1
|
Cortijo-Alfonso ME, Romero MP, Macià A, Yuste S, Moralejo M, Rubió-Piqué L, Piñol-Felis C. Effect of Barley and Oat Consumption on Immune System, Inflammation and Gut Microbiota: A Systematic Review of Randomized Controlled Trials. Curr Nutr Rep 2024; 13:582-597. [PMID: 38789888 PMCID: PMC11327181 DOI: 10.1007/s13668-024-00543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
PURPOSE OF REVIEW The aim of this systematic review was to investigate the effects of whole grain Avena sativa and Hordeum vulgare L., or their isolated fractions, on immune and inflammatory functions, as well as their influence on gut microbiota. A structured literature search was undertaken in line with PRISMA guidelines. Randomized controlled trials (RCTs) that investigated the effects of oats or barley consumption in adults and reported ≥ 1 of the following: C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), IL-2, IL-8, IL-18, lipopolysacharide binding protein (LBP) or gut microbiota-related outcomes, were included. RECENT FINDINGS A total of 16 RCTs were included, among which 6 studies recruited metabolically at-risk population, including individuals with overweight and obesity, metabolic syndrome or hypercholesterolemia. Additionally, 3 trials involved young healthy population, 5 trials targeted older individuals (aged over 50 years), and 2 studies encompassed populations with other disease states. A total of 1091 individuals were included in the evaluation of short-term (up to 14 days) and long-term (beyond 14 days, up to 90 days) supplementation with oats or barley-based products. 9 studies measured inflammatory biomarkers and 5 of them reported significant reductions, specifically in long-term studies. Notably, no evidence of anti-inflammatory benefits was found in healthy individuals, whereas studies involving metabolically at-risk populations showed promising reductions in inflammation. 13 studies measured the impact on gut microbiota, and collectively suggest that oats and barley food products can influence the composition of gut microbiota, associated in some cases with metabolic improvements. Oats and barley consumption may confer anti-inflammatory effects in metabolically at-risk populations and influence gut microbiota outcomes. However, no anti-inflammatory benefits were observed in healthy individuals. Results from this systematic review suggests caution in interpreting findings due to limited trials and variations in interventions and health conditions.
Collapse
Affiliation(s)
| | - María-Paz Romero
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Alba Macià
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Silvia Yuste
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Marian Moralejo
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain
| | - Laura Rubió-Piqué
- University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Carme Piñol-Felis
- Department of Medicine and Surgery, University of Lleida, Lleida, Catalonia, Spain
- Institut de Recerca Biomèdica de Lleida, Fundació Dr. Pifarré IRBLleida, Lleida, Catalonia, Spain
| |
Collapse
|
2
|
Mathews R, Chu Y. An encompassing review of meta-analyses and systematic reviews of the effect of oats on all-cause mortality, cardiovascular risk, diabetes risk, body weight/adiposity and gut health. Crit Rev Food Sci Nutr 2024; 65:2587-2608. [PMID: 39137936 DOI: 10.1080/10408398.2024.2382352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The ability of oats to reduce blood cholesterol is well established but there is increasing evidence that its health benefits extend well beyond that. The purpose of this review was to critically evaluate the state of the science of oats in relation to all-cause mortality, cardiovascular and diabetes risk and the effects of oats on blood lipids, blood glucose, blood pressure, weight management and gut health from meta-analyses and systematic reviews. Limited epidemiological data indicated a possible beneficial effect of oats on all-cause mortality and incident diabetes when high versus low oat consumers were compared, but its effect on cardiovascular events was not adequately discerned. Observational data also showed an inverse association between oat intake and blood cholesterol, blood pressure, body weight and obesity variables in different populations. Randomized controlled oat intervention studies demonstrated a significant reduction in postprandial blood glucose in both diabetic and non-diabetic subjects, fasting blood glucose in diabetic subjects, blood pressure in prehypertensive individuals, and body weight and adiposity in overweight individuals. Increased fecal bulk was observed but clinical data for a potential gut barrier effect is lacking. The mechanism of action of each health effect was reviewed. While beta-glucan viscosity was once considered the only mode of action, it is evident that the fermentation products of beta-glucan and the associated gut microbial changes, as well as other components in oats (i.e., avenanthramides etc.) also play an important role.
Collapse
Affiliation(s)
| | - YiFang Chu
- Nutrition Sciences, PepsiCo Global R&D, Chicago, Illinois, USA
| |
Collapse
|
3
|
Amaral AR, Risolia LW, Rentas MF, Marchi PH, Balieiro JCDC, Vendramini THA, Brunetto MA. Translating Human and Animal Model Studies to Dogs' and Cats' Veterinary Care: Beta-Glucans Application for Skin Disease, Osteoarthritis, and Inflammatory Bowel Disease Management. Microorganisms 2024; 12:1071. [PMID: 38930453 PMCID: PMC11205328 DOI: 10.3390/microorganisms12061071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The inclusion of beta-glucans in dog and cat food is associated with numerous beneficial effects on the health of these animals. In this regard, there is an effort to elucidate the potential of this nutraceutical in chronic patients. Since there is a lack of a review on the topic, this review article aims to compile and discuss the evidence found to date. Atopic dermatitis, inflammatory bowel disease, and osteoarthritis are diseases of significant clinical relevance in dogs and cats. In general, the pathophysiology of these chronic conditions is related to immune-mediated and inflammatory mechanisms. Therefore, the immunomodulation and anti-inflammatory effects of beta-glucans are highlighted throughout this review. The available information seems to indicate that the studies on beta-glucans' impact on allergic processes in dogs indicate a reduction in clinical signs in atopic dermatitis cases. Additionally, while beta-glucans show promise as a safe supplement, particularly for osteoarthritis, further clinical trials are imperative, especially in uncontrolled environments. Beta-glucans emerge as a potential nutraceutical offering immune benefits for inflammatory bowel disease patients, although extensive research is required to define its optimal origin, molecular weight, dosage, and specific applications across animals suffering from this disease.
Collapse
Affiliation(s)
- Andressa Rodrigues Amaral
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil;
| | - Larissa Wünsche Risolia
- Pet Nutrology Research Center (CEPEN-PET), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (L.W.R.); (M.F.R.); (P.H.M.); (J.C.d.C.B.)
| | - Mariana Fragoso Rentas
- Pet Nutrology Research Center (CEPEN-PET), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (L.W.R.); (M.F.R.); (P.H.M.); (J.C.d.C.B.)
| | - Pedro Henrique Marchi
- Pet Nutrology Research Center (CEPEN-PET), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (L.W.R.); (M.F.R.); (P.H.M.); (J.C.d.C.B.)
| | - Júlio Cesar de Carvalho Balieiro
- Pet Nutrology Research Center (CEPEN-PET), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (L.W.R.); (M.F.R.); (P.H.M.); (J.C.d.C.B.)
| | - Thiago Henrique Annibale Vendramini
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil;
- Pet Nutrology Research Center (CEPEN-PET), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (L.W.R.); (M.F.R.); (P.H.M.); (J.C.d.C.B.)
| | - Marcio Antonio Brunetto
- Veterinary Nutrology Service, Veterinary Teaching Hospital, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil;
- Pet Nutrology Research Center (CEPEN-PET), Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (L.W.R.); (M.F.R.); (P.H.M.); (J.C.d.C.B.)
| |
Collapse
|
4
|
Ribeiro MC, Levi Y, Moraschini V, Messora MR, Furlaneto FAC. Effects of Prebiotic Therapy on Gastrointestinal Microbiome of Individuals with Different Inflammatory Conditions: A Systematic Review of Randomized Controlled Trials. Probiotics Antimicrob Proteins 2024; 16:673-695. [PMID: 37093515 DOI: 10.1007/s12602-023-10075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Abstract
Prebiotics are substrates selectively utilized by host microorganisms conferring a health benefit. The effects of prebiotics on the gut microbiome of individuals with inflammatory processes need further investigations. The purpose of this study was to evaluate the effects of prebiotics on the gastrointestinal microbiome of individuals with some types of inflammatory conditions. Randomized controlled clinical trials (RCTs) evaluating the effects of different prebiotics on the gut microbiome were included. A systematic review of the literature including searches in PubMed/MEDLINE, EMBASE, Cochrane Library, Web of Science, and Scopus databases was performed until 23 March 2023. The risk of bias was assessed using the Cochrane Collaboration's criteria. Qualitative data was tabulated to facilitate comparisons and represented in the form of descriptive statistics and summary tables. Thirty trials, ranging from 12 to 135 patients, were included. The most commonly used prebiotic type was inulin-type fructans, and the treatment duration ranged from 1 to 36 weeks. The majority of the trials investigated the gut microbiome using 16 s rRNA gene sequencing on the Illumina Miseq platform. In general, prebiotic therapy exerted positive effects on inflammatory conditions. An increase in Bifidobacterium genus was the most common shift in bacterial composition observed. Within the limits of this systematic review, it can be suggested that prebiotic therapy presents the potential to favorably modulate the gastrointestinal microbiome of individuals with different types of inflammatory conditions.
Collapse
Affiliation(s)
- M C Ribeiro
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - Ylas Levi
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - V Moraschini
- Department of Periodontology, Dental Research Division, School of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
| | - M R Messora
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil
| | - F A C Furlaneto
- Department of Oral Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo - USP, Av. Café S/N, 14020-150, Ribeirao Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Kan HX, Cao Y, Ma Y, Zhang YL, Wang J, Li J, Li JN. Efficacy and safety of probiotics, prebiotics, and synbiotics for the prevention of colorectal cancer and precancerous lesion in high-risk populations: A systematic review and meta-analysis of randomized controlled trials. J Dig Dis 2024; 25:14-26. [PMID: 38126945 DOI: 10.1111/1751-2980.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES Colorectal cancer (CRC) is highly prevalent worldwide and is a leading cause of cancer-related death. Probiotics, prebiotics, and synbiotics have recently attracted attention as preventive measures against colorectal neoplasms. We aimed to analyze the findings of randomized controlled trials (RCTs) on the effects of probiotics, prebiotics, and synbiotics in patients at a high risk of CRC, outlining the challenges and future prospects of using probiotics to prevent colorectal tumors and providing evidence for clinical physicians in particular. METHODS PubMed, EMBASE, and the Cochrane Library databases were searched for relevant studies published up to January 7, 2022. RCTs conducted on populations with a high risk of CRC who received probiotics, prebiotics or synbiotics in comparison with placebo, candidate agent or no treatment were included. The primary outcome was the incidence or recurrence of any colorectal neoplasms. Additional outcomes included their effects on the diversity of gut microbiota and relevant inflammatory biomarkers. Safety outcomes were also analyzed. Two authors independently screened and selected studies based on pre-specified eligible criteria, performed data extraction and risk-of-bias assessment independently. RESULTS Nine RCTs were included in the systematic review and meta-analysis. Probiotic supplementation significantly reduced adenoma incidence, but no significant benefit was observed in CRC incidence. Additionally, probiotics modulated gut microbiota and inflammatory biomarkers. CONCLUSION Probiotics may have beneficial effects in the prevention of CRC. More RCTs with larger sample sizes are warranted to further confirm these findings.
Collapse
Affiliation(s)
- Hao Xuan Kan
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Cao
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Ma
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Lun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Ji Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Jing Nan Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
6
|
Korčok M, Calle J, Veverka M, Vietoris V. Understanding the health benefits and technological properties of β-glucan for the development of easy-to-swallow gels to guarantee food security among seniors. Crit Rev Food Sci Nutr 2023; 63:11504-11521. [PMID: 35766942 DOI: 10.1080/10408398.2022.2093325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The world's population is growing rapidly and the number of elderly people with undernutrition and malnutrition is increasing. Common health problems among seniors are cardiovascular, inflammatory, gastrointestinal, and cognitive disorders, cancer, diabetes, psychological and dental problems. The food industry is trying to meet the demands of an aging society, but these efforts are not sufficient. New strategies are needed, and they demand foods development with modified textures that are easy to swallow, such as gels suitable for seniors. Depending on the specific needs of the elderly, bioactive compounds with health benefits should be included in food systems. Novel foods may play an important role in the prevention, maintenance, and treatment of age-related diseases. One of the most studied bioactive compound is β-glucan, a polysaccharide with approved health claims confirmed by clinical trials, such as "β-glucan contributes to the maintenance of normal blood cholesterol levels" and "the consumption of β-glucan from oats or barley contributes to the reduction of postprandial glucose spikes." In this review, the health benefits, and technological properties of β-glucan for the development of senior-friendly ready-to-swallow gels were described. In addition, some patents and studies conducted in connection with the development of the gel systems were collected.
Collapse
Affiliation(s)
- Melina Korčok
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Jehannara Calle
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
- Food Research Institute for the Food Industry (IIIA), Havana, Cuba
| | | | - Vladimir Vietoris
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
7
|
Karimi R, Homayoonfal M, Malekjani N, Kharazmi MS, Jafari SM. Interaction between β-glucans and gut microbiota: a comprehensive review. Crit Rev Food Sci Nutr 2023; 64:7804-7835. [PMID: 36975759 DOI: 10.1080/10408398.2023.2192281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Gut microbiota (GMB) in humans plays a crucial role in health and diseases. Diet can regulate the composition and function of GMB which are associated with different human diseases. Dietary fibers can induce different health benefits through stimulation of beneficial GMB. β-glucans (BGs) as dietary fibers have gained much interest due to their various functional properties. They can have therapeutic roles on gut health based on modulation of GMB, intestinal fermentation, production of different metabolites, and so on. There is an increasing interest in food industries in commercial application of BG as a bioactive substance into food formulations. The aim of this review is considering the metabolizing of BGs by GMB, effects of BGs on the variation of GMB population, influence of BGs on the gut infections, prebiotic effects of BGs in the gut, in vivo and in vitro fermentation of BGs and effects of processing on BG fermentability.
Collapse
Affiliation(s)
- Reza Karimi
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Gotteland M, Zazueta A, Pino JL, Fresard A, Sambra V, Codoceo J, Cires MJ, López X, Vivanco JP, Magne F. Modulation of Postprandial Plasma Concentrations of Digestive Hormones and Gut Microbiota by Foods Containing Oat ß-Glucans in Healthy Volunteers. Foods 2023; 12:foods12040700. [PMID: 36832775 PMCID: PMC9955387 DOI: 10.3390/foods12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 02/09/2023] Open
Abstract
Cereal β-glucans are beneficial health ingredients that reduce cholesterolemia and postprandial glycaemia. However, their impact on digestive hormones and gut microbiota is not yet fully established. Two randomized, double-blind, controlled studies were conducted. In the first study, 14 subjects ingested a breakfast with or without β-glucan from oats (5.2 g). Compared to the control, β-glucan increased orocecal transit time (p = 0.028) and decreased mean appetite score (p = 0.014) and postprandial plasma ghrelin (p = 0.030), C-peptide (p = 0.001), insulin (p = 0.06), and glucose (p = 0.0006). β-glucan increased plasma GIP (p = 0.035) and PP (p = 0.018) without affecting leptin, GLP-1, PYY, glucagon, amylin, or 7α-hydroxy-4-cholesten-3-one, a biomarker of bile acid synthesis. In the second study, 32 subjects were distributed into 2 groups to ingest daily foods with (3 g/day) or without β-glucan for 3 weeks; stools were collected before/after treatment. No changes in fecal microbiota composition/diversity (deep sequencing) were detected with β-glucans. These results indicate that acute intake of 5 g β-glucan slows transit time and decreases hunger sensation and postprandial glycaemia without affecting bile-acid synthesis, these changes being associated with decreased plasma insulin, C-peptide, and ghrelin, and increased plasma GIP and PP. However, regular daily intake of 3 g β-glucan is not sufficient to have an effect on fecal microbiota composition.
Collapse
Affiliation(s)
- Martin Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Macul, Santiago 7830489, Chile
- Correspondence: (M.G.); (F.M.)
| | - Alejandra Zazueta
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - José Luis Pino
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Andrea Fresard
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Juana Codoceo
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - María José Cires
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Ximena López
- Consorcio de Cereales Funcionales (CCF), Huechuraba, Santiago 8590871, Chile
| | - Juan Pablo Vivanco
- Granotec Chile S.A., Huechuraba, Santiago 8590871, Chile
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Independencia, Santiago 8380494, Chile
| | - Fabien Magne
- Microbiology and Mycology Program, ICBM, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
- Correspondence: (M.G.); (F.M.)
| |
Collapse
|
9
|
Wang Y, Jian C, Salonen A, Dong M, Yang Z. Designing healthier bread through the lens of the gut microbiota. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Guo W, Han D, Zhang F, Zhan Q, Liu Y, Peng Q, Huang S, Xue Z, Yang X. Effects of dietary β-1,3-glucan addition on the growth performance, mRNA expression in jejunal barrier, and cecal microflora of broilers challenged with Clostridium perfringens. Poult Sci 2022; 102:102349. [PMID: 36470029 PMCID: PMC9719862 DOI: 10.1016/j.psj.2022.102349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
This experiment aimed to explore the interaction of β-1,3-glucan and Clostridium perfringens on the growth performance, intestinal health and cecal microflora of broilers. A total of 384 one-day-old Arbor Acre broilers were sorted into 4 treatments with 6 replications. There were 2 factors in this trial: dietary β-1,3-glucan addition including 0 and 250 mg/kg, intestinal enteritis challenged with Clostridium perfringens attack or not. Results showed that Clostridium perfringens infection disrupted the integrity of the intestinal mucosa by reducing the jejunal Occludin and Claudin-1 mRNA expression of broiler chickens at 21 d of age (P < 0.05). Meanwhile, when considering Clostridium perfringens as the main effect, it also decreased the mRNA expression of the glucose transporter recombinant sodium/glucose cotransporter 1 (SGLT1) at d 21 and the fatty acid transporter liver fatty acid-binding protein (L-FABP) at d 42 (P < 0.05) as well as affect cecum microbial diversity, especially in relative abundance of Firmicutes and Bacteroidetes. In addition, Clostridium perfringens infection reduced body weight, daily weight gain, and feed-gain ratio (FCR) in broilers at d 42 (P < 0.05). The dietary β-1,3-glucan could alleviate intestinal mucosal damage caused by the Clostridium perfringens to some extent. When considering β-1,3-glucan as the main effect, it increased the SGLT1 at 42 d of age (P < 0.05), and stabilized gut microbiota disorder caused by Clostridium perfringens. More over dietary β-1,3-glucan addition increased body weight at 42-day-old (P < 0.05), and improved daily weight gain and FCR during 1 to 42 d (P < 0.05). In conclusion, dietary β-1,3-glucan could improve growth performance and intestinal health in broilers infected with Clostridium perfringens.
Collapse
Affiliation(s)
- Wei Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinyi Zhan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyun Peng
- Kemin (China) Technologies Co., Ltd. Zhuhai, 519040, China
| | - Shengshu Huang
- Kemin (China) Technologies Co., Ltd. Zhuhai, 519040, China
| | - Zhen Xue
- Kemin (China) Technologies Co., Ltd. Zhuhai, 519040, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China,Corresponding author:
| |
Collapse
|
11
|
Zhang M, Li RW, Yang H, Tan Z, Liu F. Recent advances in developing butyrogenic functional foods to promote gut health. Crit Rev Food Sci Nutr 2022; 64:4410-4431. [PMID: 36330804 DOI: 10.1080/10408398.2022.2142194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As one of the major short-chain fatty acids produced via microbial fermentation, butyrate serves as not only a preferred energy substrate but also an important signaling molecule. Butyrate concentrations in circulation, tissues, and gut luminal contents have important pathophysiological implications. The genetic capacity of butyrate biosynthesis by the gut microbiota is frequently compromised during aging and various disorders, such as inflammatory bowel disease, metabolic disorders and colorectal cancer. Substantial efforts have been made to identify potent butyrogenic substrates and butyrate-hyperproducing bacteria to compensate for butyrate deficiency. Interindividual butyrogenic responses exist, which are more strongly predicted by heterogeneity in the gut microbiota composition than by ingested prebiotic substrates. In this review, we catalog major food types rich in butyrogenic substrates. We also discuss the potential of butyrogenic foods with proven properties for promoting gut health and disease management using findings from clinical trials. Potential limitations and constraints in the current research are highlighted. We advocate a precise nutrition approach in designing future clinical trials by prescreening individuals for key gut microbial signatures when recruiting study volunteers. The information provided in this review will be conducive to the development of microbiota engineering approaches for enhancing the sustained production of butyrate.
Collapse
Affiliation(s)
- Miao Zhang
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Fernandez-Julia PJ, Munoz-Munoz J, van Sinderen D. A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. Int J Biol Macromol 2021; 181:877-889. [PMID: 33864864 DOI: 10.1016/j.ijbiomac.2021.04.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/01/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
β-glucans are polysaccharides which can be obtained from different sources, and which have been described as potential prebiotics. The beneficial effects associated with β-glucan intake are that they reduce energy intake, lower cholesterol levels and support the immune system. Nevertheless, the mechanism(s) of action underpinning these health effects related to β-glucans are still unclear, and the precise impact of β-glucans on the gut microbiota has been subject to debate and revision. In this review, we summarize the most recent advances involving structurally different types of β-glucans as fermentable substrates for Bacteroidetes (mainly Bacteroides) and Bifidobacterium species as glycan degraders. Bacteroides is one of the most abundant bacterial components of the human gut microbiota, while bifidobacteria are widely employed as a probiotic ingredient. Both are generalist glycan degraders capable of using a wide range of substrates: Bacteroides spp. are specialized as primary degraders in the metabolism of complex carbohydrates, whereas Bifidobacterium spp. more commonly metabolize smaller glycans, in particular oligosaccharides, sometimes through syntrophic interactions with Bacteroides spp., in which they act as secondary degraders.
Collapse
Affiliation(s)
- Pedro J Fernandez-Julia
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom
| | - Jose Munoz-Munoz
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Ireland University College Cork, Cork, Ireland.
| |
Collapse
|
13
|
Fed-Batch Cultivation and Adding Supplements to Increase Yield of β-1,3-1,4-Glucanase by Genetically Engineered Escherichia coli. Catalysts 2021. [DOI: 10.3390/catal11020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to analyze the major influence factors of culture medium on the expression level of β-1,3-1,4-glucanase, and to further develop an optimized process for the extracellular production of β-glucanase at a bioreactor scale (7 L) with a genetically engineered Escherichia coli (E. coli) JM109-pLF3. In this study, batch cultivation and fed-batch cultivation including the constant rate feeding strategy and the DO-stat (DO: Dissolved Oxygen) feeding strategy were conducted. At a 7 L bioreactor scale for batch cultivation, biomass reached 3.14 g/L and the maximum β-glucanase activity was 506.94 U/mL. Compared with batch cultivation, the addition of glycerol, complex nitrogen and complete medium during fed-batch cultivation increased the production of biomass and β-1,3-1,4-glucanase. The maximum biomass and β-glucanase activity, which were 7.67 g/L and 1680 U/mL, respectively, that is, 2.45 and 3.31 times higher than those obtained with batch cultivation, were obtained by feeding a complex nitrogen source at a constant rate of 1.11 mL/min. Therefore, these nutritional supplements and strategies can be used as a reference to enhance the production of other bioproducts from E. coli.
Collapse
|
14
|
Tosh SM, Bordenave N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutr Rev 2021; 78:13-20. [PMID: 32728756 DOI: 10.1093/nutrit/nuz085] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this work is to review the major mechanisms by which consumption of whole grain oats and barley, and β-glucans, reduces the risk of coronary heart disease, type 2 diabetes, and other noncommunicable chronic conditions. These effects have been predominantly explained by the role of soluble dietary fibers and smaller bioactive compounds, such as phenolic compounds, in oats and barley. These help to reduce the level of serum low-density lipoprotein cholesterol, decreasing postprandial blood glucose and modulating gut microbiota. In the present review, the role of viscosity development of the intestinal content by β-glucans in these mechanisms is discussed, as well as the impact of processing conditions altering the composition or the physicochemical characteristics of β-glucans.
Collapse
Affiliation(s)
- Susan M Tosh
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
15
|
Bai J, Li Y, Zhang W, Fan M, Qian H, Zhang H, Qi X, Wang L. Effects of cereal fibers on short-chain fatty acids in healthy subjects and patients: a meta-analysis of randomized clinical trials. Food Funct 2021; 12:7040-7053. [PMID: 34152334 DOI: 10.1039/d1fo00858g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Short-chain fatty acids (SCFAs) are involved in the regulation of a wide array of diseases. However, the effect of cereal dietary fibers on SCFA production remains unclear. We reviewed relevant clinical studies between 1950 and 2021 and aimed to evaluate the effect of cereal fiber consumption on SCFA production in healthy subjects and patients. PubMed, Web of Science, and the Cochrane Library databases were used for systematically searching published relevant trials with adults and a minimum intervention duration of 2 weeks. The effect size was estimated using standardized mean difference (SMD) and 95% confidence interval (CI). Of the 555 identified studies, 14 intervention groups involving 205 participants aged between 20 and 69 years are eligible. The results of meta-analysis revealed that cereal fiber supplementation significantly increased acetate [SMD: 0.86, 95% CI (0.46, 1.25), p < 0.0001], propionate [SMD: 0.48, 95% CI: (0.15, 0.81), p = 0.004], butyrate [SMD: 0.61, 95% CI: (0.20, 1.01), p = 0.003], and total SCFA [SMD, 0.96, 95% CI: (0.54, 1.39), p < 0.00001] concentrations. Subgroup analysis suggested that a long intervention duration (>4 weeks) significantly promoted acetate and propionate production, whereas a short intervention duration (≤4 weeks) significantly facilitated butyrate production. Cereal fiber supplementation had a more significant impact on overweight and obese subjects with body mass index (BMI) >29 kg m-2 than on individuals with BMI ≤29 kg m-2. Furthermore, we found that cereal fibers and wheat/rye arabinoxylan oligosaccharides, rather than wheat bran fibers, barley fibers, and barley β-glucan, could significantly elevate the SCFA concentration. Overall, our meta-analysis demonstrated that cereal fiber supplementation is helpful in increasing the SCFA concentration, which provided strong proof for the beneficial role of cereal fibers.
Collapse
Affiliation(s)
- Junying Bai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Williams GM, Tapsell LC, O'Brien CL, Tosh SM, Barrett EM, Beck EJ. Gut microbiome responses to dietary intake of grain-based fibers with the potential to modulate markers of metabolic disease: a systematic literature review. Nutr Rev 2020; 79:1274-1292. [PMID: 33369654 DOI: 10.1093/nutrit/nuaa128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CONTEXT Cereal fiber modulates the gut microbiome and benefits metabolic health. The potential link between these effects is of interest.0. OBJECTIVE The aim for this systematic review was to assess evidence surrounding the influence of cereal fiber intake on microbiome composition, microbiome diversity, short-chain fatty acid production, and risk factors for metabolic syndrome. DATA SOURCES AND EXTRACTION The MEDLINE, PubMed, CINAHL, and Cochrane Library databases were searched systematically, and quality of studies was assessed using the Cochrane Risk of Bias 2.0 tool. Evidence relating to study design, dietary data collection, and outcomes was qualitatively synthesized on the basis of fiber type. DATA ANALYSIS Forty-six primary publications and 2 secondary analyses were included. Cereal fiber modulated the microbiome in most studies; however, taxonomic changes indicated high heterogeneity. Short-chain fatty acid production, microbiome diversity, and metabolic-related outcomes varied and did not always occur in parallel with microbiome changes. Poor dietary data were a further limitation. CONCLUSIONS Cereal fiber may modulate the gut microbiome; however, evidence of the link between this and metabolic outcomes is limited. Additional research is required with a focus on robust and consistent methodology. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42018107117.
Collapse
Affiliation(s)
- Georgina M Williams
- School of Medicine, Science, Medicine and Health, University of Wollongong, and the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Linda C Tapsell
- School of Medicine, Science, Medicine and Health, University of Wollongong, and the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Claire L O'Brien
- Australian National University, Canberra, Australian Capital Territory, Australia
| | - Susan M Tosh
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Eden M Barrett
- School of Medicine, Science, Medicine and Health, University of Wollongong, and the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Eleanor J Beck
- School of Medicine, Science, Medicine and Health, University of Wollongong, and the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
17
|
Korczak R, Kocher M, Swanson KS. Effects of oats on gastrointestinal health as assessed by in vitro, animal, and human studies. Nutr Rev 2020; 78:343-363. [PMID: 31638148 DOI: 10.1093/nutrit/nuz064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oats are uniquely nutritious, owing to their composition of bioactive compounds, lipids, and β-glucan. Scientific research has established that oats can improve diet quality, reduce cholesterol, regulate satiety, and protect against carcinogenesis in the colon; however, determining the effects of oats on gastrointestinal health and the gut microbiome is a newer, evolving area of research. To better understand the effects of oats on gastrointestinal health in humans, a literature review with predefined search criteria was conducted using the PubMed database and keywords for common gastrointestinal health outcomes. Moreover, to examine the gastrointestinal effects of oats across the scientific spectrum, a similar search strategy was executed to identify animal studies. In vitro studies were identified from the reference lists of human and animal studies. A total of 8 human studies, 19 animal studies, and 5 in vitro studies met the inclusion criteria for this review. The evidence in humans shows beneficial effects of oats on gastrointestinal health, with supportive evidence provided by in vitro and animal studies. The effective dose of oats varies by type, although an amount providing 2.5 to 2.9 g of β-glucan per day was shown to decrease fecal pH and alter fecal bacteria. For oat bran, 40 to 100 g/d was shown to increase fecal bacterial mass and short-chain fatty acids in humans. Differences in study design, methodology, and type of oats tested make valid comparisons difficult. The identification of best practices for the design of oat studies should be a priority in future research, as the findings will be useful for determining how oats influence specific indices of gastrointestinal health, including the composition of the human gut microbiome.
Collapse
Affiliation(s)
- Renee Korczak
- Department of Food Science and Nutrition, University of Minnesota, St Paul, Minnesota, USA
| | - Megan Kocher
- University of Minnesota Libraries, St Paul, Minnesota, USA
| | - Kelly S Swanson
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
18
|
Gudi R, Suber J, Brown R, Johnson BM, Vasu C. Pretreatment with Yeast-Derived Complex Dietary Polysaccharides Suppresses Gut Inflammation, Alters the Microbiota Composition, and Increases Immune Regulatory Short-Chain Fatty Acid Production in C57BL/6 Mice. J Nutr 2020; 150:1291-1302. [PMID: 31879786 PMCID: PMC7198290 DOI: 10.1093/jn/nxz328] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/01/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND β-Glucans (BGs), a group of complex dietary polysaccharides (CDPs), are available as dietary supplements. However, the effects of orally administered highly purified BGs on gut inflammation are largely unknown. OBJECTIVES The aim of this study was to investigate the impact of orally administering highly purified, yeast-derived BG (YBG; β-1,3/1,6-d-glucan) on susceptibility to colitis. METHODS Eight-week-old C57BL/6 (B6) mice were used in a series of experiments. Experiment (Expt) 1: male and female mice were treated every day, for 40 d, with saline (control) or 250 μg YBG, followed by 2.5% (wt:vol) dextran sulfate sodium (DSS) in drinking water during days 30-35; and colitis severity and intestinal immune phenotype were determined. Expt 2: female B6 mice were treated with saline or YBG for 30 d and intestinal immune phenotype, gut microbiota composition, and fecal SCFA concentrations were determined. Expt 3: female B6 mice were treated as in Expt 2, given drinking water with or without antibiotics [Abx; ampicillin (1 g/L), vancomycin (0.5 g/L), neomycin (1 g/L), and metronidazole (1 g/L)] during days 16-30, and gut immune phenotype and fecal SCFA concentrations were determined. Expt 4: female B6 Foxp3-green fluorescent protein (-GFP) reporter mice were treated as in Expt 3, and intestinal T-regulatory cell (Treg) frequencies and immune phenotypes were determined. Expt 5: female mice were treated as in Expt 1, given drinking water with or without antibiotics during days 16-40, and colitis severity and intestinal cytokine production were determined. RESULTS Compared with controls, the YBG group in Expt 1 exhibited suppressive effects on features of colitis, such as loss of body weight (by 47%; P < 0.001), shortening of colon (by 24%; P = 0.016), and histopathology severity score (by 45%; P = 0.01). The YBG group of Expt 2 showed a shift in the abundance of gut microbiota towards Bacteroides (by 16%; P = 0.049) and Verrucomicrobia (mean ± SD: control = 7.8 ± 0.44 vs. YBG = 21.0 ± 9.6%) and a reduction in Firmicutes (by 66%; P < 0.001). The YBG group also showed significantly higher concentrations of fecal SCFAs such as acetic (by 37%; P = 0.016), propionic (by 47%; P = 0.026), and butyric (by 57%; P = 0.013) acids. Compared with controls, the YBG group of Expt 2 showed higher frequencies of Tregs (by 32%; P = 0.043) in the gut mucosa. Depletion of gut microbiota in the YBG group of mice caused diminished fecal SCFA concentrations (Expt 3) and intestinal Treg frequencies (Expt 4). Compared with the YBG group, the YBG-(Abx) group of Expt 5 showed aggravated colitis features including loss of body weight (by >100%; P < 0.01) and colonic inflammation score (by 42%; P = 0.04). CONCLUSIONS Studies using B6 mice show that dietary BGs are beneficial for promoting intestinal health when the gut microbiota is intact. However, these CDPs may produce adverse effects if gut microbiota is compromised.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jada Suber
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Brown
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Benjamin M Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA,Address correspondence to CV (e-mail: )
| |
Collapse
|
19
|
In vitro digestion and fermentation of released exopolysaccharides (r-EPS) from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydr Polym 2020; 230:115593. [DOI: 10.1016/j.carbpol.2019.115593] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
|
20
|
Tangestani H, Emamat H, Ghalandari H, Shab-Bidar S. Whole Grains, Dietary Fibers and the Human Gut Microbiota: A Systematic Review of Existing Literature. Recent Pat Food Nutr Agric 2020; 11:235-248. [PMID: 32178621 DOI: 10.2174/2212798411666200316152252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The health benefits of dietary fibers have been proved for a long time. The importance of microbiota has been identified in human health and there is a growing interest to study the factors affecting it. OBJECTIVE This systematic review aimed to investigate the impact of fiber and whole grains (WGs) on human gut microbiota in a patent-based review. METHODS All related clinical trials were systematically searched on PubMed and Scopus search engines from inception up to Feb 2020. Interventional human studies reporting changes in microbiota by using any type of grains/fibers were included. The following information was extracted: date of the publication, location and design of the study, sample size, study population, demographic characteristics, the amount of dietary WGs/fiber, the duration of intervention, the types of grains or fibers, and changes in the composition of the microbiota. RESULTS Of 138 studies which were verified, 35 studies with an overall population of 1080 participants, met the inclusion criteria and entered the systematic review. The results of interventional trials included in this review suggest some beneficial effects of consuming different amounts and types of WGs and fibers on the composition of intestinal microbiota. Most included studies showed that the intake of WGs and fibers increases bifidobacteria and lactobacilli and reduces the pathogenic bacteria, such as Escherichia coli and clostridia in the human gut. CONCLUSION The consumption of WGs/fibers may modify the intestinal microbiota and promote the growth of bifidobacteria and lactobacilli. Nevertheless, further research is warranted in different populations and pathological conditions.
Collapse
Affiliation(s)
- Hadith Tangestani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hadi Emamat
- Student Research Committee, Department and Faculty of Nutrition Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghalandari
- Nutritionist, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
21
|
Expression in Lactococcus lactis of a β-1,3-1,4-glucanase gene from Bacillus sp. SJ-10 isolated from fermented fish. Protein Expr Purif 2019; 162:18-23. [DOI: 10.1016/j.pep.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/15/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
|
22
|
Gudi R, Perez N, Johnson BM, Sofi MH, Brown R, Quan S, Karumuthil-Melethil S, Vasu C. Complex dietary polysaccharide modulates gut immune function and microbiota, and promotes protection from autoimmune diabetes. Immunology 2019; 157:70-85. [PMID: 30712258 DOI: 10.1111/imm.13048] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
The dietary supplement and prebiotic values of β-glucan-rich products have been widely recognized and dietary approaches for modulating autoimmunity have been increasingly explored, we assess the impact of oral administration of high-purity yeast β-glucan (YBG) on gut immune function, microbiota and type 1 diabetes (T1D) using mouse models. Oral administration of this non-digestible complex polysaccharide caused a dectin-1-dependent immune response involving increased expression of interleukin-10 (IL-10), retinaldehyde dehydrogenase (Raldh) and pro-inflammatory cytokines in the gut mucosa. YBG-exposed intestinal dendritic cells induced/expanded primarily Foxp3+ , IL-10+ and IL-17+ T cells, ex vivo. Importantly, prolonged oral administration of low-dose YBG at pre-diabetic stage suppressed insulitis and significantly delayed the appearance of T1D in non-obese diabetic (NOD) mice. Further, prolonged treatment with YBG showed increased Foxp3+ T-cell frequencies, and a significant change in the gut microbiota, particularly an increase in the abundance of Bacteroidetes and a decrease in the Firmicute members. Oral administration of YBG, together with Raldh-substrate and β-cell antigen, resulted in better protection of NOD mice from T1D. These observations suggest that YBG not only has a prebiotic property, but also an oral tolerogenic-adjuvant-like effect, and these features could be exploited for modulating autoimmunity in T1D.
Collapse
Affiliation(s)
- Radhika Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Benjamin M Johnson
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - M Hanief Sofi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Robert Brown
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Songhua Quan
- University of Illinois at Chicago, Chicago, IL, USA
| | | | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
23
|
Alterations in gut microbiota composition and metabolic parameters after dietary intervention with barley beta glucans in patients with high risk for metabolic syndrome development. Anaerobe 2019; 55:67-77. [DOI: 10.1016/j.anaerobe.2018.11.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/20/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
|
24
|
Gavresea F, Vagianos C, Korontzi M, Sotiropoulou G, Dadioti P, Triantafillidis JK, Papalois AE. Beneficial effect of synbiotics on experimental colon cancer in rats. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2018; 29:494-501. [PMID: 30249566 PMCID: PMC6284644 DOI: 10.5152/tjg.2018.17469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS The aim of this study was to investigate the influence of a synbiotic preparation (a mixture of six probiotics and a prebiotic) on aberrant crypt foci (ACF) formation, dysplasia, inflammation, and colitis-like lesions in experimental colon cancer in rats. MATERIALS AND METHODS Sixty male rats were categorized into three groups of 20 animals each. Group A was administered 1,2-dimethylydrazine, 15 mg/kg body weight (BW), once a week for 2 weeks. Group B was administered 1,2-dimethylydrazine at the same dose plus synbiotic, started after the second dose of carcinogen and lasted for 5 weeks. Group C was administered synbiotic plus carcinogen from the beginning of the experiment and lasted for 7 weeks. Animals were killed at the end of week 7. RESULTS At the end of the experiment, the animals that received carcinogen plus the synbiotic had 100%, whereas the animals that received only carcinogen has 70% survival. Animals of groups B and C had significantly lower percentage of inflammation, colitis-like lesions, and ACF dysplasia than animals of group A, whereas those of group C had the least pathological lesions. CONCLUSION Synbiotics seem to protect against the appearance of preneoplastic colon lesions in rats. The results of this experimental study suggest that treatment with a synbiotic preparation exerts significant antimutagenic properties against the development of preneoplastic lesions in rats.
Collapse
Affiliation(s)
- Fani Gavresea
- Department of Pathology, Metaxas Cancer Hospital, Piraeus, Greece
| | - Costas Vagianos
- Department of Surgery, University of Athens Laiko Hospital, Athens, Greece
| | - Maria Korontzi
- Experimental-Research Laboratory, ELPEN Pharma, Athens, Greece
| | | | - Petroula Dadioti
- Department of Pathology, Metaxas Cancer Hospital, Piraeus, Greece
| | | | | |
Collapse
|
25
|
Gong L, Cao W, Gao J, Wang J, Zhang H, Sun B, Yin M. Whole Tibetan Hull-Less Barley Exhibit Stronger Effect on Promoting Growth of Genus Bifidobacterium than Refined Barley In Vitro. J Food Sci 2018. [PMID: 29524219 DOI: 10.1111/1750-3841.14086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The gut microbiota has recently become a new route for research at the intersection of diet and human health. The aim of this study was to investigate whether whole Tibetan hull-less barley (WHB) and refined Tibetan hull-less barley (RHB) caused differentiation of the fecal microbiota in vitro. The microbiota-accessible ingredients in the 2 barley samples were studied using an in vitro enzymatic digestion procedure. After in vitro digestion, insoluble dietary fiber, phenolic compounds, proteins, and β-glucans were 93.2%, 103.4%. 18.8%, and 10.2% higher provided by WHB flour as compared with RHB flour based on the same mass amount. However, due to the significantly higher content of insoluble dietary fiber, WHB digesta had lower percentage contents of fast fermentable substrates including dietary fiber and starch as compared with RHB digesta. The results of Next-generation sequencing of the bacterial 16SrRNA gene showed that both WHB and RHB fermentation had significantly promoted the growth of Bifidobacterium and inhibited the growth of pathogenic bacteria such as Dorea, Escherichia, Oscillopira, and Ruminococcus. Moreover, in response to WHB fermentation, the relative abundance of Bifidobacterium increased by 78.5% and 92.8% as compared with RHB and fructo-oligosaccharides (FOs). Both WHB and RHB are good sources of fermentable dietary fiber with the ability to yield high concentration of short chain fatty acids (SCFAs) as compared to FOs. However, the higher fraction of soluble fiber in RHB digesta increase higher amounts of SCFA compared with WHB digesta. Our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health. PRACTICAL APPLICATION Until now, only few reports have regarded the impact of in vitro digestion in components of whole grain with complex food matrix. Moreover, our findings shed light on the complex interactions of whole cereals with gut microbiota and the possible impact on host health.
Collapse
Affiliation(s)
- Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Wenyan Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Jie Gao
- National Inst. for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| | - Meng Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business Univ. (BTBU), Beijing, 100048, China
| |
Collapse
|
26
|
Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr 2017; 117:1645-1655. [DOI: 10.1017/s0007114517001593] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThis study aimed to explore the potential associations of adherence to the Mediterranean diet with gut microbiota characteristics and gastrointestinal symptomatology in an adult population. Other long-term dietary habits (e.g. consumption of snacks and junk food or stimulant intake) were also evaluated in terms of the gut microbiota profile. Participants (n 120) underwent anthropometric, dietary, physical activity and lifestyle evaluation. Adherence to the Mediterranean diet was assessed using a Mediterranean diet score, the MedDietScore, and subjects were classified into three tertiles according to individual adherence scoring. Gut microbiota composition was determined using quantitative PCR and plate-count techniques, and faecal SCFA were analysed using GC. Gastrointestinal symptoms were also evaluated. Participants with a high adherence to the Mediterranean diet had lower Escherichia coli counts (P=0·022), a higher bifidobacteria:E. coli ratio (P=0·025), increased levels and prevalence of Candida albicans (P=0·039 and P=0·050, respectively), greater molar ratio of acetate (P=0·009), higher defaecation frequency (P=0·028) and a more pronounced gastrointestinal symptomatology compared with those reporting low adherence. A lower molar ratio of valerate was also observed in the case of high adherence to the Mediterranean diet compared with the other two tertiles (Pfor trend=0·005). Positive correlations of MedDietScore with gastrointestinal symptoms, faecal moisture, total bacteria, bifidobacteria:E. coli ratio, relative share of Bacteroides, C. albicans and total SCFA, as well as negative associations with cultivable E. coli levels and valerate were indicated. Fast food consumption was characterised by suppressed representation of lactobacilli and butyrate-producing bacteria. In conclusion, our findings support a link between adherence to the Mediterranean diet and gut microbiota characteristics.
Collapse
|
27
|
Primec M, Mičetić-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal Biochem 2017; 526:9-21. [PMID: 28300535 DOI: 10.1016/j.ab.2017.03.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/18/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) play a crucial role in maintaining homeostasis in humans, therefore the importance of a good and reliable SCFAs analytical detection has raised a lot in the past few years. The aim of this scoping review is to show the trends in the development of different methods of SCFAs analysis in feces, based on the literature published in the last eleven years in all major indexing databases. The search criteria included analytical quantification techniques of SCFAs in different human clinical and in vivo studies. SCFAs analysis is still predominantly performed using gas chromatography (GC), followed by high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and capillary electrophoresis (CE). Performances, drawbacks and advantages of these methods are discussed, especially in the light of choosing a proper pretreatment, as feces is a complex biological material. Further optimization to develop a simple, cost effective and robust method for routine use is needed.
Collapse
Affiliation(s)
- Maša Primec
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia.
| | - Dušanka Mičetić-Turk
- Department of Pediatrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| |
Collapse
|
28
|
Improvement of thermostability and halostability of β-1,3-1,4-glucanase by substituting hydrophobic residue for Lys 48. Int J Biol Macromol 2017; 94:594-602. [DOI: 10.1016/j.ijbiomac.2016.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/29/2016] [Accepted: 10/15/2016] [Indexed: 11/21/2022]
|
29
|
Connolly ML, Tzounis X, Tuohy KM, Lovegrove JA. Hypocholesterolemic and Prebiotic Effects of a Whole-Grain Oat-Based Granola Breakfast Cereal in a Cardio-Metabolic "At Risk" Population. Front Microbiol 2016; 7:1675. [PMID: 27872611 PMCID: PMC5098205 DOI: 10.3389/fmicb.2016.01675] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/06/2016] [Indexed: 12/16/2022] Open
Abstract
Meta-analyses of randomized controlled trials (RTC) have confirmed the hypocholesterolaemic effect of oats and oat based fibers. However, the mechanisms by which oats or oat fractions lower cholesterol is not totally clear. Recognizing the important role of the gut microbiome in metabolism and metabolic disease risk, we examined the impact of whole grain oat Granola (WGO) on the human gut microbiota and cardio-metabolic risk factors using a randomized crossover dietary intervention in at risk individuals (ClinicalTrials.gov Identifier: NCT01925365). We randomized 32 individuals at risk of developing cardio-metabolic disease by virtue of mild hypercholesterolaemia or glucose intolerance, into two groups consuming either 45 g of WGO or non-whole grain (NWG) breakfast cereals daily for two 6-week intervention periods separated by a 4-week wash out period in a randomized, controlled, crossover, double-blinded design. Confirming the cholesterol lowering effect of WGO, we observed a significant time by treatment interaction, for total cholesterol (TC) (P = 0.0001) and LDL-cholesterol (LDL-C) (P = 0.02) compared to NWG. A significant time by treatment interaction was also observed for the relative abundance of fecal bifidobacteria (P = 0.0001), lactobacilli (P = 0.001) and total bacterial count (P = 0.008), which were all elevated after consumption of WGO. Daily consumption of WGO resulted in a prebiotic effect on the human gut microbiota composition and significant reductions in TC and LDL-C concentrations. Prebiotic modulation of the human gut microbiota may thus constitute a previously unrecognized mechanism contributing to the hypocholesterolaemic effects of whole grain oat Granola.
Collapse
Affiliation(s)
- Michael L Connolly
- Hugh Sinclair Unit of Human Nutrition, University of ReadingReading, UK; Institute for Cardiovascular and Metabolic Research, University of ReadingReading, UK
| | - Xenofon Tzounis
- Hugh Sinclair Unit of Human Nutrition, University of ReadingReading, UK; Institute for Cardiovascular and Metabolic Research, University of ReadingReading, UK
| | - Kieran M Tuohy
- Hugh Sinclair Unit of Human Nutrition, University of ReadingReading, UK; Department of Food Quality and Nutrition, Research and Innovation Centre - Fondazione Edmund MachTrento, Italy
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, University of ReadingReading, UK; Institute for Cardiovascular and Metabolic Research, University of ReadingReading, UK
| |
Collapse
|
30
|
Turunen KT, Pletsa V, Georgiadis P, Triantafillidis JK, Karamanolis D, Kyriacou A. Impact of β-glucan on the Fecal Water Genotoxicity of Polypectomized Patients. Nutr Cancer 2016; 68:560-567. [PMID: 27043932 DOI: 10.1080/01635581.2016.1156713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of the study was to determine the effect of β-glucan on the cytotoxicity and genotoxicity of polypectomized patient's fecal water (FW). Polypectomized volunteers (n = 69) were randomly assigned to consume bread with or without β-glucan, for 3 months. FW was collected at the beginning (t = 0), the 30th and 90th day and 2 wk after the intervention. Cytotoxicity and genotoxicity were estimated on Caco-2 cells, using trypan blue exclusion test and comet assay, respectively. Gastrointestinal symptoms were recorded and subjects kept a 3-day food diary at baseline and after completion. Trypan blue exclusion test revealed cell survival of approximately 87% after incubation with FW. The FW samples showed 49% genotoxicity at the baseline. Genotoxicity in the intervention group decreased during the trial reaching statistical significance on the 90th day compared to control. An increase was noticed 2 wk after the trial, but it still remained significantly lower compared to control. Group-specific analysis for β-glucan also revealed significant decrease in the genotoxicity on the 90th day compared to baseline. β-glucan ingestion in polypectomized patients significantly decreased the genotoxicity of their FW. Our findings suggest that β-glucan consumption could possibly provide protection against colon cancer development.
Collapse
Affiliation(s)
- Katja T Turunen
- a Laboratory of Biology, Biochemistry, Physiology and Microbiology, Harokopio University , 70, El Venizelou str., Kallithea , Greece
| | - Vasiliki Pletsa
- b Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens , Greece
| | - Panagiotis Georgiadis
- b Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation , Athens , Greece
| | | | | | - Adamantini Kyriacou
- a Laboratory of Biology, Biochemistry, Physiology and Microbiology, Harokopio University , 70, El Venizelou str., Kallithea , Greece
| |
Collapse
|
31
|
Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome. Appl Environ Microbiol 2015; 81:7945-56. [PMID: 26386056 DOI: 10.1128/aem.02507-15] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
In this study, we compared the fecal microbiota and metabolomes of 26 healthy subjects before (HS) and after (HSB) 2 months of diet intervention based on the administration of durum wheat flour and whole-grain barley pasta containing the minimum recommended daily intake (3 g) of barley β-glucans. Metabolically active bacteria were analyzed through pyrosequencing of the 16S rRNA gene and community-level catabolic profiles. Pyrosequencing data showed that levels of Clostridiaceae (Clostridium orbiscindens and Clostridium sp.), Roseburia hominis, and Ruminococcus sp. increased, while levels of other Firmicutes and Fusobacteria decreased, from the HSB samples to the HS fecal samples. Community-level catabolic profiles were lower in HSB samples. Compared to the results for HS samples, cultivable lactobacilli increased in HSB fecal samples, while the numbers of Enterobacteriaceae, total coliforms, and Bacteroides, Porphyromonas, Prevotella, Pseudomonas, Alcaligenes, and Aeromonas bacteria decreased. Metabolome analyses were performed using an amino acid analyzer and gas chromatography-mass spectrometry solid-phase microextraction. A marked increase in short-chain fatty acids (SCFA), such as 2-methyl-propanoic, acetic, butyric, and propionic acids, was found in HSB samples with respect to the HS fecal samples. Durum wheat flour and whole-grain barley pasta containing 3% barley β-glucans appeared to be effective in modulating the composition and metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA in the HSB samples.
Collapse
|
32
|
Ulbricht C. An Evidence-Based Systematic Review of Beta-Glucan by the Natural Standard Research Collaboration. J Diet Suppl 2014; 11:361-475. [DOI: 10.3109/09286586.2014.975066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Lam KL, Chi-Keung Cheung P. Non-digestible long chain beta-glucans as novel prebiotics. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bcdf.2013.09.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|