1
|
Mancin L, Rollo I, Golzato D, Segata N, Petri C, Pengue L, Vergani L, Cassone N, Corsini A, Mota JF, Sut S, Dall'Acqua S, Paoli A. Short-Term Cocoa Supplementation Influences Microbiota Composition and Serum Markers of Lipid Metabolism in Elite Male Soccer Players. Int J Sport Nutr Exerc Metab 2024; 34:349-361. [PMID: 39117304 DOI: 10.1123/ijsnem.2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Dietary strategies to improve arachidonic acid:eicosapentaenoic acid (AA:EPA) ratios are of interest due to potential reductions in inflammation and oxidative stress following exercise. The aim of this study was to investigate the impact of a novel dietary intervention, that is, the ingestion of 30 g of dark chocolate, on blood lipid profiles and gut microbiota composition in elite male soccer players. METHODS Professional male soccer players were randomly assigned to the experimental group (DC) provided with 30 g of dark chocolate or to the control group (WC), provided with 30 g of white chocolate, for 30 days. Before and after intervention, blood, fecal sample, and anthropometry data were collected. For each outcome, two-way repeated-measure analysis of variance was used to identify differences between baseline and endpoint (Week 4), considering treatment (dark chocolate, white chocolate) as intersubjects' factors. Metagenomic analysis was performed following the general guidelines, which relies on the bioBakery computational environment. RESULTS DC group showed increased plasma polyphenols (from 154.7 ± 18.6 μg gallic acid equivalents/ml to 185.11 ± 57.6 μg gallic acid equivalents/ml, Δ pre vs. post = +30.41 ± 21.50) and significant improvements in lipid profiles: total cholesterol (Δ -32.47 ± 17.18 mg/dl DC vs. Δ -2.84 ± 6.25 mg/dl WC, Time × Treatment interaction p < .001), triglycerides (Δ -6.32 ± 4.96 mg/dl DC vs. Δ -0.42 ± 6.47 mg/dl WC, Time × Treatment interaction p < .001), low-density lipoprotein (Δ -18.42 ± 17.13 mg/dl vs. Δ -2.05 ± 5.19 mg/dl WC, Time × Treatment interaction p < .001), AA/EPA ratio (Δ -5.26 ± 2.35; -54.1% DC vs. Δ -0.47 ± 0.73, -6.41% WC, Time × Treatment interaction p < .001) compared with WC group. In addition, 4 weeks of intervention showed a significant increase in high-density lipoprotein concentration in DC group (Δ + 3.26 ± 4.49 mg/dl DC vs. Δ -0.79 ± 5.12 mg/dl WC). Microbial communities in the DC group maintained a slightly higher microbial stability over time (exhibiting lower within-subject community dissimilarity). CONCLUSION Ingesting 30 g of dark chocolate over 4 weeks positively improved AA:EPA ratio and maintained gut microbial stability. Dark chocolate ingestion represents an effective nutritional strategy to improve blood lipid profiles in professional soccer players. What Are the Findings? Ingesting 30 g of dark chocolate for 4 weeks positively influences blood lipid AA: EPA ratio while maintaining gut microbial stability. What This Study Adds? Dietary intake of specific foods such as dark chocolate represents an alternative strategy to support the health and recovery of elite soccer players. What Impact Might This Have on Clinical Practice in the Future? From a clinical and translational perspective, dark chocolate ingestion positively modulates favorable blood lipid profiles and polyunsaturated fatty acid metabolism while maintaining gut microbial stability. Dark chocolate ingestion may be considered as an effective nutritional strategy in elite sport environments during periods of high-intensity training and congested competitions. Further research is required to determine functional outcomes associated with the observed improvements in blood lipid profiles.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, United Kingdom
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Cristian Petri
- Department of Sport and Informatics, Section of Physical Education and Sport, Pablo de Olavide University, Sevilla, Spain
- A.C.F. Fiorentina S.r.l., Florence, Italy
| | | | | | | | | | - Joao Felipe Mota
- Faculty of Nutrition, Federal University of Goias, Setor Leste Universitário, Goiânia, GO, Brazil
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| |
Collapse
|
2
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
3
|
Huang X, Hu X, Li S, Li T. Vitexin-rhamnoside encapsulated with zein-pectin nanoparticles relieved high-fat diet induced lipid metabolism disorders in mice by altering the gut microbiota. Int J Biol Macromol 2024; 264:130704. [PMID: 38460630 DOI: 10.1016/j.ijbiomac.2024.130704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
This study aimed to investigate the modulatory effects of Vitexin-rhamnoside (VR) and Zein-VR-pectin nanoparticles (VRN) on lipid metabolism disorders induced by high-fat diet (HFD). The ingestion of VR or VRN attenuated dyslipidemia and fat accumulation in HFD mice, and improved intestinal dysbiosis by regulating the relative abundance of dominant bacteria, alleviating chronic inflammation and hepatic injury in HFD mice. The intervention effect of VRN was significantly higher than that of VR. After fecal microbiota transplantation (FMT) treatment, the fecal microbiota of VRN-treated donor mice significantly attenuated the symptoms associated with hyperlipidemia, confirming that VRN ameliorates HFD-induced disorders of lipid metabolism by modulating the gut microbiota, especially increasing the abundance of Rombousia and Faecalibaculum. Overall, VRN can regulate the gut microbiota and thus improve lipid metabolism. The present study provided new evidence that nanoparticles enhance the bioavailability of food bioactive ingredients.
Collapse
Affiliation(s)
- Xin Huang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaopei Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Suhong Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| | - Tuoping Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Li XW, Qiu F, Liu Y, Yang JZ, Chen LJ, Li JH, Liu JL, Hsu C, Chen L, Zeng JH, Xie XL, Wang Q. Inulin alleviates perinatal 2-ethylhexyl diphenyl phosphate (EHDPHP) exposure-induced intestinal toxicity by reshaping the gut microbiota and suppressing the enteric-origin LPS/TLR4/NF-κb pathway in dams and pups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123659. [PMID: 38417603 DOI: 10.1016/j.envpol.2024.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Organophosphorus flame retardants (OPFRs), such as 2-ethylhexyl diphenyl phosphate (EHDPHP), are ubiquitously used, leading to pervasive environmental contamination and human health risks. While associations between EHDPHP and health issues such as disruption of hormones, neurotoxic effects, and toxicity to reproduction have been recognized, exposure to EHDPHP during perinatal life and its implications for the intestinal health of dams and their pups have largely been unexplored. This study investigated the intestinal toxicity of EHDPHP and the potential for which inulin was effective. Dams were administered either an EHDPHP solution or a corn oil control from gestation day 7 (GD7) to postnatal day 21 (PND21), with inulin provided in their drinking water. Our results indicate that inulin supplementation mitigates damage to the intestinal epithelium caused by EHDPHP, restores mucus-secreting cells, suppresses intestinal hyperpermeability, and abates intestinal inflammation by curtailing lipopolysaccharide leakage through reshaping of the gut microbiota. A reduction in LPS levels concurrently inhibited the inflammation-associated TLR4/NF-κB pathway. In conclusion, inulin administration may ameliorate intestinal toxicity caused by EHDPHP in dams and pups by reshaping the gut microbiota and suppressing the LPS/TLR4/NF-κB pathway. These findings underscore the efficacy of inulin as a therapeutic agent for managing health risks linked to EHDPHP exposure.
Collapse
Affiliation(s)
- Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
5
|
Bi X, Liu Y, Yao L, Ling L, Lu J, Hu C, Ding W. Gut microbiota dysbiosis and protein energy wasting in patients on hemodialysis: an observational longitudinal study. Front Nutr 2024; 10:1270690. [PMID: 38268676 PMCID: PMC10806119 DOI: 10.3389/fnut.2023.1270690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Background Protein energy wasting (PEW) is common in patients on hemodialysis, and its development may involve gut microbial dysbiosis. However, the exact relationship between the composition of different flora and the development of PEW remains unclear. Methods This is an observational longitudinal study on 115 patients undergoing hemodialysis who were followed up for 1 year. All the patients were evaluated at baseline, and different microbiota compositions were determined. After a 1 year follow-up period, the correlations between clinical parameter variations and the relative abundance of different gut flora were assessed using Spearman correlation. Moreover, the associations of the abundance of different gut microbiota with decrease in lean tissue mass and the development of PEW were analyzed using ROC curve and logistical regression analyses. Results We found that the relative abundances of Actinobacteria and Bifidobacteriaceae were significantly lower in patients with PEW than in those who did not develop PEW (p < 0.05). The abundance of Actinobacteria and Bifidobacteriaceae correlated positively with variations in serum albumin levels (r = 0.213, p = 0.035 and r = 0.214, p = 0.034, respectively), lean tissue mass (r = 0.296, p = 0.007 and r = 0.238, p = 0.002, respectively), and lean tissue index (r = 0.377, p < 0.001 and r = 0.419, p < 0.001, respectively). The area under the ROC curve or AUC values of Actinobacteria and Bifidobacteriaceae for the prediction of lean tissue mass decrease ranged from 0.676 to 0.708 (p < 0.05). Thus, decrease in the abundance of Actinobacteria and Bifidobacteriaceae may be associated with decrease in lean tissue mass and the occurrence of PEW. Conclusion The present findings imply Actinobacteria and Bifidobacteriaceae may be potential markers for predicting skeletal muscle mass decrease and PEW development in patients on hemodialysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Hu
- Division of Nephrology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Ding
- Division of Nephrology, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
6
|
Cui C, Song H, Han Y, Yu H, Li H, Yang Y, Zhang B. Gut microbiota-associated taurine metabolism dysregulation in a mouse model of Parkinson's disease. mSphere 2023; 8:e0043123. [PMID: 37819112 PMCID: PMC10732050 DOI: 10.1128/msphere.00431-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE PD is recognized as a multisystem disease concerning GI dysfunction and microbiota dysbiosis but still lacks ideal therapies. Recently, aberrant microbiota-derived metabolites are emerging as important participants in PD etiology. However, the alterations of gut microbiota community and serum untargeted metabolite profile have not been fully investigated in a PD mice model. Here, we discover sharply reduced levels of Lactobacillus and taurine in MPTP-treated mice. Moreover, Lactobacillus, Adlercreutzia, and taurine-related metabolites showed the most significant correlation with pathological and GI performance of PD mice. The abundances of microbial transporter and enzymes participating in the degeneration of taurine were disturbed in PD mice. Most importantly, taurine supplement ameliorates MPTP-induced motor deficits, DA neuron loss, and microglial activation. Our data highlight the impaired taurine-based microbiome-metabolism axis during the progression of PD and reveal a novel and previously unrecognized role of genera in modulating taurine metabolism.
Collapse
Affiliation(s)
- Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huan Song
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yumei Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Ubaldi F, Frangella C, Volpini V, Fortugno P, Valeriani F, Romano Spica V. Systematic Review and Meta-Analysis of Dietary Interventions and Microbiome in Phenylketonuria. Int J Mol Sci 2023; 24:17428. [PMID: 38139256 PMCID: PMC10744015 DOI: 10.3390/ijms242417428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Inborn errors of metabolism (IEMs) comprise a diverse group of monogenic disorders caused by enzyme deficiencies that result either in a toxic accumulation of metabolic intermediates or a shortage of essential end-products. Certain IEMs, like phenylketonuria (PKU), necessitate stringent dietary intervention that could lead to microbiome dysbiosis, thereby exacerbating the clinical phenotype. The objective of this systematic review was to examine the impact of PKU therapies on the intestinal microbiota. This research was conducted following the PRISMA Statement, with data from PubMed, Scopus, ScienceDirect, and Web of Science. A total of 18 articles meeting the inclusion criteria were published from 2011 to 2022. Significant reductions in several taxonomic groups in individuals with PKU when compared to the control group were detected in a quantitative analysis conducted across seven studies. The meta-analysis synthesis indicates a contrast in biodiversity between PKU subjects and the control population. Additionally, the meta-regression results, derived from the Bacillota/Bacteroidota ratio data, suggest a potential influence of diet in adult PKU populations (p = 0.004). It is worth noting that the limited number of studies calls for further research and analysis in this area. Our findings indicate the necessity of enhancing understanding of microbiota variability in reaction to treatments among PKU subjects to design tailored therapeutic and nutritional interventions to prevent complications resulting from microbiota disruption.
Collapse
Affiliation(s)
- Francesca Ubaldi
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| | - Claudia Frangella
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| | - Veronica Volpini
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| | - Paola Fortugno
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy;
- Human Functional Genomics Laboratory, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| |
Collapse
|
8
|
Tosi M, Montanari C, Bona F, Tricella C, Agostinelli M, Dolor J, Chillemi C, Di Profio E, Tagi VM, Vizzuso S, Fiore G, Zuccotti G, Verduci E. Dietary Inflammatory Potential in Pediatric Diseases: A Narrative Review. Nutrients 2023; 15:5095. [PMID: 38140353 PMCID: PMC10745369 DOI: 10.3390/nu15245095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory status is one of the main drivers in the development of non-communicable diseases (NCDs). Specific unhealthy dietary patterns and the growing consumption of ultra-processed foods (UPFs) may influence the inflammation process, which negatively modulates the gut microbiota and increases the risk of NCDs. Moreover, several chronic health conditions require special long-term dietary treatment, characterized by altered ratios of the intake of nutrients or by the consumption of disease-specific foods. In this narrative review, we aimed to collect the latest evidence on the pro-inflammatory potential of dietary patterns, foods, and nutrients in children affected by multifactorial diseases but also on the dietetic approaches used as treatment for specific diseases. Considering multifactorial diet-related diseases, the triggering effect of pro-inflammatory diets has been addressed for metabolic syndrome and inflammatory bowel diseases, and the latter for adults only. Future research is required on multiple sclerosis, type 1 diabetes, and pediatric cancer, in which the role of inflammation is emerging. For diseases requiring special diets, the role of single or multiple foods, possibly associated with inflammation, was assessed, but more studies are needed. The evidence collected highlighted the need for health professionals to consider the entire dietary pattern, providing balanced and healthy diets not only to permit the metabolic control of the disease itself, but also to prevent the development of NCDs in adolescence and adulthood. Personalized nutritional approaches, in close collaboration between the hospital, country, and families, must always be promoted together with the development of new methods for the assessment of pro-inflammatory dietary habits in pediatric age and the implementation of telemedicine.
Collapse
Affiliation(s)
- Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Federica Bona
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Chiara Tricella
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Jonabell Dolor
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Claudia Chillemi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Veronica Maria Tagi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Sara Vizzuso
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
| |
Collapse
|
9
|
Borka Balas R, Meliț LE, Lupu A, Lupu VV, Mărginean CO. Prebiotics, Probiotics, and Synbiotics-A Research Hotspot for Pediatric Obesity. Microorganisms 2023; 11:2651. [PMID: 38004665 PMCID: PMC10672778 DOI: 10.3390/microorganisms11112651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Childhood obesity is a major public health problem worldwide with an increasing prevalence, associated not only with metabolic syndrome, insulin resistance, hypertension, dyslipidemia, and non-alcoholic fatty liver disease (NAFLD), but also with psychosocial problems. Gut microbiota is a new factor in childhood obesity, which can modulate the blood lipopolysaccharide levels, the satiety, and fat distribution, and can ensure additional calories to the host. The aim of this review was to assess the differences and the impact of the gut microbial composition on several obesity-related complications such as metabolic syndrome, NAFLD, or insulin resistance. Early dysbiosis was proven to be associated with an increased predisposition to obesity. Depending on the predominant species, the gut microbiota might have either a positive or negative impact on the development of obesity. Prebiotics, probiotics, and synbiotics were suggested to have a positive effect on improving the gut microbiota and reducing cardio-metabolic risk factors. The results of clinical trials regarding probiotic, prebiotic, and synbiotic administration in children with metabolic syndrome, NAFLD, and insulin resistance are controversial. Some of them (Lactobacillus rhamnosus bv-77, Lactobacillus salivarius, and Bifidobacterium animalis) were proven to reduce the body mass index in obese children, and also improve the blood lipid content; others (Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Enterococcus faecium, and fructo-oligosaccharides) failed in proving any effect on lipid parameters and glucose metabolism. Further studies are necessary for understanding the mechanism of the gut microbiota in childhood obesity and for developing low-cost effective strategies for its management.
Collapse
Affiliation(s)
- Reka Borka Balas
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Ancuța Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| |
Collapse
|
10
|
Dave A, Beyoğlu D, Park EJ, Idle JR, Pezzuto JM. Influence of grape consumption on the human microbiome. Sci Rep 2023; 13:7706. [PMID: 37173385 PMCID: PMC10182090 DOI: 10.1038/s41598-023-34813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Over the years, a substantial body of information has accumulated suggesting dietary consumption of grapes may have a positive influence on human health. Here, we investigate the potential of grapes to modulate the human microbiome. Microbiome composition as well as urinary and plasma metabolites were sequentially assessed in 29 healthy free-living male (age 24-55 years) and female subjects (age 29-53 years) following two-weeks of a restricted diet (Day 15), two-weeks of a restricted diet with grape consumption (equivalent to three servings per day) (Day 30), and four-weeks of restricted diet without grape consumption (Day 60). Based on alpha-diversity indices, grape consumption did not alter the overall composition of the microbial community, other than with the female subset based on the Chao index. Similarly, based on beta-diversity analyses, the diversity of species was not significantly altered at the three time points of the study. However, following 2 weeks of grape consumption, taxonomic abundance was altered (e.g., decreased Holdemania spp. and increased Streptococcus thermophiles), as were various enzyme levels and KEGG pathways. Further, taxonomic, enzyme and pathway shifts were observed 30 days following the termination of grape consumption, some of which returned to baseline and some of which suggest a delayed effect of grape consumption. Metabolomic analyses supported the functional significance of these alterations wherein, for example, 2'-deoxyribonic acid, glutaconic acid, and 3-hydroxyphenylacetic acid were elevated following grape consumption and returned to baseline following the washout period. Inter-individual variation was observed and exemplified by analysis of a subgroup of the study population showing unique patterns of taxonomic distribution over the study period. The biological ramifications of these dynamics remain to be defined. However, while it seems clear that grape consumption does not perturb the eubiotic state of the microbiome with normal, healthy human subjects, it is likely that shifts in the intricate interactive networks that result from grape consumption have physiological significance of relevance to grape action.
Collapse
Affiliation(s)
- Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Diren Beyoğlu
- College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Rd., Springfield, MA, 01119, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA
| | - Jeffrey R Idle
- College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Rd., Springfield, MA, 01119, USA
| | - John M Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, 1215 Wilbraham Rd., Springfield, MA, 01119, USA.
- Department of Medicine, UMass Chan Medical School-Baystate, Springfield, MA, 01199, USA.
| |
Collapse
|
11
|
Zhang L, Wang Y, Sun Y, Zhang X. Intermittent Fasting and Physical Exercise for Preventing Metabolic Disorders through Interaction with Gut Microbiota: A Review. Nutrients 2023; 15:2277. [PMID: 37242160 PMCID: PMC10224556 DOI: 10.3390/nu15102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Metabolic disorders entail both health risks and economic burdens to our society. A considerable part of the cause of metabolic disorders is mediated by the gut microbiota. The gut microbial structure and function are susceptible to dietary patterns and host physiological activities. A sedentary lifestyle accompanied by unhealthy eating habits propels the release of harmful metabolites, which impair the intestinal barrier, thereby triggering a constant change in the immune system and biochemical signals. Noteworthy, healthy dietary interventions, such as intermittent fasting, coupled with regular physical exercise can improve several metabolic and inflammatory parameters, resulting in stronger beneficial actions for metabolic health. In this review, the current progress on how gut microbiota may link to the mechanistic basis of common metabolic disorders was discussed. We also highlight the independent and synergistic effects of fasting and exercise interventions on metabolic health and provide perspectives for preventing metabolic disorders.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Yuanshang Wang
- Department of Physical Education, China University of Mining and Technology, Beijing 100083, China; (L.Z.); (Y.W.)
| | - Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
12
|
Helichrysum italicum (Roth) G. Don and Helichrysum arenarium (L.) Moench Infusion Consumption Affects the Inflammatory Status and the Composition of Human Gut Microbiota in Patients with Traits of Metabolic Syndrome: A Randomized Comparative Study. Foods 2022. [PMCID: PMC9601527 DOI: 10.3390/foods11203277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Helichrysum italicum (Roth) G. Don (HI) and Helichrysum arenarium (L.) Moench (HA) are rich in polyphenols and their infusions have beneficial effects for patients with metabolic syndrome. To investigate whether these effects are mediated by the gut microbiota, we analysed the effects of daily consumption of HI or HA infusion on the composition of gut microbiota, inflammatory status, and zonulin, a marker of gut barrier permeability. The study was a randomized, double-blind comparative trial. Thirty participants were randomly assigned to two groups and received either HA or HI tea filter bags, each containing 1 g of dried plant material, for daily consumption lasting 4 weeks. The results show that consumption of both infusions resulted in a reduction of some genera belonging to Firmicutes and in a slight but significant reduction in Shannon diversity index. Consumption of HI infusion significantly reduced serum levels of proinflammatory markers and zonulin alongside with the observed trend of Proteobacteria reduction. It can therefore be concluded that the HI and HA infusions could act as prebiotics and thus improve the intestinal environment. In addition, HI infusion has a positive impact on microbial dysbiosis and gut barrier dysfunction that occur in obesity and metabolic syndrome.
Collapse
|
13
|
Dziewiecka H, Buttar HS, Kasperska A, Ostapiuk-Karolczuk J, Domagalska M, Cichoń J, Skarpańska-Stejnborn A. Physical activity induced alterations of gut microbiota in humans: a systematic review. BMC Sports Sci Med Rehabil 2022; 14:122. [PMID: 35799284 PMCID: PMC9264679 DOI: 10.1186/s13102-022-00513-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022]
Abstract
Background Gut microbiota is considered to have a great impact on human health and disease. While it is widely recognized that the gut microbiota of healthy individuals differs from those with obesity, inflammatory bowel disease, metabolic syndrome, and other chronic diseases, the alterations of gut microbiota with physical activity are not fully understood. Accordingly, we performed this systematic review to address the question regarding the effects of mild and intense exercise on the gut microbiota in humans.
Methods The comparative analyses of gut microbiota were conducted following the PRISMA protocol to determine the differences in the active vs. non-active individuals (phenotypes) (n = 11), including the influence of physical activity intervention on the human gut microbiota (n = 13); the differences in the gut microbiota of athletes vs. non-athletes (n = 8); and the microbiota status at different stages of athletic performance or intervention (n = 7), with various of physical activities, sport disciplines, and activity duration. Literature searches were completed using four databases: PubMed, Web of Science, Scopus, and EBSCO, and 2090 articles were retrieved by using appropriate keywords. The low heterogeneity of the studies hasn’t allowed us to prepare a meta-analysis. After excluding 2052 articles, we ultimately selected 38 articles that met the eligibility criteria for this review. Results The data analyses revealed that in non-athletes rising physical activity markedly influenced the relative abundance of short-chain fatty acid (SCFA). Aerobic training that lasted 60 min, and physical activity that characterized 60% HRmax or more also influenced beta diversity indexes. The results showed that athletes harbor a more diverse type of intestinal microflora than non-athletes, but with a relatively reduced abundance of SCFA- and lactic acid-producing bacteria, thereby suggesting an adverse effect of intense exercise on the population of gut microbiota. Conclusion It is concluded that the level of physical activity modulates the gastrointestinal microbiota in humans. For a long period, increasing the intensity and volume of exercise may lead to gut dysbiosis. Perhaps, proper supplementation should be considered to keep gut microbiota in large biodiversity and richness, especially under unfavorable gut conditions associated with intense exercise. Trial registration Prospero CRD42021264064.
Collapse
Affiliation(s)
- Hanna Dziewiecka
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland.
| | - Harpal S Buttar
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Anna Kasperska
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| | - Joanna Ostapiuk-Karolczuk
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| | - Małgorzata Domagalska
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| | - Justyna Cichoń
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| | - Anna Skarpańska-Stejnborn
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów Wielkopolski, Poland
| |
Collapse
|
14
|
Zhang DD, Li HJ, Zhang HR, Ye XC. Poria cocos water-soluble polysaccharide modulates anxiety-like behavior induced by sleep deprivation by regulating the gut dysbiosis, metabolic disorders and TNF-α/NF-κB signaling pathway. Food Funct 2022; 13:6648-6664. [PMID: 35642970 DOI: 10.1039/d2fo00811d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poria cocos (P. cocos) has been traditionally used as folk medicine and functional food in China for more than 2000 years. The water-soluble polysaccharide is the main component of P. cocos decoction. The effects and mechanisms of the water-soluble polysaccharide from P. cocos (PCWP) were investigated in chronic sleep deprivation (CSD)-induced anxiety in rats. CSD induced anxiety, gut dysbiosis, and inflammatory responses, and reduced neurotransmitter levels, whereas PCWP intervention ameliorated anxiety-like behaviors, increased the levels of 5-hydroxytryptamine, dopamine, norepinephrine, and γ-aminobutyric acid in the hypothalamus, regulated gastrointestinal peptide levels, reduced inflammatory factors, and inhibited the tumor necrosis factor (TNF)-α/nuclear factor (NF)-κB signaling pathway in rats with CSD. The changes in the intestinal flora composition were determined using 16S rDNA sequencing, and indicated that PCWP significantly improved species richness and diversity in the intestinal flora of rats with anxiety, and adjusted the abundance of the following dysregulated bacteria closer to that of the normal group: Rikenellaceae_RC9_gut_group, Ruminococcus, Prevotellaceae_UCG-001, Prevotellaceae_NK3B31_group, Fusicatenibacter. Metabolomics was used to analyze fecal samples to identify significantly altered metabolites in the PCWP-treated groups. Thirty-eight PCWP-related metabolites and four metabolic pathways such as sphingolipid metabolism, taurine and hypotaurine metabolism, vitamin B6 metabolism, and glycerophospholipid metabolism were explored. The results of serum metabolomics showed that 26 biomarkers were significantly changed after PCWP intervention compared with the model group. The regulatory effects of metabolic pathway enrichment on sphingolipid, phenylalanine, and taurine and hypotaurine metabolism, and validation results showed that PCWP intervention regulated the activity of enzymes involved in the above metabolic pathways. A strong correlation between intestinal bacteria and potential biomarkers was found. Our findings present new evidence supporting the potential effect of PCWP in preventing the progression of anxiety by inhibiting the TNF-α/NF-κB signaling pathway, alleviating metabolic disorders, and ameliorating the gut microflora imbalance.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Hui-Jun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Han-Rui Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
15
|
The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:biology11030479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary To date, the influence that physical activity (PA)/physical exercise (PE) can exert on the human gut microbiota (GM) is still poorly understood. Several issues arise in structuring research in this area, starting from the association between PA/PE and diet. Indeed, the diet of an individual is a key factor for the composition of the GM and those who regularly practice PA/PE, generally, have dietary patterns favorable to the creation of an ideal environment for the proliferation of a GM capable of contributing to the host’s health. It is therefore difficult to establish with certainty whether the effects generated on the GM are due to a PA protocol, the type of diet followed, or to both. In addition, most of the available studies use animal models to investigate a possible correlation between PA/PE and changes in the GM, which may be not necessarily applied to humans. Evidence suggests that aerobic PA/PE seems capable of producing significant changes in GM; training parameters, likewise, can differentially influence the GM in young or elderly people and these changes appear to be transient and reversible. Abstract Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
|
16
|
Liu Y, Zheng S, Cui J, Guo T, Zhang J. Lactiplantibacillus plantarum Y15 alleviate type 2 diabetes in mice via modulating gut microbiota and regulating NF-κB and insulin signaling pathway. Braz J Microbiol 2022; 53:935-945. [PMID: 35150432 PMCID: PMC8853432 DOI: 10.1007/s42770-022-00686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics have been used for the treatment of chronic metabolic diseases, including type 2 diabetes (T2D). However, the mechanisms of antidiabetic effects are not well understood. The object of this study is to assess the antidiabetic effect of Lactiplantibacillus plantarum Y15 isolated from Chinese traditional dairy products in vivo. Results revealed that L. plantarum Y15 administration improved the biochemical indexes related to diabetes, reduced pro-inflammatory cytokines, L. plantarum Y15 administration reshaped the structure of gut microbiota, decreased the abundance of LPS-producing, and increased short-chain fatty acids (SCFAs)-producing bacteria, which subsequently reduce the levels of lipopolysaccharide (LPS) and pro-inflammatory cytokines. L. plantarum Y15 administration also regulated the expressions of the inflammation and insulin signaling pathway-related genes. These results suggest that L. plantarum Y15 may serve as a potential probiotic for developing food products to ameliorate T2D.
Collapse
Affiliation(s)
- Yin Liu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China.
| | - Shujuan Zheng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Jiale Cui
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Tingting Guo
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| | - Jingtao Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan, China
| |
Collapse
|
17
|
Takahashi K, Nishiwaki H, Ito M, Iwaoka K, Takahashi K, Suzuki Y, Taguchi K, Yamahara K, Tsuboi Y, Kashihara K, Hirayama M, Ohno K, Maeda T. Altered gut microbiota in Parkinson's disease patients with motor complications. Parkinsonism Relat Disord 2021; 95:11-17. [PMID: 34954497 DOI: 10.1016/j.parkreldis.2021.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is associated with gut dysbiosis. However, whether gut dysbiosis can cause motor complications is unclear. METHODS Subjects were enrolled from four independent movement disorder centers in Japan. We performed 16S ribosomal RNA gene sequence analysis of gut microbiota. Relative abundance of gut microbiota and relationships between them and clinical characteristics were statistically analyzed. Analysis of co-variance (ANCOVA) was used to assess altered gut microbiota associated with wearing-off or dyskinesia. RESULTS We enrolled 223 patients with PD. Wearing-off was noted in 47.5% of patients and dyskinesia in 21.9%. We detected 98 genera of bacteria. Some changes in the gut microbiota were observed in patients with PD and motor complications. After Bonferroni correction, patients with wearing-off showed decreased relative abundance of Lachnospiraceae Blautia (p < 0.0001) and increased relative abundance of Lactobacillaceae Lactobacillus (p < 0.0001), but patients with dyskinesia no longer showed significant changes in the gut microbiota. Adjustment with two models of confounding factors followed by ANCOVA revealed that age (p < 0.0001), disease duration (p = 0.01), and wearing-off (p = 0.0004) were independent risks for the decreased relative abundance of Lachnospiraceae Blautia, and wearing-off (p = 0.009) was the only independent risk factor for the increased relative abundance of Lachnospiraceae Lactobacillus. CONCLUSION Relative abundance of Lachnospiraceae Blautia and Lactobacillaceae Lactobacillus was significantly decreased and increased, respectively, in the gut microbiota of PD patients with motor complications. This indicates that an altered gut microbiota is associated with the development of motor complications in patients with advanced PD.
Collapse
Affiliation(s)
- Kai Takahashi
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Iwaoka
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kenta Takahashi
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yoshio Suzuki
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Keita Taguchi
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Kanako Yamahara
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Kenichi Kashihara
- Department of Neurology, Okayama Kyokuto Hospital, Okayama, Japan; Okayama Neurology Clinic, Okayama, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan.
| |
Collapse
|
18
|
Wassenaar TM. Functional insights on probiotics activity in the gut from metagenomic data. Benef Microbes 2021; 12:613-615. [PMID: 34674608 DOI: 10.3920/bm2021.x002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- T M Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstrasse 7, 55576 Zotzenheim, Germany
| |
Collapse
|
19
|
The Relationship Between Mucosal Microbiota, Colitis, and Systemic Inflammation in Chronic Granulomatous Disorder. J Clin Immunol 2021; 42:312-324. [PMID: 34731398 DOI: 10.1007/s10875-021-01165-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/22/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Chronic granulomatous disorder (CGD) is a primary immunodeficiency which is frequently complicated by inflammatory colitis and is associated with systemic inflammation. Herein, we aimed to investigate the role of the microbiome in the pathogenesis of colitis and systemic inflammation. METHODS We performed 16S rDNA sequencing on mucosal biopsy samples from each segment of 10 CGD patients' colons and conducted compositional and functional pathway prediction analyses. RESULTS The microbiota in samples from colitis patients demonstrated reduced taxonomic alpha-diversity compared to unaffected patients, even in apparently normal bowel segments. Functional pathway richness was similar between the colitic and non-colitic mucosa, although metabolic pathways involved in butyrate biosynthesis or utilization were enriched in patients with colitis and correlated positively with fecal calprotectin levels. One patient with very severe colitis was dominated by Enterococcus spp., while among other patients Bacteroides spp. abundance correlated with colitis severity measured by fecal calprotectin and an endoscopic severity score. In contrast, Blautia abundance is associated with low severity scores and mucosal health. Several taxa and functional pathways correlated with concentrations of inflammatory cytokines in blood but not with colitis severity. Notably, dividing patients into "high" and "low" systemic inflammation groups demonstrated clearer separation than on the basis of colitis status in beta-diversity analyses. CONCLUSION The microbiome is abnormal in CGD-associated colitis and altered functional characteristics probably contribute to pathogenesis. Furthermore, the relationship between the mucosal microbiome and systemic inflammation, independent of colitis status, implies that the microbiome in CGD can influence the inflammatory phenotype of the condition.
Collapse
|
20
|
Gut Microbiota, Microbial Metabolites and Human Physical Performance. Metabolites 2021; 11:metabo11110716. [PMID: 34822374 PMCID: PMC8619554 DOI: 10.3390/metabo11110716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/16/2021] [Indexed: 01/02/2023] Open
Abstract
Trillions of microbes inhabiting the gut modulate the metabolism of the host. Cross-sectional studies have reported associations between physical performance and the gut microbiota (GM). Physical activity seems to increase GM diversity and the abundance of certain health-beneficial microbes. We reviewed the evidence from longitudinal studies on the connection between physically active lifestyle or long-term exercise interventions and the GM. We made literature searches using databases of Web of Science and PubMed Medline to collect human studies showing or not the associations between the GM and exercise. Many controversies exist in the studies. However, the longitudinal studies show that frequently, medium-intensity endurance exercise has yielded most beneficial effects on the GM, but the results vary depending on the study population and exercise protocol. In addition, the literature shows that certain microbes own the potency to increase physical activity and performance. Generally, a physically active lifestyle and exercise associate with a “healthy” GM. However, in previously sedentary subjects, the exercise-induced improvements in the GM seem to disappear unless the active lifestyle is continued. Unfortunately, several studies are not controlled for the diet. Thus, in the future, more longitudinal studies on the GM and physical performance are needed, with detailed dietary information.
Collapse
|
21
|
Montanari C, Parolisi S, Borghi E, Putignani L, Bassanini G, Zuvadelli J, Bonfanti C, Tummolo A, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Dysbiosis, Host Metabolism, and Non-communicable Diseases: Trialogue in the Inborn Errors of Metabolism. Front Physiol 2021; 12:716520. [PMID: 34588993 PMCID: PMC8475650 DOI: 10.3389/fphys.2021.716520] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inborn errors of metabolism (IEMs) represent a complex system model, in need of a shift of approach exploring the main factors mediating the regulation of the system, internal or external and overcoming the traditional concept of biochemical and genetic defects. In this context, among the established factors influencing the metabolic flux, i.e., diet, lifestyle, antibiotics, xenobiotics, infectious agents, also the individual gut microbiota should be considered. A healthy gut microbiota contributes in maintaining human health by providing unique metabolic functions to the human host. Many patients with IEMs are on special diets, the main treatment for these diseases. Hence, IEMs represent a good model to evaluate how specific dietary patterns, in terms of macronutrients composition and quality of nutrients, can be related to a characteristic microbiota associated with a specific clinical phenotype (“enterophenotype”). In the present review, we aim at reporting the possible links existing between dysbiosis, a condition reported in IEMs patients, and a pro-inflammatory status, through an altered “gut-liver” cross-talk network and a major oxidative stress, with a repercussion on the health status of the patient, increasing the risk of non-communicable diseases (NCDs). On this basis, more attention should be paid to the nutritional status assessment and the clinical and biochemical signs of possible onset of comorbidities, with the goal of improving the long-term wellbeing in IEMs. A balanced intestinal ecosystem has been shown to positively contribute to patient health and its perturbation may influence the clinical spectrum of individuals with IEMs. For this, reaching eubiosis through the improvement of the quality of dietary products and mixtures, the use of pre-, pro- and postbiotics, could represent both a preventive and therapeutic strategy in these complex diseases.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Sara Parolisi
- UOS Metabolic and Rare Diseases, AORN Santobono, Naples, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Juri Zuvadelli
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, San Paolo Hospital, University of Milan, Milan, Italy
| | - Cristina Bonfanti
- Rare Metabolic Disease Unit, Pediatric Department, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Albina Tummolo
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Bari, Italy
| | | | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Padua, Italy
| | | | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
22
|
Zouiouich S, Loftfield E, Huybrechts I, Viallon V, Louca P, Vogtmann E, Wells PM, Steves CJ, Herzig KH, Menni C, Jarvelin MR, Sinha R, Gunter MJ. Markers of metabolic health and gut microbiome diversity: findings from two population-based cohort studies. Diabetologia 2021; 64:1749-1759. [PMID: 34110438 PMCID: PMC8245388 DOI: 10.1007/s00125-021-05464-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS The gut microbiome is hypothesised to be related to insulin resistance and other metabolic variables. However, data from population-based studies are limited. We investigated associations between serologic measures of metabolic health and the gut microbiome in the Northern Finland Birth Cohort 1966 (NFBC1966) and the TwinsUK cohort. METHODS Among 506 individuals from the NFBC1966 with available faecal microbiome (16S rRNA gene sequence) data, we estimated associations between gut microbiome diversity metrics and serologic levels of HOMA for insulin resistance (HOMA-IR), HbA1c and C-reactive protein (CRP) using multivariable linear regression models adjusted for sex, smoking status and BMI. Associations between gut microbiome diversity measures and HOMA-IR and CRP were replicated in 1140 adult participants from TwinsUK, with available faecal microbiome (16S rRNA gene sequence) data. For both cohorts, we used general linear models with a quasi-Poisson distribution and Microbiome Regression-based Kernel Association Test (MiRKAT) to estimate associations of metabolic variables with alpha- and beta diversity metrics, respectively, and generalised additive models for location scale and shape (GAMLSS) fitted with the zero-inflated beta distribution to identify taxa associated with the metabolic markers. RESULTS In NFBC1966, alpha diversity was lower in individuals with higher HOMA-IR with a mean of 74.4 (95% CI 70.7, 78.3) amplicon sequence variants (ASVs) for the first quartile of HOMA-IR and 66.6 (95% CI 62.9, 70.4) for the fourth quartile of HOMA-IR. Alpha diversity was also lower with higher HbA1c (number of ASVs and Shannon's diversity, p < 0.001 and p = 0.003, respectively) and higher CRP (number of ASVs, p = 0.025), even after adjustment for BMI and other potential confounders. In TwinsUK, alpha diversity measures were also lower among participants with higher measures of HOMA-IR and CRP. When considering beta diversity measures, we found that microbial community profiles were associated with HOMA-IR in NFBC1966 and TwinsUK, using multivariate MiRKAT models, with binomial deviance dissimilarity p values of <0.001. In GAMLSS models, the relative abundances of individual genera Prevotella and Blautia were associated with HOMA-IR in both cohorts. CONCLUSIONS/INTERPRETATION Overall, higher levels of HOMA-IR, CRP and HbA1c were associated with lower microbiome diversity in both the NFBC1966 and TwinsUK cohorts, even after adjustment for BMI and other variables. These results from two distinct population-based cohorts provide evidence for an association between metabolic variables and gut microbial diversity. Further experimental and mechanistic insights are now needed to provide understanding of the potential causal mechanisms that may link the gut microbiota with metabolic health.
Collapse
Affiliation(s)
- Semi Zouiouich
- Section of Nutrition and Metabolism, International Agency for Research on Cancer-WHO, Lyon, France.
| | - Erikka Loftfield
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Inge Huybrechts
- Section of Nutrition and Metabolism, International Agency for Research on Cancer-WHO, Lyon, France
| | - Vivian Viallon
- Section of Nutrition and Metabolism, International Agency for Research on Cancer-WHO, Lyon, France
| | | | - Emily Vogtmann
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Claire J Steves
- Department of Twin Research, King's College London, London, UK
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center (MRC), University of Oulu, University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Cristina Menni
- Department of Twin Research, King's College London, London, UK
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Unit of Primary Health Care, Oulu University Hospital, OYS, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Rashmi Sinha
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer-WHO, Lyon, France
| |
Collapse
|
23
|
Suzaki A, Ohtani K, Komine-Aizawa S, Matsumoto A, Kamiya S, Hayakawa S. Pathogenic Characterization of Clostridium perfringens Strains Isolated From Patients With Massive Intravascular Hemolysis. Front Microbiol 2021; 12:713509. [PMID: 34385995 PMCID: PMC8353389 DOI: 10.3389/fmicb.2021.713509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Sepsis caused by Clostridium perfringens infection is rare but often fatal. The most serious complication leading to poor prognosis is massive intravascular hemolysis (MIH). However, the molecular mechanism underlying this fulminant form of hemolysis is unclear. In the present study, we employed 11 clinical strains isolated from patients with C. perfringens septicemia and subdivided these isolates into groups H and NH: septicemia with (n = 5) or without (n = 6) MIH, respectively. To elucidate the major pathogenic factors of MIH, biological features were compared between these groups. The isolates of two groups did not differ in growth rate, virulence-related gene expression, or phospholipase C (CPA) production. Erythrocyte hemolysis was predominantly observed in culture supernatants of the strains in group H, and the human erythrocyte hemolysis rate was significantly correlated with perfringolysin O (PFO) production. Correlations were also found among PFO production, human peripheral blood mononuclear cell (PBMC) cytotoxicity, and production of interleukin-6 (IL-6) and interleukin-8 (IL-8) by human PBMCs. Analysis of proinflammatory cytokines showed that PFO induced tumor necrosis factor-α (TNF-α), IL-5, IL-6, and IL-8 production more strongly than did CPA. PFO exerted potent cytotoxic and proinflammatory cytokine induction effects on human blood cells. PFO may be a major virulence factor of sepsis with MIH, and potent proinflammatory cytokine production induced by PFO may influence the rapid progression of this fatal disease caused by C. perfringens.
Collapse
Affiliation(s)
- Ai Suzaki
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kaori Ohtani
- Division of Host Defense Mechanism, Department of Bacteriology and Bacterial Infection, Tokai University School of Medicine, Isehara, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Asami Matsumoto
- R&D Division, Miyarisan Pharmaceutical Co., LTD., Saitama, Japan
| | - Shigeru Kamiya
- R&D Division, Miyarisan Pharmaceutical Co., LTD., Saitama, Japan.,Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Zhao T, Zhan L, Zhou W, Chen W, Luo J, Zhang L, Weng Z, Zhao C, Liu S. The Effects of Erchen Decoction on Gut Microbiota and Lipid Metabolism Disorders in Zucker Diabetic Fatty Rats. Front Pharmacol 2021; 12:647529. [PMID: 34366839 PMCID: PMC8339961 DOI: 10.3389/fphar.2021.647529] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.
Collapse
Affiliation(s)
- Tian Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanxin Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jintong Luo
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zebin Weng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
25
|
Kaburova AN, Drapkina OM, Yudin SM, Koretsky SN, Makarov VV, Pokrovskaya MS, Kraevoy SA, Shoybonov BB, Efimova IA. Relationship between gut microbiota and markers of myocardial fibrosis in with chronic heart failure with preserved ejection fraction. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To study the relationship of gut microbiota (GM) with serum myocardial fibrosis markers in patients with heart failure with preserved ejection fraction (HFpEF).Material and methods. The composition of the gut microbiota among 42 patients with HFpEF aged 67,0 [64,0; 71,5] years (men, 57,1%) was assessed by 16S ribosomal ribonucleic acid sequencing. The quantitative determination of myocardial fibrosis markers was carried out by enzyme-linked immunosorbent assay. Correlation and multivariate regression analysis of relationships between the relative abundance of intestinal bacteria and the concentration of the procollagen type I carboxy-terminal propeptide (PICP) and N-terminal propeptide of procollagen type III (PIIINP) was carried out.Results. The PICP and PIIINP concentrations were 918,0 [700,0; 1032,8] pg/ml and 6,2±2,7 pg/ml, respectively. Correlation analysis revealed a direct relationship between the relative abundance of Allisonella and PICP (r=0,32), as well as Blautia, Enterobаcteriaceae (unclassified) and PIIINP (r=0,37 and r=0,32), p<0,05. The inverse relationship was determined for the relative abundance of the genera Ruminococcus (r=-0,37), Ruminococcaceae (unclassified) (r=-0,31), Gemmiger (r=(-0,35) and PICP, as well as Bilophila and PIIICP (r=(-0,34). Multivariate regression found (normalized coefficient in parentheses) that the abundance of Butyricimonas (0,27) и Blautia (0,35) was directly related to the PICP levels, while the abundance of the genus Intestinimonas ((-0,23) showed an inverse association with the marker level. The abundance of most genera had an inverse relationship with PIIINP: Atopobium (-0,25), Cellulosilyticum (-0,31), Solobacterium (-0,32), Turicibacter (-0,47), Bilophila (-0,30). The directness of the association with PIIINP concentration was demonstrated for the relative abundance of Paraprevotella (0,32) и Desulfovibrio (0,28). The p-value for all associations is <0,05.Conclusion. The relative abundance of GM genera in patients with HFpEF is associated with fibrosis markers (PICP and PIIINP). The results obtained make it possible to deepen the understanding of the relationship between GM and pathogenesis of HFpEF, which may become a step towards understanding the GM role in the progression of left ventricular diastolic dysfunction and rationale for future studies.
Collapse
Affiliation(s)
- A. N. Kaburova
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - S. M. Yudin
- Center for Strategic Planning and Management of Biomedical Health Risks
| | - S. N. Koretsky
- National Medical Research Center for Therapy and Preventive Medicine
| | - V. V. Makarov
- Center for Strategic Planning and Management of Biomedical Health Risks
| | - M. S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine
| | - S. A. Kraevoy
- Center for Strategic Planning and Management of Biomedical Health Risks
| | - B. B. Shoybonov
- National Medical Research Center for Therapy and Preventive Medicine
| | - I. A. Efimova
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
26
|
Vlasov AA, Salikova SP, Golovkin NV, Grinevich VB. Intestinal Microbial-tissue Complex and Chronic Heart Failure (part 1): Pathogenesis. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2021. [DOI: 10.20996/1819-6446-2021-06-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antigenic and metabolic integration of the intestinal microbiota into the homeostasis of the human body is a factor that claims to play a key role in the pathogenesis of cardiovascular diseases. It acquires special significance against the background of the decrease in blood circulation and congestion in the digestive system during chronic heart failure. Aim of the review is analysis and synthesis of studies results on the role of intestinal microbiocenosis in the pathogenesis of heart remodeling and chronic heart failure. The search for articles was conducted in databases eLIBRARY.RU and Medline for the key terms "gut microbiota (microbiome, microbiocenosis)", "dysbiosis (dysbacteriosis)", "excessive bacterial growth syndrome", "lipopolysaccharide (endotoxin)", "trimethylamine-N-oxide" in combination with the terms "heart failure", "myocardial remodeling", "myocardium" in Russian and English, respectively. We selected articles containing the results of clinical and experimental studies published from 1995 to 2020. Review articles were considered only on the subject of the cited original publications. Most researchers have established the relationship between chronic heart failure and dysfunction and changes in the qualitative and quantitative composition of intestinal microbiocenosis. As negative changes, it is customary to note the proliferation of gram-negative opportunistic bacteria with concomitant endotoxinemia and a decrease in the pool of commensal microbiota. The available data suggest that the participation of the intestinal microbial-tissue complex in the pathogenesis of chronic heart failure and heart remodeling is realized through the activation of a local and then systemic inflammatory response, accompanied by cardiodepressive action of pro-inflammatory cytokines and universal proliferation factors, an imbalance of matrix metalloproteinases and their inhibitors, the initiation of apoptosis, fibrosis, and loss of contractile myocardium. Besides, a decrease in the production of short-chain and polyunsaturated fatty acids and vitamins by the commensal microbiota may be associated with changes in the electrical properties of cardiomyocyte membranes, a decrease in the systolic function of the left ventricle of the heart, and an increase in the risk of sudden cardiac death. It's also shown that the direct cardiotoxic effect of microbial molecules (lipopolysaccharides, peptidoglycans, trimethylamine-N-oxide, etc.), which interact with the receptors of cardiomyocytes and microenvironment cells, can cause the development of myocardial remodeling and its dysfunction. Recent studies have established mechanisms of myocardial remodeling mediated by microbial molecules, which may be associated with new strategies for the treatment and prevention of heart failure.
Collapse
|
27
|
Liu Z, Wu Y, Luo Y, Wei S, Lu C, Zhou Y, Wang J, Miao T, Lin H, Zhao Y, Liu Q, Liu Y. Self-Balance of Intestinal Flora in Spouses of Patients With Rheumatoid Arthritis. Front Med (Lausanne) 2021; 7:538. [PMID: 33681234 PMCID: PMC7931358 DOI: 10.3389/fmed.2020.00538] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/29/2020] [Indexed: 02/05/2023] Open
Abstract
We sought to characterize and assess differences in compositions of intestinal flora between patients with rheumatoid arthritis (RA) and their respective spouses. Eighty volunteers were recruited, including 30 pairs of RA patients and their spouses, and 20 healthy individuals. Fresh stool samples were collected, processed, and 16S rRNA-sequencing was performed. Data were analyzed using an operational taxonomic units-based method, and community structure assessments were performed. Community composition analysis indicated that there were similar intestinal microbiota structures in RA and in their respective spouses. Gut microbiota in spouses of RA were different from those of the healthy controls group, but these differences were not significant. We found that Blautia spp. and Streptococcus spp. were two most associated species in RA and these taxa were significantly higher in comparison to healthy controls. In contrast, our findings suggested that Roseburia spp. and Lachnoclostridium spp. were significantly lower in the RA in comparison to healthy controls. In conclusion, RA patients shared similar gut microbiota pattern with their spouses which were different from healthy individuals. The findings suggest that disturbance of the balance of gut microbiota may play an important role in the dynamics of pathogenesis of RA.
Collapse
Affiliation(s)
- Zhihui Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxi Wu
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shixiong Wei
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Chenyang Lu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Miao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Lin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Xiao C, Jiao C, Xie Y, Ye L, Li Q, Wu Q. Grifola frondosa GF5000 improves insulin resistance by modulation the composition of gut microbiota in diabetic rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
29
|
Elhag DA, Kumar M, Al Khodor S. Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. Int J Mol Sci 2020; 22:ijms22010125. [PMID: 33374418 PMCID: PMC7795494 DOI: 10.3390/ijms22010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an auto-immune disorder characterized by a complex interaction between the host immune system and various environmental factors in genetically susceptible individuals. Genome-wide association studies (GWAS) identified different T1D risk and protection alleles, however, little is known about the environmental factors that can be linked to these alleles. Recent evidence indicated that, among those environmental factors, dysbiosis (imbalance) in the gut microbiota may play a role in the pathogenesis of T1D, affecting the integrity of the gut and leading to systemic inflammation and auto-destruction of the pancreatic β cells. Several studies have identified changes in the gut microbiome composition in humans and animal models comparing T1D subjects with controls. Those changes were characterized by a higher abundance of Bacteroides and a lower abundance of the butyrate-producing bacteria such as Clostridium clusters IV and XIVa. The mechanisms by which the dysbiotic bacteria and/or their metabolites interact with the genome and/or the epigenome of the host leading to destructive autoimmunity is still not clear. As T1D is a multifactorial disease, understanding the interaction between different environmental factors such as the gut microbiome, the genetic and the epigenetic determinants that are linked with the early appearance of autoantibodies can expand our knowledge about the disease pathogenesis. This review aims to provide insights into the interaction between the gut microbiome, susceptibility genes, epigenetic factors, and the immune system in the pathogenesis of T1D.
Collapse
|
30
|
Xu H, Cao J, Li X, Lu X, Xia Y, Fan D, Zhao H, Ju D, Xiao C. Regional Differences in the Gut Microbiota and Gut-Associated Immunologic Factors in the Ileum and Cecum of Rats With Collagen-Induced Arthritis. Front Pharmacol 2020; 11:587534. [PMID: 33442384 PMCID: PMC7797777 DOI: 10.3389/fphar.2020.587534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease characterized by chronic inflammation and a multifactorial etiology. We previously showed that gut microbiota dysbiosis in the rat ileum is involved in the development of collagen-induced arthritis (CIA). The gut microbiota in the distinct gastrointestinal tract (GIT) plays region-specific roles, but information on the different roles of the microbiota in distinct GIT compartments of CIA rats is limited. This study aimed to evaluate the region-specific differences in the gut microbial communities and certain gut-associated immunologic factors in the ileum and cecum of CIA rats. Ileal and cecal digesta were collected from CIA and control rats for microbiome analysis. We determined the microbial richness, diversity and taxa as well as the expression of interleukin (IL)-1β and IL-17A in the epithelium and lamina propria of the ileum and cecum mucosal layers. The CIA-induced microbiota alterations in the ileum differed from those in the cecum. The ileal microbiota were more markedly influenced in CIA, as revealed by sharp reductions in the abundances of the families Enterococcaceae, Lactobacillaceae and Streptococcaceae and the genera Lactobacillus and Lactococcus. Moreover, significant increases in IL-1β, and IL-17A mRNA expression were detected in only the ileal epithelium and lamina propria of the mucosal layer. Therefore, the microbial characteristics in the ileum were consistent with the immune-mediated inflammatory features of CIA, suggesting that the ileal microbiota might better represent the CIA-induced inflammatory responses than the cecal microbiota and that these responses might partially impact the progression of RA by regulating intestinal mucosal immunity.
Collapse
Affiliation(s)
- Huihui Xu
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Jinfeng Cao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Xiaoya Li
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiangchen Lu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya Xia
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Hongyan Zhao
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Dahong Ju
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Science, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.,Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
31
|
Motiani KK, Collado MC, Eskelinen JJ, Virtanen KA, Löyttyniemi E, Salminen S, Nuutila P, Kalliokoski KK, Hannukainen JC. Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia. Med Sci Sports Exerc 2020; 52:94-104. [PMID: 31425383 PMCID: PMC7028471 DOI: 10.1249/mss.0000000000002112] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental digital content is available in the text. Introduction Intestinal metabolism and microbiota profiles are impaired in obesity and insulin resistance. Moreover, dysbiotic gut microbiota has been suggested to promote systemic low-grade inflammation and insulin resistance through the release of endotoxins particularly lipopolysaccharides. We have previously shown that exercise training improves intestinal metabolism in healthy men. To understand whether changes in intestinal metabolism interact with gut microbiota and its release of inflammatory markers, we studied the effects of sprint interval (SIT) and moderate-intensity continuous training (MICT) on intestinal metabolism and microbiota in subjects with insulin resistance. Methods Twenty-six, sedentary subjects (prediabetic, n = 9; type 2 diabetes, n = 17; age, 49 [SD, 4] yr; body mass index, 30.5 [SD, 3]) were randomized into SIT or MICT. Intestinal insulin-stimulated glucose uptake (GU) and fatty acid uptake (FAU) from circulation were measured using positron emission tomography. Gut microbiota composition was analyzed by 16S rRNA gene sequencing and serum inflammatory markers with multiplex assays and enzyme-linked immunoassay kit. Results V˙O2peak improved only after SIT (P = 0.01). Both training modes reduced systematic and intestinal inflammatory markers (tumor necrosis factor-α, lipopolysaccharide binding protein) (time P < 0.05). Training modified microbiota profile by increasing Bacteroidetes phylum (time P = 0.03) and decreasing Firmicutes/Bacteroidetes ratio (time P = 0.04). Moreover, there was a decrease in Clostridium genus (time P = 0.04) and Blautia (time P = 0.051). Only MICT decreased jejunal FAU (P = 0.02). Training had no significant effect on intestinal GU. Colonic GU associated positively with Bacteroidetes and inversely with Firmicutes phylum, ratio Firmicutes/Bacteroidetes and Blautia genus. Conclusions Intestinal substrate uptake associates with gut microbiota composition and whole-body insulin sensitivity. Exercise training improves gut microbiota profiles and reduces endotoxemia.
Collapse
|
32
|
Mohr AE, Jäger R, Carpenter KC, Kerksick CM, Purpura M, Townsend JR, West NP, Black K, Gleeson M, Pyne DB, Wells SD, Arent SM, Kreider RB, Campbell BI, Bannock L, Scheiman J, Wissent CJ, Pane M, Kalman DS, Pugh JN, Ortega-Santos CP, Ter Haar JA, Arciero PJ, Antonio J. The athletic gut microbiota. J Int Soc Sports Nutr 2020; 17:24. [PMID: 32398103 PMCID: PMC7218537 DOI: 10.1186/s12970-020-00353-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The microorganisms in the gastrointestinal tract play a significant role in nutrient uptake, vitamin synthesis, energy harvest, inflammatory modulation, and host immune response, collectively contributing to human health. Important factors such as age, birth method, antibiotic use, and diet have been established as formative factors that shape the gut microbiota. Yet, less described is the role that exercise plays, particularly how associated factors and stressors, such as sport/exercise-specific diet, environment, and their interactions, may influence the gut microbiota. In particular, high-level athletes offer remarkable physiology and metabolism (including muscular strength/power, aerobic capacity, energy expenditure, and heat production) compared to sedentary individuals, and provide unique insight in gut microbiota research. In addition, the gut microbiota with its ability to harvest energy, modulate the immune system, and influence gastrointestinal health, likely plays an important role in athlete health, wellbeing, and sports performance. Therefore, understanding the mechanisms in which the gut microbiota could play in the role of influencing athletic performance is of considerable interest to athletes who work to improve their results in competition as well as reduce recovery time during training. Ultimately this research is expected to extend beyond athletics as understanding optimal fitness has applications for overall health and wellness in larger communities. Therefore, the purpose of this narrative review is to summarize current knowledge of the athletic gut microbiota and the factors that shape it. Exercise, associated dietary factors, and the athletic classification promote a more “health-associated” gut microbiota. Such features include a higher abundance of health-promoting bacterial species, increased microbial diversity, functional metabolic capacity, and microbial-associated metabolites, stimulation of bacterial abundance that can modulate mucosal immunity, and improved gastrointestinal barrier function.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA.
| | - Ralf Jäger
- Increnovo LLC, Milwaukee, WI, 53202, USA
| | | | - Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA
| | | | - Jeremy R Townsend
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN, 37204, USA
| | - Nicholas P West
- School of Medical Research and Menzies Health Institute of QLD, Griffith Health, Griffith University, Southport, Australia
| | - Katherine Black
- Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT 2617, Australia
| | | | - Shawn M Arent
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX, 77843-4253, USA
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | | | | | - Craig J Wissent
- Jamieson Wellness Inc., 4025 Rhodes Drive, Windsor, Ontario, N8W 5B5, Canada
| | - Marco Pane
- Bioloab Research, Via E. Mattei 3, 28100, Novara, Italy
| | - Douglas S Kalman
- Scientific Affairs, Nutrasource Diagnostics, Inc. Guelph, Guelph, Ontario, Canada
| | - Jamie N Pugh
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Byrom St Campus, Liverpool, L3 3AF, UK
| | | | | | - Paul J Arciero
- Health and Human Physiological Sciences Department, Skidmore College, Saratoga Springs, NY, USA
| | - Jose Antonio
- Exercise and Sport Science, Nova Southeastern University, Davie, FL, USA
| |
Collapse
|
33
|
Zhuang P, Zhang Y, Shou Q, Li H, Zhu Y, He L, Chen J, Jiao J. Eicosapentaenoic and Docosahexaenoic Acids Differentially Alter Gut Microbiome and Reverse High-Fat Diet-Induced Insulin Resistance. Mol Nutr Food Res 2020; 64:e1900946. [PMID: 32298529 DOI: 10.1002/mnfr.201900946] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/10/2020] [Indexed: 12/23/2022]
Abstract
SCOPE To assess the individual effects of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on insulin resistance (IR), gut microbiome, and gut metabolites in high-fat-diet-induced obese (DIO) mice. METHODS AND RESULTS DIO mice are fed an either high-fat diet (HFD), EPA (1% w/w) enriched HFD, or DHA (1% wt/wt) enriched HFD for 15 weeks. Both EPA and DHA supplements reverse hyperglycemia and IR but do not affect body weight in DIO mice while DHA exhibits a more pronounced ameliorative effect in male mice. Both EPA- and DHA-enriched Lactobacillus and short-chain fatty acids (SCFAs)-producing species from Lachnospiraceae while reduced lipopolysaccharide (LPS)-producing Bilophila and Escherichia/Shigella. Compared with EPA, DHA-supplemented mice have more abundant propionic/butyric acid-producing bacteria, including Coprococcus, Butyricimonas synergistica, Bacteroides acidifaciens, and Intestinimonas, and less-abundant LPS-correlated species Streptococcus and p-75-a5. The shifts in gut microbiome co-occurred with the changes in levels of propionic/butyric acid, circulating LPS, and serotonin. Additionally, EPA/DHA supplementation attenuates adipose inflammation with upregulated glucose transporter 4 and Akt phosphorylation, indicating the improvement of insulin signaling. CONCLUSION EPA and DHA differentially reverse IR and relieve adipose inflammation while modulating gut microbiome and SCFAs/LPS production, underscoring the gut-adipose axis as a primary target of EPA/DHA.
Collapse
Affiliation(s)
- Pan Zhuang
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yu Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiyang Shou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Haoyu Li
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ya'er Zhu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lilin He
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jingnan Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Nutrition of Affiliated Second Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
34
|
Proteobacteria Overgrowth and Butyrate-Producing Taxa Depletion in the Gut Microbiota of Glycogen Storage Disease Type 1 Patients. Metabolites 2020; 10:metabo10040133. [PMID: 32235604 PMCID: PMC7240959 DOI: 10.3390/metabo10040133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
A life-long dietary intervention can affect the substrates’ availability for gut fermentation in metabolic diseases such as the glycogen-storage diseases (GSD). Besides drug consumption, the main treatment of types GSD-Ia and Ib to prevent metabolic complications is a specific diet with definite nutrient intakes. In order to evaluate how deeply this dietary treatment affects gut bacteria, we compared the gut microbiota of nine GSD-I subjects and 12 healthy controls (HC) through 16S rRNA gene sequencing; we assessed their dietary intake and nutrients, their microbial short chain fatty acids (SCFAs) via gas chromatography and their hematic values. Both alpha-diversity and phylogenetic analysis revealed a significant biodiversity reduction in the GSD group compared to the HC group, and highlighted profound differences of their gut microbiota. GSD subjects were characterized by an increase in the relative abundance of Enterobacteriaceae and Veillonellaceae families, while the beneficial genera Faecalibacterium and Oscillospira were significantly reduced. SCFA quantification revealed a significant increase of fecal acetate and propionate in GSD subjects, but with a beneficial role probably reduced due to unbalanced bacterial interactions; nutritional values correlated to bacterial genera were significantly different between experimental groups, with nearly opposite cohort trends.
Collapse
|
35
|
Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening. mSystems 2020; 5:5/2/e00857-19. [PMID: 32209719 PMCID: PMC7093825 DOI: 10.1128/msystems.00857-19] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Child obesity constitutes a risk factor for developing insulin resistance which, if sustained, could lead to more severe conditions like type 2 diabetes (T2D) in adulthood. Our study identified previously unknown species whose depletion (Blautia luti and Blautia wexlerae) is associated with insulin resistance in obese individuals. Our results also indicate that these bacterial species might help to reduce inflammation causally linked to obesity-related complications. Childhood is considered a window of opportunity to tackle obesity. These new findings provide, therefore, valuable information for the future design of microbiota-based strategies for the early prevention of obesity-related complications. Cross-sectional studies conducted with obese and control subjects have suggested associations between gut microbiota alterations and obesity, but the links with specific disease phenotypes and proofs of causality are still scarce. The present study aimed to profile the gut microbiota of lean and obese children with and without insulin resistance to characterize associations with specific obesity-related complications and understand the role played in metabolic inflammation. Through massive sequencing of 16S rRNA gene amplicons and data analysis using a novel permutation approach, we have detected decreased incidence of Blautia species, especially Blautia luti and B. wexlerae, in the gut microbiota of obese children, which was even more pronounced in cases with both obesity and insulin resistance. There was also a parallel increase in proinflammatory cytokines and chemokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and monocyte chemoattractant protein 1 [MCP-1]) in feces of obese children compared to those of lean ones. B. luti and B. wexlerae were also shown to exert an anti-inflammatory effect in peripheral blood mononuclear cell cultures in vitro, compared to non-obesity-associated species. We suggest that the depletion of B. luti and B. wexlerae species in the gut ecosystem may occur in cases of obesity and contribute to metabolic inflammation leading to insulin resistance. IMPORTANCE Child obesity constitutes a risk factor for developing insulin resistance which, if sustained, could lead to more severe conditions like type 2 diabetes (T2D) in adulthood. Our study identified previously unknown species whose depletion (Blautia luti and Blautia wexlerae) is associated with insulin resistance in obese individuals. Our results also indicate that these bacterial species might help to reduce inflammation causally linked to obesity-related complications. Childhood is considered a window of opportunity to tackle obesity. These new findings provide, therefore, valuable information for the future design of microbiota-based strategies for the early prevention of obesity-related complications.
Collapse
|
36
|
Chen H, Zeng F, Li S, Liu Y, Gong S, Lv X, Zhang J, Liu B. Spirulina active substance mediated gut microbes improve lipid metabolism in high-fat diet fed rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
37
|
Bassanini G, Ceccarani C, Borgo F, Severgnini M, Rovelli V, Morace G, Verduci E, Borghi E. Phenylketonuria Diet Promotes Shifts in Firmicutes Populations. Front Cell Infect Microbiol 2019; 9:101. [PMID: 31058098 PMCID: PMC6477998 DOI: 10.3389/fcimb.2019.00101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022] Open
Abstract
Low-phenylalanine diet, the mainstay of treatment for phenylketonuria (PKU), has been shown to increase glycemic index and glycemic load, affecting the availability of substrates for microbial fermentation. Indeed, changes in the PKU gut microbiota compared with healthy controls have been previously reported. In this study we compared the gut microbial communities of children with PKU and with mild hyperphenylalaninemia (MHP, unrestricted diet). For each group, we enrolled 21 children (4–18 years old), for a total dataset of 42 subjects. We assessed dietary intake and performed gut microbiota analysis by sequencing the V3–V4 hypervariable regions of the 16S rRNA gene. Short chain fatty acids (SCFAs) were quantified by gas chromatographic analysis. While alpha-diversity analysis showed no significant differences between PKU and MHP groups, microbial community analysis highlighted a significant separation of the gut microbiota according to both unweighted (p = 0.008) and weighted Unifrac distances (p = 0.033). Major differences were seen within the Firmicutes phylum. Indeed, PKU children were depleted in Faecalibacterium spp. and enriched in Blautia spp. and Clostridium spp (family Lachnospiraceae). We found a divergent response of members of the Firmicutes phylum with respect to daily glycemic index, higher in PKU children. Faecalibacterium prausnitzii, unclassified Ruminococcaceae and, to a lesser extent Roseburia spp. negatively correlated with glycemic index, whereas unclassified Lachnospiraceae were positively associated. Indicator species analysis suggested F. prausnitzii be related to MHP status and Ruminococcus bromii to be associated with PKU. Despite PKU children having a higher vegetable and fiber intake, resembling a vegan diet, their gut microbial profile is different from the microbiota reported in the literature for individuals consuming a high-fiber/low-protein diet. Indeed, beneficial microorganisms, such as F. prausnitzii, considered a biomarker for a healthy status and one of the main butyrate producers, are depleted in PKU gut microbiota. We suggest that both the quality and quantity of carbohydrates ingested participate in determining the observed Firmicutes shifts on the PKU population.
Collapse
Affiliation(s)
- Giulia Bassanini
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Camilla Ceccarani
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Francesca Borgo
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Valentina Rovelli
- Department of Pediatrics, San Paolo Hospital, Università degli Studi di Milano, Milan, Italy
| | - Giulia Morace
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elvira Verduci
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.,Department of Pediatrics, San Paolo Hospital, Università degli Studi di Milano, Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
38
|
Kong C, Gao R, Yan X, Huang L, Qin H. Probiotics improve gut microbiota dysbiosis in obese mice fed a high-fat or high-sucrose diet. Nutrition 2018; 60:175-184. [PMID: 30611080 DOI: 10.1016/j.nut.2018.10.002] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/03/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Gut microbiota plays a crucial role in host energy homeostasis, which is affected by both high-fat diets (HFDs) and high-sucrose diets (HCDs). Probiotics treatment can effectively modulate intestinal microbiota. However, it remains unclear whether probiotics can effectively improve HFD- and HCD-induced microbiota dysbiosis. METHODS Mice were fed either an HFD, HCD, or normal diet for 13 wk and administered probiotics during the last 4 wk of the diet. Fecal and cecal samples were collected and analyzed by high-throughput 16S ribosomal RNA sequencing. RESULTS Body weight increased more in the HFD group compared with the HCD group. Probiotics supplementation slowed weight gain in both the HFD and HCD groups. Both the HFD and HCD reduced microbial diversity, abundance of butyric acid-producing bacteria, and some other beneficial bacteria, including Lactobacillus, Clostridium sensu stricto, Prevotella, and Alloprevotella, but increased conditional pathogenic bacteria, such as Bacteroides, Alistipes, and Anaerotruncus. Probiotics markedly restored the proportions of bacteria affected in the HFD and HCD groups and increased the abundance of microbiota negatively associated with obesity, including Bifidobacterium, Lactococcus, and Akkermansia. In addition, Oscillibacter, Escherichia/Shigella, Acinetobacter, and Blautia significantly increased in the HCD group; Allobaculum, Olsenella, and Ruminococcus were significantly changed in the HFD group. HCD-induced microbiota dysbiosis was more susceptible to probiotics treatment compared with the HFD. CONCLUSIONS Probiotics treatment can mitigate diet-induced obesity partly through modulating intestinal microbiota, especially in HCD-induced obesity.
Collapse
Affiliation(s)
- Cheng Kong
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Renyuan Gao
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Xuebing Yan
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Linsheng Huang
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai 10th People's Hospital, Tongji University, Shanghai, China; Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Pezo-Carreón D, Alarcón-Bayona V, Franco-Febres F, Pacheco-Curie J. Inducción Secretoria de IgG, con toxina de Clostridium perfringens Tipo A para la reducción de mortalidad por enterotoxemia en crías de Alpacas. JOURNAL OF THE SELVA ANDINA ANIMAL SCIENCE 2018. [DOI: 10.36610/j.jsaas.2018.050200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Kashtanova DA, Tkacheva ON, Doudinskaya EN, Strazhesko ID, Kotovskaya YV, Popenko AS, Tyakht AV, Alexeev DG. Gut Microbiota in Patients with Different Metabolic Statuses: Moscow Study. Microorganisms 2018; 6:microorganisms6040098. [PMID: 30257444 PMCID: PMC6313665 DOI: 10.3390/microorganisms6040098] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of this paper was to study gut microbiota composition in patients with different metabolic statuses. Methods: 92 participants aged 25–76 years (26 of whom were men), with confirmed absence of cardiovascular and other chronic diseases (but with the possible presence of cardiovascular risk factors) were included. Carotid ultrasound examinations, 16S rRNA sequencing of stool samples and diet assessments were performed. Statistical analysis was performed using R programming language, 3.1.0. Results: Enterotyping yielded two clusters differentiated by alpha-diversity. Intima-media thickness was higher in the cluster with lower diversity (adj. p < 0.001). Obesity was associated with higher Serratia (adj. p = 0.003) and Prevotella (adj. p < 0.0003) in relative abundance. Abdominal obesity was associated with higher abundance of Serratia (adj. p = 0.004) and Prevotella (adj. p = 0.0008) and lower levels of Oscillospira (adj. p = 0.0005). Glucose metabolism disturbances were associated with higher Blautia (adj. p = 0.0007) and Serratia (adj. p = 0.003) prevalence. Arterial hypertension was associated with high Blautia levels (adj. p = 0.002). The Blautia genus strongly correlated with low resistant starch consumption (adj. p = 0.007). A combination of high-fat diet and elevated Blautia levels was very common for diabetes mellitus type 2 patients (adj. p = 0.0001). Conclusion: The results show that there is a relationship between metabolic changes and higher representation of opportunistic pathogens and low diversity of gut microbiota even in apparently healthy participants.
Collapse
Affiliation(s)
- Daria A Kashtanova
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, bld. 16, 1st Leonova Street, Moscow 129226, Russia.
| | - Olga N Tkacheva
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, bld. 16, 1st Leonova Street, Moscow 129226, Russia.
| | - Ekaterina N Doudinskaya
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, bld. 16, 1st Leonova Street, Moscow 129226, Russia.
| | - Irina D Strazhesko
- Medical Research and Education Center, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia.
| | - Yulia V Kotovskaya
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation, bld. 16, 1st Leonova Street, Moscow 129226, Russia.
| | - Anna S Popenko
- Atlas Biomed Group, Tintagel House, 92 Albert Embankment, Lambeth, London SE1 7TP, UK.
| | - Alexander V Tyakht
- Atlas Biomed Group, Tintagel House, 92 Albert Embankment, Lambeth, London SE1 7TP, UK.
| | - Dmitry G Alexeev
- Atlas Biomed Group, Tintagel House, 92 Albert Embankment, Lambeth, London SE1 7TP, UK.
| |
Collapse
|
41
|
Sircana A, Framarin L, Leone N, Berrutti M, Castellino F, Parente R, De Michieli F, Paschetta E, Musso G. Altered Gut Microbiota in Type 2 Diabetes: Just a Coincidence? Curr Diab Rep 2018; 18:98. [PMID: 30215149 DOI: 10.1007/s11892-018-1057-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW In the last decade many studies have suggested an association between the altered gut microbiota and multiple systemic diseases including diabetes. In this review, we will discuss potential pathophysiological mechanisms, the latest findings regarding the mechanisms linking gut dysbiosis and type 2 diabetes (T2D), and the results obtained with experimental modulation of microbiota. RECENT FINDINGS In T2D, gut dysbiosis contributes to onset and maintenance of insulin resistance. Different strategies that reduce dysbiosis can improve glycemic control. Evidence in animals and humans reveals differences between the gut microbial composition in healthy individuals and those with T2D. Changes in the intestinal ecosystem could cause inflammation, alter intestinal permeability, and modulate metabolism of bile acids, short-chain fatty acids and metabolites that act synergistically on metabolic regulation systems contributing to insulin resistance. Interventions that restore equilibrium in the gut appear to have beneficial effects and improve glycemic control. Future research should examine in detail and in larger studies other possible pathophysiological mechanisms to identify specific pathways modulated by microbiota modulation and identify new potential therapeutic targets.
Collapse
Affiliation(s)
| | - Luciana Framarin
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Nicola Leone
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Mara Berrutti
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Francesca Castellino
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Renato Parente
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Franco De Michieli
- Department of Medical Sciences, San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | - Elena Paschetta
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy
| | - Giovanni Musso
- HUMANITAS Gradenigo, University of Turin, C.so Regina Margherita 8, 10132, Turin, Italy.
| |
Collapse
|
42
|
Early TLR4 Blockade Attenuates Sterile Inflammation-mediated Stress in Islets During Isolation and Promotes Successful Transplant Outcomes. Transplantation 2018; 102:1505-1513. [DOI: 10.1097/tp.0000000000002287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Wei X, Tao J, Xiao S, Jiang S, Shang E, Zhu Z, Qian D, Duan J. Xiexin Tang improves the symptom of type 2 diabetic rats by modulation of the gut microbiota. Sci Rep 2018; 8:3685. [PMID: 29487347 PMCID: PMC5829262 DOI: 10.1038/s41598-018-22094-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/13/2018] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), a chronic metabolic disease which severely impairs peoples' quality of life, currently attracted worldwide concerns. There are growing evidences that gut microbiota can exert a great impact on the development of T2DM. Xiexin Tang (XXT), a traditional Chinese medicine prescription, has been clinically used to treat diabetes for thousands of years. However, few researches are investigated on the modulation of gut microbiota community by XXT which will be very helpful to unravel how it works. In this study, bacterial communities were analyzed based on high-throughput 16S rRNA gene sequencing. Results indicated that XXT could notably shape the gut microbiota. T2DM rats treated with XXT exhibited obvious changes in the composition of the gut microbiota, especially for some short chain fatty acids producing and anti-inflammatory bacteria such as Adlercreutzia, Alloprevotella, Barnesiella, [Eubacterium] Ventriosum group, Blautia, Lachnospiraceae UCG-001, Papillibacter and Prevotellaceae NK3B31 group. Additionally, XXT could also significantly ameliorate hyperglycemia, lipid metabolism dysfunction and inflammation in T2DM rats. Moreover, the correlation analysis illustrated that the key microbiota had a close relationship with the T2DM related indexes. The results probably provided useful information for further investigation on its active mechanism and clinical application.
Collapse
Affiliation(s)
- Xiaoyan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jinhua Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Suwei Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, PR China.
| |
Collapse
|
44
|
Cui C, Li Y, Gao H, Zhang H, Han J, Zhang D, Li Y, Zhou J, Lu C, Su X. Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS One 2017; 12:e0186216. [PMID: 29016689 PMCID: PMC5633193 DOI: 10.1371/journal.pone.0186216] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022] Open
Abstract
Previous studies confirmed that dietary supplements of fish oil and krill oil can alleviate obesity in mice, but the underlying mechanism remains unclear. This study aims to discern whether oil treatment change the structure of the gut microbiota during the obesity alleviation. The ICR mice received high-fat diet (HFD) continuously for 12 weeks after two weeks of acclimatization with a standard chow diet, and the mice fed with a standard chow diet were used as the control. In the groups that received HFD with oil supplementation, the weight gains were attenuated and the liver index, total cholesterol, triglyceride and low-density lipoprotein cholesterol were reduced stepwise compared with the HFD group, and the overall structure of the gut microbiota, which was modulated in the HFD group, was shifted toward the structure found in the control group. Moreover, eighty-two altered operational taxonomic units responsive to oil treatment were identified and nineteen of them differing in one or more parameters associated with obesity. In conclusion, this study confirmed the effect of oil treatment on obesity alleviation, as well as on the microbiota structure alterations. We proposed that further researches are needed to elucidate the causal relationship between obesity alleviation and gut microbiota modulation.
Collapse
Affiliation(s)
- Chenxi Cui
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Yanyan Li
- Department of Food Science, Cornell University, New York, NY, United States of America
| | - Hang Gao
- The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyan Zhang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jiaojiao Han
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Dijun Zhang
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Ye Li
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chenyang Lu
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
45
|
Lu C, Sun T, Li Y, Zhang D, Zhou J, Su X. Modulation of the Gut Microbiota by Krill Oil in Mice Fed a High-Sugar High-Fat Diet. Front Microbiol 2017; 8:905. [PMID: 28567037 PMCID: PMC5434167 DOI: 10.3389/fmicb.2017.00905] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/03/2017] [Indexed: 01/14/2023] Open
Abstract
Multiple lines of evidence suggest that the gut microbiota plays vital roles in metabolic diseases such as hyperlipidemia. Previous studies have confirmed that krill oil can alleviate hyperlipidemia, but the underlying mechanism remains unclear. To discern whether krill oil changes the structure of the gut microbiota during the hyperlipidemia treatment, 72 mice were acclimatized with a standard chow diet for 2 weeks and then randomly allocated to receive a standard chow diet (control group, n = 12) or a high-sugar-high-fat (HSHF) diet supplemented with a low (100 μg/g·d, HSHF+LD group, n = 12), moderate (200 μg/g·d, HSHF+MD group, n = 12) or high dosage of krill oil (600 μg/g·d, HSHF+HD group, n = 12), simvastatin (HSHF+S group, n = 12) or saline (HSHF group, n = 12) continuously for 12 weeks. The resulting weight gains were attenuated, the liver index and the low-density lipoprotein, total cholesterol and triglyceride concentrations showed a stepwise reduction in the treated groups compared with those of the control group. A dose-dependent modulation of the gut microbiota was observed after treatment with krill oil. Low- and moderate- doses of krill oil increased the similarity between the composition of the HSHF diet-induced gut microbiota and that of the control, whereas the mice fed the high-dose exhibited a unique gut microbiota structure that was different from that of the control and HSHF groups. Sixty-five key operational taxonomic units (OTUs) that responded to the krill oil treatment were identified using redundancy analysis, of which 26 OTUs were increased and 39 OTUs were decreased compared with those of the HSHF group. In conclusion, the results obtained in this study suggest that the structural alterations in the gut microbiota induced by krill oil treatment were dose-dependent and associated with the alleviation of hyperlipidemia. Additionally, the high-dose krill oil treatment showed combined effects on the alleviation of hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Chenyang Lu
- School of Marine Science, Ningbo UniversityNingbo City, China
| | - Tingting Sun
- School of Marine Science, Ningbo UniversityNingbo City, China
| | - Yanyan Li
- Department of Food Science, Cornell UniversityNew York, NY, United States
| | - Dijun Zhang
- School of Marine Science, Ningbo UniversityNingbo City, China
| | - Jun Zhou
- School of Marine Science, Ningbo UniversityNingbo City, China
| | - Xiurong Su
- School of Marine Science, Ningbo UniversityNingbo City, China
| |
Collapse
|
46
|
Kashtanova D, Tkacheva O, Popenko A, Egshatyan L, Tyakht A, Alexeev D, Kotovskaya Y, Plokhova E, Boytsov S. Gut microbiota and vascular biomarkers in patients without clinical cardiovascular diseases. Artery Res 2017. [DOI: 10.1016/j.artres.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
47
|
Betrapally NS, Gillevet PM, Bajaj JS. Gut microbiome and liver disease. Transl Res 2017; 179:49-59. [PMID: 27477080 PMCID: PMC5164947 DOI: 10.1016/j.trsl.2016.07.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
Gut microbiota changes are important in determining the occurrence and progression of chronic liver disease related to alcohol, nonalcoholic fatty liver disease, and cirrhosis. Specifically, the systemic inflammation, endotoxemia, and the vasodilation that leads to complications such as spontaneous bacterial peritonitis and hepatic encephalopathy could be related to the gut milieu. Given the poor prognosis of these events, their prevention and early management are essential. Microbiota may be an essential component of the gut milieu that can impact these clinical events, and the study of their composition and function in a culture-independent manner could help understand the prognosis. Recent human and animal studies have shown that the relative abundance and the functional changes of microbiota in the stool, colonic mucosa, and saliva have varying consequences on the presence and prognosis of chronic liver disease and cirrhosis. The impact of therapies on the microbiota is slowly being understood and will likely lead to a more targeted approach to gut microbiota modification in chronic liver disease and cirrhosis.
Collapse
Affiliation(s)
| | | | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Va.
| |
Collapse
|
48
|
Hamajima H, Matsunaga H, Fujikawa A, Sato T, Mitsutake S, Yanagita T, Nagao K, Nakayama J, Kitagaki H. Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic. SPRINGERPLUS 2016; 5:1321. [PMID: 27563516 PMCID: PMC4980852 DOI: 10.1186/s40064-016-2950-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/29/2016] [Indexed: 01/16/2023]
Abstract
Background
The Japanese traditional cuisine, Washoku, considered to be responsible for increased longevity among the Japanese, comprises various foods fermented with the non-pathogenic fungus Aspergillus oryzae (koji). We have recently revealed that koji contains an abundant amount of glycosylceramide. Intestinal microbes have significant effect on health. However, the effects of koji glycosylceramide on intestinal microbes have not been studied. Materials and methods Glycosylceramide was extracted and purified from koji. C57BL/6N mice were fed a diet containing 1 % purified koji glycosylceramide for 1 week. Nutritional parameters and faecal lipid constituents were analyzed. The intestinal microbial flora of mice on this diet was investigated. Results Ingested koji glycosylceramide was neither digested by intestinal enzymes nor was it detected in the faeces, suggesting that koji glycosylceramide was digested by the intestinal microbial flora. Intestinal microbial flora that digested koji glycosylceramide had an increased ratio of Blautia coccoides. Stimulation of B. coccoides growth by pure koji glycosylceramide was confirmed in vitro. Conclusions Koji functions as a prebiotic for B. coccoides through glycosylceramide. Since there are many reports of the effects of B. coccoides on health, an increase in intestinal B. coccoides by koji glycosylceramide might be the connection between Japanese cuisine, intestinal microbial flora, and longevity.
Collapse
Affiliation(s)
- Hiroshi Hamajima
- Department of Environmental Science, Faculty of Agriculture, Saga University, Honjo-cho, Saga City, Saga Japan
| | - Haruka Matsunaga
- Department of Environmental Science, Faculty of Agriculture, Saga University, Honjo-cho, Saga City, Saga Japan
| | - Ayami Fujikawa
- Department of Environmental Science, Faculty of Agriculture, Saga University, Honjo-cho, Saga City, Saga Japan
| | - Tomoya Sato
- Department of Environmental Science, Faculty of Agriculture, Saga University, Honjo-cho, Saga City, Saga Japan
| | - Susumu Mitsutake
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Honjo-cho, Saga City, Saga Japan
| | - Teruyoshi Yanagita
- Faculty of Health and Nutrition Science, Nishikyushu University, Ozaki, Kanzaki-cho, Kanzaki City, Saga Japan
| | - Koji Nagao
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Honjo-cho, Saga City, Saga Japan
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Hiroshi Kitagaki
- Department of Environmental Science, Faculty of Agriculture, Saga University, Honjo-cho, Saga City, Saga Japan
| |
Collapse
|
49
|
Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, Ferrere G, Puchois V, Martin JC, Lepage P, Le Roy T, Lefèvre L, Langelier B, Cailleux F, González-Castro AM, Rabot S, Gaudin F, Agostini H, Prévot S, Berrebi D, Ciocan D, Jousse C, Naveau S, Gérard P, Perlemuter G. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016; 65:830-9. [PMID: 26642859 DOI: 10.1136/gutjnl-2015-310585] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/01/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE There is substantial inter-individual diversity in the susceptibility of alcoholics to liver injury. Alterations of intestinal microbiota (IM) have been reported in alcoholic liver disease (ALD), but the extent to which they are merely a consequence or a cause is unknown. We aimed to demonstrate that a specific dysbiosis contributes to the development of alcoholic hepatitis (AH). DESIGN We humanised germ-free and conventional mice using human IM transplant from alcoholic patients with or without AH. The consequences on alcohol-fed recipient mice were studied. RESULTS A specific dysbiosis was associated with ALD severity in patients. Mice harbouring the IM from a patient with severe AH (sAH) developed more severe liver inflammation with an increased number of liver T lymphocyte subsets and Natural Killer T (NKT) lymphocytes, higher liver necrosis, greater intestinal permeability and higher translocation of bacteria than mice harbouring the IM from an alcoholic patient without AH (noAH). Similarly, CD45+ lymphocyte subsets were increased in visceral adipose tissue, and CD4(+)T and NKT lymphocytes in mesenteric lymph nodes. The IM associated with sAH and noAH could be distinguished by differences in bacterial abundance and composition. Key deleterious species were associated with sAH while the Faecalibacterium genus was associated with noAH. Ursodeoxycholic acid was more abundant in faeces from noAH mice. Additionally, in conventional mice humanised with the IM from an sAH patient, a second subsequent transfer of IM from an noAH patient improved alcohol-induced liver lesions. CONCLUSIONS Individual susceptibility to ALD is substantially driven by IM. It may, therefore, be possible to prevent and manage ALD by IM manipulation.
Collapse
Affiliation(s)
- M Llopis
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - A M Cassard
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - L Wrzosek
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - L Boschat
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - A Bruneau
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - G Ferrere
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - V Puchois
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - J C Martin
- Faculté de Médecine, Aix-Marseille University, Marseille, France INSERM, UMR1062 NORT, Marseille, France
| | - P Lepage
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - T Le Roy
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - L Lefèvre
- INRA, UMR 1313, GABI-LGS Plateforme ICE, Jouy-en-Josas, France
| | - B Langelier
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - F Cailleux
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - A M González-Castro
- Department of Gastroenterology, Digestive System Research Unit, Hospital University Vall d'Hebron and VHIR, UAB, Spain
| | - S Rabot
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - F Gaudin
- IPSIT, IFR141, Faculté de Pharmacie, Univ Paris-Sud, Châtenay-Malabry, France
| | - H Agostini
- AP-HP, Hôpital Bicêtre, Unité de recherche clinique Paris-Sud, Kremlin-Bicêtre, France
| | - S Prévot
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France AP-HP, Anatomie-pathologique, Hôpital Antoine-Béclère, Clamart, France
| | - D Berrebi
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France AP-HP, Anatomie et de Cytologie Pathologiques, Hôpital Robert Debré, Paris, France
| | - D Ciocan
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - C Jousse
- Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand UMR CNRS 6296, Clermont-Ferrand, France
| | - S Naveau
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - P Gérard
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - G Perlemuter
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|
50
|
Egshatyan L, Kashtanova D, Popenko A, Tkacheva O, Tyakht A, Alexeev D, Karamnova N, Kostryukova E, Babenko V, Vakhitova M, Boytsov S. Gut microbiota and diet in patients with different glucose tolerance. Endocr Connect 2016; 5:1-9. [PMID: 26555712 PMCID: PMC4674628 DOI: 10.1530/ec-15-0094] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes (T2D) is a serious disease. The gut microbiota (GM) has recently been identified as a new potential risk factor in addition to well-known diabetes risk factors. To investigate the GM composition in association with the dietary patterns in patients with different glucose tolerance, we analyzed 92 patients: with normal glucose tolerance (n=48), prediabetes (preD, n=24), and T2D (n=20). Metagenomic analysis was performed using 16S rRNA sequencing. The diet has been studied by a frequency method with a quantitative evaluation of food intake using a computer program. Microbiota in the samples was predominantly represented by Firmicutes, in a less degree by Bacteroidetes. Blautia was a dominant genus in all samples. The representation of Blautia, Serratia was lower in preD than in T2D patients, and even lower in those with normal glucose tolerance. After the clustering of the samples into groups according to the percentage of protein, fat, carbohydrates in the diet, the representation of the Bacteroides turned to be lower and Prevotella abundance turned to be higher in carbohydrate cluster. There were more patients with insulin resistance, T2D in the fat-protein cluster. Using the Calinski-Harabasz index identified the samples with more similar diets. It was discovered that half of the patients with a high-fat diet had normal tolerance, the others had T2D. The regression analysis showed that these T2D patients also had a higher representation of Blautia. Our study provides the further evidence concerning the structural modulation of the GM in the T2DM pathogenesis depending on the dietary patterns.
Collapse
Affiliation(s)
- Lilit Egshatyan
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Daria Kashtanova
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Anna Popenko
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Olga Tkacheva
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Alexander Tyakht
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Dmitry Alexeev
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Natalia Karamnova
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Elena Kostryukova
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian Fed
| | - Vladislav Babenko
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Maria Vakhitova
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| | - Sergey Boytsov
- 'Research of Age and Age-Associated Conditions' DepartmentNational Research Centre for Preventive Medicine, Building 10, Petroverigskiy Lane, Moscow RF 101000, Russian FederationLaboratory of BioinformaticsScientific Research Institute for Physical-Chemical Medicine, Building 1a, Malaya Pirogovskaya street, Moscow RF 119435, Russian FederationThe 'Russian Clinical Research Center for Gerontology'16, 1st Leonova Street, Moscow RF 192226, Russian Federation'Chronic Noncommunicable Diseases Primary Prevention in the Healthcare System' DepartmentNational Research Centre for Preventive Medicine, bld. 10, Petroverigskiy Lane, MoscowMoscow Institute of Physics and TechnologyDolgoprudny, Institusky Lane, 9 Moscow, RF, 141700, Russian FederationNational Research Centre for Preventive Medicinebld. 10, Petroverigskiy Lane, Moscow
| |
Collapse
|