1
|
Mendez KM, Begum S, Tiwari A, Sharma R, Chen Q, Kelly RS, Prince N, Huang M, Kachroo P, Chu SH, Chen Y, Lee-Sarwar K, Broadhurst DI, Reinke SN, Gerszten R, Clish C, Avila L, Celedón JC, Wheelock CE, Weiss ST, McGeachie M, Lasky-Su JA. Metabolite signatures associated with microRNA miR-143-3p serve as drivers of poor lung function trajectories in childhood asthma. EBioMedicine 2024; 102:105025. [PMID: 38458111 PMCID: PMC10937568 DOI: 10.1016/j.ebiom.2024.105025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Kevin M Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rinku Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mengna Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su H Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David I Broadhurst
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Robert Gerszten
- Department of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Lydiana Avila
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Russell RJ, Boulet LP, Brightling CE, Pavord ID, Porsbjerg C, Dorscheid D, Sverrild A. The airway epithelium: an orchestrator of inflammation, a key structural barrier and a therapeutic target in severe asthma. Eur Respir J 2024; 63:2301397. [PMID: 38453256 PMCID: PMC10991852 DOI: 10.1183/13993003.01397-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Asthma is a disease of heterogeneous pathology, typically characterised by excessive inflammatory and bronchoconstrictor responses to the environment. The clinical expression of the disease is a consequence of the interaction between environmental factors and host factors over time, including genetic susceptibility, immune dysregulation and airway remodelling. As a critical interface between the host and the environment, the airway epithelium plays an important role in maintaining homeostasis in the face of environmental challenges. Disruption of epithelial integrity is a key factor contributing to multiple processes underlying asthma pathology. In this review, we first discuss the unmet need in asthma management and provide an overview of the structure and function of the airway epithelium. We then focus on key pathophysiological changes that occur in the airway epithelium, including epithelial barrier disruption, immune hyperreactivity, remodelling, mucus hypersecretion and mucus plugging, highlighting how these processes manifest clinically and how they might be targeted by current and novel therapeutics.
Collapse
Affiliation(s)
- Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | | | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| | - Del Dorscheid
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Asger Sverrild
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
3
|
Obeagu EI, Obeagu GU. Exploring neutrophil functionality in breast cancer progression: A review. Medicine (Baltimore) 2024; 103:e37654. [PMID: 38552040 PMCID: PMC10977563 DOI: 10.1097/md.0000000000037654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
Breast cancer remains a pressing global health concern, with a myriad of intricate factors contributing to its development, progression, and heterogeneity. Among these multifaceted elements, the role of immune cells within the tumor microenvironment is gaining increasing attention. In this context, neutrophils, traditionally regarded as the first responders to infections, are emerging as noteworthy participants in the complex landscape of breast cancer. This paper seeks to unravel the intricate and multifaceted role of neutrophils in breast cancer. Neutrophils, classically known for their phagocytic and pro-inflammatory functions, are now recognized for their involvement in promoting or restraining tumor growth. While their presence within the tumor microenvironment may exert antitumor effects through immune surveillance and cytotoxic activities, these innate immune cells can also facilitate tumor progression by fostering an immunosuppressive milieu, promoting angiogenesis, and aiding metastatic dissemination. The intricacies of neutrophil-tumor cell interactions, signaling pathways, and mechanisms governing their recruitment to the tumor site are explored in detail. Challenges and gaps in current knowledge are acknowledged, and future directions for research are outlined. This review underscores the dynamic and context-dependent role of neutrophils in breast cancer and emphasizes the significance of unraveling their multifaceted contributions. As we delve into the complexities of the immune landscape in breast cancer, a deeper understanding of the warriors within, the neutrophils, presents exciting prospects for the development of novel therapeutic strategies and a more comprehensive approach to breast cancer management.
Collapse
|
4
|
Gonzalez-Uribe V, Romero-Tapia SJ, Castro-Rodriguez JA. Asthma Phenotypes in the Era of Personalized Medicine. J Clin Med 2023; 12:6207. [PMID: 37834850 PMCID: PMC10573947 DOI: 10.3390/jcm12196207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Asthma is a widespread disease affecting approximately 300-million people globally. This condition leads to significant morbidity, mortality, and economic strain worldwide. Recent clinical and laboratory research advancements have illuminated the immunological factors contributing to asthma. As of now, asthma is understood to be a heterogeneous disease. Personalized medicine involves categorizing asthma by its endotypes, linking observable characteristics to specific immunological mechanisms. Identifying these endotypic mechanisms is paramount in accurately profiling patients and tailoring therapeutic approaches using innovative biological agents targeting distinct immune pathways. This article presents a synopsis of the key immunological mechanisms implicated in the pathogenesis and manifestation of the disease's phenotypic traits and individualized treatments for severe asthma subtypes.
Collapse
Affiliation(s)
- Victor Gonzalez-Uribe
- Alergia e Inmunología Clínica, Hospital Infantil de México Federico Gómez, Ciudad de Mexico 06720, Mexico;
- Facultad Mexicana de Medicina, Universidad La Salle México, Ciudad de Mexico 14000, Mexico
| | - Sergio J. Romero-Tapia
- Health Sciences Academic Division (DACS), Universidad Juárez Autónoma de Tabasco, Villahermosa 86040, Mexico;
| | - Jose A. Castro-Rodriguez
- Department of Pediatric Pulmonology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
5
|
Pederson WP, Ellerman LM, Jin Y, Gu H, Ledford JG. Metabolomic Profiling in Mouse Model of Menopause-Associated Asthma. Metabolites 2023; 13:546. [PMID: 37110204 PMCID: PMC10145474 DOI: 10.3390/metabo13040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Menopause-associated asthma impacts a subset of women, tends to be more severe, and is less responsive to current treatments. We recently developed a model of menopause-associated asthma using 4-Vinylcyclohexene Diepoxide (VCD) and house dust mites (HDM). The goal of this study was to uncover potential biomarkers and drivers of menopause-onset asthma by assessing serum and bronchoalveolar lavage fluid (BALF) samples from mice with and without menopause and HDM challenge by large-scale targeted metabolomics. Female mice were treated with VCD/HDM to model menopause-associated asthma, and serum and BALF samples were processed for large-scale targeted metabolomic assessment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine metabolites of potential biological significance. We identified over 50 individual metabolites, impacting 46 metabolic pathways, in the serum and BALF that were significantly different across the four study groups. In particular, glutamate, GABA, phosphocreatine, and pyroglutamic acid, which are involved in glutamate/glutamine, glutathione, and arginine and proline metabolisms, were significantly impacted in the menopausal HDM-challenged mice. Additionally, several metabolites had significant correlations with total airway resistance including glutamic acid, histamine, uridine, cytosine, cytidine, and acetamide. Using metabolic profiling, we identified metabolites and metabolic pathways that may aid in discriminating potential biomarkers for and drivers of menopause-associated asthma.
Collapse
Affiliation(s)
- William P. Pederson
- Physiological Sciences GIDP, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, Tucson, AZ 85724, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
6
|
Principe S, Vijverberg SJH, Abdel-Aziz MI, Scichilone N, Maitland-van der Zee AH. Precision Medicine in Asthma Therapy. Handb Exp Pharmacol 2023; 280:85-106. [PMID: 35852633 DOI: 10.1007/164_2022_598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Asthma is a complex, heterogeneous disease that necessitates a proper patient evaluation to decide the correct treatment and optimize disease control. The recent introduction of new target therapies for the most severe form of the disease has heralded a new era of treatment options, intending to treat and control specific molecular pathways in asthma pathophysiology. Precision medicine, using omics sciences, investigates biological and molecular mechanisms to find novel biomarkers that can be used to guide treatment selection and predict response. The identification of reliable biomarkers indicative of the pathological mechanisms in asthma is essential to unravel new potential treatment targets. In this chapter, we provide a general description of the currently available -omics techniques, focusing on their implications in asthma therapy.
Collapse
Affiliation(s)
- Stefania Principe
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy.
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mahmoud I Abdel-Aziz
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nicola Scichilone
- Dipartimento Universitario di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE) c/o Pneumologia, AOUP "Policlinico Paolo Giaccone", University of Palermo, Palermo, Italy
| | | |
Collapse
|
7
|
Abstract
Introduction: Allergic asthma is often associated with eosinophilic inflammation, which is related to the T-helper cell type 2 (Th2) cytokines and responsive to corticosteroids. However, there are also phenotypes of non-Th2-mediated asthma, which have poor responsivity to corticosteroids. The leading phenotype of non-Th2-mediated asthma is neutrophilic asthma, which is considered difficult to treat. Recently, IL-22 has been found to be involved in neutrophilic inflammation in asthma. However, studies on the role of IL-22 in asthma are still controversial as IL-22 has both pro-inflammatory and anti-inflammatory roles in asthma. This study examined whether the IL-22 level increased in acute neutrophilic asthma in the mouse model. Herein, we aimed to demonstrate increased IL-22 levels in neutrophilic asthma and elucidate the pathways leading to elevated neutrophil counts.Methods: Six-week old female BALB/c mice were sensitized and challenged with PBS, ovalbumin (OVA) or OVA + lipopolysaccharide (LPS). The mice were then assigned to one of the following five groups: (1) control (PBS/ PBS), (2) OVA/PBS, (3) OVA/OVA, (4) OVA+LPS/PBS, (5) OVA+LPS/OVA+LPS.Results: The levels of Th2 cytokines, IL-17, and IL-22 were assessed, with investigation of the neutrophil chemokines. This study showed that in the acute neutrophilic asthma, the levels of IL-17 and IL-22 were significantly higher than those in the OVA/OVA group, which represents acute eosinophilic asthma. Moreover, the level of CCL20 increased in the neutrophilic asthma group.Conclusion: Thus, this study suggests that in the acute neutrophilic asthma mouse model, IL-17 and IL-22 may increase with CCL20, resulting in neutrophilic inflammation.
Collapse
Affiliation(s)
- Kyu Yean Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hur
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hwa Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sook Young Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Allergy, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Identifying phenotypes of obstructive sleep apnea using cluster analysis. Sleep Breath 2022; 27:879-886. [DOI: 10.1007/s11325-022-02683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/27/2022]
|
9
|
Okwuofu EO, Hui AYC, Woei JLC, Stanslas J. Molecular and Immunomodulatory Actions of New Antiasthmatic Agents: Exploring the Diversity of Biologics in Th2 Endotype Asthma. Pharmacol Res 2022; 181:106280. [PMID: 35661709 DOI: 10.1016/j.phrs.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Asthma is a major respiratory disorder characterised by chronic inflammation and airway remodelling. It affects about 1-8% of the global population and is responsible for over 461,000 deaths annually. Until recently, the pharmacotherapy of severe asthma involved high doses of inhaled corticosteroids in combination with β-agonist for prolonged action, including theophylline, leukotriene antagonist or anticholinergic yielding limited benefit. Although the use of newer agents to target Th2 asthma endotypes has improved therapeutic outcomes in severe asthmatic conditions, there seems to be a paucity of understanding the diverse mechanisms through which these classes of drugs act. This article delineates the molecular and immunomodulatory mechanisms of action of new antiasthmatic agents currently being trialled in preclinical and clinical studies to remit asthmatic conditions. The ultimate goal in developing antiasthmatic agents is based on two types of approaches: either anti-inflammatory or bronchodilators. Biologic and most small molecules have been shown to modulate specific asthma endotypes, targeting thymic stromal lymphopoietin, tryptase, spleen tyrosine kinase (Syk), Janus kinase, PD-L1/PD-L2, GATA-3, and CD38 for the treatment and management of Th2 endotype asthma.
Collapse
Affiliation(s)
- Emmanuel Oshiogwe Okwuofu
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jonathan Lim Chee Woei
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Huang J, Zhang J, Wang X, Jin Z, Zhang P, Su H, Sun X. Effect of Probiotics on Respiratory Tract Allergic Disease and Gut Microbiota. Front Nutr 2022; 9:821900. [PMID: 35295917 PMCID: PMC8920559 DOI: 10.3389/fnut.2022.821900] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Allergy is a hypersensitivity reaction triggered by specific cell or antibody-mediated immune mechanisms. Allergies have increased in industrialized countries in recent decades. The rise in allergic respiratory diseases such as allergic rhinitis (AR) and allergic asthma (AA) is a potential threat to public health. Searches were conducted using PubMed, Google Scholar and Medline using the following key terms: allergic rhinitis OR asthma AND probiotics, allergic airway inflammation AND immune disorders, probiotics OR gut microbiota AND allergic disease, probiotics AND inflammatory. Studies from all years were included, specifically those published within the last 10 years. Some review articles and their reference lists were searched to identify related articles. The role of microbiota in respiratory allergic diseases has attracted more and more attention. Pieces of evidence suggested that the development of allergic diseases causes a possible imbalance in the composition of the gut microbiota. Compared to colonized mice, germ-free mice exhibit exaggerated allergic airway responses, suggesting that microbial host interactions play an important role in the development of allergic diseases. Probiotics modulate both the innate and adaptive inflammatory immune responses, often used as dietary supplements to provide health benefits in gastrointestinal disorders. Probiotics may serve as immunomodulators and activators of host defense pathways. Besides, oral probiotics can modulate the immune response in the respiratory system. Recently, studies in humans and animals have demonstrated the role of probiotic in RA and AA. To understand the characterization, microbiota, and the potential role of probiotics intervention of AA/AR, this review provides an overview of clinical features of AA and AR, probiotics for the prevention and treatment of AR, AA, changes in gut microbiota, and their mechanisms of action.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xingzhi Wang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zenghui Jin
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Panpan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hui Su
- Department of Geratology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Baos S, Cremades-Jimeno L, López-Ramos M, de Pedro MÁ, Uriarte SA, Sastre J, González-Mangado N, Rodríguez-Nieto MJ, Peces-Barba G, Cárdaba B. Expression of Macrophage Scavenger Receptor (MSR1) in Peripheral Blood Cells from Patients with Different Respiratory Diseases: Beyond Monocytes. J Clin Med 2022; 11:jcm11051439. [PMID: 35268530 PMCID: PMC8910889 DOI: 10.3390/jcm11051439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Macrophage scavenger receptor 1 (MSR1) has mostly been described in macrophages, but we previously found a significant gene expression increase in peripheral blood mononuclear cells (PBMCs) of asthmatic patients. Objective: To confirm those results and to define its cellular origin in PBMCs. Methods: Four groups of subjects were studied: healthy controls (C), nonallergic asthmatic (NA), allergic asthmatic (AA), and chronic obstructive pulmonary disease (COPD) patients. RNA was extracted from PBMCs. MSR1 gene expression was analyzed by RT-qPCR. The presence of MSR1 on the cellular surface of PBMC cellular subtypes was analyzed by confocal microscopy and flow cytometry. Results: MSR1 gene expression was significantly increased in the three clinical conditions compared to the healthy control group, with substantial variations according to disease type and severity. MSR1 expression on T cells (CD4+ and CD8+), B cells, and monocytes was confirmed by confocal microscopy and flow cytometry. In all clinical groups, the four immune cell subtypes studied expressed MSR1, with a greater expression on B lymphocytes and monocytes, exhibiting differences according to disease and severity. Conclusions: This is the first description of MSR1’s presence on lymphocytes’ surfaces and reinforces the potential role of MSR1 as a player in asthma and COPD.
Collapse
Affiliation(s)
- Selene Baos
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
| | - Lucía Cremades-Jimeno
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
| | - María López-Ramos
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
| | - María Ángeles de Pedro
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
| | - Silvia A. Uriarte
- Allergy Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain; (S.A.U.); (J.S.)
| | - Joaquín Sastre
- Allergy Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain; (S.A.U.); (J.S.)
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
| | - Nicolás González-Mangado
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
- Pulmonology Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - María Jesús Rodríguez-Nieto
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
- Pulmonology Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Germán Peces-Barba
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
- Pulmonology Department, University Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (S.B.); (L.C.-J.); (M.L.-R.); (M.Á.d.P.)
- Ciber de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain; (N.G.-M.); (M.J.R.-N.); (G.P.-B.)
- Correspondence:
| |
Collapse
|
12
|
Moreno-Córdova V, Berra-Romani R, Flores Mendoza LK, Reyes-Leyva J. Th17 Lymphocytes in Children with Asthma: Do They Influence Control? PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2021; 34:147-152. [PMID: 34958246 PMCID: PMC8817680 DOI: 10.1089/ped.2021.0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Background: Allergic asthma was considered as an inflammation mediated by specific CD4+ helper lymphocytes (Th2); however, this paradigm changed in 2005, when a third group of helper cells called Th17 cells were identified. Th17 lymphocytes are the main source of interleukin (IL)-17A-F, IL-21, and IL-22; however, their physiological role in children is unclear. This study aimed to determine the percentage of Th17 cells and IL-17A in pediatric patients diagnosed with asthma and to associate it with disease control using a validated questionnaire. Methods: This cross-sectional, prospective, comparative study included 92 asthma-diagnosed children 4-18 years of age. The Asthma Control Test was used as an assessment measure to classify patients as controlled (n = 30), partially controlled (n = 31), and uncontrolled (n = 31). Th17 cells and IL-17A were analyzed by flow cytometry. Patients receiving inhaled steroid therapy as monotherapy or associated with a long-acting bronchodilator were included. Results: The mean percentage of Th17 cells in the participants was 4.55 ± 7.34 (Controlled), 5.50 ± 8.09 (Partially Controlled), and 6.14 ± 7.11 (Uncontrolled). There was no significant difference between the 3 groups (P = 0.71). The mean percentage of IL-17A in all the participants was 9.84 ± 9.4 (Controlled), 10.10 ± 10.5 (Partially Controlled), and 11.42 ± 8.96 (Uncontrolled); no significant difference between the 3 groups (P = 0.79) was observed. Th17 lymphocyte levels were similar among the 3 groups and the same trend was observed with IL-17A. A significant correlation between Th17 or IL-17A and the degree of asthma control (Th17, P = 0.24; IL-17A, P = 0.23) was not found. Conclusions: The percentages of both Th17 lymphocytes and IL-17A found in children with asthma were not significantly different in the 3 groups, which suggests that they do not play an important role in asthma control. Our findings may contribute to the knowledge related to non-Th2 inflammation in children. Clinical-Trials.gov ID: 2015-2102-85.
Collapse
Affiliation(s)
- Verónica Moreno-Córdova
- Department of Pediatric Pulmonology, Instituto Mexicano del Seguro Social (IMSS) Centro Médico Nacional “Manuel Ávila Camacho” Puebla, Puebla, México
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Lilian K. Flores Mendoza
- Clinical and Research Laboratory (LACIUS, URS), Department of Chemical, Biological, and Agricultural Sciences (DC-QB), Division of Sciences and Engineering, University of Sonora, Navojoa, México
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Puebla, México
| |
Collapse
|
13
|
Ham J, Kim J, Choi S, Park J, Baek MG, Kim YC, Sohn KH, Cho SH, Yang S, Bae YS, Chung DH, Won S, Yi H, Kang HR, Kim HY. Interactions between NCR +ILC3s and the Microbiome in the Airways Shape Asthma Severity. Immune Netw 2021; 21:e25. [PMID: 34522438 PMCID: PMC8410993 DOI: 10.4110/in.2021.21.e25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022] Open
Abstract
Asthma is a heterogeneous disease whose development is shaped by a variety of environmental and genetic factors. While several recent studies suggest that microbial dysbiosis in the gut may promote asthma, little is known about the relationship between the recently discovered lung microbiome and asthma. Innate lymphoid cells (ILCs) have also been shown recently to participate in asthma. To investigate the relationship between the lung microbiome, ILCs, and asthma, we recruited 23 healthy controls (HC), 42 patients with non-severe asthma, and 32 patients with severe asthma. Flow cytometry analysis showed severe asthma associated with fewer natural cytotoxicity receptor (NCR)+ILC3s in the lung. Similar changes in other ILC subsets, macrophages, and monocytes were not observed. The asthma patients did not differ from the HC in terms of the alpha and beta-diversity of the lung and gut microbiomes. However, lung function correlated positively with both NCR+ILC3 frequencies and microbial diversity in the lung. Sputum NCR+ILC3 frequencies correlated positively with lung microbiome diversity in the HC, but this relationship was inversed in severe asthma. Together, these data suggest that airway NCR+ILC3s may contribute to a healthy commensal diversity and normal lung function.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
| | - Sungmi Choi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Jaehyun Park
- Interdisciplinary Program in Bioinformatics, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Min-gyung Baek
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
| | - Young-Chan Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon, Korea
- Center for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Suwon, Korea
| | - Yong-Soo Bae
- Center for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Suwon, Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Doo Hyun Chung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sungho Won
- Department of Public Health Sciences, Seoul National University, Seoul, Korea
- RexSoft Corps, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Hana Yi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Korea
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Korea
| | - Hye Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Korea
- Center for Immune Research on Non-Lymphoid Organ (CIRNO), Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
14
|
Abellard A, Pappalardo AA. Overview of severe asthma, with emphasis on pediatric patients: a review for practitioners. J Investig Med 2021; 69:1297-1309. [PMID: 34168068 DOI: 10.1136/jim-2020-001752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 11/03/2022]
Abstract
Asthma is the most common life-threatening chronic disease in children. Although guidelines exist for the diagnosis and treatment of asthma, treatment of severe, pediatric asthma remains difficult. Limited studies in the pediatric population on new asthma therapies, complex issues with adolescence and adherence, health disparities, and unequal access to guideline-based care complicate the care of children with severe, persistent asthma. The purpose of this review is to provide an overview of asthma, including asthma subtypes, comorbidities, and risk factors, to discuss diagnostic considerations and pitfalls and existing treatments, and then present existing and emerging therapeutic approaches to asthma management. An improved understanding of asthma heterogeneity, clinical characteristics, inflammatory patterns, and pathobiology can help further guide the management of severe asthma in children. More studies are needed in the pediatric population to understand emerging therapeutics application in children. Effective multimodal strategies tailored to individual characteristics and a commitment to address risk factors, modifiers, and health disparities may help reduce the burden of asthma in the USA.
Collapse
Affiliation(s)
- Arabelle Abellard
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Andrea A Pappalardo
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA .,Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. FRONTIERS IN ALLERGY 2021; 1:617240. [PMID: 35386933 PMCID: PMC8974763 DOI: 10.3389/falgy.2020.617240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research of the Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, GA, United States
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Lebessi
- Department of Microbiology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Treating asthma in the age of biologics. JAAPA 2020; 33:48-50. [PMID: 32452963 DOI: 10.1097/01.jaa.0000657220.41861.2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many patients with severe asthma continue to have high symptom burden despite maximization of conventional therapy. As the understanding of asthma pathophysiology has evolved, however, more personalized therapy options have become available. Asthma biologics are a new class of medications that target the specific pathways that underlie a patient's disease and can reduce the frequency of asthma exacerbations and improve patient quality of life. Clinicians should refer potential candidates to a specialist for further evaluation.
Collapse
|
18
|
Ndlovu V, Chimbari MJ, Sibanda E. Assessing the nature of asthma in African epidemiological studies: a scoping review protocol. Syst Rev 2020; 9:230. [PMID: 33028384 PMCID: PMC7539529 DOI: 10.1186/s13643-020-01491-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Asthma is one of the most common chronic respiratory conditions in the world and is increasing in prevalence, particularly in Africa and other low-income countries. The disproportionately high numbers of premature deaths and severe or uncontrolled cases in many African countries are indicative of their inability to cope with a costly disease like asthma. Progress has, however, been made in understanding the complex and heterogeneous nature of the disease. The objective of this study will be to summarise the epidemiological literature on the nature of asthma in African countries. METHODS We registered a study protocol for a scoping review. The review was designed following the Arksey and O'Malley framework. We will search PubMed/MEDLINE, African Journals Online (AJOL) and relevant grey literature (e.g. Google Scholar, EBSCOhost) from January 1990 onwards. Only primary epidemiological studies of asthma (e.g. frequency, disease mechanisms, associated risk factors and comorbidities) written in English and conducted in Africa will be included. Two reviewers will independently screen all citations, full-text articles and abstract data. Potential conflicts will be resolved through discussion. Findings will be reported using narrative synthesis and tabulation of the summaries. DISCUSSION This scoping review will capture the state of the current epidemiological literature on asthma in African countries. Results will be published in a peer-reviewed journal. We anticipate this review will identify gaps and make recommendations for future areas of study. SCOPING REVIEW REGISTRATION Open Science Framework http://osf.io/n2p87/.
Collapse
Affiliation(s)
- Vuyelwa Ndlovu
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
- Department of Environmental Science and Health, Faculty of Applied Sciences, National University of Science and Technology, Corner Gwanda Road and Cecil Avenue, PO Box AC 939, Ascot, Bulawayo, Zimbabwe
| | - Moses John Chimbari
- School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Elopy Sibanda
- Asthma, Allergy and Immune Dysfunction Clinic, Twin Palms Medical Centre, 113 Kwame Nkrumah Avenue, Harare, Zimbabwe
- Department of Pathology, Medical School, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
19
|
Prasad B, Nyenhuis SM, Imayama I, Siddiqi A, Teodorescu M. Asthma and Obstructive Sleep Apnea Overlap: What Has the Evidence Taught Us? Am J Respir Crit Care Med 2020; 201:1345-1357. [PMID: 31841642 DOI: 10.1164/rccm.201810-1838tr] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Obstructive sleep apnea (OSA) and asthma are highly prevalent chronic respiratory disorders. Beyond their frequent coexistence arising from their high prevalence and shared risk factors, these disorders feature a reciprocal interaction whereby each disease impacts the severity of the other. Emerging evidence implicates airway and systemic inflammation, neuroimmune interactions, and effects of asthma-controlling medications (corticosteroids) as factors that predispose patients with asthma to OSA. Conversely, undiagnosed or inadequately treated OSA adversely affects asthma control, partly via effects of intermittent hypoxia on airway inflammation and tissue remodeling. In this article, we review multiple lines of recently published evidence supporting this interaction. We provide a set of recommendations for clinicians involved in the care of adults with asthma, and identify critical gaps in our knowledge about this overlap.
Collapse
Affiliation(s)
- Bharati Prasad
- Jesse Brown VA Medical Center, Chicago, Illinois.,Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sharmilee M Nyenhuis
- Jesse Brown VA Medical Center, Chicago, Illinois.,Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ikuyo Imayama
- Jesse Brown VA Medical Center, Chicago, Illinois.,Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Aminaa Siddiqi
- Allergy and Immunology, Department of Pediatrics, Stanford Medicine, Palo Alto, California
| | - Mihaela Teodorescu
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin; and.,Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
20
|
Galvão AA, de Araújo Sena F, Andrade Belitardo EMMD, de Santana MBR, Costa GNDO, Cruz ÁA, Barreto ML, Costa RDS, Alcantara-Neves NM, Figueiredo CA. Genetic polymorphisms in vitamin D pathway influence 25(OH)D levels and are associated with atopy and asthma. Allergy Asthma Clin Immunol 2020; 16:62. [PMID: 32834827 PMCID: PMC7386242 DOI: 10.1186/s13223-020-00460-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background Vitamin D deficiency or insufficiency, has been associated with atopy and lack of asthma control. Our objective was to investigate associations between variants in genes of vitamin D pathway with serum levels of 25-hydroxyvitamin D (25(OH)D), atopy, asthma and asthma severity in teenagers from Northeast Brazil. Methods This is a cross sectional study nested in a cohort population of asthma. 25(OH)D was quantified from 968 of 11–17 years old individuals by ELISA. Asthma diagnosis was obtained by using the ISAAC Phase III questionnaire. Specific IgE was determined by ImmunoCAP; genotyping was performed using the 2.5 HumanOmni Biochip from Illumina. Statistical analyses were performed in PLINK 1.07 and SPSS 22.1. Results After quality control, 104 Single Nucleotides Variants (SNVs) in vitamin D pathway genes, typed in 792 individuals, were included in the analysis. The allele A of rs10875694 on VDR was positively associated with atopy (OR = 1.35; 95% CI 1.01–1.81). The allele C of rs9279 on VDR, was negatively associated with asthma risk (OR = 0.66; 95% CI 0.45–0.97), vitamin D insufficiency (OR = 0.78; 95% CI 0.70–0.96) and higher VDR expression. Two variants in VDR were associated with asthma severity, the allele A of rs2189480 (OR = 0.34; 95% CI 0.13–0.89) and the allele G of rs4328262 (OR = 3.18; 95% CI 1.09–9.28). The combination of variants in CYP2R1 and CYP24A1 (GAC, to rs10500804, rs12794714 and rs3886163, respectively) was negatively associated with vitamin D production (β = − 1.24; 95% CI − 2.42 to − 0.06). Conclusions Genetic variants in the vitamin D pathway affect vitamin D serum levels and, thus, atopy and asthma.
Collapse
Affiliation(s)
- Alana Alcântara Galvão
- Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.,Programa de Pós Graduação em Imunologia (PPGIm), Bahia, Brazil
| | - Flávia de Araújo Sena
- Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.,Programa de Pós Graduação em Imunologia (PPGIm), Bahia, Brazil
| | | | - Maria Borges Rabelo de Santana
- Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.,Programa de Pós Graduação em Imunologia (PPGIm), Bahia, Brazil
| | - Gustavo Nunes de Oliveira Costa
- Instituto de Saúde Coletiva, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.,Universidade Salvador (UNIFACS), Salvador, Bahia, Brazil
| | - Álvaro Augusto Cruz
- ProAR, Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Maurício Lima Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.,Centro de Integração de dados e Conhecimentos para Saúde(CIDACS), Fiocruz, Bahia Brazil
| | - Ryan Dos Santos Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.,Programa de Pós Graduação em Imunologia (PPGIm), Bahia, Brazil
| | - Neuza Maria Alcantara-Neves
- Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.,Programa de Pós Graduação em Imunologia (PPGIm), Bahia, Brazil
| | - Camila Alexandrina Figueiredo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.,Programa de Pós Graduação em Imunologia (PPGIm), Bahia, Brazil.,Departamento de Ciências da Biorregulação, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Canela, CEP 41110-100 Salvador, BA Brazil
| |
Collapse
|
21
|
Berghi NO, Dumitru M, Vrinceanu D, Ciuluvica RC, Simioniuc-Petrescu A, Caragheorgheopol R, Tucureanu C, Cornateanu RS, Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp Ther Med 2020; 20:2352-2360. [PMID: 32765714 PMCID: PMC7401840 DOI: 10.3892/etm.2020.8961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Allergic diseases have been classified in the last decades using various theories. The main classes of the newest classification in allergic respiratory diseases focus on the characterization of the endotype (which takes into account biomarkers related to determinant pathophysiological mechanisms) and of the phenotype (based on the description of the disease). Th2, Th1 and Th17 lymphocytes and the type of inflammatory response mediated by them represent the basis for Th2 and non-Th2 endotype classification. In addition, new lymphocytes were also used to characterize allergic diseases: Th9 lymphocytes, Th22 lymphocytes, T follicular helper cells (TFH) lymphocytes and invariant natural killer T (iNKT) lymphocytes. In the last decade, a growing body of evidence focused on chemokines, chemoattractant cytokines, which seems to have an important contribution to the pathogenesis of this pathology. This review presents the interactions between chemokines and Th lymphocytes in the context of Th2/non-Th2 endotype classification of respiratory allergies.
Collapse
Affiliation(s)
- Nicolae Ovidiu Berghi
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| | - Mihai Dumitru
- Anatomy Department, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Vrinceanu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | | | - Anca Simioniuc-Petrescu
- ENT Department, 'Carol Davila' University of Medicine and Pharmacy, 010271 Bucharest, Romania
| | - Ramona Caragheorgheopol
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Catalin Tucureanu
- Immunology Laboratory, 'Cantacuzino' National Military-Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Roxana Sfrent Cornateanu
- Department of Physiopathology and Immunology, 'Carol Davila' University of Medicine and Pharmacy, 041914 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, 'Elias' Emergency University Hospital, 'Carol Davila' University of Medicine and Pharmacy, 011461 Bucharest, Romania
| |
Collapse
|
22
|
Herath KHINM, Kim HJ, Kim A, Sook CE, Lee BY, Jee Y. The Role of Fucoidans Isolated from the Sporophylls of Undaria pinnatifida against Particulate-Matter-Induced Allergic Airway Inflammation: Evidence of the Attenuation of Oxidative Stress and Inflammatory Responses. Molecules 2020; 25:E2869. [PMID: 32580518 PMCID: PMC7356913 DOI: 10.3390/molecules25122869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ambient particulate matter (PM) is a critical environment pollutant that promotes the onset and aggravation of respiratory diseases such as asthma through airway inflammation and hypersecretion of mucus. In this study, we aimed to identify the effects of fucoidans isolated from sporophylls of Undaria pinnatifida on asthma symptoms such as the inflammatory response and mucus secretion using a mouse model. Balb/c mice, intraperitoneally sensitized with ovalbumin (OVA, 10 μg) dissolved in 200 µL saline and 2 mg Al(OH)3, were exposed to PM (5 mg/m3) for 7 consecutive days. In parallel, along with PM exposure, we orally administrated fucoidans (100, 400 mg/Kg) or prednisone (5 mg/Kg), an anti-inflammatory drug. We found that oral administration of fucoidans significantly attenuated PM-induced lipid peroxidation and infiltration of inflammatory cells like F4/80+ macrophages, Gr-1+ granulocytes, and CD4+ T lymphocytes. Fucoidans also attenuated the level of PM-exacerbated IL-4, a primitive cytokine released in Th2 mediated eosinophilic asthma. This further suppressed mast cell activation, degranulation and IgE synthesis of PM exposed mice. Interestingly, fucoidans attenuated PM-exacerbated mucus hypersecretion and goblet cell hyperplasia. Therefore, our results suggest that fucoidans are effective at alleviating PM-exacerbated allergic asthma symptoms by attenuating the airway inflammatory response and mucus hypersecretion.
Collapse
Affiliation(s)
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju 63243, Korea;
| | - Areum Kim
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (A.K.)
| | | | - Boo-Yong Lee
- Department of Biomedical Science, CHA University, Seongnam 463-836, Korea;
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (A.K.)
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
23
|
Hough KP, Curtiss ML, Blain TJ, Liu RM, Trevor J, Deshane JS, Thannickal VJ. Airway Remodeling in Asthma. Front Med (Lausanne) 2020; 7:191. [PMID: 32509793 PMCID: PMC7253669 DOI: 10.3389/fmed.2020.00191] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Asthma is an inflammatory disease of the airways that may result from exposure to allergens or other environmental irritants, resulting in bronchoconstriction, wheezing, and shortness of breath. The structural changes of the airways associated with asthma, broadly referred to as airway remodeling, is a pathological feature of chronic asthma that contributes to the clinical manifestations of the disease. Airway remodeling in asthma constitutes cellular and extracellular matrix changes in the large and small airways, epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation. These pathological changes in the airway are orchestrated by crosstalk of different cell types within the airway wall and submucosa. Environmental exposures to dust, chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses that trigger airway remodeling through paracrine signaling and mechanostimulatory cues that drive airway remodeling. In this review, we explore three integrated and dynamic processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the role of inflammaging in the dysregulated and persistent inflammatory response that perpetuates airway remodeling in elderly asthmatics.
Collapse
Affiliation(s)
- Kenneth P Hough
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Miranda L Curtiss
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Trevor J Blain
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rui-Ming Liu
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer Trevor
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jessy S Deshane
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Victor J Thannickal
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Resolving Clinical Phenotypes into Endotypes in Allergy: Molecular and Omics Approaches. Clin Rev Allergy Immunol 2020; 60:200-219. [PMID: 32378146 DOI: 10.1007/s12016-020-08787-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allergic diseases are highly complex with respect to pathogenesis, inflammation, and response to treatment. Current efforts for allergic disease diagnosis have focused on clinical evidence as a binary outcome. Although outcome status based on clinical phenotypes (observable characteristics) is convenient and inexpensive to measure in large studies, it does not adequately provide insight into the complex molecular determinants of allergic disease. Individuals with similar clinical diagnoses do not necessarily have similar disease etiologies, natural histories, or responses to treatment. This heterogeneity contributes to the ineffective response to treatment leading to an annual estimated cost of $350 billion in the USA alone. There has been a recent focus to deconvolute the clinical heterogeneity of allergic diseases into specific endotypes using molecular and omics approaches. Endotypes are a means to classify patients based on the underlying pathophysiological mechanisms involving distinct functions or treatment response. The advent of high-throughput molecular omics, immunophenotyping, and bioinformatics methods including machine learning algorithms is facilitating the development of endotype-based diagnosis. As we move to the next decade, we should truly start treating clinical endotypes not clinical phenotype. This review highlights current efforts taking place to improve allergic disease endotyping via molecular omics profiling, immunophenotyping, and machine learning approaches in the context of precision diagnostics in allergic diseases. Graphical Abstract.
Collapse
|
25
|
Barcik W, Boutin RCT, Sokolowska M, Finlay BB. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity 2020; 52:241-255. [PMID: 32075727 PMCID: PMC7128389 DOI: 10.1016/j.immuni.2020.01.007] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Asthma is a common chronic respiratory disease affecting more than 300 million people worldwide. Clinical features of asthma and its immunological and molecular etiology vary significantly among patients. An understanding of the complexities of asthma has evolved to the point where precision medicine approaches, including microbiome analysis, are being increasingly recognized as an important part of disease management. Lung and gut microbiota play several important roles in the development, regulation, and maintenance of healthy immune responses. Dysbiosis and subsequent dysregulation of microbiota-related immunological processes affect the onset of the disease, its clinical characteristics, and responses to treatment. Bacteria and viruses are the most extensively studied microorganisms relating to asthma pathogenesis, but other microbes, including fungi and even archaea, can potently influence airway inflammation. This review focuses on recently discovered connections between lung and gut microbiota, including bacteria, fungi, viruses, and archaea, and their influence on asthma.
Collapse
Affiliation(s)
- Weronika Barcik
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Rozlyn C T Boutin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Potaczek DP, Miethe S, Schindler V, Alhamdan F, Garn H. Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal 2020; 69:109523. [PMID: 31904412 DOI: 10.1016/j.cellsig.2019.109523] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
The term (bronchial) asthma describes a disorder syndrome that comprises several disease phenotypes, all characterized by chronic inflammation in the bronchial epithelium, with a variety of subsequent functional consequences. Thus, the epithelium in the conducting airways is the main localization of the complex pathological changes in the disease. In this regard, bronchial epithelial cells are not passively affected by inflammatory mechanisms induced by immunological processes but rather actively involved in all steps of disease development from initiation and perpetuation to chronification. In recent years it turned out that bronchial epithelial cells show a high level of structural and functional diversity and plasticity with epigenetic mechanisms playing a crucial role in the regulation of these processes. Thus, it is quite reasonable that differential functional activities of the bronchial epithelium are involved in the development of different asthma phenotypes and/or stages of disease. The current knowledge on this topic will be discussed in this review article.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany; John Paul II Hospital, Krakow, Poland
| | - Sarah Miethe
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Viktoria Schindler
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Fahd Alhamdan
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathobiochemistry - Molecular Diagnostics, Philipps University of Marburg - Medical Faculty, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Marburg, Germany.
| |
Collapse
|
27
|
Lung Microbiome in Asthma: Current Perspectives. J Clin Med 2019; 8:jcm8111967. [PMID: 31739446 PMCID: PMC6912699 DOI: 10.3390/jcm8111967] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022] Open
Abstract
A growing body of evidence implicates the human microbiome as a potentially influential player actively engaged in shaping the pathogenetic processes underlying the endotypes and phenotypes of chronic respiratory diseases, particularly of the airways. In this article, we specifically review current evidence on the characteristics of lung microbiome, and specifically the bacteriome, the modes of interaction between lung microbiota and host immune system, the role of the “lung–gut axis”, and the functional effects thereof on asthma pathogenesis. We also attempt to explore the possibilities of therapeutic manipulation of the microbiome, aiming at the establishment of asthma prevention strategies and the optimization of asthma treatment.
Collapse
|
28
|
Puggioni F, Alves-Correia M, Mohamed MF, Stomeo N, Mager R, Marinoni M, Racca F, Paoletti G, Varricchi G, Giorgis V, Melioli G, Canonica GW, Heffler E. Immunostimulants in respiratory diseases: focus on Pidotimod. Multidiscip Respir Med 2019; 14:31. [PMID: 31700623 PMCID: PMC6827234 DOI: 10.1186/s40248-019-0195-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Usefulness of Pidotimod and its role as immunostimulant, has been discussed, we know, for several decades. Nevertheless, there is still much to know. Understanding its mechanisms and its potential usefulness in airway infections and its prevention, asthma both Th2 and non Th2 type, bronchiectasis, as adjuvant in vaccination and in allergen immunotherapy still remains to clearly unveil. The aim of this paper was to provide a useful updated review of the role of the main available immunostimulants, giving particular focus on Pidotimod use and its potentials utility in respiratory diseases. Pidotimod showed its usefulness in reducing need for antibiotics in airway infections, increasing the level of immunoglobulins (IgA, IgM, IgG) and T-lymphocyte subsets (CD3+, CD4+) endowed with immunomodulatory activity that affect both innate and adaptive immune responses. Higher expression of TLR2 and of HLA-DR molecules, induction of dendritic cell maturation and release of pro-inflammatory molecules, stimulation of T lymphocyte proliferation and differentiation toward a Th1 phenotype, as well as an increase of the phagocytosis have been demonstrated to be associated with Pidotimod in in vitro studies. All these activities are potentially useful for several respiratory conditions such as asthma, COPD, and recurrent respiratory tract infections.
Collapse
Affiliation(s)
- Francesca Puggioni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Magna Alves-Correia
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
- Central Hospital of Funchal, SESARAM, EPE, Madeira, Portugal
| | - Manar-Farouk Mohamed
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
- Ain Shams University, Faculty of Medicine, Cairo, Egypt
| | - Niccolò Stomeo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
| | - Riccardo Mager
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
| | | | - Francesca Racca
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research, University of Naples Federico II, Naples, Italy
| | - Veronica Giorgis
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Giovanni Melioli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| | - Enrico Heffler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI Italy
- Personalized Medicine, Allergy and Asthma - Humanitas Clinical and Research Center – IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, MI Italy
| |
Collapse
|
29
|
Asthma from immune pathogenesis to precision medicine. Semin Immunol 2019; 46:101294. [PMID: 31387788 DOI: 10.1016/j.smim.2019.101294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
Abstract
Asthma is characterized by multiple immunological mechanisms (endotypes) determining variable clinical presentations (phenotypes). The identification of endotypic mechanisms is crucial to better characterize patients and to identify tailored therapeutic approaches with novel biological agents targeting specific immunological pathways. This review focused on summarizing the major immunological mechanisms involved in the pathogenesis of asthma, as well as on discussing the emergence of phenotypic features of the disease. Novel biological agents and other drugs targeting specific endotypes are discussed, as their use represent a precision medicine approach to the disease that is nowadays mandatory particularly for treating more severe patients.
Collapse
|
30
|
Lee E, Hong SJ. Phenotypes of allergic diseases in children and their application in clinical situations. KOREAN JOURNAL OF PEDIATRICS 2019; 62:325-333. [PMID: 31096745 PMCID: PMC6753312 DOI: 10.3345/kjp.2018.07395] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/18/2019] [Indexed: 12/25/2022]
Abstract
Allergic diseases, including allergic rhinitis, asthma, and atopic dermatitis, are common heterogeneous diseases that encompass diverse phenotypes and different pathogeneses. Phenotype studies of allergic diseases can facilitate the identification of risk factors and their underlying pathophysiology, resulting in the application of more effective treatment, selection of better treatment responses, and prediction of prognosis for each phenotype. In the early phase of phenotype studies in allergic diseases, artificial classifications were usually performed based on clinical features, such as triggering factors or the presence of atopy, which can result in the biased classification of phenotypes and limit the characterization of heterogeneous allergic diseases. Subsequent phenotype studies have suggested more diverse phenotypes for each allergic disease using relatively unbiased statistical methods, such as cluster analysis or latent class analysis. The classifications of phenotypes in allergic diseases may overlap or be unstable over time due to their complex interactions with genetic and encountered environmental factors during the illness, which may affect the disease course and pathophysiology. In this review, diverse phenotype classifications of allergic diseases, including atopic dermatitis, asthma, and wheezing in children, allergic rhinitis, and atopy, are described. The review also discusses the applications of the results obtained from phenotype studies performed in other countries to Korean children. Consideration of changes in the characteristics of each phenotype over time in an individual’s lifespan is needed in future studies.
Collapse
Affiliation(s)
- Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol 2019; 18:96-108. [PMID: 29389730 DOI: 10.1097/aci.0000000000000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or monitor treatment response. However, the newly identified as well as more established biomarkers have different applications and limitations. RECENT FINDINGS Conventional markers for type 2-high asthma, such as blood eosinophils, fraction of exhaled nitric oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant correlations. More distinctive models have been developed by combining biomarkers and/or using omics techniques. Recently, a model with a positive predictive value of 100% for identification of type 2-high asthma based on a combination of minimally invasive biomarkers was developed. SUMMARY Individualisation of asthma treatment regimens on the basis of biomarkers is necessary to improve asthma control. However, the suboptimal properties of currently available conventional biomarkers limit its clinical utility. Newly identified biomarkers and models based on combinations and/or omics analysis must be validated and standardised before they can be routinely applied in clinical practice. The development of robust biomarkers will allow development of more efficacious precision medicine-based treatment approaches for asthma.
Collapse
|
32
|
Ciprandi G, Silvestri M, Pistorio A, Tosca MA, Cirillo I. Clustering analysis in outpatients with allergic rhinitis in clinical practice. Allergy 2019; 74:607-610. [PMID: 30362571 DOI: 10.1111/all.13645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Michela Silvestri
- Paediatric Pulmonology; IRCCS Istituto Giannina Gaslini; Genoa Italy
| | - Angela Pistorio
- Epidemiology and Biostatistics Service; IRCCS Istituto Giannina Gaslini; Genoa Italy
| | | | | |
Collapse
|
33
|
Pezzulo AA, Tudas RA, Stewart CG, Buonfiglio LGV, Lindsay BD, Taft PJ, Gansemer ND, Zabner J. HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia. J Clin Invest 2019; 129:744-758. [PMID: 30640172 PMCID: PMC6355221 DOI: 10.1172/jci123524] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/20/2018] [Indexed: 12/29/2022] Open
Abstract
Goblet cell metaplasia, a disabling hallmark of chronic lung disease, lacks curative treatments at present. To identify novel therapeutic targets for goblet cell metaplasia, we studied the transcriptional response profile of IL-13-exposed primary human airway epithelia in vitro and asthmatic airway epithelia in vivo. A perturbation-response profile connectivity approach identified geldanamycin, an inhibitor of heat shock protein 90 (HSP90) as a candidate therapeutic target. Our experiments confirmed that geldanamycin and other HSP90 inhibitors prevented IL-13-induced goblet cell metaplasia in vitro and in vivo. Geldanamycin also reverted established goblet cell metaplasia. Geldanamycin did not induce goblet cell death, nor did it solely block mucin synthesis or IL-13 receptor-proximal signaling. Geldanamycin affected the transcriptome of airway cells when exposed to IL-13, but not when exposed to vehicle. We hypothesized that the mechanism of action probably involves TGF-β, ERBB, or EHF, which would predict that geldanamycin would also revert IL-17-induced goblet cell metaplasia, a prediction confirmed by our experiments. Our findings suggest that persistent airway goblet cell metaplasia requires HSP90 activity and that HSP90 inhibitors will revert goblet cell metaplasia, despite active upstream inflammatory signaling. Moreover, HSP90 inhibitors may be a therapeutic option for airway diseases with goblet cell metaplasia of unknown mechanism.
Collapse
Affiliation(s)
- Alejandro A. Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rosarie A. Tudas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Carley G. Stewart
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | | | - Brian D. Lindsay
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
| | - Peter J. Taft
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas D. Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, and
- Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
34
|
de Abreu FC, da Silva Júnior JLR, Rabahi MF. The Fraction Exhaled Nitric Oxide as a Biomarker of Asthma Control. Biomark Insights 2019; 14:1177271919826550. [PMID: 30728712 PMCID: PMC6357290 DOI: 10.1177/1177271919826550] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 12/28/2018] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION AND OBJECTIVE The main goal of asthma treatment is to achieve and maintain clinical control of the disease. The exhaled fraction nitric oxide (FeNO) level is a biomarker of T-helper cell type 2 (Th2) inflammation of the airways. Our objective was to determine whether the FeNO level can be used to discriminate between patients with controlled, partially controlled, and uncontrolled asthma. MATERIALS AND METHODS The FeNO level and asthma control were evaluated in a retrospective and analytic cross-sectional study through data collected from asthmatic patients who were assessed by clinical history, asthma control, physical examination, spirometry, and FeNO level. Asthma control was determined by the criteria of the Global Initiative for Asthma and classified as controlled asthma, partially controlled asthma, and uncontrolled asthma. The FeNO values were classified as low (<25 ppb) or intermediate/high (⩾25 ppb) based on the American Thoracic Society recommendations. RESULTS The symptoms of 81 asthmatic patients were classified as controlled (34 [42%] patients), partially controlled (27 [33.3%] patients), and uncontrolled (20 [24.7%] patients). The FeNO level discriminated between the uncontrolled and controlled groups (P = .01) and between the uncontrolled and partially controlled groups (P = .01), but not between the controlled and partially controlled groups (P = .98). An FeNO level >30 ppb was associated with uncontrolled asthma (P = .0001) with an area under the receiver operating characteristic curve of 0.78 (95% confidence interval = 0.65-0.89). CONCLUSIONS FeNO level could be helpful in determining asthma control as >30 ppb was associated with uncontrolled asthma.
Collapse
|
35
|
Menzella F, Bertolini F, Biava M, Galeone C, Scelfo C, Caminati M. Severe refractory asthma: current treatment options and ongoing research. Drugs Context 2018; 7:212561. [PMID: 30534175 PMCID: PMC6284776 DOI: 10.7573/dic.212561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023] Open
Abstract
Patients with severe asthma have a greater risk of asthma-related symptoms, morbidities, and exacerbations. Moreover, healthcare costs of patients with severe refractory asthma are at least 80% higher than those with stable asthma, mainly because of a higher use of healthcare resources and chronic side effects of oral corticosteroids (OCS). The advent of new promising biologicals provides a unique therapeutic option that could achieve asthma control without OCS. However, the increasing number of available molecules poses a new challenge: the identification and selection of the most appropriate treatment. Thanks to a better understanding of the basic mechanisms of the disease and the use of predictive biomarkers, especially regarding the Th2-high endotype, it is now easier than before to tailor therapy and guide clinicians toward the most suitable therapeutic choice, thus reducing the number of uncontrolled patients and therapeutic failures. In this review, we will discuss the different biological options available for the treatment of severe refractory asthma, their mechanism of action, and the overlapping aspects of their usage in clinical practice. The availability of new molecules, specific for different molecular targets, is a key topic, especially when considering that the same targets are sometimes part of the same phenotype. The aim of this review is to help clarify these doubts, which may facilitate the clinical decision-making process and the achievement of the best possible outcomes.
Collapse
Affiliation(s)
- Francesco Menzella
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia, IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Francesca Bertolini
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Mirella Biava
- National Institute for Infectious Diseases 'L. Spallanzani', IRCCS, Via Portuense 292, 00149 Rome, Italy
| | - Carla Galeone
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia, IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Chiara Scelfo
- Department of Medical Specialties, Pneumology Unit, Arcispedale Santa Maria Nuova, Azienda USL di Reggio Emilia, IRCCS, Viale Amendola 2, 42122 Reggio Emilia, Italy
| | - Marco Caminati
- Asthma Center and Allergy Unit, Verona University Hospital, Piazzale L.A. Scuro, 37134 Verona, Italy
| |
Collapse
|
36
|
Menzies-Gow A, Canonica GW, Winders TA, Correia de Sousa J, Upham JW, Fink-Wagner AH. A Charter to Improve Patient Care in Severe Asthma. Adv Ther 2018; 35:1485-1496. [PMID: 30182174 PMCID: PMC6182619 DOI: 10.1007/s12325-018-0777-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 12/16/2022]
Abstract
Severe asthma is a subtype of asthma that is difficult to treat and control. By conservative estimates, severe asthma affects approximately 5-10% of patients with asthma worldwide. Severe asthma impairs patients' health-related quality of life, and patients are at risk of life-threatening asthma attacks. Severe asthma also accounts for the majority of health care expenditures associated with asthma. Guidelines recommend that patients with severe asthma be referred to a specialist respiratory team for correct diagnosis and expert management. This is particularly important to ensure that they have access to newly available biologic treatments. However, many patients with severe asthma can suffer multiple asthma attacks and wait several years before they are referred for specialist care. As global patient advocates, we believe it is essential to raise awareness and understanding for patients, caregivers, health care professionals, and the public about the substantial impact of severe asthma and to create opportunities for improving patient care. Patients should be empowered to live a life free of symptoms and the adverse effects of traditional medications (e.g., oral corticosteroids), reducing hospital visits and emergency care, the loss of school and work days, and the constraints placed on their daily lives. Here we provide a Patient Charter for severe asthma, consisting of six core principles, to mobilize national governments, health care providers, payer policymakers, lung health industry partners, and patients/caregivers to address the unmet need and burden in severe asthma and ultimately work together to deliver meaningful improvements in care. FUNDING AstraZeneca.
Collapse
Affiliation(s)
| | - G-Walter Canonica
- Personalized Medicine Asthma and Allergy Center, Humanitas University and Research Hospital, Milan, Italy
| | - Tonya A Winders
- Allergy & Asthma Network / Global Allergy & Asthma Patient Platform (GAAPP), Vienna, VA, USA
| | - Jaime Correia de Sousa
- School of Medicine, ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute, University of Minho, Braga, Portugal
| | - John W Upham
- Diamantina Institute, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
37
|
Ferrando M, Bagnasco D, Heffler E, Paoletti G, Passalacqua G, Puggioni F, Canonica GW. Personalizing the approach to asthma treatment. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1517024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Matteo Ferrando
- Allergy & Respiratory Diseases, IRCCS Policlinico San Martino Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Diego Bagnasco
- Allergy & Respiratory Diseases, IRCCS Policlinico San Martino Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Enrico Heffler
- Personalized Medicine, Asthma and Allergy Clinic, Humanitas Research Hospital, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Giovanni Paoletti
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
- Department of Medical Sciences “M. Aresu”, Allergy and Clinical Immunology Unit, University of Cagliari, Cagliari, Italy
| | - Giovanni Passalacqua
- Allergy & Respiratory Diseases, IRCCS Policlinico San Martino Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Francesca Puggioni
- Personalized Medicine, Asthma and Allergy Clinic, Humanitas Research Hospital, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy Clinic, Humanitas Research Hospital, Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Milano, Italy
| |
Collapse
|
38
|
Oppenheimer JJ, Marshall GD. Increasing our knowledge base of asthma. Ann Allergy Asthma Immunol 2018; 119:476-479. [PMID: 29223297 DOI: 10.1016/j.anai.2017.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Affiliation(s)
- John J Oppenheimer
- Division of Allergy Immunology, Rutgers-UMDNJ and Pulmonary and Allergy Associates, Summit, New Jersey.
| | | |
Collapse
|
39
|
Ciprandi G, Silvestri M, Pistorio A, Ricciardolo FLM. Clustering analysis in asthmatic outpatients: An experience in clinical practice. J Asthma 2018; 56:475-477. [PMID: 29663825 DOI: 10.1080/02770903.2018.1466318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Giorgio Ciprandi
- a Department of Internal Medicine , Ospedale Policlinico San Martino , Genoa , Italy
| | - Michela Silvestri
- b Department of Pediatrics, Pneumology and Allergy , IRCCS Istituto Giannina Gaslini , Genoa , Italy
| | - Angela Pistorio
- c Department of Scientific Direction, Epidemiology and Biostatistics Service IRCCS Istituto Giannina Gaslini , Genoa , Italy Pediatric
| | - Fabio Luigi Massimo Ricciardolo
- d A. O. U. San Luigi Hospital, Orbassano (Torino), Department of Clinical and Biological Sciences , University of Torino , Turin , Italy
| |
Collapse
|
40
|
Abstract
Electronic cigarettes (ECs) have been growing rapidly in popularity among youth and adults in the United States over the last decade. This increasing prevalence is driven partially by the ability to customize devices, flavors, and nicotine content and the general notion that ECs are harmless, particularly in comparison with conventional cigarettes. In vitro and in vivo murine models have demonstrated a number of harmful biological effects of e-liquids and their aerosols. However, limited clinical data exist on whether these effects translate into detrimental long-term outcomes in human subjects. The short-term harmful respiratory effects of EC use demonstrated in nonsmokers argue against their use. However, slightly more favorable data exist for the respiratory benefits of substituting conventional cigarettes with ECs and the short-term efficacy of ECs as smoking cessation tools. Nonetheless, available research is severely limited in regard to long-term outcomes and by study designs fraught with bias, pointing to the need for additional research efforts with well-designed longitudinal studies to guide US Food and Drug Administration regulatory efforts. The hurdle presented by diverse device designs and e-liquid permutations, which contribute to the inconsistency of available data, also highlights the need for legislative standardization of ECs.
Collapse
Affiliation(s)
- Amika K Sood
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Matthew J Kesic
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michelle L Hernandez
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
41
|
Marshall G. Thymosin-induced immunoregulation: clinical potentials for allergy and asthma endotypes. Expert Opin Biol Ther 2018; 18:95-97. [PMID: 29474790 DOI: 10.1080/14712598.2018.1445716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Gailen Marshall
- a Pediatrics and Pathology, Division of Clinical Immunology and Allergy, Department of Medicine , The University of Mississippi Medical Center , Jackson , MS USA
| |
Collapse
|
42
|
Colodenco D, Palomares O, Celis C, Kaplan A, Domingo C. Moving toward consensus on diagnosis and management of severe asthma in adults. Curr Med Res Opin 2018; 34:387-399. [PMID: 28906154 DOI: 10.1080/03007995.2017.1380617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Asthma is a considerable health problem with an increasing global prevalence. The burden of severe asthma is expected to notably increase in the following years. Some misleading concepts that sometimes appear in the literature can drive the physician responsible for a patient's management to make incorrect decisions. Furthermore, some of the concepts that appear in the literature and in the guidelines may not be clear to understand, follow or adapt to regional and local realities. This could again drive the physicians responsible for a patient's management to make incorrect clinical judgments. In this article, we review the definition, prevalence and immunopathology of severe asthma, describe the asthma phenotypes, clinical features and comorbidities, the diagnosis of severe asthma and personalized asthma treatment. At the end, we offer a treatment approach based on literature publications, personalized medicine and marketed biologic treatment options.
Collapse
Affiliation(s)
- Daniel Colodenco
- a Pulmonology , Hospital De Rehabilitación Respiratoria María Ferrer , Buenos Aires , Argentina
| | - Oscar Palomares
- b Department of Biochemistry and Molecular Biology , School of Chemistry, Complutense University of Madrid , Madrid , Spain
| | - Carlos Celis
- c Pulmonary Unit, Internal Medicine Department , Hospital Universitario San Ignacio , Bogota , Colombia
| | - Alan Kaplan
- d University of Toronto , Thornhill , Ontario , Canada
| | - Christian Domingo
- e Servei de Pneumologia , Corporació Sanitària Parc Taulí , Barcelona , Spain
- f Department of Medicine , Universitat Autònoma de Barcelona (UAB) , Barcelona , Spain
| |
Collapse
|
43
|
Ciprandi G, Gallo F, Cirillo I. The impact of allergy on asthma in the clinical practice. ALLERGO JOURNAL INTERNATIONAL 2018; 27:66-67. [DOI: 10.1007/s40629-017-0043-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
|
44
|
Desai M, Oppenheimer J, Tashkin DP. Asthma-chronic obstructive pulmonary disease overlap syndrome: What we know and what we need to find out. Ann Allergy Asthma Immunol 2017; 118:241-245. [PMID: 28284529 DOI: 10.1016/j.anai.2016.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Mauli Desai
- Department of Medicine, Division of Allergy & Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - John Oppenheimer
- University of Medicine and Dentistry of New Jersey, Rutgers University, New Brunswick, New Jersey; Pulmonary and Allergy Associates, Summit, New Jersey
| | - Donald P Tashkin
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
45
|
Marshall GD, Bielory L, Walter Canonica G, Desai M, Ellis AK, Hsieh FH, Grayson MH, Greenhawt M, Lieberman JA, Montanaro A, Oppenheimer J. The year in review: The best of 2016 in the Annals. Ann Allergy Asthma Immunol 2017; 118:4-9. [PMID: 28007087 DOI: 10.1016/j.anai.2016.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Small DM, Doherty DF, Dougan CM, Weldon S, Taggart CC. The role of whey acidic protein four-disulfide-core proteins in respiratory health and disease. Biol Chem 2017; 398:425-440. [PMID: 27930359 DOI: 10.1515/hsz-2016-0262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022]
Abstract
Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.
Collapse
|
47
|
Máspero J. Reslizumab in the treatment of inadequately controlled asthma in adults and adolescents with elevated blood eosinophils: clinical trial evidence and future prospects. Ther Adv Respir Dis 2017; 11:311-325. [PMID: 28683596 PMCID: PMC5933654 DOI: 10.1177/1753465817717134] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
Eosinophils have long been implicated as playing a central role in the pathophysiology of asthma in many patients, and eosinophilic asthma is now recognized as an important asthma endotype. Eosinophil differentiation, maturation, migration, and survival are primarily under the control of interleukin-5 (IL-5). Reslizumab is a humanized monoclonal (immunoglobulin G4/κ) antibody that binds with high affinity to circulating human IL-5 and downregulates the IL-5 signaling pathway, potentially disrupting the maturation and survival of eosinophils. In 2016, an intravenous formulation of reslizumab was approved in the USA, Canada, and Europe as add-on maintenance treatment for patients aged ⩾18 years with severe asthma and with an eosinophilic phenotype. The efficacy of reslizumab as add-on intravenous therapy has been reported in several phase III studies in patients with inadequately controlled moderate-to-severe asthma and elevated blood eosinophil counts (⩾400 cells/µl). Compared with placebo, reslizumab was associated with significant improvements in clinical exacerbation rate, forced expiratory volume in 1 s, asthma symptoms and quality of life, and significant reductions in blood eosinophil counts. Reslizumab also demonstrated a favorable tolerability profile similar to that of placebo, with reported adverse events being mostly mild to moderate in severity. Ongoing studies are focusing on the evaluation of a subcutaneous formulation of reslizumab in patients with asthma and elevated eosinophil levels. This review discusses the preclinical and clinical trial data available on reslizumab, potential opportunities for predicting an early response to reslizumab, and future directions in the field of anti-IL-5 antibody therapy.
Collapse
Affiliation(s)
- Jorge Máspero
- Fundación Cidea Allergy and Respiratory Research
Unit, Paraguay 2035, 2*SS, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
48
|
Owens RL, Macrea MM, Teodorescu M. The overlaps of asthma or COPD with OSA: A focused review. Respirology 2017; 22:1073-1083. [PMID: 28677827 DOI: 10.1111/resp.13107] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 01/06/2023]
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea (OSA) are the most common respiratory disorders worldwide. Given demographic and environmental changes, prevalence for each is likely to increase. Although exact numbers are not known, based on chance alone, many people will be affected by both lower airways obstruction and concomitant upper airway obstruction during sleep. Some recent studies suggest that there is a reciprocal interaction, with chronic lung disease predisposing to OSA, and OSA worsening control and outcomes from chronic lung disease. Thus, the combination of wake and sleep respiratory disorders can create an overlap syndrome with unique pathophysiological, diagnostic and therapeutic concerns. Although much work needs to be done, given the above, Respirologists, Sleep Medicine and Primary Care providers must be vigilant for overlap syndromes. Accurate diagnosis of, for example, OSA as a cause of nocturnal symptoms in a patient with asthma is likely to limit further ineffective titration of medications for asthma. Moreover, prompt treatment of OSA in the overlap syndromes will not only offer symptomatic benefit of OSA, but also improve symptoms and healthcare resource utilization attributable to obstructive lung disease, and in COPD, it may reduce mortality.
Collapse
Affiliation(s)
- Robert L Owens
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California, USA
| | - Madalina M Macrea
- Division of Pulmonary, Critical Care and Sleep Medicine, Salem Veterans Affairs Medical Center, Salem, Virginia, USA
| | - Mihaela Teodorescu
- Division of Allergy, Pulmonary and Critical Care Medicine, James B. Skatrud Pulmonary/Sleep Research Laboratory, William S. Middleton Memorial Veteran's Hospital, Madison, Wisconsin, USA.,Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
49
|
Ciprandi G, Tosca MA, Silvestri M, Ricciardolo FLM. Inflammatory biomarkers for asthma endotyping and consequent personalized therapy. Expert Rev Clin Immunol 2017; 13:715-721. [PMID: 28347164 DOI: 10.1080/1744666x.2017.1313117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION We argue that asthma be considered a syndrome caused by multiple inflammatory pathogenic processes. Bronchial hyperresponsiveness, reversible airflow limitation, and chronic airway inflammation characterize asthma pathophysiology. Personalized Medicine, i.e. a tailored management approach, is appropriate for asthma management and is based on the identification of discrete phenotypes and endotypes. Biomarkers can help define phenotypes and endotypes. Several biomarkers have been described in asthma, but most of them are not commonly available or still need external validation. Areas covered: This review presents useful pragmatic biomarkers available in daily clinical practice for assessing airway inflammation in asthmatic patients. Expert commentary: Eosinophil counts and serum allergen-specific IgE assessments are the most reliable biomarkers. Lung function, mainly concerning FEF25-75, and nasal cytology may be envisaged as ancillary biomarkers in asthma management. In conclusion, biomarkers have a clinical relevance in asthma in identifying asthma endotypes to direct personalized therapy.
Collapse
Affiliation(s)
- Giorgio Ciprandi
- a Respiratory Allergy, Department of Medicine , IRCCS - Azienda Ospedaliera Universitaria San Martino-IST , Genoa , Italy
| | - Maria Angela Tosca
- b Pediatric Pneumology and Allergy Unit and Cystic Fibrosis Center , IRCCS Istituto Giannina Gaslini , Genoa , Italy
| | - Michela Silvestri
- b Pediatric Pneumology and Allergy Unit and Cystic Fibrosis Center , IRCCS Istituto Giannina Gaslini , Genoa , Italy
| | | |
Collapse
|
50
|
IgE-Related Chronic Diseases and Anti-IgE-Based Treatments. J Immunol Res 2016; 2016:8163803. [PMID: 28097159 PMCID: PMC5209625 DOI: 10.1155/2016/8163803] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/02/2016] [Indexed: 12/23/2022] Open
Abstract
IgE is an immunoglobulin that plays a central role in acute allergic reactions and chronic inflammatory allergic diseases. The development of a drug able to neutralize this antibody represents a breakthrough in the treatment of inflammatory pathologies with a probable allergic basis. This review focuses on IgE-related chronic diseases, such as allergic asthma and chronic urticaria (CU), and on the role of the anti-IgE monoclonal antibody, omalizumab, in their treatment. We also assess the off-label use of omalizumab for other pathologies associated with IgE and report the latest findings concerning this drug and other new related drugs. To date, omalizumab has only been approved for severe allergic asthma and unresponsive chronic urticaria treatments. In allergic asthma, omalizumab has demonstrated its efficacy in reducing the dose of inhaled corticosteroids required by patients, decreasing the number of asthma exacerbations, and limiting the effect on airway remodeling. In CU, omalizumab treatment rapidly improves symptoms and in some cases achieves complete disease remission. In systemic mastocytosis, omalizumab also improves symptoms and its prophylactic use to prevent anaphylactic reactions has also been discussed. In other pathologies such as atopic dermatitis, food allergy, allergic rhinitis, nasal polyposis, and keratoconjunctivitis, omalizumab significantly improves clinical manifestations. Omalizumab acts in two ways: by sequestering free IgE and by accelerating the dissociation of the IgE-Fcε receptor I complex.
Collapse
|