1
|
Sitruk-Ware R, Sussman H, Brinton R, Schumacher M, Singer P, Kumar N, De Nicola AF, El-Etr M, Guennoun R, V Borlongan C. Nestorone (segesterone acetate) effects on neuroregeneration. Front Neuroendocrinol 2024; 73:101136. [PMID: 38670433 DOI: 10.1016/j.yfrne.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Nestorone® (segesterone acetate) is a progestin with a chemical structure closely related to progesterone with high affinity and selectivity for the progesterone receptor without significant interaction with other steroid receptors. It has been developed for female and male contraception and is FDA-approved in a first long-acting contraceptive vaginal system for female contraception. Its safety has been extensively demonstrated in both preclinical and clinical studies for contraceptive indications. Nestorone was found to display neuroprotective and neuroregenerative activity in animal models of various central nervous system diseases, including multiple sclerosis, stroke, and amyotrophic lateral sclerosis. Reviewed herein are neuroprotective and myelin- regenerating properties of Nestorone in various animal models and its translational potential as a therapeutic agent for debilitating neurological diseases for which limited therapeutic options are available (Table 1).
Collapse
Affiliation(s)
| | | | - Roberta Brinton
- Center for Innovation in Brain Science, Tucson, AZ, United States
| | | | | | | | | | - Martine El-Etr
- U1195 Inserm and University Paris-Saclay Le Kremlin Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Saclay Le Kremlin Bicêtre, France
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
2
|
Montes P, Ortíz-Islas E, Rodríguez-Pérez CE, Ruiz-Sánchez E, Silva-Adaya D, Pichardo-Rojas P, Campos-Peña V. Neuroprotective-Neurorestorative Effects Induced by Progesterone on Global Cerebral Ischemia: A Narrative Review. Pharmaceutics 2023; 15:2697. [PMID: 38140038 PMCID: PMC10747486 DOI: 10.3390/pharmaceutics15122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Progesterone (P4) is a neuroactive hormone having pleiotropic effects, supporting its pharmacological potential to treat global (cardiac-arrest-related) cerebral ischemia, a condition associated with an elevated risk of dementia. This review examines the current biochemical, morphological, and functional evidence showing the neuroprotective/neurorestorative effects of P4 against global cerebral ischemia (GCI). Experimental findings show that P4 may counteract pathophysiological mechanisms and/or regulate endogenous mechanisms of plasticity induced by GCI. According to this, P4 treatment consistently improves the performance of cognitive functions, such as learning and memory, impaired by GCI. This functional recovery is related to the significant morphological preservation of brain structures vulnerable to ischemia when the hormone is administered before and/or after a moderate ischemic episode; and with long-term adaptive plastic restoration processes of altered brain morphology when treatment is given after an episode of severe ischemia. The insights presented here may be a guide for future basic research, including the study of P4 administration schemes that focus on promoting its post-ischemia neurorestorative effect. Furthermore, considering that functional recovery is a desired endpoint of pharmacological strategies in the clinic, they could support the study of P4 treatment for decreasing dementia in patients who have suffered an episode of GCI.
Collapse
Affiliation(s)
- Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Emma Ortíz-Islas
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Pavel Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico;
| |
Collapse
|
3
|
Diabetic Encephalopathy in a Preclinical Experimental Model of Type 1 Diabetes Mellitus: Observations in Adult Female Rat. Int J Mol Sci 2023; 24:ijms24021196. [PMID: 36674713 PMCID: PMC9860834 DOI: 10.3390/ijms24021196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
Patients affected by diabetes mellitus (DM) show diabetic encephalopathy with an increased risk of cognitive deficits, dementia and Alzheimer's disease, but the mechanisms are not fully explored. In the male animal models of DM, the development of cognitive impairment seems to be the result of the concomitance of different processes such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and aberrant synaptogenesis. However, even if diabetic encephalopathy shows some sex-dimorphic features, no observations in female rats have been so far reported on these aspects. Therefore, in an experimental model of type 1 DM (T1DM), we explored the impact of one month of pathology on memory abilities by the novel object recognition test and on neuroinflammation, synaptogenesis and mitochondrial functionality. Moreover, given that steroids are involved in memory and learning, we also analysed their levels and receptors. We reported that memory dysfunction can be associated with different features in the female hippocampus and cerebral cortex. Indeed, in the hippocampus, we observed aberrant synaptogenesis and neuroinflammation but not mitochondrial dysfunction and oxidative stress, possibly due to the results of locally increased levels of progesterone metabolites (i.e., dihydroprogesterone and allopregnanolone). These observations suggest specific brain-area effects of T1DM since different alterations are observed in the cerebral cortex.
Collapse
|
4
|
Fernandez N, Petit A, Pianos A, Haddad L, Schumacher M, Liere P, Guennoun R. Aging Is Associated With Lower Neuroactive Steroids and Worsened Outcomes Following Cerebral Ischemia in Male Mice. Endocrinology 2022; 164:6779564. [PMID: 36306407 DOI: 10.1210/endocr/bqac183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 01/16/2023]
Abstract
Ischemic stroke is a leading cause of disability and death, and aging is the main nonmodifiable risk factor. Following ischemia, neuroactive steroids have been shown to play a key role in cerebroprotection. Thus, brain steroid concentrations at the time of injury as well as their regulation after stroke are key factors to consider. Here, we investigated the effects of age and cerebral ischemia on steroid levels, behavioral outcomes, and neuronal degeneration in 3- and 18-month-old C57BL/6JRj male mice. Ischemia was induced by middle cerebral artery occlusion for 1 hour followed by reperfusion (MCAO/R) and analyses were performed at 6 hours after MCAO. Extended steroid profiles established by gas chromatography coupled with tandem mass spectrometry revealed that (1) brain and plasma concentrations of the main 5α-reduced metabolites of progesterone, 11-deoxycorticosterone, and corticosterone were lower in old than in young mice; (2) after MCAO/R, brain concentrations of progesterone, 5α-dihydroprogesterone, and corticosterone increased in young mice; and (3) after MCAO/R, brain concentrations of 5α-reduced metabolites of progesterone, 3α5α-tetrahydrodeoxycorticosterone, and 3β5α-tetrahydrodeoxycorticosterone were lower in old than in young mice. After ischemia, old mice showed increased sensori-motor deficits and more degenerating neurons in the striatum than young mice. Altogether, these findings strongly suggest that the decreased capacity of old mice to metabolize steroids toward the 5α-reduction pathway comparatively to young mice may contribute to the worsening of their stroke outcomes.
Collapse
Affiliation(s)
- Neïké Fernandez
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Anthony Petit
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Antoine Pianos
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Léna Haddad
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
6
|
Alajangi HK, Kaur M, Sharma A, Rana S, Thakur S, Chatterjee M, Singla N, Jaiswal PK, Singh G, Barnwal RP. Blood-brain barrier: emerging trends on transport models and new-age strategies for therapeutics intervention against neurological disorders. Mol Brain 2022; 15:49. [PMID: 35650613 PMCID: PMC9158215 DOI: 10.1186/s13041-022-00937-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022] Open
Abstract
The integrity of the blood–brain barrier (BBB) is essential for normal central nervous system (CNS) functioning. Considering the significance of BBB in maintaining homeostasis and the neural environment, we aim to provide an overview of significant aspects of BBB. Worldwide, the treatment of neurological diseases caused by BBB disruption has been a major challenge. BBB also restricts entry of neuro-therapeutic drugs and hinders treatment modalities. Hence, currently nanotechnology-based approaches are being explored on large scale as alternatives to conventional methodologies. It is necessary to investigate the in-depth characteristic features of BBB to facilitate the discovery of novel drugs that can successfully cross the barrier and target the disease effectively. It is imperative to discover novel strategies to treat life-threatening CNS diseases in humans. Therefore, insights regarding building blocks of BBB, activation of immune response on breach of this barrier, and various autoimmune neurological disorders caused due to BBB dysfunction are discussed. Further, special emphasis is given on delineating BBB disruption leading to CNS disorders. Moreover, various mechanisms of transport pathways across BBB, several novel strategies, and alternative routes by which drugs can be properly delivered into CNS are also discussed.
Collapse
Affiliation(s)
- Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Mandeep Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Sumedh Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Shipali Thakur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Mary Chatterjee
- Department of Biotechnology, UIET, Panjab University, Chandigarh, 160014, India
| | - Neha Singla
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pradeep Kumar Jaiswal
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
7
|
Sheibani V, Rajizadeh MA, Bejeshk MA, Haghparast E, Nozari M, Esmaeili-Mahani S, Nezhadi A. The effects of neurosteroid allopregnanolone on synaptic dysfunction in the hippocampus in experimental parkinsonism rats: An electrophysiological and molecular study. Neuropeptides 2022; 92:102229. [PMID: 35158223 DOI: 10.1016/j.npep.2022.102229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
The dopaminergic system is a powerful candidate targeted for changes of synaptic plasticity in the hippocampus. Higher incidence of Parkinson's disease (PD) in men than women indicates the influence of sex hormones on the PD development. Previous studies have shown that neurodegenerative diseases such as PD are related to the decline of Allopregnanolon (Allo), a metabolite of progesterone; it is also well known that learning and memory are influenced by oscillations in steroidal hormones. Although abnormalities in hippocampal plasticity have been observed in the toxic models of PD, effects of Allo on hippocampal LTP and hippocampal synaptic protein levels, which play an important role in maintaining the integrity of neural connections, have never been analyzed thus far. Experimental groups subjected to the long-term potentiation (LTP) were studied in the CA1 area of the hippocampus. In addition, the levels of hippocampal postsynaptic density protein 95 (PSD-95), neurexin-1 (Nrxn1) and neuroligin (Nlgn) as synaptic molecular components were determined by immunoblotting. Although dopamine denervation did not alter basal synaptic transmission and pair-pulse facilitation of field excitatory postsynaptic potentials (fEPSPs), the induction and maintenance of LTP were impaired in the CA1 region. In addition, the levels of PSD-95, Nrxn1 and Nlgn were significantly decreased in the hippocampus of 6-OHDA-treated animals. Such abnormalities in synaptic electrophysiological aspects and protein levels were abolished by the treatment with Allo. These findings showed that partial dopamine depletion led to unusual synaptic plasticity in the CA1 as well as the decrease in synaptic proteins in the hippocampus. Our results demonstrated that Allo ameliorated these deficits and preserved pre- and post-synaptic proteins. Therefore, Allo may be an effective factor in maintaining synaptic integrity in the mesolimbic pathway.
Collapse
Affiliation(s)
- Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Abbas Bejeshk
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Haghparast
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoumeh Nozari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Akram Nezhadi
- Trauma Research Center, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Bortolato M, Coffey BJ, Gabbay V, Scheggi S. Allopregnanolone: The missing link to explain the effects of stress on tic exacerbation? J Neuroendocrinol 2022; 34:e13022. [PMID: 34423500 PMCID: PMC8800948 DOI: 10.1111/jne.13022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits pleiotropic effects in the central nervous system, ranging from neuroprotective and anti-inflammatory functions to the regulation of mood and emotional responses. Several lines of research show that the brain rapidly produces AP in response to acute stress to reduce the allostatic load and enhance coping. These effects not only are likely mediated by GABAA receptor activation but also result from the contributions of other mechanisms, such as the stimulation of membrane progesterone receptors. In keeping with this evidence, AP has been shown to exert rapid, potent antidepressant properties and has been recently approved for the therapy of moderate-to-severe postpartum depression. In addition to depression, emerging evidence points to the potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, seizures, post-traumatic stress disorder and cognitive problems. Although this evidence has spurred interest in further therapeutic applications of AP, some investigations suggest that this neurosteroid may also be associated with adverse events in specific disorders. For example, our group has recently documented that AP increases tic-like manifestations in several animal models of tic disorders; furthermore, our results indicate that inhibiting AP synthesis and signalling reduces the exacerbation of tic severity associated with acute stress. Although the specific mechanisms of these effects remain partially elusive, our findings point to the possibility that the GABAergic activation by AP may also lead to disinhibitory effects, which could interfere with the ability of patients to suppress their tics. Future studies will be necessary to verify whether these mechanisms may apply to other externalising manifestations, such as impulse-control problems and manic symptoms.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and ToxicologyCollege of PharmacyUniversity of UtahSalt Lake CityUTUSA
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
| | - Barbara J. Coffey
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral ScienceMiller School of MedicineUniversity of MiamiMiamiFLUSA
| | - Vilma Gabbay
- Research Consortium on NeuroEndocrine Causes of Tics (ReConNECT)
- Department of Psychiatry and Behavioral SciencesAlbert Einstein College of MedicineBronxNYUSA
| | - Simona Scheggi
- Department of Molecular and Developmental MedicineSchool of MedicineUniversity of SienaSienaItaly
| |
Collapse
|
9
|
Diviccaro S, Cioffi L, Falvo E, Giatti S, Melcangi RC. Allopregnanolone: An overview on its synthesis and effects. J Neuroendocrinol 2022; 34:e12996. [PMID: 34189791 PMCID: PMC9285581 DOI: 10.1111/jne.12996] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric modulator of the γ-aminobutyric acid type A receptor. In the present review, the synthesis of this neuroactive steroid occurring in the nervous system is discussed with respect to physiological and pathological conditions. In addition, its physiological and neuroprotective effects are also reported. Interestingly, the levels of this neuroactive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender medicine based on this neuroactive steroid for neurological disorders. However, allopregnanolone presents low bioavailability and extensive hepatic metabolism, limiting its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy able to increase allopregnanolone levels have been proposed to overcome any pharmacokinetic issues.
Collapse
Affiliation(s)
- Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Silvia Giatti
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e BiomolecolariUniversità degli Studi di MilanoMilanoItaly
| |
Collapse
|
10
|
Xu J, Zhou Y, Yan C, Wang X, Lou J, Luo Y, Gao S, Wang J, Wu L, Gao X, Shao A. Neurosteroids: A novel promise for the treatment of stroke and post-stroke complications. J Neurochem 2021; 160:113-127. [PMID: 34482541 DOI: 10.1111/jnc.15503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Stroke is the primary reason for death and disability worldwide, with few treatment strategies to date. Neurosteroids, which are natural molecules in the brain, have aroused great interest in the field of stroke. Neurosteroids are a kind of steroid that acts on the nervous system, and are synthesized in the mitochondria of neurons or glial cells using cholesterol or other steroidal precursors. Neurosteroids mainly include estrogen, progesterone (PROG), allopregnanolone, dehydroepiandrosterone (DHEA), and vitamin D (VD). Most of the preclinical studies have confirmed that neurosteroids can decrease the risk of stroke, and improve stroke outcomes. In the meantime, neurosteroids have been shown to have a positive therapeutic significance in some post-stroke complications, such as epilepsy, depression, anxiety, cardiac complications, movement disorders, and post-stroke pain. In this review, we report the historical background, modulatory mechanisms of neurosteroids in stroke and post-stroke complications, and emphasize on the application prospect of neurosteroids in stroke therapy.
Collapse
Affiliation(s)
- Jiawei Xu
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caochong Yan
- The Key Laboratory of Reproductive Genetics, Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, Zhejiang, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangfu Gao
- The First Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Abdulrahim HA, Alagbonsi IA, Amuda O, Omeiza NA, Feyitimi ARA, Olayaki LA. Cannabis sativa and/or melatonin do not alter brain lipid but alter oxidative mechanisms in female rats. J Cannabis Res 2021; 3:38. [PMID: 34412689 PMCID: PMC8377844 DOI: 10.1186/s42238-021-00095-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background Lipid profile and redox status play a role in brain (dys)functions. Cannabinoid and melatonergic systems operate in the brain and contribute to brain (patho)physiology, but their roles in the modulation of brain lipid and redox status are not well-known. We studied the effect of ethanol extract of Cannabis sativa (CS) and/or melatonin (M) on the lipid profile and anti-oxidant system of the rat brain. Methods We randomly divided twenty-four (24) female Wistar rats into 4 groups (n = 6 rats each). Group 1 (control) received distilled water mixed with DMSO. Groups II–IV received CS (2 mg/kg), M (4 mg/kg), and co-administration of CS and M (CS + M) respectively via oral gavage between 8:00 am and 10:00 am once daily for 14 days. Animals underwent 12-h fasting after the last day of treatment and sacrificed under ketamine anesthesia (20 mg/kg; i.m). The brain tissues were excised and homogenized for assay of the concentrations of the total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-C), nitric oxide (NO), malondialdehyde (MDA), and the activities of glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and acetylcholinesterase (AChE). One-way analysis of variance (ANOVA) was used to compare means across groups, followed by the least significant difference (LSD) post-hoc test. Results CS and/or M did not affect the lipid profile parameters. However, CS increased the G6PD (from 15.58 ± 1.09 to 21.02 ± 1.45 U/L; p = 0.047), GPx (from 10.47 ± 0.86 to 17.71 ± 1.04 U/L; p = 0.019), and SOD (from 0.81 ± 0.02 to 0.90 ± 0.01 μM; p = 0.007), but decreased NO (from 9.40 ± 0.51 to 6.75 ± 0.21 μM; p = 0.010) and had no effect on MDA (p = 0.905), CAT (p = 0.831), GR (p = 0.639), and AChE (p = 0.571) in comparison with the control group. M augmented the increase in G6PD (from 21.02 ± 1.45 U/L to 27.18 ± 1.81 U/L; p = 0.032) and decrease in NO (from 6.75 ± 0.21 to 4.86 ± 0.13 μM; p = 0.034) but abolished the increase in GPx (from 17.71 ± 1.04 to 8.59 ± 2.06 U/L; p = 0.006) and SOD (from 0.90 ± 0.01 to 0.70 ± 0.00 μM; p = 0.000) elicited by CS in the rat brain in comparison with the CS group. Conclusions CS and M do not alter brain lipid profile. Our data support the contention that CS elicits an anti-oxidative effect on the brain tissue and that CS + M elicits a pro-oxidant effect in rat brain. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-021-00095-9.
Collapse
Affiliation(s)
- Halimat Amin Abdulrahim
- Department of Medical Biochemistry, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Isiaka Abdullateef Alagbonsi
- Department of Clinical Biology (Physiology unit), School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda.
| | - Oluwasola Amuda
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Al-Hikmah University, Ilorin, Kwara, P.M.B. 1601, Nigeria
| | - Noah Adavize Omeiza
- Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | | | | |
Collapse
|
12
|
De Nicola AF, Meyer M, Garay L, Kruse MS, Schumacher M, Guennoun R, Gonzalez Deniselle MC. Progesterone and Allopregnanolone Neuroprotective Effects in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis. Cell Mol Neurobiol 2021; 42:23-40. [PMID: 34138412 DOI: 10.1007/s10571-021-01118-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
Progesterone regulates a number of processes in neurons and glial cells not directly involved in reproduction or sex behavior. Several neuroprotective effects are better observed under pathological conditions, as shown in the Wobbler mouse model of amyotrophic laterals sclerosis (ALS). Wobbler mice are characterized by forelimb atrophy due to motoneuron degeneration in the spinal cord, and include microgliosis and astrogliosis. Here we summarized current evidence on progesterone reversal of Wobbler neuropathology. We demonstrated that progesterone decreased motoneuron vacuolization with preservation of mitochondrial respiratory complex I activity, decreased mitochondrial expression and activity of nitric oxide synthase, increased Mn-dependent superoxide dismutase, stimulated brain-derived neurotrophic factor, increased the cholinergic phenotype of motoneurons, and enhanced survival with a concomitant decrease of death-related pathways. Progesterone also showed differential effects on glial cells, including increased oligodendrocyte density and downregulation of astrogliosis and microgliosis. These changes associate with reduced anti-inflammatory markers. The enhanced neurochemical parameters were accompanied by longer survival and increased muscle strength in tests of motor behavior. Because progesterone is locally metabolized to allopregnanolone (ALLO) in nervous tissues, we also studied neuroprotection by this derivative. Treatment of Wobbler mice with ALLO decreased oxidative stress and glial pathology, increased motoneuron viability and clinical outcome in a progesterone-like manner, suggesting that ALLO could mediate some progesterone effects in the spinal cord. In conclusion, the beneficial effects observed in different parameters support the versatile properties of progesterone and ALLO in a mouse model of motoneuron degeneration. The studies foresee future therapeutic opportunities with neuroactive steroids for deadly diseases like ALS.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina. .,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina.
| | - María Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| | - Maria Sol Kruse
- Laboratory of Neurobiology, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Michael Schumacher
- U1195 INSERM and University Paris Sud "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, 94276, Kremlin-Bicetre, France
| | - Rachida Guennoun
- U1195 INSERM and University Paris Sud "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules, 94276, Kremlin-Bicetre, France
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.,Department of Physiological Sciences, Faculty of Medicine, University of Buenos Aires, Paraguay 2155, 1425, Buenos Aires, Argentina
| |
Collapse
|
13
|
Vahidinia Z, Mahdavi E, Talaei SA, Naderian H, Tamtaji A, Haddad Kashani H, Beyer C, Azami Tameh A. The effect of female sex hormones on Hsp27 phosphorylation and histological changes in prefrontal cortex after tMCAO. Pathol Res Pract 2021; 221:153415. [PMID: 33857717 DOI: 10.1016/j.prp.2021.153415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Female sex hormones are protective factors against many neurological disorders such as brain ischemia. Heat shock protein like HSP27 is activated after tissue injury. The main purpose of the present study is to determine the effect of a combined estrogen / progesterone cocktail on the morphology of astrocytes, neurons and Hsp27 phosphorylation after cerebral ischemia. METHODS One hour after the MCAO induction, a single dose of estrogen and progesterone was injected. The infarct volume was calculated by TTC staining 24 h after ischemia. Immunohistochemistry was used to show the effects of estrogen and progesterone on astrocyte and neuron morphology, as well as the Western blot technique used for the quantitation of phosphorylated Hsp27. RESULTS The combined dose of estrogen and progesterone significantly decreased astrocytosis after ischemia and increased neuron survival. There was a large increase in Hsp27 phosphorylation in the penumbra ischemic region after stroke, which was significantly reduced by hormone therapy. CONCLUSION Our results indicate that the neuroprotective effect of neurosteroids in the brain may be due to the modulation of heat shock proteins.
Collapse
Affiliation(s)
- Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Mahdavi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Homayoun Naderian
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Aboutaleb Tamtaji
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Jolivel V, Brun S, Binamé F, Benyounes J, Taleb O, Bagnard D, De Sèze J, Patte-Mensah C, Mensah-Nyagan AG. Microglial Cell Morphology and Phagocytic Activity Are Critically Regulated by the Neurosteroid Allopregnanolone: A Possible Role in Neuroprotection. Cells 2021; 10:698. [PMID: 33801063 PMCID: PMC8004004 DOI: 10.3390/cells10030698] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are key players in neural pathogenesis and microglial function regulation appears to be pivotal in controlling neuroinflammatory/neurological diseases. Here, we investigated the effects and mechanism of action of neurosteroid allopregnanolone (ALLO) on murine microglial BV-2 cells and primary microglia in order to determine ALLO-induced immunomodulatory potential and to provide new insights for the development of both natural and safe neuroprotective strategies targeting microglia. Indeed, ALLO-treatment is increasingly suggested as beneficial in various models of neurological disorders but the underlying mechanisms have not been elucidated. Therefore, the microglial cells were cultured with various serum concentrations to mimic the blood-brain-barrier rupture and to induce their activation. Proliferation, viability, RT-qPCR, phagocytosis, and morphology analyzes, as well as migration with time-lapse imaging and quantitative morphodynamic methods, were combined to investigate ALLO actions on microglia. BV-2 cells express subunits of GABA-A receptor that mediates ALLO activity. ALLO (10µM) induced microglial cell process extension and decreased migratory capacity. Interestingly, ALLO modulated the phagocytic activity of BV-2 cells and primary microglia. Our results, which show a direct effect of ALLO on microglial morphology and phagocytic function, suggest that the natural neurosteroid-based approach may contribute to developing effective strategies against neurological disorders that are evoked by microglia-related abnormalities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 1 rue Eugène Boeckel, 67000 Strasbourg, France; (V.J.); (S.B.); (F.B.); (J.B.); (O.T.); (D.B.); (J.D.S.); (C.P.-M.)
| |
Collapse
|
15
|
Sitruk-Ware R, Bonsack B, Brinton R, Schumacher M, Kumar N, Lee JY, Castelli V, Corey S, Coats A, Sadanandan N, Gonzales-Portillo B, Heyck M, Shear A, Blaise C, Zhang H, Sheyner M, García-Sánchez J, Navarro L, El-Etr M, De Nicola AF, Borlongan CV. Progress in progestin-based therapies for neurological disorders. Neurosci Biobehav Rev 2020; 122:38-65. [PMID: 33359391 DOI: 10.1016/j.neubiorev.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.
Collapse
Affiliation(s)
| | - Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alexandreya Coats
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cozene Blaise
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
16
|
Park C, Majeed A, Gill H, Tamura J, Ho RC, Mansur RB, Nasri F, Lee Y, Rosenblat JD, Wong E, McIntyre RS. The Effect of Loneliness on Distinct Health Outcomes: A Comprehensive Review and Meta-Analysis. Psychiatry Res 2020; 294:113514. [PMID: 33130511 DOI: 10.1016/j.psychres.2020.113514] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The primary objective was to evaluate the comparative effects of loneliness on multiple distinct health outcomes. The literature was qualitatively reviewed to identify loneliness risk factors, explore mechanisms, and discuss potential evidence-based interventions for targeting loneliness. 114 identified studies were systematically reviewed and analyzed to examine for associations between loneliness (as measured by the UCLA Loneliness or de Jong Gierveld Loneliness Scales) and one or more health outcome(s). Health outcomes were broadly defined to include measures of mental health (i.e., depression, anxiety, suicidality, general mental health), general health (i.e., overall self-rated health), well-being (i.e., quality of life, life satisfaction), physical health (i.e., functional disability), sleep, and cognition. Loneliness had medium to large effects on all health outcomes, with the largest effects on mental health and overall well-being; however, this result may have been confounded by the breadth of studies exploring the association between loneliness and mental health, as opposed to other health outcomes. A significant effect of gender on the association between loneliness and cognition (i.e., more pronounced in studies with a greater proportion of males) was also observed. The adequate training of health care providers to perceive and respond to loneliness among patients should be prioritized.
Collapse
Affiliation(s)
- Caroline Park
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Amna Majeed
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Hartej Gill
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jocelyn Tamura
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger C Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Flora Nasri
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Wong
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada.
| |
Collapse
|
17
|
Vahidinia Z, Karimian M, Joghataei MT. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol Res 2020; 160:105163. [DOI: 10.1016/j.phrs.2020.105163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
|
18
|
Guennoun R. Progesterone in the Brain: Hormone, Neurosteroid and Neuroprotectant. Int J Mol Sci 2020; 21:ijms21155271. [PMID: 32722286 PMCID: PMC7432434 DOI: 10.3390/ijms21155271] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.
Collapse
Affiliation(s)
- Rachida Guennoun
- U 1195 Inserm and University Paris Saclay, University Paris Sud, 94276 Le kremlin Bicêtre, France
| |
Collapse
|
19
|
Giatti S, Diviccaro S, Falvo E, Garcia-Segura LM, Melcangi RC. Physiopathological role of the enzymatic complex 5α-reductase and 3α/β-hydroxysteroid oxidoreductase in the generation of progesterone and testosterone neuroactive metabolites. Front Neuroendocrinol 2020; 57:100836. [PMID: 32217094 DOI: 10.1016/j.yfrne.2020.100836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022]
Abstract
The enzymatic complex 5α-reductase (5α-R) and 3α/3β-hydroxysteroid oxidoreductase (HSOR) is expressed in the nervous system, where it transforms progesterone (PROG) and testosterone (T) into neuroactive metabolites. These metabolites regulate myelination, brain maturation, neurotransmission, reproductive behavior and the stress response. The expression of 5α-R and 3α-HSOR and the levels of PROG and T reduced metabolites show regional and sex differences in the nervous system and are affected by changing physiological conditions as well as by neurodegenerative and psychiatric disorders. A decrease in their nervous tissue levels may negatively impact the course and outcome of some pathological events. However, in other pathological conditions their increased levels may have a negative impact. Thus, the use of synthetic analogues of these steroids or 5α-R modulation have been proposed as therapeutic approaches for several nervous system pathologies. However, further research is needed to fully understand the consequences of these manipulations, in particular with 5α-R inhibitors.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Eva Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
20
|
Naylor JC, Kilts JD, Shampine LJ, Parke GJ, Wagner HR, Szabo ST, Smith KD, Allen TB, Telford-Marx EG, Dunn CE, Cuffe BT, O’Loughlin SH, Marx CE. Effect of Pregnenolone vs Placebo on Self-reported Chronic Low Back Pain Among US Military Veterans: A Randomized Clinical Trial. JAMA Netw Open 2020; 3:e200287. [PMID: 32119096 PMCID: PMC7052727 DOI: 10.1001/jamanetworkopen.2020.0287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
IMPORTANCE In response to the national opioid public health crisis, there is an urgent need to develop nonopioid solutions for effective pain management. Neurosteroids are endogenous molecules with pleotropic actions that show promise for safe and effective treatment of chronic low back pain. OBJECTIVE To determine whether adjunctive pregnenolone has therapeutic utility for the treatment of chronic low back pain in Iraq- and Afghanistan-era US military veterans. DESIGN, SETTING, AND PARTICIPANTS Randomized, double-blind, placebo-controlled clinical trial that enrolled for 42 months, from September 2013 to April 2017. Participants were Iraq- and Afghanistan-era veterans aged 18 to 65 years with chronic low back pain who received treatment in the Durham VA Health Care System in Durham, North Carolina, over 6 weeks. Data analysis began in 2018 and was finalized in March, 2019. INTERVENTIONS Following a 1-week placebo lead-in, participants were randomized to pregnenolone or placebo for 4 weeks. Pregnenolone and placebo were administered at fixed, escalating doses of 100 mg for 1 week, 300 mg for 1 week, and 500 mg for 2 weeks. MAIN OUTCOMES AND MEASURES The primary outcome measure was the change in mean pain intensity ratings from a daily pain diary (numerical rating scale, 0-10) between visit 3 (baseline) and visit 6. Secondary outcomes included pain interference scores (Brief Pain Inventory, Short Form). Preintervention and postintervention neurosteroid levels were quantified by gas chromatography with tandem mass spectrometry. Hypotheses tested were formulated prior to data collection. RESULTS A total of 94 participants (84 [89.4%] male; mean [SD] age, 37.5 [9.8] years; 53 [56.4%] of self-reported Caucasian race and 31 [33.0%] of self-reported African American race) were included. Forty-eight participants were randomized to pregnenolone and 52 to placebo, of whom 45 and 49, respectively, were included in baseline demographic characteristics secondary to noncompliance with medications as per protocol. Veterans randomized to pregnenolone reported significant reductions in low back pain relative to those randomized to placebo. Baseline unadjusted mean (SE) pain diary ratings were 4.83 (0.23) and 5.24 (0.22) for the placebo- and pregnenolone-treated groups, respectively (baseline unadjusted mean [SE] ratings for pain recall were 4.78 [0.24] and 5.15 [0.23], respectively). Unadjusted mean (SE) ratings following treatment (visit 6) were 4.74 (0.26) in the placebo group and 4.19 (0.30) in the pregnenolone-treated group. Unadjusted mean (SE) ratings for pain recall following treatment were 4.86 (0.27) for placebo and 4.18 (0.29) for pregnenolone. Least-square mean (LSM) analysis showed that pain scores significantly improved in the pregnenolone-treated group compared with placebo (LSM [SE] change in pain diary rating, -0.56 [0.25]; P = .02; LSM [SE] change in pain recall, -0.70 [0.27]; P = .01). Pain interference scores for work (LSM [SE] change, 0.71 [0.12]; P = .04) and activity (LSM [SE] change, 0.71 [0.11]; P = .03) were also improved in veterans randomized to pregnenolone compared with placebo. Pregnenolone was well tolerated. CONCLUSIONS AND RELEVANCE Participants receiving pregnenolone reported a clinically meaningful reduction in low back pain and 2 pain interference domains compared with those receiving placebo. Pregnenolone may represent a novel, safe, and potentially efficacious treatment for the alleviation of chronic low back pain in Iraq- and Afghanistan-era veterans. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01898013.
Collapse
Affiliation(s)
- Jennifer C. Naylor
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Jason D. Kilts
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Lawrence J. Shampine
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Gillian J. Parke
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - H. Ryan Wagner
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Steven T. Szabo
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Karen D. Smith
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Trina B. Allen
- Durham VA Health Care System, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | | | | | - Brian T. Cuffe
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Susan H. O’Loughlin
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| | - Christine E. Marx
- Durham VA Health Care System, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- VA Mid-Atlantic Mental Illness, Research, Education and Clinical Center, Durham, North Carolina
| |
Collapse
|
21
|
Giatti S, Diviccaro S, Serafini MM, Caruso D, Garcia-Segura LM, Viviani B, Melcangi RC. Sex differences in steroid levels and steroidogenesis in the nervous system: Physiopathological role. Front Neuroendocrinol 2020; 56:100804. [PMID: 31689419 DOI: 10.1016/j.yfrne.2019.100804] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
The nervous system, in addition to be a target for steroid hormones, is the source of a variety of neuroactive steroids, which are synthesized and metabolized by neurons and glial cells. Recent evidence indicates that the expression of neurosteroidogenic proteins and enzymes and the levels of neuroactive steroids are different in the nervous system of males and females. We here summarized the state of the art of neuroactive steroids, particularly taking in consideration sex differences occurring in the synthesis and levels of these molecules. In addition, we discuss the consequences of sex differences in neurosteroidogenesis for the function of the nervous system under healthy and pathological conditions and the implications of neuroactive steroids and neurosteroidogenesis for the development of sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Melania Maria Serafini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Barbara Viviani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
22
|
Morey RA, Davis SL, Haswell CC, Naylor JC, Kilts JD, Szabo ST, Shampine LJ, Parke GJ, Sun D, Swanson CA, Wagner HR, Marx CE. Widespread Cortical Thickness Is Associated With Neuroactive Steroid Levels. Front Neurosci 2019; 13:1118. [PMID: 31798395 PMCID: PMC6862925 DOI: 10.3389/fnins.2019.01118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background Neuroactive steroids are endogenous molecules with regenerative and neuroprotective actions. Both cortical thickness and many neuroactive steroid levels decline with age and are decreased in several neuropsychiatric disorders. However, a systematic examination of the relationship between serum neuroactive steroid levels and in vivo measures of cortical thickness in humans is lacking. Methods Peripheral serum levels of seven neuroactive steroids were assayed in United States military veterans. All (n = 143) subsequently underwent high-resolution structural MRI, followed by parcellelation of the cortical surface into 148 anatomically defined regions. Regression modeling was applied to test the association between neuroactive steroid levels and hemispheric total gray matter volume as well as region-specific cortical thickness. False discovery rate (FDR) correction was used to control for Type 1 error from multiple testing. Results Neuroactive steroid levels of allopregnanolone and pregnenolone were positively correlated with gray matter thickness in multiple regions of cingulate, parietal, and occipital association cortices (r = 0.20–0.47; p < 0.05; FDR-corrected). Conclusion Positive associations between serum neuroactive steroid levels and gray matter cortical thickness are found in multiple brain regions. If these results are confirmed, neuroactive steroid levels and cortical thickness may help in monitoring the clinical response in future intervention studies of neuroregenerative therapies.
Collapse
Affiliation(s)
- Rajendra A Morey
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States.,Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Sarah L Davis
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Courtney C Haswell
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Jennifer C Naylor
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Jason D Kilts
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Steven T Szabo
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Larry J Shampine
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Gillian J Parke
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Delin Sun
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Chelsea A Swanson
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Henry R Wagner
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States.,Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | | | - Christine E Marx
- Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Medical Center, U.S. Department of Veteran Affairs, Durham, NC, United States.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
23
|
Cheng WW, Budelier MM, Sugasawa Y, Bergdoll L, Queralt-Martín M, Rosencrans W, Rostovtseva TK, Chen ZW, Abramson J, Krishnan K, Covey DF, Whitelegge JP, Evers AS. Multiple neurosteroid and cholesterol binding sites in voltage-dependent anion channel-1 determined by photo-affinity labeling. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1269-1279. [PMID: 31176038 PMCID: PMC6681461 DOI: 10.1016/j.bbalip.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 12/31/2022]
Abstract
Voltage-dependent anion channel-1 (VDAC1) is a mitochondrial porin that is implicated in cellular metabolism and apoptosis, and modulated by numerous small molecules including lipids. VDAC1 binds sterols, including cholesterol and neurosteroids such as allopregnanolone. Biochemical and computational studies suggest that VDAC1 binds multiple cholesterol molecules, but photolabeling studies have identified only a single cholesterol and neurosteroid binding site at E73. To identify all the binding sites of neurosteroids in VDAC1, we apply photo-affinity labeling using two sterol-based photolabeling reagents with complementary photochemistry: 5α-6-AziP which contains an aliphatic diazirine, and KK200 which contains a trifluoromethyl-phenyldiazirine (TPD) group. 5α-6-AziP and KK200 photolabel multiple residues within an E73 pocket confirming the presence of this site and mapping sterol orientation within this pocket. In addition, KK200 photolabels four other sites consistent with the finding that VDAC1 co-purifies with five cholesterol molecules. Both allopregnanolone and cholesterol competitively prevent photolabeling at E73 and three other sites indicating that these are common sterol binding sites shared by both neurosteroids and cholesterol. Binding at the functionally important residue E73 suggests a possible role for sterols in regulating VDAC1 signaling and interaction with partner proteins.
Collapse
Affiliation(s)
- Wayland W.L. Cheng
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA
| | - Melissa M. Budelier
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA,Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, MO 63110, USA
| | - Yusuke Sugasawa
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA
| | - Lucie Bergdoll
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tatiana K. Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zi-Wei Chen
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, MO 63110, USA
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis, MO 63110, USA
| | - Douglas F. Covey
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA,Department of Developmental Biology, Washington University in St. Louis, MO 63110, USA,Department of Psychiatry, Washington University in St. Louis, MO 63110, USA,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, MO 63110, USA
| | - Julian P. Whitelegge
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Alex S. Evers
- Department of Anesthesiology, Washington University in St. Louis, MO 63110, USA,Department of Developmental Biology, Washington University in St. Louis, MO 63110, USA,Department of Psychiatry, Washington University in St. Louis, MO 63110, USA,Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, MO 63110, USA,Corresponding author at: Department of Anesthesiology, Washington University School of Medicine, Campus Box 8054, St. Louis, MO 63110, USA. (A.S. Evers)
| |
Collapse
|
24
|
Neurosteroids and neuropathic pain management: Basic evidence and therapeutic perspectives. Front Neuroendocrinol 2019; 55:100795. [PMID: 31562849 DOI: 10.1016/j.yfrne.2019.100795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/18/2023]
Abstract
Complex mechanisms involved in neuropathic pain that represents a major health concern make its management complicated. Because neurosteroids are bioactive steroids endogenously synthesized in the nervous system, including in pain pathways, they appear relevant to develop effective treatments against neuropathic pain. Neurosteroids act in paracrine or autocrine manner through genomic mechanisms and/or via membrane receptors of neurotransmitters that pivotally modulate pain sensation. Basic studies which uncovered a direct link between neuropathic pain symptoms and endogenous neurosteroid production/regulation, paved the way for the investigations of neurosteroid therapeutic potential against pathological pain. Concordantly, antinociceptive properties of synthetic neurosteroids were evidenced in humans and animals. Neurosteroids promote peripheral analgesia mediated by T-type calcium and gamma-aminobutyric acid type A channels, counteract chemotherapy-induced neuropathic pain and ameliorate neuropathic symptoms of injured spinal cord animals by stimulating anti-inflammatory, remyelinating and neuroprotective processes. Together, these data open interesting perspectives for neurosteroid-based strategies to manage/alleviate efficiently neuropathic pain.
Collapse
|
25
|
Lumley L, Miller D, Muse WT, Marrero‐Rosado B, de Araujo Furtado M, Stone M, McGuire J, Whalley C. Neurosteroid and benzodiazepine combination therapy reduces status epilepticus and long-term effects of whole-body sarin exposure in rats. Epilepsia Open 2019; 4:382-396. [PMID: 31440720 PMCID: PMC6698686 DOI: 10.1002/epi4.12344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Our objective was to evaluate the protective efficacy of the neurosteroid pregnanolone (3α-hydroxy-5β pregnan-20-one), a GABAA receptor-positive allosteric modulator, as an adjunct to benzodiazepine therapy against the chemical warfare nerve agent (CWNA) sarin (GB), using whole-body exposure, an operationally relevant route of exposure to volatile GB. METHODS Rats implanted with telemetry transmitters for the continuous measurement of cortical electroencephalographic (EEG) activity were exposed for 60 minutes to 3.0 LCt50 of GB via whole-body exposure. At the onset of toxic signs, rats were administered an intramuscular injection of atropine sulfate (2 mg/kg) and the oxime HI-6 (93.6 mg/kg) to increase survival rate and, 30 minutes after seizure onset, treated subcutaneously with diazepam (10 mg/kg) and intravenously with pregnanolone (4 mg/kg) or vehicle. Animals were evaluated for GB-induced status epilepticus (SE), spontaneous recurrent seizures (SRS), impairment in spatial memory acquisition, and brain pathology, and treatment groups were compared. RESULTS Delayed dual therapy with pregnanolone and diazepam reduced time in SE in GB-exposed rats compared to those treated with delayed diazepam monotherapy. The combination therapy of pregnanolone with diazepam also prevented impairment in the Morris water maze and reduced the neuronal loss and neuronal degeneration, evaluated at one and three months after exposure. SIGNIFICANCE Neurosteroid administration as an adjunct to benzodiazepine therapy offers an effective means to treat benzodiazepine-refractory SE, such as occurs following delayed treatment of GB exposure. This study is the first to present data on the efficacy of delayed pregnanolone and diazepam dual therapy in reducing seizure activity, performance deficits and brain pathology following an operationally relevant route of exposure to GB and supports the use of a neurosteroid as an adjunct to standard anticonvulsant therapy for the treatment of CWNA-induced SE.
Collapse
Affiliation(s)
- Lucille Lumley
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | - Dennis Miller
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - William T. Muse
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Brenda Marrero‐Rosado
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | | | - Michael Stone
- US Army Medical Research Institute of Chemical DefenseAberdeen Proving GroundMaryland
| | - Jeffrey McGuire
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| | - Christopher Whalley
- US Army Combat Capabilities Development Command Chemical Biological CenterAberdeen Proving GroundMaryland
| |
Collapse
|
26
|
Guennoun R, Zhu X, Fréchou M, Gaignard P, Slama A, Liere P, Schumacher M. Steroids in Stroke with Special Reference to Progesterone. Cell Mol Neurobiol 2019; 39:551-568. [PMID: 30302630 DOI: 10.1007/s10571-018-0627-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.
Collapse
Affiliation(s)
- Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France.
| | - Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| |
Collapse
|
27
|
Qin A, Zhang Q, Wang J, Sayeed I, Stein DG. Is a combination of progesterone and chloroquine more effective than either alone in the treatment of cerebral ischemic injury? Restor Neurol Neurosci 2019; 37:1-10. [PMID: 30741704 DOI: 10.3233/rnn-180837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this proof-of-concept paper, we investigated whether combination treatment with progesterone (P4) and chloroquine (CQ) would reduce ischemic injury more effectively than either agent alone in a transient middle cerebral artery occlusion (tMCAO) model in male rats. METHODS P4 (8 mg/kg) and CQ (25 mg/kg) were given alone or in combination beginning at different times during surgery and for 3 days post-occlusion. Locomotor activity and grip strength were evaluated as measures of impairment and recovery. Infarct size was assessed by TTC staining. Markers of autophagy (LC3 and SQSTM1/p62) and apoptosis (Bcl-2 and Bax) were evaluated with western blotting. RESULTS At the doses we employed, the combination was not more effective than either drug given separately on measures of grip strength or locomotor activity. However, combination therapy substantially reduced infarct size, and significantly increased Bcl-2 protein levels and suppressed Bax expression. Progesterone decreased the expression of LC3-II 24 h and SQSTM1/p62 after ischemia. CONCLUSIONS Our findings suggest that combination therapy with P4 and CQ is not detrimental and has a small-to-moderate additive neuroprotective effect on ischemic injury in rats without substantively affecting behavioral outcomes. CQ and P4 may help to regulate the expression of both autophagy-related and apoptosis-related proteins.
Collapse
Affiliation(s)
- Aiping Qin
- Department of Pharmacy, Jiangsu Health Vocational College, Nanjing, Jiangsu, China
| | - Qian Zhang
- Xuzhou Medical University, Xuzhou, China
| | - Jun Wang
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, Georgia, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, Georgia, USA
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Endogenous Neurosteroid (3α,5α)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci Rep 2019; 9:1220. [PMID: 30718548 PMCID: PMC6362084 DOI: 10.1038/s41598-018-37409-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022] Open
Abstract
The endogenous neurosteroid (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP, allopregnanolone) has protective activity in animal models of alcoholism, depression, traumatic brain injury, schizophrenia, multiple sclerosis, and Alzheimer’s disease that is poorly understood. Because these conditions involve proinflammatory signaling through toll-like receptors (TLRs), we examined the effects of 3α,5α-THP, and pregnenolone on TLR4 activation in both the periphery and the central nervous system (CNS). We used monocytes/macrophages (RAW264.7) as a model of peripheral immune signaling and studied innately activated TLR4 in the ventral tegmental area (VTA) of selectively bred alcohol-preferring (P) rats. LPS activated the TLR4 pathway in RAW264.7 cells as evidenced by increased levels of p-TAK1, TRAF6, NF-κB p50, phospho-NF-κB- p65, pCREB, HMGB1, and inflammatory mediators, including MCP-1 and TNFα. Both 3α,5α-THP and pregnenolone (0.5–1.0μM) substantially (~80%) inhibited these effects, indicating pronounced inhibition of TLR4 signaling. The mechanism of inhibition appears to involve blockade of TLR4/MD-2 protein interactions in RAW246.7 cells. In VTA, 3α,5α-THP (15 mg/kg, IP) administration reduced TRAF6 (~20%), CRF (~30%), and MCP-1 (~20%) levels, as well as TLR4 binding to GABAA receptor α2 subunits (~60%) and MyD88 (~40%). The data suggest that inhibition of proinflammatory neuroimmune signaling underlies protective effects of 3α,5α-THP in immune cells and brain, apparently involving blocking of protein-protein interactions that initiate TLR4-dependent signaling. Inhibition of pro-inflammatory TLR4 activation represents a new mechanism of 3α,5α-THP action in the periphery and the brain.
Collapse
|
29
|
Zhu X, Fréchou M, Schumacher M, Guennoun R. Cerebroprotection by progesterone following ischemic stroke: Multiple effects and role of the neural progesterone receptors. J Steroid Biochem Mol Biol 2019; 185:90-102. [PMID: 30031789 DOI: 10.1016/j.jsbmb.2018.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022]
Abstract
Treatment with progesterone limits brain damage after stroke. However, the cellular bases of the cerebroprotective effects of progesterone are not well documented. The aims of this study were to determine neural cells and functions that are affected by progesterone treatment and the role of neural progesterone receptors (PR) after stroke. Adult male PRNesCre mice, selectively lacking PR in the central nervous system, and their control PRloxP/loxP littermates were subjected to transient ischemia by middle cerebral artery occlusion (MCAO) for 30 min. Mice received either progesterone (8 mg/kg) or vehicle at 1-, 6- and 24- hrs post-MCAO and outcomes were analyzed at 48 h post-MCAO. In PRloxP/loxP mice, progesterone exerted multiple effects on different neural cell types, improved motor functional outcomes and reduced total infarct volumes. In the peri-infarct, progesterone increased the density of neurons (NeuN+ cells), of cells of the oligodendroglial lineage (Olig2+ cells) and of oligodendrocyte progenitors (OP, NG2+ cells). Progesterone decreased the density of activated astrocytes (GFAP+ cells) and reactive microglia (Iba1+ cells) coexpressing the mannose receptor type 1 CD206 marker. Progesterone also reduced the expression of aquaporin 4 (AQP4), the water channel involved in both edema formation and resorption. The beneficial effects of progesterone were not observed in PRNesCre mice. Our findings show that progesterone treatment exerts beneficial effects on neurons, oligodendroglial cells and neuroinflammatory responses via PR. These findings demonstrate that progesterone is a pleiotropic cerebroprotective agent and that neural PR represent a therapeutic target for stroke cerebroprotection.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| |
Collapse
|
30
|
Chang Y, Hsieh HL, Huang SK, Wang SJ. Neurosteroid allopregnanolone inhibits glutamate release from rat cerebrocortical nerve terminals. Synapse 2018; 73:e22076. [PMID: 30362283 DOI: 10.1002/syn.22076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
Allopregnanolone, an active metabolite of progesterone, has been reported to exhibit neuroprotective activity in several preclinical models. Considering that the excitotoxicity caused by excessive glutamate is implicated in many brain disorders, the effect of allopregnanolone on glutamate release in rat cerebrocortical nerve terminals and possible underlying mechanism were investigated. We observed that allopregnanolone inhibited 4-aminopyridine (4-AP)-evoked glutamate release, and this inhibition was prevented by chelating the extracellular Ca2+ ions and the vesicular transporter inhibitor. Allopregnanolone reduced the elevation of 4-AP-evoked intrasynaptosomal Ca2+ levels, but did not affect the synaptosomal membrane potential. In the presence of N-, P/Q-, and R-type channel blockers, allopregnanolone-mediated inhibition of 4-AP-evoked glutamate release was markedly reduced; however, the intracellular Ca2+ -release inhibitors did not affect the allopregnanolone effect. Furthermore, allopregnanolone-mediated inhibition of 4-AP-evoked glutamate release was completely abolished in the synaptosomes pretreated with inhibitors of Ca2+ /calmodulin, adenylate cyclase, and protein kinase A (PKA), namely calmidazolium, MDL12330A, and H89, respectively. Additionally, the allopregnanolone effect on evoked glutamate release was antagonized by the GABAA receptor antagonist SR95531. Our data are the first to suggest that allopregnanolone reduce the Ca2+ influx through N-, P/Q-, and R-type Ca2+ channels, through the activation of GABAA receptors present on cerebrocortical nerve terminals, subsequently suppressing the Ca2+ -calmodulin/PKA cascade and decreasing 4-AP-evoked glutamate release.
Collapse
Affiliation(s)
- Yi Chang
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hsi Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Shu Kuei Huang
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Su Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
31
|
Qiu ZK, Liu X, Tang D, Zhang Z, Fan QH, Pan YY, Chen YY, Huang MY, Zhu T, Wang YL, Cheng XF, Chen JS. Cytoprotective effects of paeoniflorin are associated with translocator protein 18 kDa. Biomed Pharmacother 2018; 107:19-23. [PMID: 30075369 DOI: 10.1016/j.biopha.2018.07.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023] Open
Abstract
Paeoniflorin (PF) is one of the important active components in peony that are known to produce the neuroprotective effects. However, the involved cytoprotective factors on brain astrocytes are remain unclear. Translocator protein 18 kDa (TSPO) and its downstream neurosteroids biosynthesis play a significant role in cytoprotection. Based on these, the role of TSPO and neurosteroids biosynthesis in the cytoprotective effects of PF is evaluated. The astrocyte cells were cultured and AC-5216 (TSPO ligand) was selected as the positive control drug. The cytoprotective effects of PF and the levels of neurosteroids were quantified by water-soluble tetrazolium assay and enzyme linked immunosorbent assay, respectively. The cytoprotective activities of PF were relevant to neurosteroids (e.g. progsterone and allopregnanolone) biosynthesis, while these effects were totally blocked by PK11195, trilostane and finasteride, respectively. In summary, the cytoprotective effects of PF maybe mediated by TSPO and neurosteroids biosynthesis. The findings may provide the new insights into the cytoprotective effects of PF.
Collapse
Affiliation(s)
- Zhi-Kun Qiu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China; Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xu Liu
- Pharmacy Department of General Hospital of Chinese People's Armed Police Forces, Beijing 100039, PR China
| | - Dan Tang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Qing-Hong Fan
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yun-Yun Pan
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Ying-Yu Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Mei-Yan Huang
- Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tao Zhu
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China
| | - Yu-Lu Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, PR China
| | - Xiao-Fang Cheng
- Tuina and Pain Management Department, Shenzhen LongGang Hospital of Traditional Chinese Medicine (Beijing University of Chinese Medicine Shenzhen Hospital), Shenzhen 518172, PR China.
| | - Ji-Sheng Chen
- Pharmaceutical Department of The First Affiliated Hospital of Guangdong Pharmaceutical University, Clinical Pharmacy Department of Guangdong Pharmaceutical University, Guangzhou 510080, PR China.
| |
Collapse
|
32
|
Mendell AL, MacLusky NJ. Neurosteroid Metabolites of Gonadal Steroid Hormones in Neuroprotection: Implications for Sex Differences in Neurodegenerative Disease. Front Mol Neurosci 2018; 11:359. [PMID: 30344476 PMCID: PMC6182082 DOI: 10.3389/fnmol.2018.00359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Gonadal steroid hormones are neurotrophic and neuroprotective. These effects are modulated by local metabolism of the hormones within the brain. Such control is necessary to maintain normal function, as several signaling pathways that are activated by gonadal steroid hormones in the brain can also become dysregulated in disease. Metabolites of the gonadal steroid hormones—particularly 3α-hydroxy, 5α-reduced neurosteroids—are synthesized in the brain and can act through different mechanisms from their parent steroids. These metabolites may provide a mechanism for modulating the responses to their precursor hormones, thereby providing a regulatory influence on cellular responses. In addition, there is evidence that the 3α-hydroxy, 5α-reduced neurosteroids are neuroprotective in their own right, and therefore may contribute to the overall protection conferred by their precursors. In this review article, the rapidly growing body of evidence supporting a neuroprotective role for this class of neurosteroids will be considered, including a discussion of potential mechanisms that may be involved. In addition, we explore the hypothesis that differences between males and females in local neurosteroid production may contribute to sex differences in the development of neurodegenerative disease.
Collapse
Affiliation(s)
- Ari Loren Mendell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Neil James MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
33
|
Sayeed I, Wali B, Guthrie DB, Saindane MT, Natchus MG, Liotta DC, Stein DG. Development of a novel progesterone analog in the treatment of traumatic brain injury. Neuropharmacology 2018; 145:292-298. [PMID: 30222982 DOI: 10.1016/j.neuropharm.2018.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 11/27/2022]
Abstract
Although systemic progesterone (PROG) treatment has been shown to be neuroprotective by many laboratories and in multiple animal models of brain injury including traumatic brain injury (TBI), PROG's poor aqueous solubility limits its potential for use as a therapeutic agent. The problem of solubility presents challenges for an acute intervention for neural injury, when getting a neuroprotectant to the brain quickly is crucial. Native PROG (nPROG) is hydrophobic and does not readily dissolve in an aqueous-based medium, so this makes it harder to give under emergency field conditions. An agent with properties similar to those of PROG but easier to store, transport, formulate, and administer early in emergency trauma situations could lead to better and more consistent clinical outcomes following TBI. At the same time, the engineering of a new molecule designed to treat a complex systemic injury must anticipate a range of translational issues including solubility and bioavailability. Here we describe the development of EIDD-1723, a novel, highly stable PROG analog with >104-fold higher aqueous solubility than that of nPROG. We think that, with further testing, EIDD-1723 could become an attractive candidate use as a field-ready treatment for TBI patients. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Iqbal Sayeed
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - Bushra Wali
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA
| | - David B Guthrie
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Manohar T Saindane
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Michael G Natchus
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Dennis C Liotta
- Emory Institute for Drug Development/Department of Chemistry, Emory University, 954 Gatewood Road, Atlanta, GA, 30329, USA
| | - Donald G Stein
- Emory University School of Medicine, Department of Emergency Medicine, 1365 B Clifton Rd NE, Suite 5100, Atlanta, GA, 30322, USA.
| |
Collapse
|
34
|
Abstract
Progesterone is a steroid hormone that is essential for the regulation of reproductive function. Progesterone has been approved for several indications including the treatment of anovulatory menstrual cycles, assisted reproductive technology, contraception during lactation and, when combined with estrogen, for the prevention of endometrial hyperplasia in postmenopausal hormonal therapy. In addition to its role in reproduction, progesterone regulates a number of biologically distinct processes in other tissues, particularly in the nervous system. This physiological hormone is poorly absorbed when administered in a crystalline form and is not active when given orally, unless in micronized form, or from different non-oral delivery systems that allow a more constant delivery rate. A limited number of preclinical studies have been conducted to document the toxicity, carcinogenicity and overall animal safety of progesterone delivered from different formulations, and these rather old studies showed no safety concern. More recently, it has been shown in animal experiments that progesterone, its metabolite allopregnanolone and structurally related progestins have positive effects on neuroregeneration and repair of brain damage, as well as myelin repair. These recent preclinical findings have the potential to accelerate therapeutic translation for multiple unmet neurological needs.
Collapse
Affiliation(s)
- R Sitruk-Ware
- a Center for Biomedical Research , Population Council , New York , NY , USA
| |
Collapse
|
35
|
Mendell AL, Chung BY, Creighton CE, Kalisch BE, Bailey CD, MacLusky NJ. Neurosteroid metabolites of testosterone and progesterone differentially inhibit ERK phosphorylation induced by amyloid β in SH-SY5Y cells and primary cortical neurons. Brain Res 2018; 1686:83-93. [DOI: 10.1016/j.brainres.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022]
|
36
|
Tanaka M, Ogaeri T, Samsonov M, Sokabe M. The 5α-Reductase Inhibitor Finasteride Exerts Neuroprotection Against Ischemic Brain Injury in Aged Male Rats. Transl Stroke Res 2018; 10:67-77. [PMID: 29574659 DOI: 10.1007/s12975-018-0624-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/24/2018] [Accepted: 03/14/2018] [Indexed: 11/29/2022]
Abstract
Progesterone (P4) exerts potent neuroprotection both in young and aged animal models of stroke. The neuroprotection is likely to be mediated by allopregnanolone (ALLO) metabolized from P4 by 5α-reductase, since the neuroprotection is attenuated by the 5α-reductase inhibitor finasteride, which was done only with young animals though. Thus, we do not know the contribution of ALLO to the P4-induced neuroprotection in aged animals. We examined effects of finasteride on the P4-induced neuroprotection in aged (16-18-month-old) male rats subjected to transient focal cerebral ischemia. Transient focal cerebral ischemia was induced by left middle cerebral artery occlusion (MCAO) and occlusion of the bilateral common carotid arteries. MCAO rats were given an 8 mg/kg P4 6 h after MCAO followed by the same treatment once a day for successive 3 days. Finasteride, a 5α-reductase inhibitor, at 20 mg/kg was intraperitoneally injected 30 min prior to the P4-injections. P4 markedly reduced neuronal damage 72 h after MCAO, and the P4-induced neuroprotection was apparently suppressed by finasteride in the aged animals. However, post-ischemic administration of finasteride alone (20 mg/kg) significantly prevented neuronal damage and the impairment of Rotarod performance after MCAO in aged male rats, but not in young ones. The androgen receptor antagonist flutamide markedly suppressed the neuroprotection of finasteride in the cerebral cortex, but not in the striatum, suggesting the androgen receptor-dependent mechanism of the finasteride-induced neuroprotection in the cerebral cortex. Our findings suggested, for the first time, the potential of finasteride as a therapeutic agent in post-ischemic treatment of strokes in aged population.
Collapse
Affiliation(s)
- Motoki Tanaka
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takunori Ogaeri
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan
| | | | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
37
|
Taleb O, Patte-Mensah C, Meyer L, Kemmel V, Geoffroy P, Miesch M, Mensah-Nyagan AG. Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone. J Neuroendocrinol 2018; 30. [PMID: 29265686 DOI: 10.1111/jne.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
The neurosteroid allopregnanolone (AP) modulates neuroendocrine/neurobiological processes, including hypothalamic-pituitary-adrenocortical activities, pain, anxiety, neurogenesis and neuroprotection. These observations raised the hope of developing AP-based therapies against neuroendocrine and/or neurodegenerative disorders. However, the pleiotropic actions of AP, particularly its cell-proliferation-promoting effects, hamper the development of selective/targeted therapies. For example, although AP-induced neurogenesis may serve to compensate neuronal loss in degenerative brains, AP-evoked cell-proliferation is contraindicated for steroid-sensitive cancer patients. To foster progress, we synthesised 4 novel AP analogues of neurosteroids (ANS) designated BR053 (12-oxo-epi-AP), BR297 (O-allyl-epi-AP), BR351 (O-allyl-AP) and BR338 (12-oxo-AP). First, because AP is well-known as allosteric modulator of GABAA receptors (GABAA-R), we used the electrophysiological patch-clamp technique to determine the structure-activity relationship of our ANS on GABAA-activated current in NCB20 cells expressing functional GABAA-R. We found that the addition of 12-oxo-group did not significantly change the respective positive or negative allosteric effects of 3α-AP or 3β-(epi)-AP analogues. Importantly, substitution of the 3α-hydroxyl-group by 3α-O-allyl highly modified the ANS activities. Unlike AP, BR351 induced a long-lasting desensitisation/inhibition of GABAA-R. Interestingly, replacement of the 3β-hydroxyl by 3β-O-allyl (BR297) completely reversed the activity from negative to positive allosteric action. In a second step, we compared the actions of AP and ANS on SH-SY5Y neuronal cell viability/proliferation using MTT-reduction assays. Different dose-response curves were demonstrated for AP and the ANS. By contrast to AP, BR297 was totally devoid of cell-proliferative effect. Finally, we compared AP and ANS abilities to protect against oxidative stress-induced neuronal death pivotally involved in neurodegenerative diseases. Both BR351 and BR297 had notable advantages over AP in protecting SH-SY5Y cells against oxidative stress-induced death. Thus, BR297 appears to be a potent neuroprotective compound devoid of cell-proliferative activity. Altogether, our results suggest promising perspectives for the development of neurosteroid-based selective and effective strategies against neuroendocrine and/or neurodegenerative disorders.
Collapse
Affiliation(s)
- O Taleb
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - C Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - L Meyer
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - V Kemmel
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - P Geoffroy
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - M Miesch
- Laboratoire de Chimie Organique Synthétique, UMR 7177, Institut de Chimie de l'Université de Strasbourg, Strasbourg, France
| | - A-G Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
38
|
Zhu X, Fréchou M, Liere P, Zhang S, Pianos A, Fernandez N, Denier C, Mattern C, Schumacher M, Guennoun R. A Role of Endogenous Progesterone in Stroke Cerebroprotection Revealed by the Neural-Specific Deletion of Its Intracellular Receptors. J Neurosci 2017; 37:10998-11020. [PMID: 28986464 PMCID: PMC6596486 DOI: 10.1523/jneurosci.3874-16.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 08/28/2017] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes.SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Magalie Fréchou
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Shaodong Zhang
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
- Beijing Neurosurgical Institute, Beijing 100050, China
| | - Antoine Pianos
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Neïké Fernandez
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
| | - Christian Denier
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France
- Department of Neurology and Stroke Center, Bicêtre Hospital, 94276 Kremlin-Bicêtre, France, and
| | | | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France,
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, 94276 Kremlin-Bicêtre, France,
| |
Collapse
|
39
|
Meyer M, Garay LI, Kruse MS, Lara A, Gargiulo-Monachelli G, Schumacher M, Guennoun R, Coirini H, De Nicola AF, Gonzalez Deniselle MC. Protective effects of the neurosteroid allopregnanolone in a mouse model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol 2017; 174:201-216. [PMID: 28951257 DOI: 10.1016/j.jsbmb.2017.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 01/29/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by progressive death of motoneurons. The Wobbler (WR) mouse is a preclinical model sharing neuropathological similarities with human ALS. We have shown that progesterone (PROG) prevents the progression of motoneuron degeneration. We now studied if allopregnanolone (ALLO), a reduced metabolite of PROG endowed with gabaergic activity, also prevents WR neuropathology. Sixty-day old WRs remained untreated or received two steroid treatment regimens in order to evaluate the response of several parameters during early or prolonged steroid administration. ALLO was administered s.c. daily for 5days (4mg/kg) or every other day for 32days (3, 3mg/kg), while another group of WRs received a 20mg PROG pellet s.c. for 18 or 60days. ALLO administration to WRs increased ALLO serum levels without changing PROG and 5 alpha dihydroprogesterone (5α-DHP), whereas PROG treatment increased PROG, 5α-DHP and ALLO. Untreated WRs showed higher basal levels of serum 5α-DHP than controls. In the cervical spinal cord we studied markers of oxidative stress or associated to trophic responses. These included nitric oxide synthase (NOS) activity, motoneuron vacuolation, MnSOD immunoreactivity (IR), brain derived neurotrophic factor (BDNF) and TrkB mRNAs, p75 neurotrophin receptor (p75NTR) and, cell survival or death signals such as pAKT and the stress activated kinase JNK. Untreated WRs showed a reduction of MnSOD-IR and BDNF/TrkB mRNAs, associated to high p75NTR in motoneurons, neuronal and glial NOS hyperactivity and neuronal vacuolation. Also, low pAKT, mainly in young WRs, and a high pJNK in the old stage characterized WŔs spinal cord. Except for MnSOD and BDNF, these alterations were prevented by an acute ALLO treatment, while short-term PROG elevated MnSOD. Moreover, after chronic administration both steroids enhanced MnSOD-IR and BDNF mRNA, while attenuated pJNK and NOS in glial cells. Long-term PROG also increased pAKT and reduced neuronal NOS, parameters not modulated by chronic ALLO. Clinically, both steroids improved muscle performance. Thus, ALLO was able to reduce neuropathology in this model. Since high oxidative stress activates p75NTR and pJNK in neurodegeneration, steroid reduction of these molecules may provide adequate neuroprotection. These data yield the first evidence that ALLO, a gabaergic neuroactive steroid, brings neuroprotection in a model of motoneuron degeneration.
Collapse
Affiliation(s)
- Maria Meyer
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - María Sol Kruse
- Laboratory of Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Agustina Lara
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Gisella Gargiulo-Monachelli
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina
| | - Michael Schumacher
- U1195 INSERM and University Paris Sud: "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules", 94276, Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 INSERM and University Paris Sud: "Neuroprotective, Neuroregenerative and Remyelinating Small Molecules", 94276, Kremlin-Bicêtre, France
| | - Hector Coirini
- Laboratory of Neurobiology, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado 2490, 1428, Buenos Aires, Argentina; Depto. de Ciencias Fisiológicas, Facultad de Medicina, Universidad de, Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina.
| |
Collapse
|
40
|
Espinosa-Garcia C, Sayeed I, Yousuf S, Atif F, Sergeeva EG, Neigh GN, Stein DG. Stress primes microglial polarization after global ischemia: Therapeutic potential of progesterone. Brain Behav Immun 2017. [PMID: 28648389 DOI: 10.1016/j.bbi.2017.06.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the fact that stress is associated with increased risk of stroke and worsened outcome, most preclinical studies have ignored this comorbid factor, especially in the context of testing neuroprotective treatments. Preclinical research suggests that stress primes microglia, resulting in an enhanced reactivity to a subsequent insult and potentially increasing vulnerability to stroke. Ischemia-induced activated microglia can be polarized into a harmful phenotype, M1, which produces pro-inflammatory cytokines, or a protective phenotype, M2, which releases anti-inflammatory cytokines and neurotrophic factors. Selective modulation of microglial polarization by inhibiting M1 or stimulating M2 may be a potential therapeutic strategy for treating cerebral ischemia. Our laboratory and others have shown progesterone to be neuroprotective against ischemic stroke in rodents, but it is not known whether it will be as effective under a comorbid condition of chronic stress. Here we evaluated the neuroprotective effect of progesterone on the inflammatory response in the hippocampus after exposure to stress followed by global ischemia. We focused on the effects of microglial M1/M2 polarization and pro- and anti-inflammatory mediators in stressed ischemic animals. Male Sprague-Dawley rats were exposed to 8 consecutive days of social defeat stress and then subjected to global ischemia or sham surgery. The rats received intraperitoneal injections of progesterone (8mg/kg) or vehicle at 2h post-ischemia followed by subcutaneous injections at 6h and once every 24h post-injury for 7days. The animals were killed at 7 and 14days post-ischemia, and brains were removed and processed to assess outcome measures using histological, immunohistochemical and molecular biology techniques. Pre-ischemic stress (1) exacerbated neuronal loss and neurodegeneration as well as microglial activation in the selectively vulnerable CA1 hippocampal region, (2) dysregulated microglial polarization, leading to upregulation of both M1 and M2 phenotype markers, (3) increased pro-inflammatory cytokine expression, and (4) reduced anti-inflammatory cytokine and neurotrophic factor expression in the ischemic hippocampus. Treatment with progesterone significantly attenuated stress-induced microglia priming by modulating polarized microglia and the inflammatory environment in the hippocampus, the area most vulnerable to ischemic injury. Our findings can be taken to suggest that progesterone holds potential as a candidate for clinical testing in ischemic stroke where high stress may be a contributing factor.
Collapse
Affiliation(s)
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Seema Yousuf
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Fahim Atif
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Elena G Sergeeva
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Gretchen N Neigh
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30322, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
41
|
Neurosteroid allopregnanolone attenuates motor disability and prevents the changes of neurexin 1 and postsynaptic density protein 95 expression in the striatum of 6-OHDA-induced rats’ model of Parkinson’s disease. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
42
|
Gonzalez Deniselle MC, Liere P, Pianos A, Meyer M, Aprahamian F, Cambourg A, Di Giorgio NP, Schumacher M, De Nicola AF, Guennoun R. Steroid Profiling in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Endocrinology 2016; 157:4446-4460. [PMID: 27571131 DOI: 10.1210/en.2016-1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Wobbler mouse is an animal model for human motoneuron diseases, especially amyotrophic lateral sclerosis (ALS), used in the investigation of both pathology and therapeutic treatment. ALS is a fatal neurodegenerative disease, characterized by the selective and progressive death of motoneurons, leading to progressive paralysis. Previous limited studies have reported steroidal hormone dysregulation in Wobbler mouse and in ALS patients, suggesting endocrine dysfunctions which may be involved in the pathogenesis of the disease. In this study, we established a steroid profiling in brain, spinal cord, plasma, adrenal glands, and testes in 2-month-old male Wobbler mice and their littermates by gas chromatography coupled to mass spectrometry. Our results show in Wobbler mice the following: 1) a marked up-regulation of corticosterone levels in adrenal glands, plasma, spinal cord regions (cervical, thoracic, lumbar) and brain; 2) a strong decrease in T levels in the testis, plasma, spinal cord, and brain; and 3) increased levels of progesterone and especially of its reduced metabolites 5α-dihydroprogesterone, allopregnanolone, and 20α-dihydroprogesterone in the brain, spinal cord, and adrenal glands. Furthermore, Wobbler mice showed a hypothalamic-pituitary-gonadal hypoactivity. Interestingly, plasma concentrations of corticosterone and T correlate well with their respective levels in cervical spinal cord in both control and Wobbler mice. T down-regulation is probably the consequence of adrenal hyperactivity, and the up-regulation of progesterone and its reduced metabolites may correspond to an endogenous protective mechanism in response to motoneuron degeneration. Our findings suggest that increased levels of corticosterone and decreased levels of T in plasma could be a signature of motoneuron degeneration.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Philippe Liere
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Antoine Pianos
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Maria Meyer
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Fanny Aprahamian
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Annie Cambourg
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Michael Schumacher
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Rachida Guennoun
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| |
Collapse
|
43
|
Woda A, Picard P, Dutheil F. Dysfunctional stress responses in chronic pain. Psychoneuroendocrinology 2016; 71:127-35. [PMID: 27262345 DOI: 10.1016/j.psyneuen.2016.05.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/06/2016] [Accepted: 05/18/2016] [Indexed: 11/26/2022]
Abstract
Many dysfunctional and chronic pain conditions overlap. This review describes the different modes of chronic deregulation of the adaptive response to stress which may be a common factor for these conditions. Several types of dysfunction can be identified within the hypothalamo-pituitary-adrenal axis: basal hypercortisolism, hyper-reactivity, basal hypocortisolism and hypo-reactivity. Neuroactive steroid synthesis is another component of the adaptive response to stress. Dehydroepiandrosterone (DHEA) and its sulfated form DHEA-S, and progesterone and its derivatives are synthetized in cutaneous, nervous, and adipose cells. They are neuroactive factors that act locally. They may have a role in the localization of the symptoms and their levels can vary both in the central nervous system and in the periphery. Persistent changes in neuroactive steroid levels or precursors can induce localized neurodegeneration. The autonomic nervous system is another component of the stress response. Its dysfunction in chronic stress responses can be expressed by decreased basal parasympathethic activity, increased basal sympathetic activity or sympathetic hyporeactivity to a stressful stimulus. The immune and genetic systems also participate. The helper-T cells Th1 secrete pro-inflammatory cytokines such as IL-1-β, IL-2, IL-6, IL-8, IL-12, IFN-γ, and TNF-α, whereas Th2 secrete anti-inflammatory cytokines: IL-4, IL-10, IGF-10, IL-13. Chronic deregulation of the Th1/Th2 balance can occur in favor of anti- or pro-inflammatory direction, locally or systemically. Individual vulnerability to stress can be due to environmental factors but can also be genetically influenced. Genetic polymorphisms and epigenetics are the main keys to understanding the influence of genetics on the response of individuals to constraints.
Collapse
Affiliation(s)
- Alain Woda
- Dental faculty, EA 3847, CROC, 11 Boulevard Charles-de-Gaulle, Clermont-Ferrand, France; University Hospital of Clermont-Ferrand (CHU), Odontology department, Clermont-Ferrand, France
| | - Pascale Picard
- Pain center, University Hospital of Clermont-Ferrand (CHU), Clermont-Ferrand, France
| | - Frédéric Dutheil
- Preventive and Occupational Medicine, University Hospital of Clermont-Ferrand (CHU), Clermont-Ferrand, France; University Clermont Auvergne, Laboratory of Metabolic Adaptations to Exercise in Physiological and Pathological conditions (AME2P, EA3533), Clermont-Ferrand, France; Australian Catholic University, Faculty of Health, Melbourne, Victoria, Australia; CNRS, UMR 6024, Physiological and Psychosocial Stress, LAPSCO, University Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
44
|
Ishihara Y, Fujitani N, Sakurai H, Takemoto T, Ikeda-Ishihara N, Mori-Yasumoto K, Nehira T, Ishida A, Yamazaki T. Effects of sex steroid hormones and their metabolites on neuronal injury caused by oxygen-glucose deprivation/reoxygenation in organotypic hippocampal slice cultures. Steroids 2016; 113:71-7. [PMID: 27389922 DOI: 10.1016/j.steroids.2016.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/22/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
In this study, protective actions of the sex steroid hormones, progesterone, testosterone, and 17β-estradiol, against oxygen-glucose deprivation (OGD)/reoxygenation-induced neuronal cell death were examined using rat organotypic hippocampal slice cultures. Progesterone, testosterone, and 17β-estradiol significantly attenuated neuronal cell death elicited by OGD/reoxygenation. While the neuroprotection conferred by progesterone was not affected by SU-10603, an inhibitor of cytochrome P45017α, finasteride, a 5α-reductase inhibitor that blocks the conversion of progesterone to allopregnanolone, partially reversed the neuroprotection induced by progesterone. The progesterone metabolite, allopregnanolone attenuated neuronal injury induced by OGD/reoxygenation. Pretreatment with letrozole, a cytochrome P450 aromatase inhibitor or 4-hydroxyphenyl-1-naphthol, a 17β-hydroxysteroid dehydrogenase 2 inhibitor showed no effect on testosterone-mediated neuroprotection, while finasteride completely abolished the protective action of testosterone. Treatment with 5α-dihydrotestosterone significantly suppressed neuronal injury. Pretreatment with mifepristone, a progesterone receptor antagonist and hydroxyflutamid, an androgen receptor antagonist significantly diminished the neuroprotective effects of progesterone and testosterone, respectively. ICI182,780, an estrogen receptor antagonist, showed no effect on neuroprotection mediated by 17β-estradiol. Pretreatment with actinomycin D or cycloheximide clearly abolished the neuroprotective effects of progesterone and testosterone, while actinomycin D and cycloheximide did not show any effect on neuroprotection mediated by 17β-estradiol. Taken together, progesterone protects neurons via progesterone receptor-dependent genomic pathway, and allopregnanolone is involved in progesterone-mediated neuroprotection. Testosterone and its metabolite 5α-dihydrotestosterone protect neurons via the genomic pathway of the androgen receptor. Metabolism of sex steroid hormones in the brain might complicate their protective actions in the brain.
Collapse
Affiliation(s)
- Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | - Noriko Fujitani
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Hikaru Sakurai
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Takuya Takemoto
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Nami Ikeda-Ishihara
- Division of Gene Research, Natural Science Center for Basic Research and Development, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Kanami Mori-Yasumoto
- Laboratory of Pharmacognosy and Natural Products Chemistry, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa 769-2193, Japan
| | - Tatsuo Nehira
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| |
Collapse
|
45
|
Arbo BD, Benetti F, Ribeiro MF. Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog Neurobiol 2016; 144:27-47. [DOI: 10.1016/j.pneurobio.2016.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023]
|
46
|
Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci Biobehav Rev 2016; 67:25-40. [DOI: 10.1016/j.neubiorev.2015.09.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/21/2023]
|
47
|
Zubeldia-Brenner L, Roselli CE, Recabarren SE, Gonzalez Deniselle MC, Lara HE. Developmental and Functional Effects of Steroid Hormones on the Neuroendocrine Axis and Spinal Cord. J Neuroendocrinol 2016; 28:10.1111/jne.12401. [PMID: 27262161 PMCID: PMC4956521 DOI: 10.1111/jne.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/13/2022]
Abstract
This review highlights the principal effects of steroid hormones at central and peripheral levels in the neuroendocrine axis. The data discussed highlight the principal role of oestrogens and testosterone in hormonal programming in relation to sexual orientation, reproductive and metabolic programming, and the neuroendocrine mechanism involved in the development of polycystic ovary syndrome phenotype. Moreover, consistent with the wide range of processes in which steroid hormones take part, we discuss the protective effects of progesterone on neurodegenerative disease and the signalling mechanism involved in the genesis of oestrogen-induced pituitary prolactinomas.
Collapse
Affiliation(s)
- L Zubeldia-Brenner
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| | - C E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University Portland, Portland, OR, USA
| | - S E Recabarren
- Laboratory of Animal Physiology and Endocrinology, Faculty of Veterinary Sciences, University of Concepcion, Chillán, Chile
| | - M C Gonzalez Deniselle
- Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - H E Lara
- Laboratory of Neurobiochemistry Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
48
|
Siddiqui AN, Siddiqui N, Khan RA, Kalam A, Jabir NR, Kamal MA, Firoz CK, Tabrez S. Neuroprotective Role of Steroidal Sex Hormones: An Overview. CNS Neurosci Ther 2016; 22:342-50. [PMID: 27012165 PMCID: PMC6492877 DOI: 10.1111/cns.12538] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/21/2016] [Accepted: 02/21/2016] [Indexed: 12/11/2022] Open
Abstract
Progesterone, estrogens, and testosterone are the well-known steroidal sex hormones, which have been reported to have "nonreproductive "effects in the brain, specifically in the neuroprotection and neurotrophy. In the last one decade, there has been a surge in the research on the role of these hormones in neuroprotection and their positive impact on different brain injuries. The said interest has been sparked by a desire to understand the action and mechanisms of these steroidal sex hormones throughout the body. The aim of this article was to highlight the potential outcome of the steroidal hormones, viz. progesterone, estrogens, and testosterone in terms of their role in neuroprotection and other brain injuries. Their possible mechanism of action at both genomic and nongenomic level will be also discussed. As far as our knowledge goes, we are for the first time reporting neuroprotective effect and possible mechanism of action of these hormones in a single article.
Collapse
Affiliation(s)
- Ali Nasir Siddiqui
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nahida Siddiqui
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Rashid Ali Khan
- Department of Pharmaceutical Medicine, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Abul Kalam
- Department of Pharmacology, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Enzymoics, 7 Peterlee Place, Hebersham, NSW, Australia
| | | | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Wali B, Ishrat T, Stein DG, Sayeed I. Progesterone improves long-term functional and histological outcomes after permanent stroke in older rats. Behav Brain Res 2016; 305:46-56. [PMID: 26921692 DOI: 10.1016/j.bbr.2016.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/16/2016] [Accepted: 02/21/2016] [Indexed: 12/22/2022]
Abstract
Previous studies have shown progesterone to be beneficial in animal models of central nervous system injury, but less is known about its longer-term sustained effects on recovery of function following stroke. We evaluated progesterone's effects on a panel of behavioral tests up to 8 weeks after permanent middle cerebral artery occlusion (pMCAO). Male Sprague-Dawley rats 12m.o. were subjected to pMCAO and, beginning 3h post-pMCAO, given intraperitoneal injections of progesterone (8mg/kg) or vehicle, followed by subcutaneous injections at 8h and then every 24h for 7 days, with tapering of the last 2 treatments. The rats were then tested on functional recovery at 3, 6 and 8 weeks post-stroke. We observed that progesterone-treated animals showed attenuation of infarct volume and improved functional outcomes at 8 weeks after stroke on grip strength, sensory neglect, motor coordination and spatial navigation tests. Progesterone treatments significantly improved motor deficits in the affected limb on a number of gait parameters. Glial fibrillary acidic protein expression was increased in the vehicle group and considerably lowered in the progesterone group at 8 weeks post-stroke. With repeated post-stroke testing, sensory neglect and some aspects of spatial learning performance showed spontaneous recovery, but on gait and grip-strength measres progesterone given only in the acute stage of stroke (first 7 days) showed sustained beneficial effects on all other measures of functional recovery up to 8 weeks post-stroke.
Collapse
Affiliation(s)
- Bushra Wali
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Tauheed Ishrat
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Donald G Stein
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| | - Iqbal Sayeed
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA, USA.
| |
Collapse
|
50
|
Trost L, Saitz TR, Hellstrom WJG. Side Effects of 5-Alpha Reductase Inhibitors: A Comprehensive Review. Sex Med Rev 2015; 1:24-41. [PMID: 27784557 DOI: 10.1002/smrj.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION 5α-reductase inhibitors (5ARI) include finasteride and dutasteride, and are commonly prescribed in the treatment of benign prostatic hyperplasia and androgenic alopecia. 5ARIs are associated with several known adverse effects (AEs), with varying reported prevalence rates. AIM The aim was to review and summarize findings from published literature detailing AEs associated with 5ARI use. A secondary aim was to review potential mechanisms of action, which may account for these observed and reported AEs. METHODS A PubMed search was conducted on articles published from 1992 to 2012, which reported AEs with 5ARIs. Priority was given to randomized, placebo-controlled trials. Studies investigating potential mechanisms of action for 5ARIs were included for review. MAIN OUTCOME MEASURES AE data reported from available trials were summarized and reviewed. RESULTS Reported AEs with 5ARIs include sexual dysfunction, infertility, mood disorders, gynecomastia, high-grade prostate cancer, breast cancer, and cardiovascular morbidity/risk factors, although their true association, prevalence, causality, and clinical significance remain unclear. A pooled summary of all randomized, placebo-controlled trials evaluating 5ARIs (N = 62,827) revealed slightly increased rates over placebo for decreased libido (1.5%), erectile dysfunction (ED) (1.6%), ejaculatory dysfunction (EjD) (3.4%), and gynecomastia (1.3%). The limited data available on the impact of 5ARIs on mood disorders demonstrate statistically significant (although clinically minimal) differences in rates of depression and/or anxiety. Similarly, there are limited reports of reversible, diminished fertility among susceptible individuals. Post-marketing surveillance reports have questioned the actual prevalence of AEs associated with 5ARI use and suggest the possibility of persistent symptoms after drug discontinuation. Well-designed studies evaluating these reports are needed. CONCLUSIONS 5ARIs are associated with slightly increased rates of decreased libido, ED, EjD, gynecomastia, depression, and/or anxiety. Further studies directed at identifying prevalence rates and persistence of symptoms beyond drug discontinuation are required to assess causality. Trost L, Saitz TR, and Hellstrom WJG. Side effects of 5-alpha reductase inhibitors: A comprehensive review. Sex Med Rev 2013;1:24-41.
Collapse
Affiliation(s)
| | - Theodore R Saitz
- Department of Urology, Section of Andrology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Department of Urology, Section of Andrology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|