1
|
Tüsüz Önata E, Özdemir Ö. Fecal microbiota transplantation in allergic diseases. World J Methodol 2025; 15:101430. [DOI: 10.5662/wjm.v15.i2.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
Microorganisms such as bacteria, fungi, viruses, parasites living in the human intestine constitute the human intestinal microbiota. Dysbiosis refers to compositional and quantitative changes that negatively affect healthy gut microbiota. In recent years, with the demonstration that many diseases are associated with dysbiosis, treatment strategies targeting the correction of dysbiosis in the treatment of these diseases have begun to be investigated. Faecal microbiota transplantation (FMT) is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit. FMT studies have gained popularity after probiotic, prebiotic, symbiotic studies in the treatment of dysbiosis and related diseases. FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance (T helper 1/T helper 2 cells) and thus suppression of allergic responses. In this article, the definition, application, safety and use of FMT in allergic diseases will be discussed with current data.
Collapse
Affiliation(s)
- Ece Tüsüz Önata
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| |
Collapse
|
2
|
Molatefi R, Fouladi N, Asghariazar V, Samemaleki S, Golizadeh M, Khoshlega S, Safarzadeh E. The evaluation of the serum levels of vitamin D and interleukin-33 in children with atopic dermatitis and its association with diseases severity. Arch Dermatol Res 2025; 317:182. [PMID: 39775933 DOI: 10.1007/s00403-024-03709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory disease characterized by increased skin sensitivity to environmental elements, mediated by CD4+ T helper cells (Th2). Interleukin-33 (IL-33) plays a critical role in exacerbating symptoms in inflamed tissues. Conversely, vitamin D has been shown to induce antimicrobial peptides and suppress the inflammatory response. Therefore, the purpose of this study was to investigate the correlation between serum levels of vitamin D and IL-33 in children with Atopic dermatitis. METHODS Blood samples were collected from 51 patients with Atopic dermatitis and 20 healthy control cases. After counting the blood cells, serum was isolated by centrifugation, and the levels of IL-33, Immunoglobulin E (IgE), and vitamin D were measured using ELISA. Statistical analysis of the collected data was performed using SPSS version 26 software. RESULTS Our findings revealed significant differences in the levels of IL- 33 (p value < 0.001), IgE (p value 0.005), and blood cell parameters including Hemoglobin (HGB) (p value < 0.001), Hematocrit (HCT) (p value < 0.001), Mean Corpuscular Hemoglobin (MCH) (p value 0.001), Mean Corpuscular Hemoglobin Concentration (MCHC) (p value < 0.001), lymphocyte count (p value 0.02), and monocyte count (p value < 0.001) in AD patients compared to the control group. Additionally, there was a significant correlation between IL-33, and vitamin D serum levels in AD patients (p value 0.03). CONCLUSION The current study has revealed a significant difference in the serum levels of IL-33 and IgE between AD patients and healthy individuals. This suggests a potential role for these variables in the pathophysiology of AD disease.
Collapse
Affiliation(s)
- Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pediatrics, Iran3. School of Medicine and Allied Medical Sciences, Bo-Ali Children's Hospital of Ardabil University of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasrin Fouladi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sahar Samemaleki
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Golizadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sepehr Khoshlega
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
3
|
Kim AR, Kim MJ, Seo J, Moon KM, Lee B. The Beneficial Roles of Seaweed in Atopic Dermatitis. Mar Drugs 2024; 22:566. [PMID: 39728140 DOI: 10.3390/md22120566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory skin condition characterized by severe pruritus and recurrent flare-ups, significantly impacting patients' quality of life. Current treatments, such as corticosteroids and immunomodulators, often provide symptomatic relief but can lead to adverse effects with prolonged use. Seaweed, a sustainable and nutrient-dense resource, has emerged as a promising alternative due to its rich bioactive compounds-polysaccharides, phlorotannins, polyphenols, and chlorophyll-that offer anti-inflammatory, antioxidant, and immunomodulatory properties. This review explores the therapeutic potential of brown, red, and green algae in alleviating AD symptoms, highlighting the effects of specific species, including Undaria pinnatifida, Laminaria japonica, Chlorella vulgaris, and Sargassum horneri. These seaweeds modulate immune responses, reduce epidermal thickness, and restore skin barrier function, presenting a novel, safe, and effective approach to AD management. Further clinical studies are needed to confirm their efficacy and establish dosing strategies, paving the way for seaweed-derived therapies as natural alternatives in AD treatment.
Collapse
Affiliation(s)
- Ah-Reum Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Myeong-Jin Kim
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Jaeseong Seo
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Bonggi Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Nene S, Devabattula G, Vambhurkar G, Tryphena KP, Khatri DK, Godugu C, Singh PK, Srivastava S. Topical delivery of baricitinib-impregnated nanoemulgel: a promising platform for inhibition of JAK -STAT pathway for the effective management of atopic dermatitis. Drug Deliv Transl Res 2024:10.1007/s13346-024-01732-5. [PMID: 39467941 DOI: 10.1007/s13346-024-01732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Baricitinib, an inhibitor of Janus kinase 1/2 receptors majorly involved in the dysregulation of immune responses in atopic dermatitis, is currently approved for managing atopic dermatitis in Europe. The delivery of baricitinib through oral route is associated to several adverse effects due to off-target effects. Therefore, the current study is aimed at formulation of baricitinib loaded nanoemulgel for evaluation of topical delivery potential in the treatment of atopic dermatitis. The baricitinib-loaded nanoemulsions (0.05 and 0.1% w/w) revealed an average globule size of 162.86 ± 0.37 and 173.66 ± 4.88 nm respectively with narrow PDI. The optimized batch of baricitinib nanoemulsion was converted to nanoemulgel by the addition of the mixture of gel bases SEPINEO™ DERM and SEPINEO™ P 600 along with propylene glycol, resulting in pseudoplastic shear thinning behaviour. The optimized nanoemulgels have shown prominent retention of baricitinib in the skin along with permeation. The skin distribution study of coumarin-6 loaded nanoemulgel demonstrated high fluorescence in the epidermal layer. The western blot analysis revealed significant inhibition of phosphorylated signal transducers and activators of transcriptions 1 (##p < 0.01) and 3 (#p < 0.05) by application of 0.05 and 0.1% baricitinib nanoemulgel. The baricitinib nanoemulgels have shown anti-inflammatory activity by significantly reducing expressions of various inflammatory markers. Histopathological analysis of skin tissues treated with baricitinib nanoemulgel has demonstrated a marked reduction in acanthosis, hyperkeratosis, and intact outer epidermis. These results supported the potential role of baricitinib-loaded nanoemulgel in reducing the inflammation and disease severity associated with atopic dermatitis.
Collapse
Affiliation(s)
- Shweta Nene
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Geetanjali Devabattula
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamatham Pushpa Tryphena
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj Kumar Singh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
5
|
Kalashnikova IG, Nekrasova AI, Korobeynikova AV, Bobrova MM, Ashniev GA, Bakoev SY, Zagainova AV, Lukashina MV, Tolkacheva LR, Petryaikina ES, Nekrasov AS, Mitrofanov SI, Shpakova TA, Frolova LV, Bulanova NV, Snigir EA, Mukhin VE, Yudin VS, Makarov VV, Keskinov AA, Yudin SM. The Association between Gut Microbiota and Serum Biomarkers in Children with Atopic Dermatitis. Biomedicines 2024; 12:2351. [PMID: 39457662 PMCID: PMC11505256 DOI: 10.3390/biomedicines12102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy. However, it remains unclear how the bacterial imbalance disrupts the function of the immune response in AD. Objectives. We attempted to determine the role of gut bacteria in modulating cytokine pathways and their role in atopic inflammation. Methods. We sequenced the 16S rRNA gene from 50 stool samples of children aged 3-12 years who had confirmed atopic dermatitis, and 50 samples from healthy children to serve as a control group. To evaluate the immune status, we conducted a multiplex immunofluorescence assay and measured the levels of 41 cytokines and chemokines in the serum of all participants. Results. To find out whether changes in the composition of the gut microbiota were significantly associated with changes in the level of inflammatory cytokines, a correlation was calculated between each pair of bacterial family and cytokine. In the AD group, 191 correlations were significant (Spearman's correlation coefficient, p ≤ 0.05), 85 of which were positive and 106 which were negative. Conclusions. It has been demonstrated that intestinal dysbiosis is associated with alterations in cytokine profiles, specifically an increase in proinflammatory cytokine concentrations. This may indicate a systemic impact of these conditions, leading to an imbalance in the immune system's response to the Th2 type. As a result, atopic conditions may develop. Additionally, a correlation between known AD biomarkers (IL-5, IL-8, IL-13, CCL22, IFN-γ, TNF-α) and alterations in the abundance of bacterial families (Pasteurellaceae, Barnesiellaceae, Eubacteriaceae) was observed.
Collapse
Affiliation(s)
- Irina G. Kalashnikova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.I.N.); (A.V.K.); (M.M.B.); (G.A.A.); (S.Y.B.); (A.V.Z.); (M.V.L.); (L.R.T.); (E.S.P.); (A.S.N.); (S.I.M.); (T.A.S.); (L.V.F.); (N.V.B.); (E.A.S.); (V.E.M.); (V.S.Y.); (V.V.M.); (A.A.K.); (S.M.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Özdemіr E, Öksüz L. Effect of Staphylococcus aureus colonization and immune defects on the pathogenesis of atopic dermatitis. Arch Microbiol 2024; 206:410. [PMID: 39302484 DOI: 10.1007/s00203-024-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Atopic dermatitis (AD) is a common and recurrent skin disease characterized by skin barrier dysfunction, inflammation and chronic pruritus, with wide heterogeneity in terms of age of onset, clinical course and persistence over the lifespan. Although the pathogenesis of the disease are unclear, epidermal barrier dysfunction, immune and microbial dysregulation, and environmental factors are known to be critical etiologies in AD pathology. The skin microbiota represents an ecosystem consisting of numerous microbial species that interact with each other as well as host epithelial cells and immune cells. Although the skin microbiota benefits the host by supporting the basic functions of the skin and preventing the colonization of pathogens, disruption of the microbial balance (dysbiosis) can cause skin diseases such as AD. Although AD is a dermatological disease, recent evidence has shown that changes in microbiota composition in the skin and intestine contribute to the pathogenesis of AD. Environmental factors that contribute to skin barrier dysfunction and microbial dysbiosis in AD include allergens, diet, irritants, air pollution, epigenetics and microbial exposure. Knowing the microbial combination of intestin, as well as the genetic and epigenetic determinants associated with the development of autoantibodies, may help elucidate the pathophysiology of the disease. The skin of patients with AD is characterized by microbial dysbiosis as a result of reduced microbial diversity and overgrowth of the pathogens such as Staphylococcus aureus. Recent studies have revealed the importance of building a strong immune response against microorganisms during childhood and new mechanisms of microbial community dynamics in modulating the skin microbiome. Numerous microorganisms are reported to modulate host response through communication with keratinocytes, specific immune cells and adipocytes to improve skin health and barrier function. This growing insight into bioactive substances in the skin microbiota has led to novel biotherapeutic approaches targeting the skin surface for the treatment of AD. This review will provide an updated overview of the skin microbiota in AD and its complex interaction with immune response mechanisms, as well as explore possible underlying mechanisms in the pathogenesis of AD and provide insights into new therapeutic developments for the treatment of AD. It also focuses on restoring skin microbial homeostasis, aiming to reduce inflammation by repairing the skin barrier.
Collapse
Affiliation(s)
- Evrim Özdemіr
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey.
| | - Lütfiye Öksüz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Yang J, Guo J, Tang P, Yan S, Wang X, Li H, Xie J, Deng J, Hou X, Du Z, Hao E. Insights from Traditional Chinese Medicine for Restoring Skin Barrier Functions. Pharmaceuticals (Basel) 2024; 17:1176. [PMID: 39338338 PMCID: PMC11435147 DOI: 10.3390/ph17091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The skin barrier is essential for maintaining the body's internal homeostasis, protecting against harmful external substances, and regulating water and electrolyte balance. Traditional Chinese Medicine (TCM) offers notable advantages in restoring skin barrier function due to its diverse components, targets, and pathways. Recent studies have demonstrated that active ingredients in TCM can safely and effectively repair damaged skin barriers, reinstating their proper functions. This review article provides a comprehensive overview of the mechanisms underlying skin barrier damage and explores how the bioactive constituents of TCM contribute to skin barrier repair, thereby offering a theoretical framework to inform clinical practices.
Collapse
Affiliation(s)
- Jieyi Yang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Peiling Tang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shidu Yan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaodong Wang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
8
|
Laska J, Tota M, Łacwik J, Sędek Ł, Gomułka K. IL-22 in Atopic Dermatitis. Cells 2024; 13:1398. [PMID: 39195286 PMCID: PMC11353104 DOI: 10.3390/cells13161398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin condition characterized by a multifaceted pathophysiology that gives rise to diverse clinical manifestations. The management of AD remains challenging due to the suboptimal efficacy of existing treatment options. Nonetheless, recent progress in elucidating the underlying mechanisms of the disease has facilitated the identification of new potential therapeutic targets and promising drug candidates. In this review, we summarize the newest data, considering multiple connections between IL-22 and AD. The presence of circulating IL-22 has been found to correlate with the severity of AD and is identified as a critical factor driving the inflammatory response associated with the condition. Elevated levels of IL-22 in patients with AD are correlated with increased proliferation of keratinocytes, alterations in the skin microbiota, and impaired epidermal barrier function. Collectively, these factors contribute to the manifestation of the characteristic symptoms observed in AD.
Collapse
Affiliation(s)
- Julia Laska
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Maciej Tota
- Student Research Group of Internal Medicine and Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Research Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
9
|
Lin Y, Xiong G, Xia X, Yin Z, Zou X, Zhang X, Zhang C, Ye J. Authentication and validation of key genes in the treatment of atopic dermatitis with Runfuzhiyang powder: combined RNA-seq, bioinformatics analysis, and experimental research. Front Genet 2024; 15:1335093. [PMID: 39149589 PMCID: PMC11324508 DOI: 10.3389/fgene.2024.1335093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Background Atopic dermatitis (AD) is inflammatory disease. So far, therapeutic mechanism of Runfuzhiyang powder on AD remains to be studied. This study aimed to mine key biomarkers to explore potential molecular mechanism for AD incidence and Runfuzhiyang powder treatment. Methods The control group, AD group, treat group (AD mice treated with Runfuzhiyang powder were utilized for studying. Differentially expressed AD-related genes were acquired by intersecting of key module genes related to control group, AD group and treatment group which were screened by WGCNA and AD-related differentially expressed genes (DEGs). KEGG and GO analyses were further carried out. Next, LASSO regression analysis was utilized to screen feature genes. The ROC curves were applied to validate the diagnostic ability of feature genes to obtain AD-related biomarkers. Then protein-protein interaction (PPI) network, immune infiltration analysis and single-gene gene set enrichment analysis (GSEA) were presented. Finally, TF-mRNA-lncRNA and drug-gene networks of biomarkers were constructed. Results 4 AD-related biomarkers (Ddit4, Sbf2, Senp8 and Zfp777) were identified in AD groups compared with control group and treat group by LASSO regression analysis. The ROC curves revealed that four biomarkers had good distinguishing ability between AD group and control group, as well as AD group and treatment group. Next, GSEA revealed that pathways of E2F targets, KRAS signaling up and inflammatory response were associated with 4 biomarkers. Then, we found that Ddit4, Sbf2 and Zfp777 were significantly positively correlated with M0 Macrophage, and were significantly negatively relevant to Resting NK. Senp8 was the opposite. Finally, a TF-mRNA-lncRNA network including 200 nodes and 592 edges was generated, and 20 drugs targeting SENP8 were predicted. Conclusion 4 AD-related and Runfuzhiyang powder treatment-related biomarkers (Ddit4, Sbf2, Senp8 and Zfp777) were identified, which could provide a new idea for targeted treatment and diagnosis of AD.
Collapse
Affiliation(s)
- Yan Lin
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Guangyi Xiong
- Biology and Medical Statistic Unit, Basic Medical Science School, Yunnan University of CM, Kunming, China
| | - Xiansong Xia
- Teaching Affairs Department, Yunnan University of CM, Kunming, China
| | - Zhiping Yin
- Department of Laboratory Medicine, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Xuhui Zou
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Xu Zhang
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Chenghao Zhang
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| | - Jianzhou Ye
- Department of Dermatology, The No.1 Affiliated Hospital of Yunnan University of CM, Kunming, China
| |
Collapse
|
10
|
Rothenberg-Lausell C, Bar J, Dahabreh D, Renert-Yuval Y, Del Duca E, Guttman-Yassky E. Biologic and small-molecule therapy for treating moderate to severe atopic dermatitis: Mechanistic considerations. J Allergy Clin Immunol 2024; 154:20-30. [PMID: 38670231 DOI: 10.1016/j.jaci.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Atopic dermatitis (AD) is a complex and heterogeneous skin disease for which achieving complete clinical clearance for most patients has proven challenging through single cytokine inhibition. Current studies integrate biomarkers and evaluate their role in AD, aiming to advance our understanding of the diverse molecular profiles implicated. Although traditionally characterized as a TH2-driven disease, extensive research has recently revealed the involvement of TH1, TH17, and TH22 immune pathways as well as the interplay of pivotal immune molecules, such as OX40, OX40 ligand (OX40L), thymic stromal lymphopoietin, and IL-33. This review explores the mechanistic effects of treatments for AD, focusing on mAbs and Janus kinase inhibitors. It describes how these treatments modulate immune pathways and examines their impact on key inflammatory and barrier biomarkers.
Collapse
Affiliation(s)
- Camille Rothenberg-Lausell
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jonathan Bar
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dante Dahabreh
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Renert-Yuval
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Pediatric Dermatology Unit, Schneider Children's Medical Center of Israel and the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Dermatology, University of La Sapienza, Rome, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
11
|
Kwon Y, Kang YJ, Kwon J, Cho SY, Kim J, Le TT, Hwang H, Deshar B, Kim M, Kim JY, Jung JH, Kim HS, Jung SH, Kwon HC, Kim WK. Forsythia velutina Nakai extract: A promising therapeutic option for atopic dermatitis through multiple cell type modulation. Allergy 2024; 79:1242-1257. [PMID: 38037751 DOI: 10.1111/all.15967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a complex condition characterized by impaired epithelial barriers and dysregulated immune cells. In this study, we demonstrated Forsythia velutina Nakai extract (FVE) simultaneously inhibits basophils, macrophages, keratinocytes, and T cells that are closely interrelated in AD development. METHODS We analyzed the effect of FVE on nitric oxide and reactive oxygen species (ROS) production in macrophages, basophil degranulation, T cell activation, and tight junctions in damaged keratinocytes. Expression of cell-type-specific inflammatory mediators was analyzed, and the underlying signaling pathways for anti-inflammatory effects of FVE were investigated. The anti-inflammatory effects of FVE were validated using a DNCB-induced mouse model of AD. Anti-inflammatory activity of compounds isolated from FVE was validated in each immune cell type. RESULTS FVE downregulated the expression of inflammatory mediators and ROS production in macrophages through TLR4 and NRF2 pathways modulation. It significantly reduced basophil degranulation and expression of type 2 (T2) and pro-inflammatory cytokines by perturbing FcεRI signaling. Forsythia velutina Nakai extract also robustly inhibited the expression of T2 cytokines in activated T cells. Furthermore, FVE upregulated the expression of tight junction molecules in damaged keratinocytes and downregulated leukocyte attractants, as well as IL-33, an inducer of T2 inflammation. In the AD mouse model, FVE showed superior improvement in inflammatory cell infiltration and skin structure integrity compared to dexamethasone. Dimatairesinol, a lignan dimer, was identified as the most potent anti-inflammatory FVE compound. CONCLUSION Forsythia velutina Nakai extract and its constituent compounds demonstrate promising efficacy as a therapeutic option for prolonged AD treatment by independently inhibiting various cell types associated with AD and disrupting the deleterious link between them.
Collapse
Affiliation(s)
- Yujin Kwon
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, Korea
| | - Yoon Jin Kang
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
- Department of Marine Life Sciences, College of Life Science, Gangneung-Wonju National University, Gangneung, Korea
| | - Jaeyoung Kwon
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, Korea
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
| | - Su-Yeon Cho
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, Korea
| | - Jiyoon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tam Thi Le
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
| | - Hoseong Hwang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
- Department of Biology, Gangneung-Wonju National University, Gangneung, Korea
| | - Barsha Deshar
- Department of Pharmacology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungjun Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hung Jung
- Department of Urology, Yonsei University Wonju College of Medicine/Center of Evidence Based Medicine Institute of Convergence Science, Wonju, Korea
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Sang Hoon Jung
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Daejeon, Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
| | - Won Kyu Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Korea
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
12
|
Arnold KA, Moran MC, Shi H, van Vlijmen-Willems IMJJ, Rodijk-Olthuis D, Smits JPH, Brewer MG. CLDN1 knock out keratinocytes as a model to investigate multiple skin disorders. Exp Dermatol 2024; 33:e15084. [PMID: 38711223 DOI: 10.1111/exd.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 05/08/2024]
Abstract
The transmembrane protein claudin-1 is critical for formation of the epidermal barrier structure called tight junctions (TJ) and has been shown to be important in multiple disease states. These include neonatal ichthyosis and sclerosing cholangitis syndrome, atopic dermatitis and various viral infections. To develop a model to investigate the role of claudin-1 in different disease settings, we used CRISPR/Cas9 to generate human immortalized keratinocyte (KC) lines lacking claudin-1 (CLDN1 KO). We then determined whether loss of claudin-1 expression affects epidermal barrier formation/function and KC differentiation/stratification. The absence of claudin-1 resulted in significantly reduced barrier function in both monolayer and organotypic cultures. CLDN1 KO cells demonstrated decreases in gene transcripts encoding the barrier protein filaggrin and the differentiation marker cytokeratin-10. Marked morphological differences were also observed in CLDN1 KO organotypic cultures including diminished stratification and reduced formation of the stratum granulosum. We also detected increased proliferative KC in the basale layer of CLDN1 KO organotypic cultures. These results further support the role of claudin-1 in epidermal barrier and suggest an additional role of this protein in appropriate stratification of the epidermis.
Collapse
Affiliation(s)
- Kimberly A Arnold
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Mary C Moran
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Huishan Shi
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ivonne M J J van Vlijmen-Willems
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
13
|
Shen C, Li Y, Huang J, Li J, Qi G, Zhu Z, Zheng H. Association of Interleukin-17A and Interleukin-17F Gene Polymorphisms with Atopic Dermatitis in Chinese Children. Genet Test Mol Biomarkers 2024; 28:43-49. [PMID: 38416662 DOI: 10.1089/gtmb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Background: Atopic dermatitis (AD) is a chronic, recurrent inflammatory disease associated with an unbalanced immune response in the upper layers of the skin tissue, mostly starting in childhood. As important factors in gene expression regulation, polymorphisms in interleukin (IL)-17A and IL-17F may be associated with the susceptibility and severity of AD. Methods: Blood samples and clinical information were obtained from 132 patients with AD and 100 healthy children. Using multiplex polymerase chain reaction and next-generation sequencing, five potential single-nucleotide polymorphisms (SNPs) of IL-17A and IL-17F were genotyped in all participants. The relationship between SNPs and susceptibility to or severity of AD was examined by analyzing haplotypes and genetic models. Results: The IL-17A rs3819025 polymorphism was substantially associated with higher AD risk in both the allele model (p = 0.03; odds ratio [OR] = 1.76; confidence interval [CI]: 1.05-2.95) and the dominant model (p = 0.04, OR = 1.85; CI: 1.03-3.33). There was no correlation between AD susceptibility and the IL-17A (rs2275913 and rs4711998) or IL-17F (rs763780 and rs12203736) SNPs (all p > 0.05). Additionally, the five IL-17A and IL-17F SNPs did not significantly differ across the mild-to-moderate and severe subgroups (all p > 0.05). Conclusions: The IL-17A/rs3819025 polymorphism was linked to the development of AD, whereas the IL-17F polymorphism was unrelated to the susceptibility to and severity of AD. The IL-17A polymorphism may provide valuable information to speculate on the susceptibility to AD in Chinese Han children.
Collapse
Affiliation(s)
- Chen Shen
- Information Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Yunling Li
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Information Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Jing Li
- Information Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Guoqiang Qi
- Information Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhu Zhu
- Information Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou, China
- National Clinical Research Center for Child Health, Hangzhou, China
| | - Huiwen Zheng
- Department of Dermatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Rothenberg-Lausell C, Bar J, Del Duca E, Guttman-Yassky E. Diversity of atopic dermatitis and selection of immune targets. Ann Allergy Asthma Immunol 2024; 132:177-186. [PMID: 38008215 DOI: 10.1016/j.anai.2023.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Atopic dermatitis (AD) is a heterogeneous immune-mediated skin disorder affecting people of all ages and ethnicities. Despite the development of targeted therapeutics such as biologics and Janus kinase inhibitors, attaining complete clinical efficacy remains difficult. This therapeutic challenge may be attributed to the complex pathogenesis of AD. Although the TH2 axis has been extensively studied, recent advancements have started to reveal the involvement of additional immune pathways including TH1, TH17, and TH22. Understanding the interplay of these immune axes may contribute to a more personalized therapeutic approach based on patients' molecular profile, with the prospect of improving clinical outcome. This review will discuss studies exploring the molecular profile of AD in both skin and blood across age, ethnicity/race, disease chronicity, IgE levels, filaggrin mutation status, and AD association with other atopic conditions. Moreover, it will explore the potential of personalized treatment strategies based on a patient's distinct immune signature.
Collapse
Affiliation(s)
- Camille Rothenberg-Lausell
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York; University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jonathan Bar
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ester Del Duca
- Icahn School of Medicine at Mount Sinai Medical Center, New York, New York; Department of Dermatology, University of Rome La Sapienza, Rome, Italy
| | | |
Collapse
|
15
|
Augusto de Oliveira MF, Agne DB, Bastos LSS, Andrade de Oliveira LM, Saintive S, Goudouris ES, do Prado EA, Fragoso Dos Santos H, da Silva Pereira R, Cavalcante FS, de Carvalho Ferreira D, Dos Santos KRN. Atopic dermatitis pediatric patients show high rates of nasal and intestinal colonization by methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci. BMC Microbiol 2024; 24:42. [PMID: 38287251 PMCID: PMC10823624 DOI: 10.1186/s12866-023-03165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Atopic dermatitis (AD) patients have high rates of colonization by Staphylococcus aureus, which has been associated with worsening of the disease. This study characterized Staphylococcus spp isolates recovered from nares and feces of pediatric patients with AD in relation to antimicrobial susceptibility, staphylococcal cassette chromosome mec (SCCmec) type, presence of pvl genes and clonality. Besides, gut bacterial community profiles were compared with those of children without AD. RESULTS All 55 AD patients evaluated had colonization by Staphylococcus spp. Fifty-three (96.4%) patients had colonization in both clinical sites, whereas one patient each was not colonize in the nares or gut. Staphylococcus aureus was identified in the nostrils and feces of 45 (81.8%) and 39 (70.9%) patients, respectively. Methicillin-resistant Staphylococcus spp. isolates were found in 70.9% of the patients, and 24 (43.6%) had methicillin-resistant S. aureus (MRSA). S. aureus (55.6%) and S. epidermidis (26.5%) were the major species found. The prevalent lineages of S. aureus were USA800/SCCmecIV (47.6%) and USA1100/SCCmecIV (21.4%), and 61.9% of the evaluated patients had the same genotype in both sites. Additionally, gut bacterial profile of AD patients exhibits greater dissimilarity from the control group than it does among varying severities of AD. CONCLUSIONS High rates of nasal and intestinal colonization by S. aureus and methicillin-resistant staphylococci isolates were found in AD patients. Besides, gut bacterial profiles of AD patients were distinctly different from those of the control group, emphasizing the importance of monitoring S. aureus colonization and gut microbiome composition in AD patients.
Collapse
Affiliation(s)
- Mariana Fernandes Augusto de Oliveira
- Laboratório de Infecção Hospitalar, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, Sala I2-010, UFRJ. Cidade Universitária, Rio de Janeiro, RJ, Brasil, CEP: 21941-590
| | - Daiane Bitencourt Agne
- Laboratório de Infecção Hospitalar, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, Sala I2-010, UFRJ. Cidade Universitária, Rio de Janeiro, RJ, Brasil, CEP: 21941-590
| | - Ludmila Sento Sé Bastos
- Laboratório de Infecção Hospitalar, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, Sala I2-010, UFRJ. Cidade Universitária, Rio de Janeiro, RJ, Brasil, CEP: 21941-590
| | - Laura Maria Andrade de Oliveira
- Laboratório de Cocos Patogênicos e Microbiota, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Simone Saintive
- Serviço de Dermatologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ekaterini Simoes Goudouris
- Serviço de Imunologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Evandro Alves do Prado
- Serviço de Imunologia Pediátrica, Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Raphael da Silva Pereira
- Laboratório de Biotecnologia e Ecologia Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Fernanda Sampaio Cavalcante
- Departamento de Clínica Médica, Instituto de Ciências Médicas, Centro Multidisciplinar de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brasil
| | - Dennis de Carvalho Ferreira
- Faculdade de Odontologia, Universidade Veiga de Almeida, Rio de Janeiro, Brasil
- Faculdade de Odontologia, Universidade Estácio de Sá, Rio de Janeiro, Brasil
- Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Kátia Regina Netto Dos Santos
- Laboratório de Infecção Hospitalar, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, CCS, Bloco I, Sala I2-010, UFRJ. Cidade Universitária, Rio de Janeiro, RJ, Brasil, CEP: 21941-590.
| |
Collapse
|
16
|
Li D, Luo ZB, Zhu J, Wang JX, Jin ZY, Qi S, Jin M, Quan LH. Ginsenoside F2-Mediated Intestinal Microbiota and Its Metabolite Propionic Acid Positively Impact the Gut-Skin Axis in Atopic Dermatitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:339-350. [PMID: 38150707 DOI: 10.1021/acs.jafc.3c06015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Atopic dermatitis (AD) is a complex inflammatory skin disease induced by multiple factors. AD can also cause intestinal inflammation and disorders of the gut microbiota. Ginseng is a kind of edible and medicinal plant; its main active components are ginsenosides. Ginsenosides have a variety of anti-inflammatory effects and regulate the gut microbiota; however, their role in AD and the underlying mechanisms are unclear. In this study, we found that intragastric administration of ginsenoside F2 improved AD-like skin symptoms and reduced inflammatory cell infiltration, serum immunoglobulin E levels, and mRNA expression of inflammatory cytokines in AD mice. 16s rRNA sequencing analysis showed that ginsenoside F2 altered the intestinal microbiota structure and enriched the short-chain fatty acid-producing microbiota in AD mice. Metabolomic analysis revealed that ginsenoside F2 significantly increased the propionic acid (Pa) content of feces and serum in AD mice, which was positively correlated with significant enrichment of Parabacteroides goldsteinii and Lactobacillus plantarum in the intestines. Pa inhibits inflammatory responses in the gut and skin of AD mice through the G-protein-coupled receptor43/NF-κB pathway, thereby improving skin AD symptoms. These results revealed, for the first time, the mechanism by which ginsenoside F2 improves AD through the Pa (a metabolite of intestinal microbiota)-gut-skin axis.
Collapse
Affiliation(s)
- Dongxu Li
- College of Integration Science, Yanbian University, Yanji 133002, China
| | - Zhao-Bo Luo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jun Zhu
- College of Integration Science, Yanbian University, Yanji 133002, China
| | - Jun-Xia Wang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Shaobo Qi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Meiling Jin
- Department of Pharmacology, College of Medicine, Yanbian University, Yanji 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
17
|
Kang KM, Han JH, Kim KS, Kim EK, Shin Y, Park JH, Kim H, Kim NY, Kim YG, Kim H, Park H, Kim YM, Kee SJ, Kim SJ, Kim HS, Kim YC. Chlorophyll a and novel synthetic derivatives alleviate atopic dermatitis by suppressing Th2 cell differentiation via IL-4 receptor modulation. Clin Immunol 2024; 258:109852. [PMID: 38029848 DOI: 10.1016/j.clim.2023.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
Atopic dermatitis (AD) treatment has largely relied on non-specific broad immunosuppressants despite their long-term toxicities until the approval of dupilumab, which blocks IL-4 signaling to target Th2 cell responses. Here, we report the discovery of compound 4aa, a novel compound derived from the structure of chlorophyll a, and the efficacy of chlorophyll a to alleviate AD symptoms by oral administration in human AD patients. 4aa downregulated GATA3 and IL-4 in differentiating Th2 cells by potently blocking IL-4 receptor dimerization. In the murine model, oral administration of 4aa reduced the clinical severity of symptoms and scratching behavior by 76% and 72%, respectively. Notably, the elevated serum levels of Th2 cytokines reduced to levels similar to those in the normal group after oral administration of 4aa. Additionally, the toxicological studies showed favorable safety profiles and good tolerance. In conclusion, 4aa may be applied for novel therapeutic developments for patients with AD.
Collapse
Affiliation(s)
- Koon Mook Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jung-Hyun Han
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eun Kyung Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Youna Shin
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Hyeon Kim
- R&D Center, Huons co. Ltd., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Na Yoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Hyunjun Kim
- R&D Center, Huons co. Ltd., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Hyunjin Park
- R&D Center, Huons co. Ltd., 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Young-Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea
| | - Seong-Jin Kim
- Department of Dermatology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Republic of Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
18
|
Wang L, Wang S, Zhang R. Efficacy of dupilumab plus topical corticosteroids in children with atopic dermatitis: A meta-analysis of randomized controlled trials. Immun Inflamm Dis 2024; 12:e1133. [PMID: 38270319 PMCID: PMC10777882 DOI: 10.1002/iid3.1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 12/17/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Children with atopic dermatitis (AD) bear a significant burden of illness that adversely affects their quality of life. OBJECTIVE To determine the efficacy of dupilumab and topical corticosteroids for the treatment of pediatric AD. METHODS A comprehensive literature search was conducted using three prominent databases: Web of Science, PubMed, and Embase. Using a fixed-effects or random-effects model, the standard mean difference or risk ratios with 95% confidence intervals were calculated, and the trial protocol was listed as CRD42023408546. RESULTS A total of 3 studies were included, and 896 participants met the inclusion criteria. The combined estimate showed that dupilumab plus topical corticosteroids had numerically greater efficacy in terms of Eczema Area and Severity Index (EASI)-50, EASI-75, EASI-90, and Investigator Global Assessment (IGA) score of 0 or 1. Children who received topical corticosteroids and dupilumab achieved significantly higher Children's Dermatological Life Quality Index scores compared to those who received placebo. The number of individuals who achieved IGA 0/1 increased with the use of dupilumab and topical corticosteroids. CONCLUSIONS Dupilumab and topical corticosteroids can be used to treat symptoms in children with AD. However, given the substantial variation in treatment outcomes among studies, the findings should be interpreted with caution.
Collapse
Affiliation(s)
- Li Wang
- The Second Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Si‐Ning Wang
- The Second Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Ruil‐Li Zhang
- The Second Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
19
|
Su Y, Han Y, Choi HS, Lee GY, Cho HW, Choi H, Jang YS, Choi JH, Seo JW. Lipid mediators derived from DHA alleviate DNCB-induced atopic dermatitis and improve the gut microbiome in BALB/c mice. Int Immunopharmacol 2023; 124:110900. [PMID: 37708704 DOI: 10.1016/j.intimp.2023.110900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition that primarily results from immune dysregulation. We determined the potential therapeutic benefits of lipid mediators (LM, 17S-monohydroxy DHA, resolvin D5, and protectin DX in a ratio of 3:47:50) produced by soybean lipoxygenase from DHA. The underlying molecular mechanisms involved in TNF-α/IFN-γ-stimulated HaCaT cells as well as its effect in an AD mouse model induced by DNCB in BALB/c mice were examined. The results indicated that LM effectively attenuates the production of inflammatory cytokines (IL-6 and IL-1β) and chemokines (IL-8 and MCP-1) by inhibiting the NF-κB signaling pathway in TNF-α/IFN-γ-stimulated HaCaT cells. The oral administration of LM at 5 or 10 μg/kg/day significantly reduced skin lesions, epidermal thickness, and mast cell infiltration in AD mice. Furthermore, LM reduced the production of IgE and inflammatory cytokines (TNF-α, IL-6, and IL-1β) in the serum, modulated gut microbiota diversity, and restored the microbial composition. Overall, our findings suggest that LM represents a potential therapeutic agent for improving AD symptoms through its ability to suppress inflammatory cytokines and alter the composition of gut microbiota.
Collapse
Affiliation(s)
- Yan Su
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea; Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Yunjon Han
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea.
| | - Hack Sun Choi
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 63243, South Korea.
| | - Gil-Yong Lee
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea.
| | - Hee Won Cho
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea.
| | - Heonsik Choi
- Healthcare Technology Institute, Kolon Advanced Research Center, 110 Magokdong-ro, Seoul 07793, South Korea.
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Jong Hyun Choi
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea.
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-Si 56212, South Korea.
| |
Collapse
|
20
|
Dhar S, Datta S, De A. Use of Janus kinase inhibitors in atopic dermatitis - an update. Indian J Dermatol Venereol Leprol 2023; 0:1-8. [PMID: 38031681 DOI: 10.25259/ijdvl_14_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/12/2023] [Indexed: 12/01/2023]
Abstract
Atopic dermatitis is among the cutaneous inflammatory disorders whose pathophysiology is thought to be influenced by the JAK-STAT intracellular signalling system. The effectiveness of systemic and topical Janus kinase (JAK) inhibitors in the treatment of atopic dermatitis has been shown in clinical trials and case studies. At present, oral abrocitinib (Cibinqo), oral upadacitinib (Rinvoq), oral baricitinib (Olumiant) and topical ruxolitinib (Opzelura) have approval from the US-FDA for their use in the treatment of atopic dermatitis. The efficacy and safety of oral and topical Janus kinase inhibitors for the treatment of atopic dermatitis have been reviewed in this article.
Collapse
Affiliation(s)
- Sandipan Dhar
- Department of Pediatric Dermatology, Institute of Child Health, Kolkata, West Bengal, India
| | - Shreya Datta
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Abhishek De
- Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| |
Collapse
|
21
|
Rajkumar J, Chandan N, Lio P, Shi V. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin Pharmacol Physiol 2023; 36:174-185. [PMID: 37717558 DOI: 10.1159/000534136] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND The anatomic layers of the skin are well-defined, and a functional model of the skin barrier has recently been described. Barrier disruption plays a key role in several skin conditions, and moisturization is recommended as an initial treatment in conditions such as atopic dermatitis. This review aimed to analyze the skin barrier in the context of the function model, with a focus on the mechanisms by which moisturizers support each of the functional layers of the skin barrier to promote homeostasis and repair. SUMMARY The skin barrier is comprised of four interdependent layers - physical, chemical, microbiologic, and immunologic - which maintain barrier structure and function. Moisturizers target disruption affecting each of these four layers through several mechanisms and were shown to improve transepidermal water loss in several studies. Occlusives, humectants, and emollients occlude the surface of the stratum corneum (SC), draw water from the dermis into the epidermis, and assimilate into the SC, respectively, in order to strengthen the physical skin barrier. Acidic moisturizers bolster the chemical skin barrier by supporting optimal enzymatic function, increasing ceramide production, and facilitating ideal conditions for commensal microorganisms. Regular moisturization may strengthen the immunologic skin barrier by reducing permeability and subsequent allergen penetration and sensitization. KEY MESSAGES The physical, chemical, microbiologic, and immunologic layers of the skin barrier are each uniquely impacted in states of skin barrier disruption. Moisturizers target each of the layers of the skin barrier to maintain homeostasis and facilitate repair.
Collapse
Affiliation(s)
- Jeffrey Rajkumar
- Department of Dermatology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Neha Chandan
- Department of Dermatology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | - Peter Lio
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vivian Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Alaska, USA
| |
Collapse
|
22
|
Kiiski V, Ukkola-Vuoti L, Vikkula J, Ranta M, Lassenius MI, Kopra J. Effect of Disease Severity on Comorbid Conditions in Atopic Dermatitis: Nationwide Registry-Based Investigation in Finnish Adults. Acta Derm Venereol 2023; 103:adv00882. [PMID: 36883876 PMCID: PMC10010184 DOI: 10.2340/actadv.v103.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 03/09/2023] Open
Abstract
The majority of registry studies on atopic dermatitis include only patients and diagnoses from specialized healthcare. The aim of this retrospective, real-world cohort study was to evaluate the effect of atopic dermatitis severity on comorbidities and total morbidity, with comprehensive data from both primary and specialty healthcare registries covering the entire Finnish adult population. In total, 124,038 patients were identified (median age 46 years; 68% female) and stratified by disease severity. All regression analyses (median follow-up 7.0 years) were adjusted at a minimum for age, sex, obesity, and educational level. Compared with mild atopic dermatitis, severe atopic dermatitis was significantly associated with multiple morbidities, including neurotic, stress-related and somatoform disorders, abscesses, erysipelas/cellulitis, impetigo, herpes zoster, extragenital herpes, bacterial conjunctivitis, septicaemia, lymphomas, alopecia areata, urticaria, other dermatitis, contact allergy, osteoporosis, and intervertebral disc disorders (p < 0.001). In addition, there were significant associations with alcohol dependence, depression, condylomas, rosacea, migraine, sleep apnoea, hypertension, enthesopathies, atherosclerosis, and drug-induced cataract (p < 0.05). Odds ratios were modest and mostly were between 1.10 and 2.75. Furthermore, patients with severe atopic dermatitis had lower incidences of prostate cancer, cystitis, and anogenital herpes than patients with mild atopic dermatitis (p < 0.05). These results suggest that severe atopic dermatitis results in significant overall morbidity.
Collapse
|
23
|
Xia D, Wang Y, Xiao Y, Li W. Applications of single-cell RNA sequencing in atopic dermatitis and psoriasis. Front Immunol 2022; 13:1038744. [PMID: 36505405 PMCID: PMC9732227 DOI: 10.3389/fimmu.2022.1038744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is a novel technology that characterizes molecular heterogeneity at the single-cell level. With the development of more automated, sensitive, and cost-effective single-cell isolation methods, the sensitivity and efficiency of scRNA-seq have improved. Technological advances in single-cell analysis provide a deeper understanding of the biological diversity of cells present in tissues, including inflamed skin. New subsets of cells have been discovered among common inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis. ScRNA-seq technology has also been used to analyze immune cell distribution and cell-cell communication, shedding new light on the complex interplay of components involved in disease responses. Moreover, scRNA-seq may be a promising tool in precision medicine because of its ability to define cell subsets with potential treatment targets and to characterize cell-specific responses to drugs or other stimuli. In this review, we briefly summarize the progress in the development of scRNA-seq technologies and discuss the latest scRNA-seq-related findings and future trends in AD and psoriasis. We also discuss the limitations and technical problems associated with current scRNA-seq technology.
Collapse
Affiliation(s)
- Dengmei Xia
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyi Wang
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Xiao
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Wei Li,
| |
Collapse
|
24
|
Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 2022; 77:3267-3292. [PMID: 35842745 DOI: 10.1111/all.15445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
The inflammation of allergic diseases is characterized by a complex interaction between type 2 and type 3 immune responses, explaining clinical symptoms and histopathological patterns. Airborne stimuli activate the mucosal epithelium to release a number of molecules impacting the activity of resident immune and environmental cells. Signals from the mucosal barrier, regulatory cells, and the inflamed tissue are crucial conditions able to modify innate and adaptive effector cells providing the selective homing of eosinophils or neutrophils. The high plasticity of resident T- and innate lymphoid cells responding to external signals is the prerequisite to explain the multiplicity of endotypes of allergic diseases. This notion paved the way for the huge use of specific biologic drugs interfering with pathogenic mechanisms of inflammation. Based on the response of the epithelial barrier, the activity of resident regulatory cells, and functions of structural non-lymphoid environmental cells, this review proposes some immunopathogenic scenarios characterizing the principal endotypes which can be associated with a precise phenotype of asthma. Recent literature indicates that similar concepts can also be applied to the inflammation of other non-respiratory allergic disorders. The next challenges will consist in defining specific biomarker(s) of each endotype allowing for a quick diagnosis and the most effective personalized therapy.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Parronchi
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Moretta
- Department of Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
25
|
Acne Vulgaris, Atopic Dermatitis and Rosacea: The Role of the Skin Microbiota-A Review. Biomedicines 2022; 10:biomedicines10102523. [PMID: 36289784 PMCID: PMC9599554 DOI: 10.3390/biomedicines10102523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The skin harbors a huge number of different microorganisms such as bacteria, fungi and viruses, and it acts as a protective shield to prevent the invasion of pathogens and to maintain the health of the commensal microbiota. Several studies, in fact, have shown the importance of the skin microbiota for healthy skin. However, this balance can be altered by intrinsic and extrinsic factors, leading to the development of skin disease, such as acne vulgaris (AV), atopic dermatitis (AD) and rosacea(RS). Although these diseases are widespread and affect both adolescents and adults, the scientific correlation between these disorders and the skin microbiota and physiological parameters (TEWL, hydration and lipid composition) is still unclear. This review aims to investigate the current literature regarding the correlation between the skin microbiota and its imbalance underlying microbiological aspects, how the skin microbiota changes over the course of the disease and the current possible treatments. The following reported studies show a general imbalance of the bacterial flora. For this reason, more in-depth studies are necessary to explore the different subspecies and strains involved in all three diseases.
Collapse
|
26
|
Umar BU, Rahman S, Dutta S, Islam T, Nusrat N, Chowdhury K, Binti Wan Ahmad Fakuradzi WFS, Haque M. Management of Atopic Dermatitis: The Role of Tacrolimus. Cureus 2022; 14:e28130. [PMID: 35990561 PMCID: PMC9387362 DOI: 10.7759/cureus.28130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Atopic dermatitis (AD) is a long-lasting inflammatory dermatological condition characterized by itchy, eczematous, sparsely tiny blisters that hold a clear watery substance. Additionally, the diseased skin can suppurate, occasionally with weeping with thickening of the affected skin. This is considered one of the top skin disorders involving both children and adult populations globally. The principal therapeutic intervention for AD is long-standing topical glucocorticoids, which have been used for several decades. Corticosteroid therapy brings several adverse drug effects (ADRs), including irreversible skin atrophy. Tacrolimus belongs to the class of calcineurin inhibitors, which is a type of immunomodulator possessing promising efficacy in treating AD. Topical tacrolimus is an effective and safe non-corticosteroid substitute treatment for AD. We reviewed the available literature to compare and institute the safety, efficacy, and effectiveness of tacrolimus when equated to corticosteroid therapy in managing AD.
Collapse
|
27
|
Qiu Z, Zhu Z, Liu X, Chen B, Yin H, Gu C, Fang X, Zhu R, Yu T, Mi W, Zhou H, Zhou Y, Yao X, Li W. A dysregulated sebum-microbial metabolite-IL-33 axis initiates skin inflammation in atopic dermatitis. J Exp Med 2022; 219:213396. [PMID: 35977109 PMCID: PMC9375142 DOI: 10.1084/jem.20212397] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/12/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022] Open
Abstract
Microbial dysbiosis in the skin has been implicated in the pathogenesis of atopic dermatitis (AD); however, whether and how changes in the skin microbiome initiate skin inflammation, or vice versa, remains poorly understood. Here, we report that the levels of sebum and its microbial metabolite, propionate, were lower on the skin surface of AD patients compared with those of healthy individuals. Topical propionate application attenuated skin inflammation in mice with MC903-induced AD-like dermatitis by inhibiting IL-33 production in keratinocytes, an effect that was mediated through inhibition of HDAC and regulation of the AhR signaling pathway. Mice lacking sebum spontaneously developed AD-like dermatitis, which was improved by topical propionate application. A proof-of-concept clinical study further demonstrated the beneficial therapeutic effects of topical propionate application in AD patients. In summary, we have uncovered that the dysregulated sebum-microbial metabolite-IL-33 axis might play an initiating role in AD-related skin inflammation, thereby highlighting novel therapeutic strategies for the treatment of AD.
Collapse
Affiliation(s)
- Zhuoqiong Qiu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, PR China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Baichao Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, PR China,Department of Dermatology, Kaifeng People’s Hospital, Kaifeng, PR China
| | - Huibin Yin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chaoying Gu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Xiaokai Fang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China
| | - Ronghui Zhu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Tianze Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hong Zhou
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, PR China
| | - Yufeng Zhou
- Children’s Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, PR China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, PR China,Xu Yao:
| | - Wei Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, PR China,Correspondence to Wei Li:
| |
Collapse
|
28
|
Goh MS, Yun JS, Su JC. Management of atopic dermatitis: a narrative review. Med J Aust 2022; 216:587-593. [PMID: 35644531 DOI: 10.5694/mja2.51560] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023]
Abstract
Atopic dermatitis (atopic eczema) is the most common inflammatory skin disease and has a significant burden on the quality of life of patients, families and caregivers. Its pathogenesis is a complex interplay between genetics and environment, involving impaired skin barrier function, immune dysregulation primarily involving the Th2 inflammatory pathway, itch, and skin microbiome. Restoration of skin barrier integrity with regular emollients and prompt topical anti-inflammatory therapies are mainstays of treatment. Systemic therapy is considered for moderate to severe disease. New understanding of inflammatory pathways and developments in targeted systemic immunotherapies have significantly advanced atopic dermatitis management. Dupilumab is a safe and effective treatment that is now available in Australia. Other promising agents for atopic dermatitis include Janus kinase, interleukin (IL)-13 and IL-31 inhibitors.
Collapse
Affiliation(s)
- Michelle Sy Goh
- Peter MacCallum Cancer Centre, Melbourne, VIC.,St Vincent's Hospital Melbourne, Melbourne, VIC
| | - Jenny Sw Yun
- Peter MacCallum Cancer Centre, Melbourne, VIC.,Royal Melbourne Hospital, Melbourne, VIC
| | - John C Su
- Eastern Health, Monash University, Melbourne, VIC.,Murdoch Children's Research Institute, Melbourne, VIC
| |
Collapse
|
29
|
Tuniyazi M, Li S, Hu X, Fu Y, Zhang N. The Role of Early Life Microbiota Composition in the Development of Allergic Diseases. Microorganisms 2022; 10:1190. [PMID: 35744708 PMCID: PMC9227185 DOI: 10.3390/microorganisms10061190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022] Open
Abstract
Allergic diseases are becoming a major healthcare issue in many developed nations, where living environment and lifestyle are most predominantly distinct. Such differences include urbanized, industrialized living environments, overused hygiene products, antibiotics, stationary lifestyle, and fast-food-based diets, which tend to reduce microbial diversity and lead to impaired immune protection, which further increase the development of allergic diseases. At the same time, studies have also shown that modulating a microbiocidal community can ameliorate allergic symptoms. Therefore, in this paper, we aimed to review recent findings on the potential role of human microbiota in the gastrointestinal tract, surface of skin, and respiratory tract in the development of allergic diseases. Furthermore, we addressed a potential therapeutic or even preventive strategy for such allergic diseases by modulating human microbial composition.
Collapse
Affiliation(s)
| | | | | | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (M.T.); (S.L.); (X.H.)
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (M.T.); (S.L.); (X.H.)
| |
Collapse
|
30
|
Ming SWY, Zhou Y, Smith M, Were J. A Retrospective Database Cohort Study Evaluating the Association Between Immune Suppressive Therapy and the Development of Cancer in Patients with Atopic Dermatitis Within UK Primary Care. EUROPEAN MEDICAL JOURNAL 2022. [DOI: 10.33590/emj/22-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction: First-line regular systemic treatment for atopic dermatitis (AD) in the UK consists of methotrexate, azathioprine, ciclosporin, or mycophenolate (immune-suppressive therapies [IST]). ISTs have been associated with malignancy, hence the need for evaluation for the relationship to the risk of developing cancer.
Method: This retrospective cohort study utilising the Clinical Practice Research Datalink (CPRD) followed two cohorts with moderate or severe AD: one prescribed ISTs and one without. A total of 222,978 patients were included. The index date was the date of first IST prescription within primary care for the IST cohort, and the date of first potent topical steroid prescription from January 2001 to May 2021. Cohorts were propensity matched 1:1, resulting in 17,556 patients per cohort. Cox proportional hazard models were used to model the hazard of a cancer diagnosis. A secondary analysis was carried out on a restricted population, excluding patients with other comorbidities where ISTs were commonly prescribed. A further analysis explored the relation between the dose and the association with the risk of cancer.
Results: Both the primary (hazard ratio: 1.01; 95% confidence interval: 0.94–1.08) and secondary (hazard ratio: 1.03; 95% confidence interval: 0.93–1.14) analyses did not show a significant difference in the hazard of a cancer code in the IST and non-IST cohorts. The exploratory dose–response analysis showed a higher risk of cancer associated with more prescriptions of IST per year.
Conclusion: This study shows that amongst patients with moderate or severe AD, overall IST prescription in primary care is not associated with the onset of a cancer code. However, there is a trend with a higher risk of cancer coding with more prescriptions of IST.
Collapse
|
31
|
Lee JH, Im DS. Honokiol suppresses 2,6-dinitrochlorobenzene-induced atopic dermatitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115023. [PMID: 35074454 DOI: 10.1016/j.jep.2022.115023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/30/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis constitutes a traditional Korean medicine used for the treatment of atopic dermatitis, and honokiol is an active diphenyl compound present in Magnolia officinalis. AIM OF THE STUDY The aim of the study was to investigate the therapeutic effects of honokiol on atopic dermatitis in vivo. MATERIALS AND METHODS The therapeutic effects of honokiol were evaluated in a 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis model. RESULTS Administration of honokiol (10 mg/kg) significantly suppressed mast cell accumulation and inflammation induced by DNCB in skin tissues. Moreover, DNCB-induced increases in serum immunoglobulin E levels were reversed by honokiol treatment. In addition, DNCB-induced elevation of inflammatory cytokines (interleukin (IL)-4, IL-13, IL-17, and interferon-γ) in the skin and lymph nodes was significantly ameliorated by honokiol administration. Furthermore, the increase in lymph nodes sizes induced by DNCB treatment was reduced by honokiol administration. CONCLUSION DNCB-induced atopic responses in the ears and lymph nodes were significantly suppressed by honokiol treatment. These results suggested that honokiol is a potential therapeutic agent for atopic dermatitis.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School and College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School and College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
32
|
Elias PM. Optimizing emollient therapy for skin barrier repair in atopic dermatitis. Ann Allergy Asthma Immunol 2022; 128:505-511. [PMID: 35065300 PMCID: PMC9979622 DOI: 10.1016/j.anai.2022.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We compared the principal characteristics of over-the-counter moisturizers with physiological lipid-based barrier repair therapy (BRT). DATA SOURCES An extended literature reported that moisturizers are considered standard ancillary therapy for anti-inflammatory skin disorders such as atopic dermatitis (AD). Additional studies have found that physiological lipid-based BRT can comprise effective, stand-alone therapy for pediatric AD. RESULTS Not all moisturizers are beneficial-some negatively impact skin function, and in doing so, they risk inducing or exacerbating inflammation in patients with AD. The frequent self-reported occurrences of sensitive skin in patients with AD could reflect the potential toxicity of such formulations. A still unanswered question is whether improper formulations could also prove to be counterproductive in other types of sensitive skin, such as rosacea. In contrast, we found how physiological lipid-based BRT (when comprised of the 3 key stratum corneum lipids in sufficient quantities and at an appropriate molar ratio) can correct the barrier abnormality, thereby reducing inflammation in AD and possibly in other inflammatory dermatoses, such as adult eczemas and possibly even psoriasis. CONCLUSION We provide guidelines for the appropriate dispensation of moisturizers and physiological lipid-based, BRT for the treatment of AD. Both over-the-counter (Atopalm) and prescription (EpiCeram) products are available in the United States with these characteristics.
Collapse
Affiliation(s)
- Peter M Elias
- Department of Dermatology, University of California (UC) San Francisco and Veteran Affairs (VA) Medical Center, San Francisco, California.
| |
Collapse
|
33
|
Churnosov M, Belyaeva T, Reshetnikov E, Dvornyk V, Ponomarenko I. Polymorphisms of the filaggrin gene are associated with atopic dermatitis in the Caucasian population of Central Russia. Gene 2022; 818:146219. [PMID: 35092857 DOI: 10.1016/j.gene.2022.146219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
Association of the filaggrin (FLG) gene with atopic dermatitis (AD) in Caucasians from Central Russia was studied in the sample of 700 patients and 612 controls. In total ten SNPs of the gene (rs61816761, rs12130219, rs77199844, rs558269137, rs4363385, rs12144049, rs471144, rs6661961, rs10888499, rs3126085), their haplotypes and interlocus interactions were analyzed using logistic regression. The functional effects of the AD risk candidate loci and their proxies (136 SNPs) were evaluated by in silico analysis. All analyzed SNPs were associated with AD: two SNPs (rs3126085 and rs12144049) manifested the independent association, nine SNPs were associated within 30 haplotypes, and seven SNPs showed interlocus interaction effects within ten most significant epistatic models. Alleles A rs3126085 and C rs12144049 were associated with a higher risk of AD according to the allelic (ORs being 1.75, pperm = 0.002 and 1.45, pperm = 0.011 respectively), additive (ORs being 1.69, pperm = 0.004 and 1.47, pperm = 0.011 respectively) and dominant (ORs being 1.79, pperm = 0.004 and 1.63, pperm = 0.005 respectively) genetic models. Three haplotypes, GT[rs3126085-rs12144049] (OR = 0.60), GGT[rs61816761-rs3126085-rs12144049] (OR = 0.59), and AWGGT[rs12130219-rs558269137-rs61816761-rs3126085-rs12144049] (OR = 0.63) demonstrated the protective effect (pperm = 0.001). The in silico analysis suggested that the AD risk variants and their proxies apparently produce various effects on 38 genes in various tissue/organs (including 20 genes in the skin). The biological process enrichment analyses suggest that the target AD candidate genes influence the formation of the cornified envelope, keratinization and cornification, and more than twenty other pathways related to skin development, programmed cell death, and regulation of water loss via skin.
Collapse
Affiliation(s)
- Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia.
| | - Tatyana Belyaeva
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, Alfaisal University, 11533 Riyadh, Saudi Arabia
| | - Irina Ponomarenko
- Department of Medical Biological Disciplines, Belgorod State University, 308015 Belgorod, Russia
| |
Collapse
|
34
|
Zeze N, Kido-Nakahara M, Tsuji G, Maehara E, Sato Y, Sakai S, Fujishima K, Hashimoto-Hachiya A, Furue M, Nakahara T. Role of ERK Pathway in the Pathogenesis of Atopic Dermatitis and Its Potential as a Therapeutic Target. Int J Mol Sci 2022; 23:ijms23073467. [PMID: 35408826 PMCID: PMC8999015 DOI: 10.3390/ijms23073467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Atopic dermatitis (AD) is an eczematous skin disorder characterized by type 2 inflammation, barrier disruption, and intense itch. In addition to type 2 cytokines, many other cytokines, such as interferon gamma (IFN-γ), interleukin 17 (IL-17), and interleukin 22 (IL-22), play roles in the pathogenesis of AD. It has been reported that the extracellular signal-regulated kinase (ERK) is downstream of such cytokines. However, the involvement of the ERK pathway in the pathogenesis of AD has not yet been investigated. We examined the expression of p-ERK in mouse and human AD skin. We also investigated the effects of the topical application of an ERK inhibitor on the dermatitis score, transepidermal water loss (TEWL), histological change, and expression of filaggrin, using an AD-like NC/Nga murine model. The effects of an ERK inhibitor on filaggrin expression in normal human epidermal keratinocytes (NHEKs) and on chemokine production from bone marrow-derived dendritic cells (BMDCs) were also evaluated. p-ERK was highly expressed in mouse and human AD skin. Topical application of an ERK inhibitor alleviated the clinical symptoms, histological changes, TEWL, and decrease in expression of filaggrin in the AD-like NC/Nga murine model. The ERK inhibitor also restored the IL-4 induced reduction in the expression of filaggrin in NHEK, and inhibited chemokine production from BMDC induced by IL-4. These results indicate that the ERK pathway is involved in the pathogenesis of AD, and suggest that the ERK pathway has potential as a therapeutic target for AD in the future.
Collapse
Affiliation(s)
- Nahoko Zeze
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Makiko Kido-Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | - Eriko Maehara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Yuki Sato
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Sawako Sakai
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Kei Fujishima
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Akiko Hashimoto-Hachiya
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
| | - Takeshi Nakahara
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.Z.); (M.K.-N.); (G.T.); (E.M.); (Y.S.); (S.S.); (K.F.); (A.H.-H.); (M.F.)
- Correspondence: ; Tel.: +81-92-642-5585; Fax: +81-92-642-5600
| |
Collapse
|
35
|
Steinhoff M, Ahmad F, Pandey A, Datsi A, AlHammadi A, Al-Khawaga S, Al-Malki A, Meng J, Alam M, Buddenkotte J. Neuro-immune communication regulating pruritus in atopic dermatitis. J Allergy Clin Immunol 2022; 149:1875-1898. [PMID: 35337846 DOI: 10.1016/j.jaci.2022.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/13/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
Abstract
Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine-Qatar, Doha, Qatar; Qatar University, College of Medicine, Doha, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, USA.
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Atul Pandey
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Jianghui Meng
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
36
|
Pavel P, Blunder S, Moosbrugger-Martinz V, Elias PM, Dubrac S. Atopic Dermatitis: The Fate of the Fat. Int J Mol Sci 2022; 23:2121. [PMID: 35216234 PMCID: PMC8880331 DOI: 10.3390/ijms23042121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease in which dry and itchy skin may develop into skin lesions. AD has a strong genetic component, as children from parents with AD have a two-fold increased chance of developing the disease. Genetic risk loci and epigenetic modifications reported in AD mainly locate to genes involved in the immune response and epidermal barrier function. However, AD pathogenesis cannot be fully explained by (epi)genetic factors since environmental triggers such as stress, pollution, microbiota, climate, and allergens also play a crucial role. Alterations of the epidermal barrier in AD, observed at all stages of the disease and which precede the development of overt skin inflammation, manifest as: dry skin; epidermal ultrastructural abnormalities, notably anomalies of the lamellar body cargo system; and abnormal epidermal lipid composition, including shorter fatty acid moieties in several lipid classes, such as ceramides and free fatty acids. Thus, a compelling question is whether AD is primarily a lipid disorder evolving into a chronic inflammatory disease due to genetic susceptibility loci in immunogenic genes. In this review, we focus on lipid abnormalities observed in the epidermis and blood of AD patients and evaluate their primary role in eliciting an inflammatory response.
Collapse
Affiliation(s)
- Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (P.P.); (S.B.); (V.M.-M.)
| | - Stefan Blunder
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (P.P.); (S.B.); (V.M.-M.)
| | - Verena Moosbrugger-Martinz
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (P.P.); (S.B.); (V.M.-M.)
| | - Peter M. Elias
- Department of Dermatology, University of California, San Francisco, CA 94115, USA;
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (P.P.); (S.B.); (V.M.-M.)
| |
Collapse
|
37
|
Zhang DJ, Hao F, Qian T, Cheng HX. Expression of Helper and Regulatory T Cells in Atopic Dermatitis: A Meta-Analysis. Front Pediatr 2022; 10:777992. [PMID: 35433533 PMCID: PMC9010508 DOI: 10.3389/fped.2022.777992] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease, with the incidence peaks in infancy. A meta-analysis was performed to assess the levels of T helper type 22 (Th22) cells, T helper type 17 (Th17) cells, interleukin (IL)-17, and Tregs in peripheral blood of patients with AD. METHODS A comprehensive literature search was performed in PubMed, Embase, China National Knowledge Internet, and Wan-fang Data from the day of inception of this study to July 2021. Two authors independently extracted the data, which were pooled and calculated using Stata software version 15. RESULTS A total of eight studies met the inclusion criteria. Compared with control group, patients with AD had an increased proportion of Th22 cells [weighted mean difference (WMD) = 2.07, 95% CI (1.33, 2.81), p < 0.001], Th17 cells [WMD = 1.04, 95% CI [0.66, 1.43], p < 0.001], IL-17 [WMD = 17.56, 95% CI (11.1, 24.03), p < 0.001], and a decreased proportion of Tregs [WMD = -2.49, 95% CI (-2.93, -2.05), p < 0.001] in peripheral blood. The subgroup analysis showed that patients with higher disease severity had higher levels of Th22 [mild: WMD = 1.33, 95% CI (1.24, 1.41), p < 0.001; moderate: WMD = 1.41, 95% CI (1.36, 1.54), p < 0.001; severe: WMD = 3.46, 95% CI (3.34, 2.81), p < 0.001] and lower levels of Tregs [mild: WMD = -1.43, 95% CI (-1.75, -1.11), p < 0.001; moderate: WMD = -2.16, 95% CI (-2.46, -1.86), p < 0.001; severe: WMD = -2.96, 95% CI (-3.25, -2.67), p < 0.001] in peripheral blood compared to healthy controls. CONCLUSION The random effect model of the meta-analysis showed patients with AD had an increased proportion of Th22 cells, Th17 cells, and IL-17, whereas a decreased proportion of Tregs was found in peripheral blood. The results demonstrated that Th22 cells, Th17 cells, IL-17, and Tregs may be involved in the pathogenic mechanisms of AD.
Collapse
Affiliation(s)
- Dao-Jun Zhang
- Department of Dermatology and Plastic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fei Hao
- Department of Dermatology and Plastic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Qian
- Department of Dermatology and Plastic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hai-Xing Cheng
- Department of Dermatology and Plastic Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Kubanov AA, Chikin VV, Karamova AE, Monchakovskaya ES. [Narrow-band medium-wave ultraviolet therapy in patients with atopic dermatitis: efficacy and safety]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:79-88. [PMID: 36538407 DOI: 10.17116/kurort20229906179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
For the treatment of patients with atopic dermatitis of moderate and heavy severity level, narrow-band medium-wave ultraviolet therapy (narrow-band phototherapy) can be used. An analysis of the results of studies of the efficacy and safety of narrow-band medium-wavelength ultraviolet therapy in patients with atopic dermatitis is presented, and a characteristic of the regimens of the phototherapy carried out is given. It has been shown that narrow-band phototherapy is an effective and safe method of treating patients with atopic dermatitis, but its effectiveness varies widely. Data were obtained on the absence of an increase in the effect during therapy with higher doses of radiation, about the higher efficiency of narrow-band phototherapy with concurrent medication, with an increase in the number of irradiation procedures, as well as in patients with a higher minimum erythemal dose, which indicates the possible existence of factors characterizing the individual characteristics of the response of patients to narrow-band phototherapy.
Collapse
Affiliation(s)
- A A Kubanov
- State Scientific Center for Dermatovenereology and Cosmetology, Moscow, Russia
| | - V V Chikin
- State Scientific Center for Dermatovenereology and Cosmetology, Moscow, Russia
| | - A E Karamova
- State Scientific Center for Dermatovenereology and Cosmetology, Moscow, Russia
| | - E S Monchakovskaya
- State Scientific Center for Dermatovenereology and Cosmetology, Moscow, Russia
| |
Collapse
|
39
|
Lee JY, Kim J, Ahn K. Time Trends in the Prevalence of Atopic Dermatitis in Korean Children According to Age. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:123-130. [PMID: 34983112 PMCID: PMC8724825 DOI: 10.4168/aair.2022.14.1.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to explore time trends in the prevalence of atopic dermatitis (AD) according to age in Korean children. We observed changes in the estimated annual prevalence of AD using data from the Korean National Health Insurance Service (NHIS) and Statistics Korea between 2003 and 2018. In each year, the highest prevalence was evident among children aged 12 to 23 months, and then the prevalence decreased with age. The annual prevalence of AD in Korean children under the age of 18 slightly increased from 4.0% in 2003 to 4.5% in 2018. During this period, the prevalence in children aged 6 to 18 years increased from 1.9% in 2003 to 3.1% in 2018, while that of infants aged less than 24 months substantially decreased. Among children who were born in 1991, 1997, 2000, 2003 and 2006, the slopes of decreasing trend lines over age 6 were similar. Comparing children born in 2009 and 2012 with those born before 2006, the more recent the birth year, the higher the prevalence of AD over age 6. In conclusion, time trends of the annual prevalence of AD in Korean children from 2003 through 2018 were different according to age group. These results suggest that AD development during infancy is decreasing whereas either a late-onset AD or early-onset, persistent phenotype is likely to increase. Different strategies according to age are required for more effective prevention and treatment of AD in Korean children.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Pediatrics, Chuncheon Sacred Heart Hospital, Hallym University School of Medicine, Chuncheon, Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
40
|
Oh JH, Kim SH, Kwon OK, Kim JH, Oh SR, Han SB, Park JW, Ahn KS. Purpurin suppresses atopic dermatitis via TNF-α/IFN-γ-induced inflammation in HaCaT cells. Int J Immunopathol Pharmacol 2022; 36:3946320221111135. [PMID: 35794850 PMCID: PMC9274433 DOI: 10.1177/03946320221111135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE We investigated whether purpurin inhibits various pathways of inflammation leading to atopic dermatitis. INTRODUCTION 1,2,4-Trihydroxyanthraquinone, commonly called purpurin, is an anthraquinone that is a naturally occurring red/yellow dye. Purpurin is a highly antioxidative anthraquinone and previous studies have reported antibacterial, anti-tumor, and anti-oxidation activities in cells and animals. However, the skin inflammatory inhibition activity mechanism study of purpurin has not been elucidated in vitro. METHODS In this study, we investigated the anti-inflammatory activity of purpurin in HaCaT (human keratinocyte) cell lines stimulated with a mixture of tumor necrosis factor-alpha (TNF-α)/Interferon-gamma (IFN-γ). The inhibitory effect of Purpurin on cytokines (IL-6, IL-8, and IL-1β) and chemokine (TARC, MDC, and RANTES) was confirmed by ELISA and RT-qPCR. We investigated each signaling pathway and the action of inhibitors through western blots. RESULTS The expression levels of cytokines and chemokines were dose-dependently suppressed by purpurin treatment in TNF-α/IFN-γ-induced HaCaT cells from ELISA and real-time PCR. Purpurin also inhibited protein kinase B (AKT), mitogen-activated protein kinase (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) activation in TNF-α/IFN-γ-stimulated HaCaT cells. Additionally, there was a synergistic effect when purpurin and inhibitor were applied together, and inflammation was dramatically reduced. CONCLUSION Therefore, these results demonstrate that purpurin exhibits anti-inflammatory and anti-atopic dermatitis activity in HaCaT cells.
Collapse
Affiliation(s)
- Jae-Hoon Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Seung-Ho Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| | - Jung-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and
Biotechnology, Cheongju-si, Republic of Korea
| |
Collapse
|
41
|
Layhadi JA, Palmer E, Sharif H, Shamji MH. Current Drug Treatments for Allergy. ENCYCLOPEDIA OF RESPIRATORY MEDICINE 2022:477-490. [DOI: 10.1016/b978-0-08-102723-3.00236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Bhargava P, Singdia H, Nijhawan S, Mathur DK, Bhargava RK. A study of biophysical profile of inguinal skin: An implication for health and disease. Indian J Sex Transm Dis AIDS 2021; 42:7-13. [PMID: 34765931 PMCID: PMC8579585 DOI: 10.4103/ijstd.ijstd_101_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/28/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Context: Inguinal skin is prone to various infectious dermatological conditions such as erythrasma, intertrigo, hidradenitis suppurativa, folliculitis, dermatophytic infection, and various sexually transmitted diseases, as compared to the skin elsewhere. Aim: Our study attempts to compare the biophysical profile parameters (BPPs) of the genital skin with that of the rest of the body, while taking skin of the upper back as control. It also attempts to find out if there is a difference in BPPs of the two sites and that how the change in the BPPs, bring about change in microbiome and make inguinal skin more prone to infections. Materials and Methods: This was a hospital-based comparative study conducted over 976 patients (600 males and 376 females) of age group 18–60 years, where BPP parameters such as hydration, skin pH, transepidermal water loss (TEWL), and sebum content were measured over the skin of the upper back and right inguinal region, and the results were summarized and presented as proportions (%). Chi-square test was used to compare abnormal findings. P ≤ 0.05 was taken as statistically significant. MedCalc 16.4 version software was used for all statistical calculations. Results: Significant difference was noted in skin pH and TEWL, where P value came out to be <0.05, which was statistically significant, whereas there was minimal difference in sebum content and skin hydration in both the areas, in males and females. Conclusion: Raised skin pH disturbs organization of lipid bilayers (disturbed barrier), decreases lipid processing (impaired SC cohesion), and increases serine protease activity (reduced AMP). Increased TEWL (defect in physical barrier) and decreased hydration predispose the genital skin to infections. Use of pH buffered solutions (3–4), barrier repair creams containing ceramides, and barrier protective creams with dimethicone can help prevent these inguinal dermatoses.
Collapse
Affiliation(s)
- Puneet Bhargava
- Department of Dermatology, SMS Medical College, Jaipur, Rajasthan, India
| | - Heena Singdia
- Department of Dermatology, SMS Medical College, Jaipur, Rajasthan, India
| | - Shivi Nijhawan
- Department of Dermatology, SMS Medical College, Jaipur, Rajasthan, India
| | - Deepak K Mathur
- Department of Dermatology, SMS Medical College, Jaipur, Rajasthan, India
| | - Rishi K Bhargava
- Department of Dermatology, SMS Medical College, Jaipur, Rajasthan, India
| |
Collapse
|
43
|
Park CW, Kim BJ, Lee YW, Won C, Park CO, Chung BY, Lee DH, Jung K, Nam HJ, Choi G, Park YH, Kim KH, Park M. Asivatrep, a TRPV1 antagonist, for the topical treatment of atopic dermatitis: Phase 3, randomized, vehicle-controlled study (CAPTAIN-AD). J Allergy Clin Immunol 2021; 149:1340-1347.e4. [PMID: 34606832 DOI: 10.1016/j.jaci.2021.09.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Asivatrep is a potent and selective antagonist of transient receptor potential vanilloid subfamily V member 1 (TRPV1), which plays an important role in itch and inflammation in atopic dermatitis (AD). OBJECTIVE This current study aimed to evaluate the efficacy and safety of asivatrep cream in patients with AD. METHODS For this phase 3 double-blind, vehicle-controlled study, patients aged ≥12 years with mild to moderate AD were enrolled and randomly assigned 2:1 to the 1.0% asivatrep or vehicle group for 8 weeks of twice-daily application (n = 240). The primary end point was the proportion of patients with an Investigator's Global Assessment score (IGA) of 0 or 1 at week 8. Standard safety assessments were conducted. RESULTS At week 8, significantly more patients in the asivatrep group (36.0%) than in the vehicle group (12.8%) had IGA scores of 0 or 1 (P < .001); significantly more had ≥2 points of improvement on the IGA from baseline score (20.3% vs 7.7%; P = .01). The mean percentage reduction in the Eczema Area and Severity Index (EASI) score was 44.3% for the asivatrep group and 21.4% for the vehicle group at week 8 (P < .001). Significantly more asivatrep-treated patients experienced an improvement of at least 50%, 75%, and 90% on the EASI than the vehicle group. The mean ± SD change in the pruritus visual analog scale score at week 8 was -2.3 ± 2.4 for the asivatrep group and -1.5 ± 2.4 for the vehicle group (P = .02). No significant safety issues were reported. CONCLUSION Asivatrep improved clinical signs and symptoms of AD and was well tolerated.
Collapse
Affiliation(s)
- Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yang Won Lee
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Chonghyun Won
- Department of Dermatology, Ulsan University School of Medicine, Seoul, Korea
| | - Chang Ook Park
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | - Kyu Han Kim
- Department of Dermatology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | | |
Collapse
|
44
|
Czarnowicki T, Kim HJ, Villani AP, Glickman J, Duca ED, Han J, Pavel AB, Lee BH, Rahman AH, Merad M, Krueger JG, Guttman‐Yassky E. High-dimensional analysis defines multicytokine T-cell subsets and supports a role for IL-21 in atopic dermatitis. Allergy 2021; 76:3080-3093. [PMID: 33818809 DOI: 10.1111/all.14845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Flow cytometry is a well-accepted approach for immune profiling; however, its value is restricted by the limited number of markers that can be analyzed simultaneously. Mass cytometry/CyTOF offers broad-scale immune characterization integrating large number of parameters. While partial blood phenotyping was reported in atopic dermatitis (AD), patients' comprehensive profiling, critical for leveraging new targeted treatments, is not available. IL-21 may be involved in inflammatory skin diseases but its role in AD is not well established. METHODS We studied T-cell polarization in the blood of 20 moderate-to-severe AD and 15 controls. Using CyTOF and an unsupervised analysis, we measured the frequencies and mean metal intensities of activated polar CD4+ /CD8+ T-cell subsets. Immunohistochemistry, immunofluorescence, and qRT-PCR were used to analyze skin samples. RESULTS Examining 24 surface, intracellular markers, and transcription factors, we identified six CD4+ and five CD8+ T-cell metaclusters. A CD4+ skin-homing IL-13+ monocytokine and a novel IL-13+ IL-21+ multicytokine metaclusters were increased in AD vs. controls (p < .01). While IL-13 signature characterized both clusters, levels were significantly higher in the IL-21+ group. Both clusters correlated with AD severity (r = 0.49, p = .029). Manual gating corroborated these results and identified additional multicytokine subsets in AD. Immunohistochemistry and immunofluorescence, validated by mRNA expression, displayed significantly increasedIL-21 counts and colocalization with IL-13/IL-4R in AD skin. CONCLUSION A multicytokine signature characterizes moderate-to-severe AD, possibly explaining partial therapeutic responses to one cytokine targeting, particularly in severe patients. Prominent IL-21 signature in blood and skin hints for a potential pathogenic role of IL-21 in AD.
Collapse
Affiliation(s)
- Tali Czarnowicki
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Hyun Je Kim
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Axel P. Villani
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Jacob Glickman
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Ester Del Duca
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Joseph Han
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Ana B. Pavel
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| | - Brian H. Lee
- Human Immune Monitoring Center Icahn School of Medicine at Mt. Sinai New York NY USA
| | - Adeeb H. Rahman
- Human Immune Monitoring Center Icahn School of Medicine at Mt. Sinai New York NY USA
- Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York NY USA
| | - Miriam Merad
- Department of Oncological Sciences Icahn School of Medicine at Mount Sinai New York NY USA
- Icahn School of Medicine at Mount Sinai The Precision Immunology Institute New York NY USA
- Icahn School of Medicine at Mount Sinai The Tisch Cancer Institute New York NY USA
| | - James G. Krueger
- Laboratory for Investigative Dermatology The Rockefeller University New York NY USA
| | - Emma Guttman‐Yassky
- Department of Dermatology and the Immunology Institute Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
45
|
Interleukins 4 and 13 drive lipid abnormalities in skin cells through regulation of sex steroid hormone synthesis. Proc Natl Acad Sci U S A 2021; 118:2100749118. [PMID: 34521750 DOI: 10.1073/pnas.2100749118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin dryness, inflammation, and itch. A major hallmark of AD is an elevation of the immune cytokines IL-4 and IL-13. These cytokines lead to skin barrier disruption and lipid abnormalities in AD, yet the underlying mechanisms are unclear. Sebaceous glands are specialized sebum-producing epithelial cells that promote skin barrier function by releasing lipids and antimicrobial proteins to the skin surface. Here, we show that in AD, IL-4 and IL-13 stimulate the expression of 3β-hydroxysteroid dehydrogenase 1 (HSD3B1), a key rate-limiting enzyme in sex steroid hormone synthesis, predominantly expressed by sebaceous glands in human skin. HSD3B1 enhances androgen production in sebocytes, and IL-4 and IL-13 drive lipid abnormalities in human sebocytes and keratinocytes through HSD3B1. Consistent with our findings in cells, HSD3B1 expression is elevated in the skin of AD patients and can be restored by treatment with the IL-4Rα monoclonal antibody, Dupilumab. Androgens are also elevated in a mouse model of AD, though the mechanism in mice remains unclear. Our findings illuminate a connection between type 2 immunity and sex steroid hormone synthesis in the skin and suggest that abnormalities in sex steroid hormone synthesis may underlie the disrupted skin barrier in AD. Furthermore, targeting sex steroid hormone synthesis pathways may be a therapeutic avenue to restoring normal skin barrier function in AD patients.
Collapse
|
46
|
Lang CCV, Renert-Yuval Y, Del Duca E, Pavel AB, Wu J, Zhang N, Dubin C, Obi A, Chowdhoury M, Kim M, Estrada YD, Krueger JG, Kaderbhai H, Semango G, Schmid-Grendelmeier P, Brüggen MC, Masenga JE, Guttman-Yassky E. Immune and barrier characterization of atopic dermatitis skin phenotype in Tanzanian patients. Ann Allergy Asthma Immunol 2021; 127:334-341. [PMID: 33975024 PMCID: PMC11344219 DOI: 10.1016/j.anai.2021.04.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common disease, with particularly high prevalence found in Africa. It is increasingly recognized that patients with AD of different ethnic backgrounds have unique molecular signatures in the skin, potentially accounting for treatment response variations. Nevertheless, the skin profile of patients with AD from Africa is unknown, hindering development of new treatments targeted to this patient population. OBJECTIVE To characterize the skin profile of patients with AD from Africa. METHODS Gene expression studies, including RNA sequencing (using threshold of fold change of >2 and false discovery rate of <0.05) and real-time polymerase chain reaction, were performed on skin biopsies of Tanzanian patients with moderate-to-severe AD and controls. RESULTS Tanzanian AD skin presented robust up-regulations of multiple key mediators of both T helper 2 (TH2) (interleukin 13 [IL-13], IL-10, IL-4R, CCL13,CCL17,CCL18,CCL26) and TH22 (IL22, S100As) pathways. Markers related to TH17 and IL-23 (IL-17A, IL-23A, IL-12, PI3, DEFB4B) and TH1 (interferon gamma, CXCL9,CXCL10,CXCL11) were also significantly overexpressed in AD tissues (FDR<.05), albeit to a lesser extent. IL-36 isoforms revealed substantial up-regulations in African skin. The barrier fingerprint of Tanzanian AD revealed no suppression of hallmark epidermal barrier differentiation genes, such as filaggrin, loricrin, and periplakin, with robust attenuation of lipid metabolism genes (ie, AWAT1). CONCLUSION The skin phenotype of Tanzanian patients with AD is consistent with that of African Americans, exhibiting dominant TH2 and TH22 skewing, minimal dysregulation of terminal differentiation, and even broader attenuation of lipid metabolism-related products. These data highlight the unique characteristic of AD in Black individuals and the need to develop unique treatments targeting patients with AD from these underrepresented populations.
Collapse
Affiliation(s)
- Claudia C V Lang
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Dermatology, University Hospital Zürich, Zürich, Switzerland
| | - Yael Renert-Yuval
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York; Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Ester Del Duca
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Dermatology, University of Magna Graecia, Catanzaro, Italy
| | - Ana B Pavel
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Biomedical Engineering, University of Mississippi, Oxford, Mississippi
| | - Jianni Wu
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ning Zhang
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Celina Dubin
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ashley Obi
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mashkura Chowdhoury
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Madeline Kim
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yeriel D Estrada
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Hashim Kaderbhai
- Department of Dermatology, M.P. Shah Hospital, Nairobi, Kenya; Department of Dermatology, Regional Dermatology Training Center, Moshi, Tanzania
| | - George Semango
- Department of Dermatology, Regional Dermatology Training Center, Moshi, Tanzania
| | | | - Marie-Charlotte Brüggen
- Department of Dermatology, University Hospital Zürich, Zürich, Switzerland; Hochgebirgsklinik Davos, Davos, Switzerland
| | - John E Masenga
- Department of Dermatology, Regional Dermatology Training Center, Moshi, Tanzania
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
47
|
Bin L, Malley C, Taylor P, Preethi Boorgula M, Chavan S, Daya M, Mathias M, Shankar G, Rafaels N, Vergara C, Potee J, Campbell M, Hanifin JM, Simpson E, Schneider LC, Gallo RL, Hata T, Paller AS, De Benedetto A, Beck LA, Ong PY, Guttman‐Yassky E, Richers B, Baraghoshi D, Ruczinski I, Barnes KC, Leung DYM, Mathias RA. Whole genome sequencing identifies novel genetic mutations in patients with eczema herpeticum. Allergy 2021; 76:2510-2523. [PMID: 33548076 DOI: 10.1111/all.14762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Eczema herpeticum (EH) is a rare complication of atopic dermatitis (AD) caused by disseminated herpes simplex virus (HSV) infection. The role of rare and/or deleterious genetic variants in disease etiology is largely unknown. This study aimed to identify genes that harbor damaging genetic variants associated with HSV infection in AD with a history of recurrent eczema herpeticum (ADEH+). METHODS Whole genome sequencing (WGS) was performed on 49 recurrent ADEH+ (≥3 EH episodes), 491 AD without a history of eczema herpeticum (ADEH-) and 237 non-atopic control (NA) subjects. Variants were annotated, and a gene-based approach (SKAT-O) was used to identify genes harboring damaging genetic variants associated with ADEH+. Genes identified through WGS were studied for effects on HSV responses and keratinocyte differentiation. RESULTS Eight genes were identified in the comparison of recurrent ADEH+to ADEH-and NA subjects: SIDT2, CLEC7A, GSTZ1, TPSG1, SP110, RBBP8NL, TRIM15, and FRMD3. Silencing SIDT2 and RBBP8NL in normal human primary keratinocytes (NHPKs) led to significantly increased HSV-1 replication. SIDT2-silenced NHPKs had decreased gene expression of IFNk and IL1b in response to HSV-1 infection. RBBP8NL-silenced NHPKs had decreased gene expression of IFNk, but increased IL1b. Additionally, silencing SIDT2 and RBBP8NL also inhibited gene expression of keratinocyte differentiation markers keratin 10 (KRT10) and loricrin (LOR). CONCLUSION SIDT2 and RBBP8NL participate in keratinocyte's response to HSV-1 infection. SIDT2 and RBBP8NL also regulate expression of keratinocyte differentiation genes of KRT10 and LOR.
Collapse
Affiliation(s)
- Lianghua Bin
- Department of Pediatrics National Jewish Health Denver CO USA
| | - Claire Malley
- Division of Allergy and Clinical Immunology Johns Hopkins University Baltimore MD USA
| | - Patricia Taylor
- Department of Pediatrics National Jewish Health Denver CO USA
| | | | - Sameer Chavan
- Department of Medicine University of Colorado Aurora CO USA
| | - Michelle Daya
- Department of Medicine University of Colorado Aurora CO USA
| | - Malaika Mathias
- Division of Allergy and Clinical Immunology Johns Hopkins University Baltimore MD USA
| | - Gautam Shankar
- Division of Allergy and Clinical Immunology Johns Hopkins University Baltimore MD USA
| | | | | | | | | | | | - Eric Simpson
- Oregon Health & Science University Portland OR USA
| | | | - Richard L. Gallo
- Department of Dermatology University of California San Diego CA USA
| | - Tissa Hata
- Department of Dermatology University of California San Diego CA USA
| | - Amy S. Paller
- Northwestern University Feinberg School of Medicine Chicago IL USA
| | | | - Lisa A. Beck
- University of Rochester Medical Center Rochester NY USA
| | - Peck Y. Ong
- Children’s Hospital Los Angeles University of Southern California Los Angeles CA USA
| | | | | | | | - Ingo Ruczinski
- Department of Biostatistics Bloomberg School of Public Health Johns Hopkins University Baltimore MD USA
| | | | | | - Rasika A. Mathias
- Division of Allergy and Clinical Immunology Johns Hopkins University Baltimore MD USA
| |
Collapse
|
48
|
Apple cider vinegar soaks do not alter the skin bacterial microbiome in atopic dermatitis. PLoS One 2021; 16:e0252272. [PMID: 34077434 PMCID: PMC8172074 DOI: 10.1371/journal.pone.0252272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 05/13/2021] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Atopic dermatitis is a common skin disease characterized by altered cutaneous immunity in which patients often exhibit lower skin microbiota diversity compared to healthy skin and are prone to colonization by Staphylococcus aureus. Apple cider vinegar has been shown to have antibacterial effects; however, its effects on the skin microbiome have not previously been well-described. OBJECTIVES We aimed to examine the effects of topical dilute apple cider vinegar soaks on Staphylococcus aureus abundance, skin bacterial microbiome composition, and skin bacterial microbiome diversity in atopic dermatitis participants compared to healthy skin. METHODS Eleven subjects with atopic dermatitis and 11 healthy controls were enrolled in this randomized, non-blinded, single-institution, split-arm pilot study. Subjects soaked one forearm in dilute apple cider vinegar (0.5% acetic acid) and the other forearm in tap water for 10 minutes daily. Skin bacteria samples were collected from subjects' volar forearms before and after 14 days of treatment. 16S sequencing was used to analyze Staphylococcus aureus abundance and skin bacterial microbiome composition, and alpha diversity of microbiota were determined using Shannon diversity index. RESULTS There was no difference in skin bacterial microbiome in atopic dermatitis subjects after 2 weeks of daily water or apple cider vinegar treatments (p = 0.056 and p = 0.22, respectively), or in mean abundance of S. aureus on apple cider vinegar-treated forearms (p = 0.60). At 2 weeks, the skin bacterial microbiomes of healthy control subjects were not significantly different from the skin bacterial microbiome of atopic dermatitis subjects (p = 0.14, 0.21, 0.12, and 0.05). CONCLUSIONS Our results suggest that daily soaks in 0.5% apple cider vinegar are not an effective method of altering the skin bacterial microbiome in atopic dermatitis. Further studies are needed to explore the effects of different concentrations of apple cider vinegar on skin microflora and disease severity. TRIAL NUMBER UVA IRB-HSR #19906.
Collapse
|
49
|
Guttman-Yassky E, Diaz A, Pavel AB, Fernandes M, Lefferdink R, Erickson T, Canter T, Rangel S, Peng X, Li R, Estrada Y, Xu H, Krueger JG, Paller AS. Use of Tape Strips to Detect Immune and Barrier Abnormalities in the Skin of Children With Early-Onset Atopic Dermatitis. JAMA Dermatol 2021; 155:1358-1370. [PMID: 31596431 DOI: 10.1001/jamadermatol.2019.2983] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Importance Molecular profiling of skin biopsies is the criterion standard for evaluating the cutaneous atopic dermatitis (AD) phenotype. However, skin biopsies are not always feasible in children. A reproducible minimally invasive approach that can track cutaneous disease in pediatric longitudinal studies or clinical trials is lacking. Objective To assess a minimally invasive approach using tape strips to identify skin biomarkers that may serve as a surrogate to biomarkers identified using whole-tissue biopsies. Design, Setting, and Participants This cross-sectional study of 51 children younger than 5 years recruited children with moderate to severe AD and children without AD from the dermatology outpatient clinics at a children's hospital. Sixteen tape strips were serially collected from the nonlesional and lesional skin of 21 children who had AD and were less than 6 months from disease initiation and from the normal skin of 30 children who did not have AD between January 22, 2016, and April 20, 2018. Main Outcomes and Measures Gene and protein expression were evaluated using quantitative real-time polymerase chain reaction and immunohistochemistry. Results A total of 51 children younger than 5 years were included in the study; 21 children had moderate to severe AD with less than 6 months of disease duration, and 30 children did not have AD. Of the 21 children with AD, the mean (SD) age was 1.7 (1.7) years, and most were male (15 [71.4%] and white (15 [71.4%]). Of the 30 children without AD, the mean (SD) age was 1.8 (2.0) years, and most were female (20 [66.7%]) and white (22 [73.3%]). Seventy-seven of 79 evaluated immune and barrier gene products were detected (gene detection rate, 97%) in 70 of 71 tape strips (sample detection rate, 99%), with 53 of 79 markers differentiating between children with lesional and/or nonlesional AD from children without AD. Many cellular markers of T cells (CD3), AD-related dendritic cells (Fc ε RI and OX40 ligand receptors), and key inflammatory (matrix metallopeptidase 12), innate (interleukin 8 [IL-8] and IL-6), helper T cell 2 (TH2; IL-4, IL-13, and chemokines CCL17 and CCL26), and TH17/TH22 (IL-19, IL-36G, and S100A proteins) genes were significantly increased in lesional and nonlesional AD compared with tape strips from normal skin. For example, IL-4 mean (SE) for lesional was -15.2 (0.91) and normal was -19.5 (0.48); P < .001. Parallel decreases occurred in epidermal barrier gene products (FLG, CLDN23, and FA2H) and negative immune regulators (IL-34 and IL-37). For example, the decrease for FLG lesional was mean (SE) -2.9 (0.42) and for normal was 2.2 (0.45); P < .001. Associations were found between disease severity or transepidermal water loss and TH2 (IL-33 and IL-4R) and TH17/TH22 (IL-36G and S100As) products in lesional and nonlesional AD skin (evaluated using the SCORing Atopic Dermatitis, Eczema Area and Severity Index, and Pruritus Atopic Dermatitis Quickscore tools). Conclusions and Relevance In this study, tape strips provide a minimally invasive alternative for serially evaluating AD-associated cutaneous biomarkers and may prove useful for tracking pediatric AD therapeutic response and predicting future course and comorbidities.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Aisleen Diaz
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York.,School of Medicine, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Ana B Pavel
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Marie Fernandes
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Rachel Lefferdink
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Taylor Erickson
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Talia Canter
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Stephanie Rangel
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xiangyu Peng
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Randall Li
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Yeriel Estrada
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - Hui Xu
- Department of Dermatology and Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai Medical Center, New York, New York
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Amy S Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
50
|
Peng S, Chen M, Yin M, Feng H. Identifying the Potential Therapeutic Targets for Atopic Dermatitis Through the Immune Infiltration Analysis and Construction of a ceRNA Network. Clin Cosmet Investig Dermatol 2021; 14:437-453. [PMID: 33994801 PMCID: PMC8112859 DOI: 10.2147/ccid.s310426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 01/01/2023]
Abstract
Purpose This study was meant to analyze immune infiltration and construct a ceRNA network to explore the new therapeutic targets for atopic dermatitis (AD) through bioinformatics way. Patients and Methods We downloaded the AD patients’ RNA expression profile datasets (GSE63741, GSE124700) from the Gene Expression Omnibus (GEO) database, which were analyzed through the GEO2R. We explored the hub genes by the enrichment analysis and the protein–protein interaction (PPI) analysis. Moreover, we estimated immune cell types and their proportions by ImmucellAI. GSE121212 dataset validation was performed to verify the robustness of the hub genes. Then, a ceRNA network was constructed by the miRWalk, miRNet, miRDB, DIANA, TargetScan, and starbase database. Finally, gene expression analysis was performed by using RT-qPCR. Results In total, we detected 22 differentially expressed genes (DEGs), which contained 8 downregulated genes and 14 upregulated genes. There were 5 hub genes confirmed as key genes through PPI network analysis and the ROC curves. KEGG pathway analysis revealed that they were significantly enriched in the IL-17 signaling pathway and GO analysis showed mainly in the immune cell chemotaxis. The immune infiltration profiles were different between normal controls and AD, and each of the key genes (S100A7, S100A8, S100A9, and LCE3D) was significantly correlated with the main infiltration cell of AD. A lncRNA–miRNA–mRNA ceRNA network containing the key genes was constructed, and NEAT1 and XIST, the core of ceRNA network, were significantly overexpressing verified by RT-qPCR in AD patients. Conclusion Altogether, the key genes and their ceRNA network provided a novel perspective to the immunomodulation of AD, which may be potential and new therapeutic targets for AD.
Collapse
Affiliation(s)
- Shixiong Peng
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, People's Republic of China
| | - Mengjiao Chen
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, People's Republic of China
| | - Ming Yin
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, People's Republic of China
| | - Hao Feng
- Department of Dermatology, The First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital, Changsha, People's Republic of China
| |
Collapse
|