lan Huang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Ping Zhang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Ping Qu
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400016, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
11
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
12
|
Dong Y, Zhu Q, Li Y, Wang R, Xu W, Tang X, Li X, Lv X, Kong X, Cai L, Niu Y. Longevity extension in rats via improved redox homeostasis with high carbohydrate diet intervention from weaning to adulthood: a comprehensive multi-omics study. Food Funct 2024; 15:7920-7935. [PMID: 38979640 DOI: 10.1039/d4fo01156b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Early dietary patterns potentially influence the health status and lifespan throughout adulthood and the entire lifespan. However, dietary behaviors are difficult for everyone to control during adolescence. It is even more important to study the effects of interventions of early dietary patterns on the lifespan under arbitrary feeding conditions. The research involves observing the survival status and lifespan of rats from weaning to adulthood with three different dietary patterns (a high-carbohydrate diet (HC), a high-protein diet (HP), and a high-fat diet (HF)) under ad libitum feeding conditions. The administration of high-carbohydrate diets leads to a significant extension of both median and maximum survival times (P < 0.05) in Wistar rats. Furthermore, it markedly enhanced the spatial memory capacity, mitigated the occurrence of liver and kidney pathological outcomes in elderly rats, and increased the abundance of gut microbiota improving amino acid metabolism. Additionally, feeding rats a high-carbohydrate diet improved glutathione (GSH) synthesis and recycling and activated the expression and upregulation of the lifespan-related proteins Foxo3a/Sirt3 and the key metabolic enzyme GPX-4. The high-carbohydrate diet from weaning to adulthood may potentially extend the lifespan by enhancing rat systemic glutathione synthesis, recycling, and improving the redox state pathway.
Collapse
Affiliation(s)
- Yuanjie Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Qiushuang Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Yuqiao Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Ruohua Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Wenyu Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xuanfeng Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xiaoqing Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xinyi Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| | - Xiangju Kong
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| | - Liying Cai
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Heilongjiang, China.
| |
Collapse
|
13
|
Wang C, Liu Z, Cai J, Xu X. The regulatory effect of intermittent fasting on inflammasome activation in health and disease. Nutr Rev 2024; 82:978-987. [PMID: 37634143 DOI: 10.1093/nutrit/nuad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Intermittent fasting (IF), one of the most popular diets, can regulate inflammation and promote health; however, the detailed molecular mechanisms are not fully understood. The present review aims to provide an overview of recent preclinical and clinical studies that have examined the effect of IF on inflammasome signaling, and to discuss the translational gap between preclinical and clinical studies. Three databases (PubMed, Web of Science, and Embase) were searched to identify all relevant preclinical and clinical studies up to October 30, 2022. A total of 1544 studies were identified through the database searches, and 29 preclinical and 10 clinical studies were included. Twenty-three of the 29 preclinical studies reported that IF treatment could reduce inflammasome activation in neurological diseases, metabolic and cardiovascular diseases, immune and inflammatory diseases, gastrointestinal diseases, and pulmonary diseases, and 7 of the 10 clinical studies demonstrated reduced inflammasome activation after IF intervention in both healthy and obese participants. Among various IF regimens, time-restricted eating seemed to be the most effective one in terms of inflammasome regulation, and the efficacy of IF might increase over time. This review highlights the regulatory effect of IF on inflammasome activation in health and disease. Future studies using different IF regimens, in various populations, are needed in order to evaluate its potential to be used alone or as an adjunct therapy in humans to improve health and counteract diseases.
Collapse
Affiliation(s)
- Chenchen Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Zhiqin Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Jinpeng Cai
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, P. R. China
| |
Collapse
|
14
|
Rachedi NS, Tang Y, Tai YY, Zhao J, Chauvet C, Grynblat J, Akoumia KKF, Estephan L, Torrino S, Sbai C, Ait-Mouffok A, Latoche JD, Al Aaraj Y, Brau F, Abélanet S, Clavel S, Zhang Y, Guillermier C, Kumar NVG, Tavakoli S, Mercier O, Risbano MG, Yao ZK, Yang G, Ouerfelli O, Lewis JS, Montani D, Humbert M, Steinhauser ML, Anderson CJ, Oldham WM, Perros F, Bertero T, Chan SY. Dietary intake and glutamine-serine metabolism control pathologic vascular stiffness. Cell Metab 2024; 36:1335-1350.e8. [PMID: 38701775 PMCID: PMC11152997 DOI: 10.1016/j.cmet.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Perivascular collagen deposition by activated fibroblasts promotes vascular stiffening and drives cardiovascular diseases such as pulmonary hypertension (PH). Whether and how vascular fibroblasts rewire their metabolism to sustain collagen biosynthesis remains unknown. Here, we found that inflammation, hypoxia, and mechanical stress converge on activating the transcriptional coactivators YAP and TAZ (WWTR1) in pulmonary arterial adventitial fibroblasts (PAAFs). Consequently, YAP and TAZ drive glutamine and serine catabolism to sustain proline and glycine anabolism and promote collagen biosynthesis. Pharmacologic or dietary intervention on proline and glycine anabolic demand decreases vascular stiffening and improves cardiovascular function in PH rodent models. By identifying the limiting metabolic pathways for vascular collagen biosynthesis, our findings provide guidance for incorporating metabolic and dietary interventions for treating cardiopulmonary vascular disease.
Collapse
Affiliation(s)
- Nesrine S Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Julien Grynblat
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Pôle Thoracique, Vasculaire et Transplantations, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Kouamé Kan Firmin Akoumia
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Leonard Estephan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Stéphanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Amel Ait-Mouffok
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Joseph D Latoche
- Hillman Cancer Center, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France
| | - Yingze Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Christelle Guillermier
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Naveen V G Kumar
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Olaf Mercier
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Michael G Risbano
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | - Zhong-Ke Yao
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guangli Yang
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ouathek Ouerfelli
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason S Lewis
- Molecular Pharmacology and Chemistry Program and Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Montani
- Pôle Thoracique, Vasculaire et Transplantations, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Assistance PubliqueHôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - Matthew L Steinhauser
- Center for NanoImaging, Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
| | | | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France; Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, 69310 Pierre-Bénite, France
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU-RespirERA, Valbonne, France.
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Hassan NH, Saleh D, Abo El-Khair SM, Almasry SM, Ibrahim A. The relation between autophagy modulation by intermittent fasting and aquaporin 2 expression in experimentally induced diabetic nephropathy in albino rat. Tissue Cell 2024; 88:102395. [PMID: 38692159 DOI: 10.1016/j.tice.2024.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Polyuria is an early sign of diabetic nephropathy (DN) that produces dehydration in diabetic patients. This could be caused by alteration of renal aquaporin 2 (AQP2) expression. This study aimed to describe the relation between autophagy modulation via intermittent fasting (IF) and renal AQP2 expression and polyuria in case of DN. We divided the rats into control, DN and IF groups. After 2 and 4 weeks of diabetes induction, blood glucose (BG), serum creatinine (Scr), urine volume, and 24 hours urine protein (UP) were examined. Diabetic nephropathy histopathological index (DNHI) was calculated to evaluate histopathological changes. Immunohistochemistry and real-time PCR were performed to measure the levels of AQP2 and the autophagy marker; LC3 in kidney tissue. DNHI was correlated to the PCR and immunoexpression of AQP2 and LC3. Intermittent fasting significantly decreased the BG, Scr, urine volume, 24 hours UP, and DNHI as compared diabetes. Diabetes significantly elevated the immunoreactivity and mRNA expression levels of AQP2 and LC3 as compared to the control. However, the IF decreased AQP2 and stimulated autophagy in cyclic fashion. Our data revealed significant positive correlations between AQP2 and LC3 at the level of immunoexpression and mRNA at 2nd weeks. Taken together, these data showed that autophagy stimulation didn't regulate AQP2 expression in case of diabetic nephropathy, however IF decreased polyuria through improvement of glycemic state.
Collapse
Affiliation(s)
- Nora Hisham Hassan
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt.
| | - Dalia Saleh
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Salwa M Abo El-Khair
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Egypt
| | - Shaima M Almasry
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| | - Amira Ibrahim
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
16
|
Huntriss R, Salimgaraev R, Nikogosov D, Powell J, Varady KA. The effectiveness of mobile app usage in facilitating weight loss: An observational study. Obes Sci Pract 2024; 10:e757. [PMID: 38745944 PMCID: PMC11091450 DOI: 10.1002/osp4.757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Aim With increasing rates of global obesity and associated health issues, there is an ever-increasing need for weight management solutions to be more accessible. Mobile applications offer accessible support systems and have the potential to offer a viable and effective weight management solution as an alternative to traditional healthcare models. Objective To evaluate the effectiveness of the SIMPLE mobile application for time-restricted eating in achieving weight loss (WL). Methods User data were analyzed between January 2021 and January 2023. In-app activity was calculated as the proportion of active days over 12, 26 and 52 weeks. A day is considered active if it contains at least one in-app action (e.g., logging weight, food, fasting, or physical activity). Users were categorized into four in-app activity levels: inactive (in-app activity <33%), medium activity (33%-66%), high activity (66%-99%), and maximal activity (100%). Weight change among in-app activity groups was assessed at 12, 26, and 52 weeks. Results Out of 53,482 users, a positive association was found between the use of the SIMPLE app and WL. Active app users lost more weight than their less active counterparts. Active users had a median WL of 4.20%, 5.04%, and 3.86% at 12, 26, and 52 weeks, respectively. A larger percentage of active users-up to 50.26%-achieved clinically significant WL (≥5%) when compared to inactive users. A dose-response relationship between WL and app usage was found after adjusting for gender, age, and initial Body Mass Index; a 10% increase in app activity correlated with increased WL by 0.43, 0.66 and 0.69 kg at 12, 26, and 52 weeks, respectively. Conclusions The study demonstrates that the SIMPLE app enables effective WL directly associated with the level of app engagement. Mobile health applications offer an accessible and effective weight management solution and should be considered when supporting adults to lose weight.
Collapse
Affiliation(s)
| | | | | | - John Powell
- Nuffield Department of Primary Care Health SciencesUniversity of OxfordOxfordOxfordshireUK
| | - Krista A. Varady
- Department of Kinesiology and NutritionUniversity of IllinoisChicagoIllinoisUSA
| |
Collapse
|
17
|
Sharifi S, Rostami F, Babaei Khorzoughi K, Rahmati M. Effect of time-restricted eating and intermittent fasting on cognitive function and mental health in older adults: A systematic review. Prev Med Rep 2024; 42:102757. [PMID: 38774517 PMCID: PMC11107340 DOI: 10.1016/j.pmedr.2024.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Objective Emerging evidence suggests that dietary interventions hold promise for promoting cognitive function and mental well-being in aging populations. This systematic review aimed to examine the potential relationship between Time-Restricted Eating (TRE) and Intermittent Fasting (IFA) with cognitive function and mental health in older adults. Methods A thorough exploration was undertaken on electronic databases such as PubMed, Scopus, Web of Science, Science Direct, and Google Scholar, up to October 2023, following PRISMA standards. The evaluation of the quality and potential bias in the incorporated articles involved the use of the Newcastle-Ottawa Scale and Consolidated Standards of Reporting Trials (CONSORT). Results From a total of 539 articles initially identified, eight studies met the eligibility criteria for inclusion in this review. Out of these eight studies, six focused on cognitive function, and 2 focused on mental health. The reviewed articles encompassed a wide range of population sizes, with the number of older adults studied varying from 10 to 1357, reflecting a diverse cohort of individuals. Conclusions.The findings suggest that TRE and IFA may have a positive impact on cognitive function and mental health in this population. However, additional research is needed to fully comprehend this relationship. Therefore, future research should specifically examine factors such as the duration and timing of the eating window in TRE, as well as the physical condition of older adults, to provide a more nuanced understanding of the cognitive and mental health benefits of TRE and IFA in older adults.
Collapse
Affiliation(s)
- Sina Sharifi
- Department of Geriatric and Psychiatric Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Fatemeh Rostami
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| | - Kimia Babaei Khorzoughi
- Faculty of Education and Psychology, Islamic Azad University Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Mahmoud Rahmati
- Department of Geriatric and Psychiatric Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran
| |
Collapse
|
18
|
Petridi F, Geurts JMW, Nyakayiru J, Schaafsma A, Schaafsma D, Meex RCR, Singh-Povel CM. Effects of Early and Late Time-Restricted Feeding on Parameters of Metabolic Health: An Explorative Literature Assessment. Nutrients 2024; 16:1721. [PMID: 38892654 PMCID: PMC11175017 DOI: 10.3390/nu16111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Chrono-nutrition (meal timing) aligns food consumption with one's circadian rhythm. The first meal (e.g., breakfast) likely promotes synchronization of peripheral circadian clocks, thereby supporting metabolic health. Time-restricted feeding (TRF) has been shown to reduce body weight (BW) and/or improve cardiovascular biomarkers. In this explorative literature assessment, 13 TRF randomized controlled trials (RCTs) were selected from PubMed and Scopus to evaluate the effects of early (eTRF: first meal before 10:30 a.m.) and late TRF (lTRF: first meal after 11:30 a.m.) on parameters of metabolic health. Although distinct variations in study design were evident between reports, TRF consistently decreased energy intake (EI) and BW, and improved insulin resistance as well as systolic blood pressure. eTRF seemed to have a greater beneficial effect than lTRF on insulin resistance (HOMA-IR). Importantly, most studies did not appear to consider chronotype in their evaluation, which may have underestimated TRF effects. TRF intervention may be a promising approach for risk reduction of human metabolic diseases. To conclusively determine benefits of TRF and identify clear differences between eTRF and lTRF, future studies should be longer-term (≥8 weeks) with well-defined (differences in) feeding windows, include participants chronotypically matching the intervention, and compare outcomes to those of control groups without any dietary limitations.
Collapse
Affiliation(s)
- Froso Petridi
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | | | | | | | | | - Ruth C. R. Meex
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | | |
Collapse
|
19
|
Şahin Bayram S. A Narrative Review of the Significance of Popular Diets in Diabetes Mellitus Management. Cureus 2024; 16:e61045. [PMID: 38800782 PMCID: PMC11127507 DOI: 10.7759/cureus.61045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes mellitus is a collection of metabolic disorders marked by elevated levels of glucose in the blood due to irregularities in the generation or functioning of insulin. Medical nutrition therapy and weight loss are crucial elements in the management of diabetes and the prevention of complications. Several diets have become popular over time for the goal of achieving weight loss, but their popularity has declined due to a lack of reliable scientific evidence. This study classifies popular diets into three categories: diets that manage the composition of macronutrients, diets that restrict specific foods or food groups, and diets that manipulate meal timing. The review includes research studies that investigated the effects of popular diets on the prevention, management, and complications of diabetes. It is clear that different popular diets can have positive effects on both preventing and treating diabetes and preventing and treating complications related to diabetes. However, it is not practical to determine which diet is the most effective option for preventing or controlling diabetes. Thus, the main focus should be on common underlying factors that support well-being, such as decreasing the intake of refined grains and added sugar, choosing non-starchy vegetables, and giving priority to whole foods over processed foods whenever possible, until there is stronger evidence supporting the specific benefits of different dietary patterns.
Collapse
|
20
|
Yang K, Liu C, Shao J, Guo L, Wang Q, Meng Z, Jin X, Chen X. Would Combination Be Better: Swimming Exercise and Intermittent Fasting Improve High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Obese Rats via the miR-122-5p/SREBP-1c/CPT1A Pathway. Diabetes Metab Syndr Obes 2024; 17:1675-1686. [PMID: 38623310 PMCID: PMC11016699 DOI: 10.2147/dmso.s448165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Background Swimming and intermittent fasting can both improve obesity-induced NAFLD, but which of the two is more effective and whether the combination of the two has a superimposed effect is inconclusive. Methods The model of NAFLD in obese rats was established by a high-fat diet and performed swimming, intermittent fasting, and a combination of both interventions for 8 weeks. Serum lipids and enzyme activity were measured by an automatic biochemical analyzer. Liver morphostructural analysis was observed by transmission electron microscopy, and morphology was observed by HE staining. RT‒PCR was used to detect the mRNA level. Results Morphology and microstructure of the liver of model rats were impaired, with the upregulation of miR-122-5p, SREBP-1c, FASN and ACC1. Eight weeks of swimming exercise, intermittent fasting and the combination of both attenuate these effects, manifested by the downregulation of miR-122-5p and upregulation of CPT1A mRNA levels. There was no significant stacking effect of the combination of the swimming and intermittent fasting interventions. Conclusion NAFLD leads to pathology in model rats. Eight weeks of swimming exercise, intermittent fasting and the combination of both can inhibit miR-122-5p and improve hepatic lipid metabolism, while no significant additive effects of combining the interventions were found.
Collapse
Affiliation(s)
- Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Chengye Liu
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Jun Shao
- Cardiovascular Disease Center, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Lingxiang Guo
- Cardiovascular Disease Center, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Qing Wang
- Respiratory Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Zhaoxiang Meng
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Xing Jin
- Rehabilitation Medicine Department, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| | - Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou city, Jiangsu Province, People’s Republic of China
| |
Collapse
|
21
|
Strilbytska O, Klishch S, Storey KB, Koliada A, Lushchak O. Intermittent fasting and longevity: From animal models to implication for humans. Ageing Res Rev 2024; 96:102274. [PMID: 38499159 DOI: 10.1016/j.arr.2024.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
In recent years, intermittent fasting (IF) and its numerous modifications have been increasingly suggested as a promising therapy for age-related problems and a non-pharmacological strategy to extend lifespan. Despite the great variability in feeding schedules that we describe in the current work, underlying physiological processes are the same and include a periodic switch from glucose metabolism (generated by glycogenolysis) to fatty acids and fatty acid-derived ketones. Many of the beneficial effects of IF appear to be mediated by optimization of energy utilization. Findings to date from both human and animal experiments indicate that fasting improves physiological function, enhances performance, and slows aging and disease processes. In this review, we discuss some of the remarkable discoveries about the beneficial effects of IF on metabolism, endocrine and cardiovascular systems, cancer prevention, brain health, neurodegeneration and aging. Experimental studies on rodent models and human investigations are summarized to compare the outcomes and underlying mechanisms of IF. Metabolic and cellular responses triggered by IF could help to achieve the aim of preventing disease, and maximizing healthspan and longevity with minimal side effects.
Collapse
Affiliation(s)
- Olha Strilbytska
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine
| | - Svitlana Klishch
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ontario, Ottawa K1S 5B6, Canada
| | - Alexander Koliada
- D.F. Chebotarev Institute of Gerontology, NAMS, 67 Vyshgorodska str., Kyiv 04114, Ukraine
| | - Oleh Lushchak
- Deparment of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Shevchenka 57, Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
22
|
Janssen H, Koekkoek LL, Swirski FK. Effects of lifestyle factors on leukocytes in cardiovascular health and disease. Nat Rev Cardiol 2024; 21:157-169. [PMID: 37752350 DOI: 10.1038/s41569-023-00931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/28/2023]
Abstract
Exercise, stress, sleep and diet are four distinct but intertwined lifestyle factors that influence the cardiovascular system. Abundant epidemiological, clinical and preclinical studies have underscored the importance of managing stress, having good sleep hygiene and responsible eating habits and exercising regularly. We are born with a genetic blueprint that can protect us against or predispose us to a particular disease. However, lifestyle factors build upon and profoundly influence those predispositions. Studies in the past 10 years have shown that the immune system in general and leukocytes in particular are particularly susceptible to environmental perturbations. Lifestyle factors such as stress, sleep, diet and exercise affect leukocyte behaviour and function and thus the immune system at large. In this Review, we explore the various mechanisms by which lifestyle factors modulate haematopoiesis and leukocyte migration and function in the context of cardiovascular health. We pay particular attention to the role of the nervous system as the key executor that connects environmental influences to leukocyte behaviour.
Collapse
Affiliation(s)
- Henrike Janssen
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura L Koekkoek
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Gómez-Ruiz RP, Cabello-Hernández AI, Gómez-Pérez FJ, Gómez-Sámano MÁ. Meal frequency strategies for the management of type 2 diabetes subjects: A systematic review. PLoS One 2024; 19:e0298531. [PMID: 38421977 PMCID: PMC10903815 DOI: 10.1371/journal.pone.0298531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Effective nutrition management is fundamental in the comprehensive treatment of individuals with type 2 diabetes. Various strategies have been explored in this regard, demonstrating their potential usefulness in improving clinical outcomes. This systematic review aims to assess the impact of meals frequency on the well-being of these patients. METHODS AND FINDINGS In accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, PubMed, Embase, Web of Science, Cochrane Library, and Google Scholar databases were searched until July 10th, 2023. We included studies from the last 10 years in people with type 2 diabetes that had an intervention regarding their meal frequency. The risk of bias was evaluated based on the Cochrane tool according to the type of study. Of 77 retrieval articles, 13 studies matched our inclusion criteria. The primary focus of each study was to evaluate glycemic control as the major outcome. Studies suggest that meal frequency, time-restricted feeding, breakfast skipping, bedtime snacking, and chrononutrition practices all play roles in type 2 diabetes management and risk. CONCLUSIONS Restricting feeding to 2 to 3 meals per day and practicing time restricted feeding with less than 10 hours of daily food intake promotes weight loss and glycemic control in patients with type 2 diabetes. Aligning food consumption with the body's natural rhythm is beneficial, whereas skipping breakfast disrupts this rhythm. Snacking after evening or waiting 3-4 hours after meal helps control glucose levels, but consuming pre-bedtime snacks do not provide the same benefits. PROSPERO REGISTRATION NUMBER CRD42023431785.
Collapse
Affiliation(s)
- Roxana Paola Gómez-Ruiz
- Department of Endocrinology and Lipid Metabolism, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Abraham Isaí Cabello-Hernández
- Department of Endocrinology and Lipid Metabolism, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Francisco Javier Gómez-Pérez
- Department of Endocrinology and Lipid Metabolism, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Miguel Ángel Gómez-Sámano
- Department of Endocrinology and Lipid Metabolism, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
24
|
Faria-Costa G, Oliveira J, Vilas-Boas I, Campelo I, Silva EA, Brás-Silva C, Silva SM, Antunes-Lopes T, Charrua A. The Ketone Bridge Between the Heart and the Bladder: How Fast Should We Go? Int Neurourol J 2024; 28:2-11. [PMID: 38461852 DOI: 10.5213/inj.2346250.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Metabolic syndrome (MS) is associated with both cardiovascular and bladder dysfunction. Insulin resistance (IR) and central obesity, in particular, are the main risk factors. In these patients, vicious pathological cycles exacerbate abnormal carbohydrate metabolism and sustain an inflammatory state, with serious implications for both the heart and bladder. Ketone bodies serve as an alternative energy source in this context. They are considered a "super-fuel" because they generate adenosine triphosphate with less oxygen consumption per molecule, thus enhancing metabolic efficiency. Ketone bodies have a positive impact on all components of MS. They aid in weight loss and glycemic control, lower blood pressure, improve lipid profiles, and enhance endothelial function. Additionally, they possess direct anti-inflammatory, antioxidant, and vasodilatory properties. A shared key player in dysfunction of both the heart and bladder dysfunction is the formation of the NLRP3 inflammasome, which ketone bodies inhibit. Interventions that elevate ketone body levels-such as fasting, a ketogenic diet, ketone supplements, and sodium-glucose cotransporter 2 inhibitors-have been shown to directly affect cardiovascular outcomes and improve lower urinary tract symptoms derived from MS. This review explores the pathophysiological basis of the benefits of ketone bodies in cardiac and bladder dysfunction.
Collapse
Affiliation(s)
- Gabriel Faria-Costa
- Department of Urology, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - João Oliveira
- Department of Urology, University Hospital Center São João, Porto, Portugal
| | - Inês Vilas-Boas
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Campelo
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Elisa Azeredo Silva
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Susana Maria Silva
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Tiago Antunes-Lopes
- Department of Urology, University Hospital Center São João, Porto, Portugal
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Translational Neurourology group, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Charrua
- Unit of Experimental Biology, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- Translational Neurourology group, I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
25
|
Callovini LC, Rojo-Wissar DM, Mayer C, Glickenstein DA, Karamchandani AJ, Lin KK, Thomson CA, Quan SF, Silva GE, Haynes PL. Effects of sleep on breakfast behaviors in recently unemployed adults. Sleep Health 2024; 10:114-121. [PMID: 37973452 PMCID: PMC10922088 DOI: 10.1016/j.sleh.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES Skipping meals is linked to negative cardiometabolic health outcomes. Few studies have examined the effects of breakfast skipping after disruptive life events, like job loss. The present analyses examine whether sleep timing, duration, and continuity are associated with breakfast eating among 186 adults who recently (past 90 days) experienced involuntary unemployment from the Assessing Daily Activity Patterns Through Occupational Transitions (ADAPT) study. METHODS We conducted both cross-sectional and 18-month longitudinal analyses to assess the relationship between actigraphic sleep after job loss and breakfast eating. RESULTS Later sleep timing was associated with a lower percentage of days breakfast was eaten at baseline (B = -0.09, SE = 0.02, P < .001) and longitudinally over 18 months (estimate = -0.04; SE = 0.02; P < .05). No other sleep indices were associated with breakfast consumption cross-sectionally or prospectively. CONCLUSIONS Unemployed adults with a delay in sleep timing are more likely to skip breakfast than adults with an advancement in sleep timing. Future studies are necessary to test chronobiological mechanisms by which sleep timing might impact breakfast eating. With the understanding that sleep timing is linked to breakfast eating, the advancement of sleep timing may provide a pathway for the promotion of breakfast eating, ultimately preventing cardiometabolic disease.
Collapse
Affiliation(s)
- Leah C Callovini
- Department of Health Promotion Sciences, Mel & Enid Zuckerman College of Public Health University of Arizona, Tucson, Arizona, USA.
| | - Darlynn M Rojo-Wissar
- Department of Health Promotion Sciences, Mel & Enid Zuckerman College of Public Health University of Arizona, Tucson, Arizona, USA; The Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Center for Behavioral and Preventive Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA; Bradley/Hasbro Children's Research Center, E.P. Bradley Hospital, Providence, Rhode Island, USA; E.P. Bradley Hospital Sleep Research Laboratory, Providence, Rhode Island, USA
| | - Candace Mayer
- Department of Health Promotion Sciences, Mel & Enid Zuckerman College of Public Health University of Arizona, Tucson, Arizona, USA
| | | | | | - Kevin K Lin
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
| | - Cynthia A Thomson
- Department of Health Promotion Sciences, Mel & Enid Zuckerman College of Public Health University of Arizona, Tucson, Arizona, USA
| | - Stuart F Quan
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Patricia L Haynes
- Department of Health Promotion Sciences, Mel & Enid Zuckerman College of Public Health University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
26
|
Wang R, Lv X, Xu W, Li X, Tang X, Huang H, Yang M, Ma S, Wang N, Niu Y. Effects of the periodic fasting-mimicking diet on health, lifespan, and multiple diseases: a narrative review and clinical implications. Nutr Rev 2024:nuae003. [PMID: 38287649 DOI: 10.1093/nutrit/nuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Dietary restriction and fasting have been recognized for their beneficial effects on health and lifespan and their potential application in managing chronic metabolic diseases. However, long-term adherence to strict dietary restrictions and prolonged fasting poses challenges for most individuals and may lead to unhealthy rebound eating habits, negatively affecting overall health. As a result, a periodic fasting-mimicking diet (PFMD), involving cycles of fasting for 2 or more days while ensuring basic nutritional needs are met within a restricted caloric intake, has gained widespread acceptance. Current research indicates that a PFMD can promote stem cell regeneration, suppress inflammation, extend the health span of rodents, and improve metabolic health, among other effects. In various disease populations such as patients with diabetes, cancer, multiple sclerosis, and Alzheimer's disease, a PFMD has shown efficacy in alleviating disease symptoms and improving relevant markers. After conducting an extensive analysis of available research on the PFMD, it is evident that its advantages and potential applications are comparable to other fasting methods. Consequently, it is proposed in this review that a PFMD has the potential to fully replace water-only or very-low-energy fasting regimens and holds promise for application across multiple diseases.
Collapse
Affiliation(s)
- Ruohua Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xinyi Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Wenyu Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xiaoqing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xuanfeng Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - He Huang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Mengxia Yang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Shuran Ma
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Nan Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
27
|
Cheung K, Chan V, Chan S, Wong MMH, Chung GKK, Cheng WY, Lo K, Zeng F. Effect of Intermittent Fasting on Cardiometabolic Health in the Chinese Population: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:357. [PMID: 38337642 PMCID: PMC10857210 DOI: 10.3390/nu16030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The efficacy of intermittent fasting (IF), as an emerging weight management strategy, in improving cardiometabolic health has been evaluated in various populations, but that among Chinese individuals has not been systematically studied. A comprehensive search on multiple databases was performed to identify eligible randomized controlled trials (RCTs) up to October 2022. The primary outcome was post-intervention weight loss, and secondary outcomes included changes in cardiometabolic indicators. Effect estimates were meta-analyzed using a random-effects model. In total, nine RCTs with 899 Chinese participants were included. Time-restricted eating was the most adopted IF protocol in this study (six out of nine), followed by alternate-day fasting. The IF intervention significantly reduced body weight, body mass index, body fat mass, homeostatic model assessment of insulin resistance, low-density lipoprotein cholesterol, and triglycerides when compared with control groups. However, no statistically significant reductions in waist circumference, total cholesterol, high-density lipoprotein cholesterol, fasting glucose, systolic blood pressure, and diastolic blood pressure were found. To sum up, IF can be a weight management strategy and may improve the cardiometabolic health of Chinese adults, but more long-term trials using different IF strategies are required to generate robust evidence of its efficacy.
Collapse
Affiliation(s)
- Katy Cheung
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China (G.K.-K.C.)
| | - Vicky Chan
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 100872, China; (V.C.); (W.-Y.C.)
| | - Stephanie Chan
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China (G.K.-K.C.)
| | - Martin Ming Him Wong
- Institute of Epidemiology and Health Care, University College London, London WC1E 6BT, UK;
| | - Gary Ka-Ki Chung
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong 999077, China (G.K.-K.C.)
| | - Wai-Yin Cheng
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 100872, China; (V.C.); (W.-Y.C.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong 100872, China
| | - Kenneth Lo
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 100872, China; (V.C.); (W.-Y.C.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong 100872, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong 100872, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou 510632, China
| |
Collapse
|
28
|
Drăgoi CM, Nicolae AC, Ungurianu A, Margină DM, Grădinaru D, Dumitrescu IB. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis-Molecular Mechanisms in Human Health. Cells 2024; 13:138. [PMID: 38247830 PMCID: PMC10814043 DOI: 10.3390/cells13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
A multitude of physiological processes, human behavioral patterns, and social interactions are intricately governed by the complex interplay between external circumstances and endogenous circadian rhythms. This multidimensional regulatory framework is susceptible to disruptions, and in contemporary society, there is a prevalent occurrence of misalignments between the circadian system and environmental cues, a phenomenon frequently associated with adverse health consequences. The onset of most prevalent current chronic diseases is intimately connected with alterations in human lifestyle practices under various facets, including the following: reduced physical activity, the exposure to artificial light, also acknowledged as light pollution, sedentary behavior coupled with consuming energy-dense nutriments, irregular eating frameworks, disruptions in sleep patterns (inadequate quality and duration), engagement in shift work, and the phenomenon known as social jetlag. The rapid evolution of contemporary life and domestic routines has significantly outpaced the rate of genetic adaptation. Consequently, the underlying circadian rhythms are exposed to multiple shifts, thereby elevating the susceptibility to disease predisposition. This comprehensive review endeavors to synthesize existing empirical evidence that substantiates the conceptual integration of the circadian clock, biochemical molecular homeostasis, oxidative stress, and the stimuli imparted by physical exercise, sleep, and nutrition.
Collapse
Affiliation(s)
- Cristina Manuela Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Alina Crenguţa Nicolae
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Denisa Marilena Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Daniela Grădinaru
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.M.D.); (A.C.N.); (A.U.); (D.M.M.)
| | - Ion-Bogdan Dumitrescu
- Department of Physics and Informatics, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania;
| |
Collapse
|
29
|
Conde-Pipó J, Mora-Fernandez A, Martinez-Bebia M, Gimenez-Blasi N, Lopez-Moro A, Latorre JA, Almendros-Ruiz A, Requena B, Mariscal-Arcas M. Intermittent Fasting: Does It Affect Sports Performance? A Systematic Review. Nutrients 2024; 16:168. [PMID: 38201996 PMCID: PMC10780856 DOI: 10.3390/nu16010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Intermittent fasting is one of the most popular types of diet at the moment because it is an effective nutritional strategy in terms of weight loss. The main objective of this review is to analyze the effects that intermittent fasting has on sports performance. We analyzed physical capacities: aerobic capacity, anaerobic capacity, strength, and power, as well as their effect on body composition. For this, a bibliographic search was carried out in several databases where 25 research articles were analyzed to clarify these objectives. Inclusion criteria: dates between 2013 and present, free full texts, studies conducted in adult human athletes, English and/or Spanish languages, and if it has been considered that intermittent fasting is mainly linked to sports practice and that this obtains a result in terms of performance or physical capacities. This review was registered in PROSPERO with code ref. 407024, and an evaluation of the quality or risk of bias was performed. After this analysis, results were obtained regarding the improvement of body composition and the maintenance of muscle mass. An influence of intermittent fasting on sports performance and body composition is observed. It can be concluded that intermittent fasting provides benefits in terms of body composition without reducing physical performance, maintenance of lean mass, and improvements in maximum power. But despite this, it is necessary to carry out new studies focusing on the sports field since the samples have been very varied. Additionally, the difference in hours of intermittent fasting should be studied, especially in the case of overnight fasting.
Collapse
Affiliation(s)
- Javier Conde-Pipó
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
| | - Agustín Mora-Fernandez
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
| | - Manuel Martinez-Bebia
- Department Food Technology, Nutrition and Food Science, Campus of Lorca, University of Murcia, 30100 Murcia, Spain; (M.M.-B.); (J.A.L.)
| | - Nuria Gimenez-Blasi
- Nutrition Area, Faculty of Health Sciences, Catholic University of Avila, 05005 Ávila, Spain;
| | - Alejandro Lopez-Moro
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
| | - José Antonio Latorre
- Department Food Technology, Nutrition and Food Science, Campus of Lorca, University of Murcia, 30100 Murcia, Spain; (M.M.-B.); (J.A.L.)
| | - Antonio Almendros-Ruiz
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
| | - Bernardo Requena
- Research and Development Department, Football Science Institute, 18016 Granada, Spain;
| | - Miguel Mariscal-Arcas
- Health Science and Nutrition Research (HSNR, CTS-1118), Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; (J.C.-P.); (A.M.-F.); (A.L.-M.); (A.A.-R.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
30
|
Mohamed YA, Abouelmagd M, Elbialy A, Elwassefy M, Kyrillos F. Effect of intermittent fasting on lipid biokinetics in obese and overweight patients with type 2 diabetes mellitus: prospective observational study. Diabetol Metab Syndr 2024; 16:4. [PMID: 38172970 PMCID: PMC10763162 DOI: 10.1186/s13098-023-01234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Intermittent fasting (IF) is a commonly used dietary practice that alternates between periods of unrestricted dietary consumption and abstinence from caloric intake. IF reduces caloric intake along with metabolic switch from utilization of glucose to fatty acids and ketones and resulting in reduction in adiposity and subsequently insulin resistance. Thus, it has been hypothesized that IF regimens can improve body composition in obese and overweight individuals. AIM To assess the effect of IF on lipid biokinetics in obese and overweight patients with type 2 diabetes (T2D). PATIENTS AND METHODS Thirty overweight or obese T2D patients were recruited from the diabetes outpatient clinics at the Specialized Medical Hospital, Mansoura University. Patients were subjected to time restricted fasting for 16 h (from dawn to sunset) during Ramadan. Anthropometric data were measured for participants before and 3 weeks after Ramadan fasting. Fasting plasma glucose (FPG), HbA1c, lipid profile, leptin, beta hydroxybutyrate (βHB) and high sensitive CRP levels were measured 1 week before and 3 weeks after Ramadan fasting. RESULTS 30 diabetic patients were recruited with a mean age of 54.3 ± 7.2 years. 24 (80%) were females. Obesity was diagnosed in 27 cases (90%). The median diabetes duration was 10 years. The study showed a statistically significant decrease in post-fasting body weight (BW), Body mass index (BMI), waist circumference (WC) & hip circumference (HC). There was a statistically significant decrease of post-fasting low density lipoprotein (LDL-C), Total cholesterol (TC), and leptin. The study also showed a statistically significant increase of post-fasting high density lipoprotein (HDL-C) and βHB. No significant change was found in post-fasting levels of HbA1c, FPG, triglycerides (TG) or high sensitive CRP. Post-fasting leptin was positively correlated with post-fasting BW, BMI, WC, and HC. Post-fasting βHB was positively correlated with post-fasting TG, HbA1c, and LDL-C. Leptin levels change (pre vs post fasting) was positively correlated with the change in LDL-C levels. CONCLUSION IF reduced leptin and increased β-hydroxybutyrate levels. IF is an effective tool for losing weight and visceral fat and improving lipid profile in obese and overweight patients with T2D.
Collapse
Affiliation(s)
- Yasmin Atwa Mohamed
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Megahed Abouelmagd
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Elbialy
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona Elwassefy
- Clinical pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fady Kyrillos
- Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
31
|
Hourizadeh J, Munshi R, Zeltser R, Makaryus AN. Dietary Effects of Fasting on the Lipid Panel. Curr Cardiol Rev 2024; 20:82-92. [PMID: 38310558 PMCID: PMC11107469 DOI: 10.2174/011573403x257173231222042846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 02/06/2024] Open
Abstract
INTRODUCTION Dietary habits, such as the Mediterranean diet and the Dietary Approaches to Stop Hypertension (DASH), have been shown to improve cardiac health. Another more recent popular form of dieting incorporates periods of fasting known as intermittent fasting. The two main forms are alternate-day fasting and time-restricted eating. METHODS PubMed search and literature review was undertaken. This review evaluates the current literature regarding the effects of the fasting dietary model and other types of fasting upon the lipid panel. RESULTS There have been studies that have shown that intermittent fasting does provide a benefit in cardiovascular health, weight loss, and hypertension. However, the effect on cholesterol and triglyceride levels during intermittent fasting is in question. CONCLUSION The effect that fasting has on one's lipid panel is unclear, there are studies that show that different forms of fasting affect the lipid panel in various ways. There are studies that show that intermittent fasting does improve one's lipid profile and provides health benefits. Randomized controlled clinical trials with a large sample size are needed to evaluate the effects that intermittent fasting has based on race, ethnicity, gender, obesity, dyslipidemia, diabetic and healthy patients, and will lead to definitive evidence of lipid panel outcomes beyond current evidence based solely upon observational cohorts with numerous and multifactorial confounding factors and biases.
Collapse
Affiliation(s)
- Jason Hourizadeh
- Department of Internal Medicine, St. John’s Riverside Hospital, Yonkers, NY, USA
| | - Rezwan Munshi
- Department of Cardiology, Nassau University Medical Center, East Meadow, NY, USA
| | - Roman Zeltser
- Department of Cardiology, Nassau University Medical Center, East Meadow, NY, USA
- Department of Cardiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY, USA
| | - Amgad N. Makaryus
- Department of Cardiology, Nassau University Medical Center, East Meadow, NY, USA
- Department of Cardiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
32
|
Mackieh R, Al-Bakkar N, Kfoury M, Okdeh N, Pietra H, Roufayel R, Legros C, Fajloun Z, Sabatier JM. Unlocking the Benefits of Fasting: A Review of its Impact on Various Biological Systems and Human Health. Curr Med Chem 2024; 31:1781-1803. [PMID: 38018193 DOI: 10.2174/0109298673275492231121062033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Fasting has gained significant attention in recent years for its potential health benefits in various body systems. This review aims to comprehensively examine the effects of fasting on human health, specifically focusing on its impact on different body's physiological systems. The cardiovascular system plays a vital role in maintaining overall health, and fasting has shown promising effects in improving cardiovascular health markers such as blood pressure, cholesterol levels, and triglyceride levels. Additionally, fasting has been suggested to enhance insulin sensitivity, promote weight loss, and improve metabolic health, thus offering potential benefits to individuals with diabetes and metabolic disorders. Furthermore, fasting can boost immune function, reduce inflammation, enhance autophagy, and support the body's defense against infections, cancer, and autoimmune diseases. Fasting has also demonstrated a positive effect on the brain and nervous system. It has been associated with neuroprotective properties, improving cognitive function, and reducing the risk of neurodegenerative diseases, besides the ability of increasing the lifespan. Hence, understanding the potential advantages of fasting can provide valuable insights for individuals and healthcare professionals alike in promoting health and wellbeing. The data presented here may have significant implications for the development of therapeutic approaches and interventions using fasting as a potential preventive and therapeutic strategy.
Collapse
Affiliation(s)
- Rawan Mackieh
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Nadia Al-Bakkar
- Faculty of Health Sciences, College of Life Sciences, Beirut Arab University, Beirut Campus, P.O. Box 11 50 20, Riad El Solh, Beirut 11072809, Lebanon
| | - Milena Kfoury
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Nathalie Okdeh
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Hervé Pietra
- Association Esprit Jeûne & Fasting Spirit, 226, Chemin du Pélican, Toulon 83000, France
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Hadiya, Kuwait
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Team 2 CarMe, SFR ICAT, Angers 49000, France
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Jean-Marc Sabatier
- Aix-- Marseille Université, CNRS, INP, Inst Neurophysiopathol, Marseille 13385, France
| |
Collapse
|
33
|
Zhou J, Wu X, Xiang T, Liu F, Gao H, Tong L, Yan B, Li Z, Zhang C, Wang L, Ou L, Li Z, Wang W, Yang T, Li F, Ma H, Zhao X, Mi N, Yu Z, Lan C, Wang Q, Li H, Wang L, Wang X, Li Y, Zeng Q. Dynamical alterations of brain function and gut microbiome in weight loss. Front Cell Infect Microbiol 2023; 13:1269548. [PMID: 38173792 PMCID: PMC10761423 DOI: 10.3389/fcimb.2023.1269548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/13/2023] [Indexed: 01/05/2024] Open
Abstract
Objective Intermittent energy restriction (IER) is an effective weight loss strategy. However, little is known about the dynamic effects of IER on the brain-gut-microbiome axis. Methods In this study, a total of 25 obese individuals successfully lost weight after a 2-month IER intervention. FMRI was used to determine the activity of brain regions. Metagenomic sequencing was performed to identify differentially abundant gut microbes and pathways in from fecal samples. Results Our results showed that IER longitudinally reduced the activity of obese-related brain regions at different timepoints, including the inferior frontal orbital gyrus in the cognitive control circuit, the putamen in the emotion and learning circuit, and the anterior cingulate cortex in the sensory circuit. IER longitudinally reduced E. coli abundance across multiple timepoints while elevating the abundance of obesity-related Faecalibacterium prausnitzii, Parabacteroides distasonis, and Bacterokles uniformis. Correlation analysis revealed longitudinally correlations between gut bacteria abundance alterations and brain activity changes. Conclusions There was dynamical alteration of BGM axis (the communication of E. coli with specific brain regions) during the weight loss under the IER.
Collapse
Affiliation(s)
- Jing Zhou
- Henan Provincial Research Center of Clinical Medicine of Nephropathy, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaoling Wu
- Department of Nuclear Medicine, Henan Key Laboratory of Chronic Disease Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Tianyuan Xiang
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Fei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Lei Ou
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, BYHEALTH Co. Ltd, Guangzhou, Guangdong, China
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen Wang
- Department of Nutrition, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, Zhengzhou, China
| | - Tingting Yang
- Department of Nutrition, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan, Zhengzhou, China
| | - Fengyun Li
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Huimin Ma
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Xiaojuan Zhao
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Na Mi
- Department of Health Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Ziya Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, People’s Liberation Army (PLA) Strategic Support Force Information Engineering University, Zhengzhou, Henan, China
| | - Canhui Lan
- Beijing Rexinchang Biotechnology Research Institute Co. Ltd, Beijing, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hao Li
- Department of Health Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Liming Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Wang
- The Institute of Geriatrics, The State Clinic Center for Geriatrics & The State Key Laboratory of Kidney, The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yongli Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
34
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
35
|
Črešnovar T, Habe B, Jenko Pražnikar Z, Petelin A. Effectiveness of Time-Restricted Eating with Caloric Restriction vs. Caloric Restriction for Weight Loss and Health: Meta-Analysis. Nutrients 2023; 15:4911. [PMID: 38068769 PMCID: PMC10708501 DOI: 10.3390/nu15234911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Time-restricted eating (TRE) is an increasingly popular dietary strategy for weight loss. Recent studies suggest that combining TRE with caloric restriction (CR) may have more favorable effects on both physical and biochemical aspects when compared with CR alone. Therefore, we performed a meta-analysis to compare the effects of TRE with CR vs. CR alone on anthropometric and biochemical measures in overweight or obese adults. We reviewed articles from PubMed, Web of science, EMBASE, and the Cochrane Library published before 25 May 2023. The meta-analysis incorporated data from seven randomized controlled trials of nine interventions, with a total of 231 participants in the TRE with CR group and 227 participants in the CR-only group. Data were analyzed using RewMan version 5.4.1. All results in our meta-analysis were described as mean difference (MD) with 95% confidence interval (Cl). Results showed that TRE with CR compared to CR alone resulted in significantly greater reductions in body weight (MD: -2.11 kg, 95% CI: -2.68 kg to -1.54 kg, p = < 0.00001, I2 = 42%), body fat mass (MD: -0.75 kg, 95% CI: -1.35 kg to -0.16 kg, p = 0.01; I2 = 0%), and waist circumference (MD: -1.27 cm, 95% CI: -2.36 cm to -0.19 cm, p = 0.02, I2 = 0%), while no additional impact of TRE in combination with CR in comparison to CR on serum biochemical parameters were found. Our results suggest that the improvement in biochemical parameters are mainly caused by CR, while improvements in anthropometric parameters are further enhanced by TRE.
Collapse
Affiliation(s)
| | | | | | - Ana Petelin
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia; (T.Č.); (B.H.); (Z.J.P.)
| |
Collapse
|
36
|
Li Z, Huang L, Luo Y, Yu B, Tian G. Effects and possible mechanisms of intermittent fasting on health and disease: a narrative review. Nutr Rev 2023; 81:1626-1635. [PMID: 36940184 DOI: 10.1093/nutrit/nuad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
The imbalance between energy intake and expenditure in an environment of continuous food availability can lead to metabolic disturbances in the body and increase the risk of obesity and a range of chronic noncommunicable diseases. Intermittent fasting (IF) is one of the most popular nonpharmacological interventions to combat obesity and chronic noncommunicable diseases. The 3 most widely studied IF regimens are alternate-day fasting, time-restricted feeding, and the 5:2 diet. In rodents, IF helps optimize energy metabolism, prevent obesity, promote brain health, improve immune and reproductive function, and delay aging. In humans, IF's benefits are relevant for the aging global population and for increasing human life expectancy. However, the optimal model of IF remains unclear. In this review, the possible mechanisms of IF are summarized and its possible drawbacks are discussed on the basis of the results of existing research, which provide a new idea for nonpharmaceutical dietary intervention of chronic noncommunicable diseases.
Collapse
Affiliation(s)
- Zimei Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Liansu Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
37
|
Margină DM, Drăgoi CM. Intermittent Fasting on Human Health and Disease. Nutrients 2023; 15:4491. [PMID: 37960144 PMCID: PMC10649432 DOI: 10.3390/nu15214491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic non-communicable diseases (NCDs) are the leading cause of morbidity and mortality worldwide, but most of all in industrialized countries, and are fundamentally correlated to improper nutrition and impaired lifestyle behaviours [...].
Collapse
Affiliation(s)
- Denisa Marilena Margină
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Cristina Manuela Drăgoi
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
38
|
Taha RI, Alghamdi MA, Alshehri Hanan Hassan, Al Qahtani EA, Al-Khater KM, Aldahhan RA, El Nashar EM. Streptozotocin- induced changes in aquaporin 1 and 4, oxidative stress, and autophagy in submandibular and parotid salivary glands and the possible ameliorative effect of intermittent fasting on these changes. Tissue Cell 2023; 85:102242. [PMID: 39491403 DOI: 10.1016/j.tice.2023.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Salivary glands are highly responsible for maintaining oral tissue homeostasis by secreting saliva. This study was designed to investigate aquaporin 1 and 4, oxidative stress, and autophagy in submandibular and parotid salivary glands of diabetic rats and the possible ameliorative effect of intermittent fasting on these changes. Fifty adult male rats were divided into control and experimental groups. Experimental diabetes was induced by a single intraperitoneal injection of streptozotocin. After induction of diabetics, the experimental group was divided into two groups (diabetic without intermittent fasting and diabetic with intermittent fasting). The animals were sacrificed two and four weeks after induction of diabetes. Intermittent fasting significantly decreased malondialdehyde and significantly elevated reduced glutathione (GSH) in the submandibular and parotid glands compared to those of diabetic rats. The salivary secretions were also significantly histologically spared in diabetics with intermittent fasting groups. Furthermore, intermittent fasting increased aquaporin 1 in both glands, while aquaporin 4 was only elevated in the submandibular gland. The immunolocalization and gene expression of Lc3-II was higher in the diabetic salivary glands than in the fasting glands. In conclusion, these findings highlight the pathological role of autophagy in diabetic submandibular and parotid glands and provide potential target for the therapeutic role of intermittent fasting to ameliorate the dysfunction of the submandibular and parotid glands in type I diabetes mellitus.
Collapse
Affiliation(s)
- Reham Ismail Taha
- Anatomy and embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalised Medicine Unit, college of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Alshehri Hanan Hassan
- Endocrinology and diabetes section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Eman Ali Al Qahtani
- Endocrinology and diabetes section, Internal Medicine Department, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, PO Box 2114, Dammam 31451, Saudi Arabia.
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, PO Box 2114, Dammam 31451, Saudi Arabia.
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| |
Collapse
|
39
|
Hamer O, Abouzaid A, Hill J. Intermittent fasting for the prevention of cardiovascular disease: implications for clinical practice. BRITISH JOURNAL OF CARDIAC NURSING 2023; 18:2023.0058. [PMID: 38807936 PMCID: PMC7616019 DOI: 10.12968/bjca.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cardiovascular disease remains one of the most prevalent and preventable chronic conditions worldwide. Nutrition plays an important role in reducing several risk factors associated with cardiovascular disease. Intermittent fasting has been rapidly gaining interest among patients with cardiometabolic disease as a nutritional strategy for improving cardiovascular outcomes. However, research had yet to determine whether intermittent fasting provides greater cardiometabolic benefits compared to continuous daily caloric restriction. A recent Cochrane review has synthesised the benefits of intermittent fasting for the prevention of cardiovascular disease but is limited by its interpretation of the findings for clinical practice. This commentary aims to critically appraise the methods used within the review by Allaf et al, 2021 and expand upon the findings to determine its implications for clinical practice.
Collapse
Affiliation(s)
- O Hamer
- University of Central Lancashire
| | - A Abouzaid
- NHS Blackpool Teaching Hospitals NHS Foundation Trust
| | - J Hill
- University of Central Lancashire
| |
Collapse
|
40
|
Makris KC, Heibati B, Narui SZ. Chrono-modulated effects of external stressors on oxidative stress and damage in humans: A scoping review on night shift work. ENVIRONMENT INTERNATIONAL 2023; 178:108048. [PMID: 37463540 DOI: 10.1016/j.envint.2023.108048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Oxidative stress and tissue damage (OSD) play a pivotal role as an early-stage process in chronic disease pathogenesis. However, there has been little research to better understand the temporal (χρόνος[chronos]) dimensions of OSD process associated with environmental (non-genetic, including behaviors/lifestyle) and/or occupational stressors, like night shift work. OSD processes have recently attracted attention in relation to time-resolved external stressor trajectories in personalized medicine (prevention) initiatives, as they seem to interact with circadian clock systems towards the improved delineation of the early stages of (chronic) disease process. OBJECTIVES This work critically reviewed human studies targeting the temporal dynamics of OSD and circadian clock system's activity in response to environmental/occupational stressors; the case of night shift work was examined. METHODS Being a key stressor influencing OSD processes and circadian rhythm, night shift work was evaluated as part of a scoping review of research in OSD, including inflammatory and metabolic processes to determine the extent of OSD research undertaken in human populations, methodologies, tools and biomarkers used and the extent that the temporal dimensions of exposure and biological effect(s) were accounted for. Online databases were searched for papers published from 2000 onwards, resulting in the selection of 53 original publications. RESULTS AND DISCUSSION The majority of studies (n = 41) took place in occupational settings, while the rest were conducted in the general population or patient groups. Most occupational studies targeted outcomes of oxidative stress/damage (n = 19), followed by the combination of OSD with inflammatory response (n = 10), and studies focused on metabolic outcomes (n = 12). Only a minor fraction of the studies measured biomarkers related to circadian rhythm, such as, melatonin, its metabolite, or cortisol. Night shift work was associated with select biomarkers of OSD and inflammation, albeit with mixed results. Although much progress in delineating the biological mechanisms of OSD process has been made, an equally thorough investigation on the temporal trajectory of OSD processes as triggered by environmental/occupational stressors in human studies has yet to fully evolve.
Collapse
Affiliation(s)
- Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus.
| | - Behzad Heibati
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus; Department of Research, Cancer Registry Norway, Oslo, Norway
| | | |
Collapse
|
41
|
Jaramillo AP, Castells J, Ibrahimli S, Jaramillo L, Briones Andriuoli RR, Moncada D, Revilla JC. Time-Restricted Feeding and Intermittent Fasting as Preventive Therapeutics: A Systematic Review of the Literature. Cureus 2023; 15:e42300. [PMID: 37609101 PMCID: PMC10441815 DOI: 10.7759/cureus.42300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 08/24/2023] Open
Abstract
Multiple studies have shown that intermittent fasting (IF) is associated with better health conditions and longer lifespans, as is time-restricted feeding (TRF). One crucial explanation is that IF and TRF permit a set length of time for caloric ingestion, during which our systems activate a variety of mechanisms that lead to the enhancement and renewal of different body systems. Accordingly, the benefits of IF and TRF are a lot greater than those of complete calorie restriction (CR). Accordingly, TRF and IF offered the underpinnings for human studies that revealed that when we eat and when we are fasting, we experience fluctuations in all body systems. For relevant medical literature, we investigated medical databases such as PubMed/Medline, PubMed Central, Cochrane Library, and Google Scholar. The chosen articles were evaluated based on eligibility criteria and vetted by quality evaluation methods; 15 finished research papers were included in the study. Of the 15 recognized studies, four were systematic reviews of literature, and 11 were review articles. The chosen publications all examined the efficacy and comparability with other restrictive diets. The study articles indicated that the advantages of IF and TRF represent complex interplay involving periodic digestion of food, gut flora, and the circadian clock. Accordingly, further research is necessary to get a comprehensive grasp of this very complex molecular blueprint. This could aid in producing an effectively planned food treatment that can regulate numerous chronic health ailments and disorders. Furthermore, it might lead to the development and investigation of new pharmacological medicines that mimic the nutritional and therapeutic benefits of IF for those who are unwilling or unable to follow this kind of feeding regimen.
Collapse
Affiliation(s)
- Arturo P Jaramillo
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Javier Castells
- Internal Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | | | - Luisa Jaramillo
- Internal Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | | | - Denisse Moncada
- Internal Medicine, Universidad Católica de Santiago de Guayaquil, Guayaquil, ECU
| | | |
Collapse
|
42
|
Lin S, Cienfuegos S, Ezpeleta M, Gabel K, Pavlou V, Mulas A, Chakos K, McStay M, Wu J, Tussing-Humphreys L, Alexandria SJ, Sanchez J, Unterman T, Varady KA. Time-Restricted Eating Without Calorie Counting for Weight Loss in a Racially Diverse Population : A Randomized Controlled Trial. Ann Intern Med 2023; 176:885-895. [PMID: 37364268 PMCID: PMC11192144 DOI: 10.7326/m23-0052] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Time-restricted eating (TRE), without calorie counting, has become a popular weight loss strategy, yet long-term randomized trials evaluating its efficacy are limited. OBJECTIVE To determine whether TRE is more effective for weight control and cardiometabolic risk reduction compared with calorie restriction (CR) or control. DESIGN 12-month randomized controlled trial. (ClinicalTrials.gov: NCT04692532). SETTING University of Illinois Chicago from January 2021 to September 2022. PARTICIPANTS 90 adults with obesity. INTERVENTION 8-hour TRE (eating between noon and 8:00 p.m. only, without calorie counting), CR (25% energy restriction daily), or control (eating over a period of 10 or more hours per day). Participants were not blinded. MEASUREMENTS Change in body weight, metabolic markers, and energy intake by month 12. RESULTS Seventy-seven persons completed the study. Mean age was 40 years (SD, 11), 33% were Black, and 46% were Hispanic. Mean reduction in energy intake was -425 kcal/d (SD, 531) for TRE and -405 kcal/d (SD, 712) for CR. Compared with the control group, weight loss by month 12 was -4.61 kg (95% CI, -7.37 to -1.85 kg; P ≤ 0.01) (-4.87% [CI, -7.61% to -2.13%]) for the TRE group and -5.42 kg (CI, -9.13 to -1.71 kg; P ≤ 0.01) (-5.30% [CI, -9.06% to -1.54%]) for the CR group, with no statistically significant difference between TRE and CR (0.81 kg [CI, -3.07 to 4.69 kg; P = 0.68]) (0.43% [CI, -3.48% to 4.34%]). LIMITATION Not blinded, not powered to detect relatively large differences in weight loss, and lack of adjustment for multiple comparisons. CONCLUSION Time-restricted eating is more effective in producing weight loss when compared with control but not more effective than CR in a racially diverse population. PRIMARY FUNDING SOURCE National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.
Collapse
Affiliation(s)
- Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Sofia Cienfuegos
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Mark Ezpeleta
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Vasiliki Pavlou
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Andrea Mulas
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Kaitie Chakos
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Mara McStay
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Jackie Wu
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition and University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois (L.T.)
| | - Shaina J Alexandria
- Department of Preventative Medicine (Biostatistics), Northwestern University, Chicago, Illinois (S.J.A.)
| | - Julienne Sanchez
- College of Medicine (Endocrinology), University of Illinois Chicago, Chicago, Illinois (J.S.)
| | - Terry Unterman
- College of Medicine (Endocrinology), University of Illinois Chicago, and Jesse Brown VA Medical Center, Chicago, Illinois (T.U.)
| | - Krista A Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois (S.L., S.C., M.E., K.G., V.P., A.M., K.C., M.M., J.W., K.A.V.)
| |
Collapse
|
43
|
Cai Y, Liu Y, Wu Z, Wang J, Zhang X. Effects of Diet and Exercise on Circadian Rhythm: Role of Gut Microbiota in Immune and Metabolic Systems. Nutrients 2023; 15:2743. [PMID: 37375647 DOI: 10.3390/nu15122743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
A close relationship exists between the intestinal microbiota and the circadian rhythm, which is mainly regulated by the central-biological-clock system and the peripheral-biological-clock system. At the same time, the intestinal flora also reflects a certain rhythmic oscillation. A poor diet and sedentary lifestyle will lead to immune and metabolic diseases. A large number of studies have shown that the human body can be influenced in its immune regulation, energy metabolism and expression of biological-clock genes through diet, including fasting, and exercise, with intestinal flora as the vector, thereby reducing the incidence rates of diseases. This article mainly discusses the effects of diet and exercise on the intestinal flora and the immune and metabolic systems from the perspective of the circadian rhythm, which provides a more effective way to prevent immune and metabolic diseases by modulating intestinal microbiota.
Collapse
Affiliation(s)
- Yidan Cai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Jing Wang
- China Rural Technology Development Center, Beijing 100045, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
44
|
Kokkinopoulou A, Katsiki N, Pagkalos I, Rodopaios NE, Koulouri AA, Vasara E, Papadopoulou SK, Skepastianos P, Dermitzakis E, Hassapidou M, Kafatos AG. The Interplay between Metabolic Syndrome and Religious Fasting in Postmenopausal Women. Nutrients 2023; 15:nu15112478. [PMID: 37299441 DOI: 10.3390/nu15112478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Religious fasting that involves abstinence from specific food(s) is part of many religions worldwide and has been gaining attention by the research community during the last years. The study aimed to investigate whether the periodic Christian Orthodox fasting mitigates the changes in body composition, dietary intake, and metabolic syndrome (MetS) in postmenopausal women. One hundred and thirty-four postmenopausal women aged 57.3 ± 6.7 years participated in this study. The Christian Orthodox fasting was followed by 68 postmenopausal women since their childhood, whereas 66 postmenopausal women were non-fasters. Data collection involved anthropometric, biochemical, clinical, and dietary information. Postmenopausal women who fasted according to Christian Orthodox Church recommendations had significantly higher mean fat free mass (45 vs. 44 kg, p = 0.002), hip circumference (104 vs. 99 cm, p = 0.001), and diastolic blood pressure (79 vs. 82 mmHg, p = 0.024). No other differences were found with regards to anthropometric data. Fasters also consumed significantly less fat (78 vs. 91 g, p = 0.006), as well as saturated (19 vs. 23 g, p = 0.015), monounsaturated (41 vs. 47 g, p = 0.018), and polyunsaturated fat (8.5 vs. 10 g, p = 0.023), trans fatty acids (0.5 vs. 2.3 g, p = 0.035), and cholesterol (132 vs. 176 g, p = 0.011). In terms of MetS features, non-fasters had more frequently elevated fasting blood glucose (11.8 vs. 24.2%, p = 0.039) and elevated blood pressure (13.2 vs. 36.4%, p = 0.041) compared with fasters. MetS was more common in non-fasters versus fasters with a marginal level of significance (30.3 vs. 23.5%, p = 0.052). Postmenopausal women who follow the Christian Orthodox fasting regime had lower fat intake, and no other difference in nutrient intake, compared with non-fasters. The latter were more likely to have MetS and some of its components. Overall, periodic abstinence from meat, dairy products, and eggs might play a protective role in postmenopausal women with regard to MetS.
Collapse
Affiliation(s)
- Anna Kokkinopoulou
- Department of Preventive Medicine and Nutrition Unit, School of Medicine, University of Crete, 71003 Crete, Greece
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Ioannis Pagkalos
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Nikolaos E Rodopaios
- Department of Preventive Medicine and Nutrition Unit, School of Medicine, University of Crete, 71003 Crete, Greece
| | | | - Eleni Vasara
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sousana K Papadopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Petros Skepastianos
- Department of Medical Laboratory Studies, International Hellenic University, 57400 Thessaloniki, Greece
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Maria Hassapidou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece
| | - Anthony G Kafatos
- Department of Preventive Medicine and Nutrition Unit, School of Medicine, University of Crete, 71003 Crete, Greece
| |
Collapse
|
45
|
Zhang X, Cai H, Xu H, Dong S, Ma H. Critical roles of m 6A methylation in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1187514. [PMID: 37273867 PMCID: PMC10235536 DOI: 10.3389/fcvm.2023.1187514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) have been established as a major cause of mortality globally. However, the exact pathogenesis remains obscure. N6-methyladenosine (m6A) methylation is the most common epigenetic modification on mRNAs regulated by methyltransferase complexes (writers), demethylase transferases (erasers) and binding proteins (readers). It is now understood that m6A is a major player in physiological and pathological cardiac processes. m6A methylation are potentially involved in many mechanisms, for instance, regulation of calcium homeostasis, endothelial function, different forms of cell death, autophagy, endoplasmic reticulum stress, macrophage response and inflammation. In this review, we will summarize the molecular functions of m6A enzymes. We mainly focus on m6A-associated mechanisms and functions in CVDs, especially in heart failure and ischemia heart disease. We will also discuss the potential application and clinical transformation of m6A modification.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
- The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, China
| | - He Cai
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Su Dong
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Zhang L, Wang Y, Sun Y, Zhang X. Intermittent Fasting and Physical Exercise for Preventing Metabolic Disorders through Interaction with Gut Microbiota: A Review. Nutrients 2023; 15:2277. [PMID: 37242160 PMCID: PMC10224556 DOI: 10.3390/nu15102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolic disorders entail both health risks and economic burdens to our society. A considerable part of the cause of metabolic disorders is mediated by the gut microbiota. The gut microbial structure and function are susceptible to dietary patterns and host physiological activities. A sedentary lifestyle accompanied by unhealthy eating habits propels the release of harmful metabolites, which impair the intestinal barrier, thereby triggering a constant change in the immune system and biochemical signals. Noteworthy, healthy dietary interventions, such as intermittent fasting, coupled with regular physical exercise can improve several metabolic and inflammatory parameters, resulting in stronger beneficial actions for metabolic health. In this review, the current progress on how gut microbiota may link to the mechanistic basis of common metabolic disorders was discussed. We also highlight the independent and synergistic effects of fasting and exercise interventions on metabolic health and provide perspectives for preventing metabolic disorders.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Yuanshang Wang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
47
|
Ma RX, Hu JQ, Fu W, Zhong J, Cao C, Wang CC, Qi SQ, Zhang XL, Liu GH, Gao YD. Intermittent fasting protects against food allergy in a murine model via regulating gut microbiota. Front Immunol 2023; 14:1167562. [PMID: 37228621 PMCID: PMC10205017 DOI: 10.3389/fimmu.2023.1167562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023] Open
Abstract
Background The prevalence of food allergy (FA) is increasing. Decreases in the diversity of gut microbiota may contribute to the pathogenesis of FA by regulating IgE production of B cells. Intermittent fasting (IF) is a popular diet with the potential to regulate glucose metabolism, boosting immune memory and optimizing gut microbiota. The potential effect of long-term IF on the prevention and treatment of FA is still unknown. Methods Two IF protocols (16 h fasting/8 h feeding and 24 h fasting/24 h feeding) were conducted on mice for 56 days, while the control mice were free to intake food (free diet group, FrD). To construct the FA model, all mice were sensitized and intragastrical challenged with ovalbumin (OVA) during the second half of IF (day 28 to day 56). Rectal temperature reduction and diarrhea were recorded to evaluate the symptoms of FA. Levels of serum IgE, IgG1, Th1/Th2 cytokines, mRNA expression of spleen T cell related transcriptional factors, and cytokines were examined. H&E, immunofluorescence, and toluidine blue staining were used to assess the structural changes of ileum villi. The composition and abundance of gut microbiota were analyzed by 16srRNA sequencing in cecum feces. Results The diarrhea score and rectal temperature reduction were lower in the two fasting groups compared to the FrD groups. Fasting was associated with lower levels of serum OVA-sIgE, OVA-sIgG1, interleukin (IL)-4 and IL-5, and mRNA expression of IL-4, IL-5, and IL-10 in the spleen. While no significant association was observed in interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-6, IL-2 levels. Less mast cell infiltration in ileum was observed in the 16h/8h fasting group compared to the FrD group. ZO-1 expression in the ileum of the two fasting groups was higher in IF mice. The 24h/24h fasting reshaped the gut microbiota, with a higher abundance of Alistipes and Rikenellaceae strains compared to the other groups. Conclusion In an OVA-induced mice FA model, long-term IF may attenuate FA by reducing Th2 inflammation, maintaining the integrity of the intestinal epithelial barrier, and preventing gut dysbiosis.
Collapse
Affiliation(s)
- Ru-xue Ma
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jia-qian Hu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Fu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Zhong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Can Cao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chang-chang Wang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shi-quan Qi
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Lian Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| | - Guang-hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ya-dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Lopaschuk GD, Dyck JRB. Ketones and the cardiovascular system. NATURE CARDIOVASCULAR RESEARCH 2023; 2:425-437. [PMID: 39196044 DOI: 10.1038/s44161-023-00259-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 08/29/2024]
Abstract
Ketone bodies, the main one being β-hydroxybutyrate, have emerged as important regulators of the cardiovascular system. In healthy individuals, as well as in individuals with heart failure or post-myocardial infarction, ketones provide a supplemental energy source for both the heart and the vasculature. In the failing heart, this additional energy may contribute to improved cardiac performance, whereas increasing ketone oxidation in vascular smooth muscle and endothelial cells enhances cell proliferation and prevents blood vessel rarefication. Ketones also have important actions in signaling pathways, posttranslational modification pathways and gene transcription; many of which modify cell proliferation, inflammation, oxidative stress, endothelial function and cardiac remodeling. Attempts to therapeutically increase ketone delivery to the cardiovascular system are numerous and have shown mixed results in terms of effectiveness. Here we review the bioenergetic and signaling effects of ketones on the cardiovascular system, and we discuss how ketones can potentially be used to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Póvoa R. Intermittent Fasting and Blood Pressure Reduction: Related Mechanisms. Arq Bras Cardiol 2023; 120:e20230265. [PMID: 37341296 PMCID: PMC10263398 DOI: 10.36660/abc.20230265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Affiliation(s)
- Rui Póvoa
- Universidade Federal de São PauloSão PauloSPBrasilUniversidade Federal de São Paulo, São Paulo, SP – Brasil
| |
Collapse
|
50
|
Khalfallah M, Elnagar B, Soliman SS, Eissa A, Allaithy A. The Value of Intermittent Fasting and Low Carbohydrate Diet in Prediabetic Patients for the Prevention of Cardiovascular Diseases. Arq Bras Cardiol 2023; 120:e20220606. [PMID: 37042857 PMCID: PMC10263423 DOI: 10.36660/abc.20220606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Prediabetic patients are at increased risk for cardiovascular diseases and the development of microvascular and macrovascular complications. Intermittent fasting (IF) and low-carbohydrate diet (LCD) are promising dietary plans. OBJECTIVES Our aims to analyze the benefits of IF combined with LCD on microvascular and macrovascular outcomes in prediabetic patients. METHODS The study included 485 prediabetic patients with no history of cardiovascular diseases divided into group I: (n = 240 patients) who underwent IF (16 h IF 3-4 days per week) combined with LCD (<130 g of carbohydrate per day), and group II: (n = 245 patients) with ad libitum calorie intake. The two groups were followed-up for two years for assessment of micro and macrovascular complications. A p-value < 0.05 was considered statistically significant. RESULT There was a significant reduction in body weight, body mass index, waist circumference, body fat percentage and glycated hemoglobin in group I. The incidence of progression from prediabetes to diabetes was significantly lower in group I (2.1% vs. 6.9% in group II, p = 0.010). In addition, a significant increase in the incidence of microvascular and macrovascular complications was observed in group II, including retinopathy, neuropathy and unstable angina. Multivariate regression analysis revealed that increased body weight, fasting glucose, glycated hemoglobin and low-density lipoprotein were independent risk factors impacting microvascular and macrovascular outcomes. CONCLUSIONS In prediabetic patients, IF, combined with LCD, was associated with lower progression to diabetes mellitus and lower incidence of microvascular and macrovascular complications.
Collapse
Affiliation(s)
- Mohamed Khalfallah
- Tanta UniversityFaculty of MedicineCardiovascular DepartmentEgitoCardiovascular Department, Faculty of Medicine, Tanta University – Egito
| | - Basma Elnagar
- Tanta UniversityFaculty of MedicineCardiovascular DepartmentEgitoCardiovascular Department, Faculty of Medicine, Tanta University – Egito
| | - Shaimaa S. Soliman
- Menoufia UniversityFaculty of MedicinePublic Health and Community Medicine DepartmentEgitoPublic Health and Community Medicine Department, Faculty of Medicine, Menoufia University – Egito
| | - Ahmad Eissa
- Tanta UniversityFaculty of MedicineInternal Medicine DepartmentEgitoEndocrinology, Internal Medicine Department, Faculty of Medicine, Tanta University – Egito
| | - Amany Allaithy
- Tanta UniversityFaculty of MedicineCardiovascular DepartmentEgitoCardiovascular Department, Faculty of Medicine, Tanta University – Egito
| |
Collapse
|