1
|
Yang G, Milne GL, Nogueira MS, Yi H, Lan Q, Gao YT, Shu XO, Zheng W, Chen Q. Lipid peroxidation and colorectal cancer risk: a time-varying relationship. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322362. [PMID: 40034784 PMCID: PMC11875262 DOI: 10.1101/2025.02.16.25322362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Importance We recently observed an inverse and time-dependent association between systemic oxidative stress (OxS), measured by urinary biomarkers of nucleic acid oxidation, and colorectal cancer (CRC) risk. Further investigations into other types of OxS markers are warranted. Objective To extend the investigation into systemic lipid peroxidation and CRC risk. Design Setting and Participants Utilizing a nested case-control design, this study's primary analysis was performed in two large prospective cohorts in Shanghai, China, and replicated in an independent cohort in the US. Exposures Systemic lipid peroxidation was assessed by urinary F 2 -isoprostanes (F 2 -IsoPs) using UPLC-MS/MS assays. Main Outcomes and Measures During 15.1-year follow-up in the Shanghai cohorts, 1938 incident CRC cases were identified and matched to one control each through incidence-density sampling. In the US cohort, 285 incident CRC cases were included, each matched to two controls. Odds ratios (ORs) for CRC were calculated using multivariable conditional logistic regression models. Results Elevated levels of urinary 5-F 2t -IsoP (5-iPF 2α -VI), a major isomer of F 2 -IsoPs induced solely by free radicals, were associated with reduced risk of CRC in the Shanghai cohorts. This finding was replicated in the US cohort. Moreover, this inverse association was time-dependent, manifesting only in the later years of cancer development. Multivariable-adjusted ORs (95% CI) for CRC diagnosed within 5 years of enrollment at the 10th and 90th percentiles of 5-F 2t -IsoP levels, relative to the median, were 1.57 (1.26-1.96) and 0.61 (0.42-0.89), respectively, indicating a 2.2-fold difference in risk between the two groups. A stronger association was observed when using the composite index of DNA, RNA and lipid OxS markers, showing a 3.9-fold difference in risk between the two groups. No significant association was found for CRC diagnosed beyond 5 years of enrollment. Conclusions This study provides new evidence that systemic OxS is inversely and time-dependently associated with CRC risk in humans. Key Points Question: Is the time-dependent relationship between oxidative stress and tumorigenesis observed at the cellular level in experimental models also present at the systemic level in a population-based setting?Findings: Elevated systemic lipid peroxidation, measured by urinary F 2 -isoprostanes, was associated with a reduced risk of colorectal cancer (CRC) in two large prospective cohort studies in Shanghai, China, which was replicated in an independent cohort in the United States. This association varied over time, showing a stronger effect as cancer advanced. Meaning: This study provides new evidence that systemic oxidative stress is inversely and time-dependently associated with CRC risk in humans.
Collapse
|
2
|
Ovchinnikov AN, Paoli A. Saliva as a Diagnostic Tool for Early Detection of Exercise-Induced Oxidative Damage in Female Athletes. Biomedicines 2024; 12:1006. [PMID: 38790968 PMCID: PMC11118847 DOI: 10.3390/biomedicines12051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Although blood still remains the most commonly utilized medium to detect increased levels of oxidative damage induced by exercise, saliva diagnostics have gained increasing popularity due to their non-invasive nature and athlete-friendly collection process. Given that the contribution of various phases of the menstrual cycle to the levels of oxidative damage may differ, the aim of this study was to evaluate an agreement between salivary and plasmatic levels of lipid peroxidation products in female swimmers in both the follicular (F) and luteal (L) phases of the menstrual cycle at rest and following exercise. Twelve well-trained female swimmers aged 19.6 ± 1.1 years old were examined. We measured diene conjugates (DCs), triene conjugates (TCs), and Schiff bases (SBs) in lipids immediately after their extraction from both saliva and blood plasma. All female swimmers were studied two times each, in the two different phases of one menstrual cycle, before and after high-intensity interval exercise (HIIE). Salivary and plasmatic levels of DCs, TCs, and SBs significantly increased post-exercise compared to pre-exercise, in both the F and L phases. A high positive correlation was observed between the concentrations of DCs, TCs, and SBs in the saliva and blood plasma of participants in the F and L phases, both at rest and following HIIE. Ordinary least products regression analysis indicates that there was no proportional and differential bias in the data. The Bland-Altman method also declares that there was no differential bias, since the line of equality was within the 95% confidence interval of the mean difference between salivary and plasmatic levels of DCs, TCs, and SBs in female swimmers, in both the F and L phases, before and after HIIE. There was also no proportional bias in the Bland-Altman plots. Thus, this is the first study to report a high agreement between the quantifications of DCs, TCs, and SBs in the saliva and blood plasma of female swimmers in both the F and L phases, at rest and following HIIE.
Collapse
Affiliation(s)
- Aleksandr N. Ovchinnikov
- Laboratory of Non-Invasive Diagnostics in Sports, Department of Sports Medicine and Psychology, Lobachevsky University, 603022 Nizhny Novgorod, Russia
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy;
| |
Collapse
|
3
|
Zhang C, Shao Q, Liu M, Wang X, Loor JJ, Jiang Q, Cuan S, Li X, Wang J, Li Y, He L, Huang Y, Liu G, Lei L. Liver fibrosis is a common pathological change in the liver of dairy cows with fatty liver. J Dairy Sci 2023; 106:2700-2715. [PMID: 36823013 DOI: 10.3168/jds.2022-22021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/24/2022] [Indexed: 02/23/2023]
Abstract
Fatty liver (i.e., hepatic lipidosis) is a prevalent metabolic disorder in dairy cows during the transition period, characterized by excess hepatic accumulation of triglyceride (TG), tissue dysfunction, and cell death. Detailed pathological changes, particularly hepatic fibrosis, during fatty liver remain to be determined. Liver fibrosis occurs as a consequence of liver damage, resulting from the excessive accumulation of extracellular matrix, which distorts the architecture of the normal liver, compromising its normal synthetic and metabolic functions. Thus, we aimed to investigate liver fibrosis status and its potential causal factors including oxidative stress, hepatocyte apoptosis, and production of inflammatory cytokines in the liver of cows with fatty liver. Forty-five dairy cows (parity, 3-5) were selected, and liver biopsy and blood were collected on the second week postpartum (days in milk, 10-14 d). On the basis of the degree of lipid accumulation in liver, selected cows were categorized into normal (n = 25; TG <1% wet wt), mild fatty liver (n = 15; 1% ≤ TG <5% wet wt), and moderate fatty liver (n = 5; 5% ≤ TG <10% wet wt). Compared with normal cows, blood concentrations of nonesterified fatty acids and β-hydroxybutyrate, along with alanine aminotransferase and aspartate aminotransferase activities, were greater in the cows with fatty liver (mild and moderate). Hepatic extracellular matrix deposition, as indicated by Picrosirius red staining, was greater in cows with fatty liver than those with normal ones. In addition, we observed an increased proportion of collagen type I fiber in extracellular matrix with increased lipid accumulation in the liver. Compared with normal cows, the area of α-smooth muscle actin (α-SMA)-positive staining along with the mRNA abundance of collagen type I α 1 (COL1A1), ACTA2 (gene encoding α-SMA), and transforming growth factor-β (TGFB) were greater in cows with fatty liver. Compared with normal cows, hepatic contents of malondialdehyde, glutathione disulfide, and 8-isoprostane were greater, whereas total antioxidant capacity, the hepatic content of glutathione, and activities of antioxidant indicators, including superoxide dismutase, glutathione peroxidase, and catalase, were lower in cows with fatty liver. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells and abundance of apoptosis-related molecules BAX, CASP3, CASP8, and CASP9 were greater in cows with fatty liver. However, mRNA abundance of the anti-apoptotic gene BCL2 did not differ. The mRNA abundance of pro-inflammatory cytokines including tumor necrosis factor-α (TNFA), interleukin-1β (IL1B), and interleukin-6 (IL6) was greater in the liver of cows with fatty liver. Overall, the present study indicated that fibrosis is a common pathological response to liver damage and is associated with oxidative stress, hepatocyte death, and inflammation.
Collapse
Affiliation(s)
- Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Qi Shao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Mingchao Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Xueying Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Shunan Cuan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Xinwei Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yuanxiao Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Lei He
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Guowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| | - Lin Lei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, Jilin, China.
| |
Collapse
|
4
|
Inflammageing and Cardiovascular System: Focus on Cardiokines and Cardiac-Specific Biomarkers. Int J Mol Sci 2023; 24:ijms24010844. [PMID: 36614282 PMCID: PMC9820990 DOI: 10.3390/ijms24010844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The term "inflammageing" was introduced in 2000, with the aim of describing the chronic inflammatory state typical of elderly individuals, which is characterized by a combination of elevated levels of inflammatory biomarkers, a high burden of comorbidities, an elevated risk of disability, frailty, and premature death. Inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and rapid progression to heart failure. The great experimental and clinical evidence accumulated in recent years has clearly demonstrated that early detection and counteraction of inflammageing is a promising strategy not only to prevent cardiovascular disease, but also to slow down the progressive decline of health that occurs with ageing. It is conceivable that beneficial effects of counteracting inflammageing should be most effective if implemented in the early stages, when the compensatory capacity of the organism is not completely exhausted. Early interventions and treatments require early diagnosis using reliable and cost-effective biomarkers. Indeed, recent clinical studies have demonstrated that cardiac-specific biomarkers (i.e., cardiac natriuretic peptides and cardiac troponins) are able to identify, even in the general population, the individuals at highest risk of progression to heart failure. However, further clinical studies are needed to better understand the usefulness and cost/benefit ratio of cardiac-specific biomarkers as potential targets in preventive and therapeutic strategies for early detection and counteraction of inflammageing mechanisms and in this way slowing the progressive decline of health that occurs with ageing.
Collapse
|
5
|
Welch BM, McNell EE, Edin ML, Ferguson KK. Inflammation and oxidative stress as mediators of the impacts of environmental exposures on human pregnancy: Evidence from oxylipins. Pharmacol Ther 2022; 239:108181. [PMID: 35367517 PMCID: PMC9525454 DOI: 10.1016/j.pharmthera.2022.108181] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
Inflammation and oxidative stress play major roles in healthy and pathological pregnancy. Environmental exposure to chemical pollutants may adversely affect maternal and fetal health in pregnancy by dysregulating these critical underlying processes of inflammation and oxidative stress. Oxylipins are bioactive lipids that play a major role in regulating inflammation and increasing lines of evidence point towards an importance in pregnancy. The biosynthetic production of oxylipins requires oxygenation of polyunsaturated fatty acids, which can occur through several well-characterized enzymatic and nonenzymatic pathways. This review describes the state of the science of epidemiologic evidence on oxylipin production in pregnancy and its association with 1) key pregnancy outcomes and 2) environmental exposures. We searched PubMed for studies of pregnancy that measured one or more oxylipin analytes during pregnancy or delivery. We evaluated oxylipin associations with three categories of adverse pregnancy outcomes, including preeclampsia, preterm birth, and fetal growth restriction, along with several categories of environmental pollutants. The majority of studies evaluated one to two oxylipins, most of which focused on oxylipins produced from nonenzymatic processes of oxidative stress. However, an increasing number of recent studies have leveraged technological advancements to profile a large number of oxylipins produced from distinct biosynthetic pathways. Although the literature indicated robust evidence that oxylipins produced via nonenzymatic pathways are associated with pregnancy outcomes and environmental exposures, evidence for enzymatically produced oxylipins showed that associations may differ between biosynthetic pathways. Along with summarizing this evidence, we review promising therapeutic options to regulate oxylipin production and provide a set of recommendations for future epidemiologic studies in these research areas. Further evidence is needed to improve our understanding of how oxylipins may act as key biological mediators for the adverse effects of environmental pollutants on pregnancy outcomes.
Collapse
Affiliation(s)
- Barrett M Welch
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Erin E McNell
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Matthew L Edin
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Ma L, Sun D, Xiu G, Lazarus P, Vachani A, Penning TM, Whitehead AS, Muscat JE. Quantification of Plasma 8-Isoprostane by High-Performance Liquid Chromatography with Tandem Mass Spectrometry in a Case-Control Study of Lung Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12488. [PMID: 36231826 PMCID: PMC9566031 DOI: 10.3390/ijerph191912488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
AIM 8-iso-prostaglandin F2α is a biomarker of lipid peroxidation, and one of the most commonly used measures of oxidative stress. It is an established biomarker of lung cancer risk. It is commonly measured by enzyme-linked immunosorbent assay. Given its importance, we developed a stable isotope dilution UPLC-tandem mass spectrometric method for the rapid determination of 8-isoprostane in blood. METHODS We tested the discriminatory capability of the method in 49 lung cancer patients, 55 benign lung nodule patients detected by chest X-ray, and 41 patients with chronic obstructive pulmonary disease (COPD) or asthma. RESULTS Significant differences were found in mean 8-isoprostane levels between the three groups (p = 0.027), and post-hoc tests found higher levels in the lung cancer patients than in patients with benign nodules (p = 0.032) and COPD/asthma (p = 0.014). The receiving operating characteristic area under the curve (AUC) was 0.69 for differentiating the lung cancer group from the benign nodule group, and 0.7 for differentiating from the COPD/asthma group. CONCLUSIONS The UPLC-MS/MS-based method is an efficient analytical tool for measuring 8-isoprostane plasma concentrations. The results suggest exploring its utility as a marker for early lung cancer screening.
Collapse
Affiliation(s)
- Lin Ma
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Public Health Sciences, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Dongxiao Sun
- Department of Pharmacology, Mass Spectrometry Core Facility, The Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99210, USA
| | - Anil Vachani
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Trevor M. Penning
- Department of Systems Pharmacology & Translational Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander S. Whitehead
- Department of Pharmacology, Center for Pharmacogenetics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua E. Muscat
- Department of Public Health Sciences, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Prostanoid Metabolites as Biomarkers in Human Disease. Metabolites 2022; 12:metabo12080721. [PMID: 36005592 PMCID: PMC9414732 DOI: 10.3390/metabo12080721] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Prostaglandins (PGD2, PGE2, PGF2α), prostacyclin (PGI2), and thromboxane A2 (TXA2) together form the prostanoid family of lipid mediators. As autacoids, these five primary prostanoids propagate intercellular signals and are involved in many physiological processes. Furthermore, alterations in their biosynthesis accompany a wide range of pathological conditions, which leads to substantially increased local levels during disease. Primary prostanoids are chemically instable and rapidly metabolized. Their metabolites are more stable, integrate the local production on a systemic level, and their analysis in various biological matrices yields valuable information under different pathological settings. Therefore, prostanoid metabolites may be used as diagnostic, predictive, or prognostic biomarkers in human disease. Although their potential as biomarkers is great and extensive research has identified major prostanoid metabolites that serve as target analytes in different biofluids, the number of studies that correlate prostanoid metabolite levels to disease outcome is still limited. We review the metabolism of primary prostanoids in humans, summarize the levels of prostanoid metabolites in healthy subjects, and highlight existing biomarker studies. Since analysis of prostanoid metabolites is challenging because of ongoing metabolism and limited half-lives, an emphasis of this review lies on the reliable measurement and interpretation of obtained levels.
Collapse
|
8
|
Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y, Gems D, Kagan VE, Kalyanaraman B, Larsson NG, Milne GL, Nyström T, Poulsen HE, Radi R, Van Remmen H, Schumacker PT, Thornalley PJ, Toyokuni S, Winterbourn CC, Yin H, Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 2022; 4:651-662. [PMID: 35760871 PMCID: PMC9711940 DOI: 10.1038/s42255-022-00591-z] [Citation(s) in RCA: 575] [Impact Index Per Article: 191.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/19/2022] [Indexed: 01/14/2023]
Abstract
Multiple roles of reactive oxygen species (ROS) and their consequences for health and disease are emerging throughout biological sciences. This development has led researchers unfamiliar with the complexities of ROS and their reactions to employ commercial kits and probes to measure ROS and oxidative damage inappropriately, treating ROS (a generic abbreviation) as if it were a discrete molecular entity. Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims entering the literature and impeding progress, despite a well-established body of knowledge on how best to assess individual ROS, their reactions, role as signalling molecules and the oxidative damage that they can cause. In this consensus statement we illuminate problems that can arise with many commonly used approaches for measurement of ROS and oxidative damage, and propose guidelines for best practice. We hope that these strategies will be useful to those who find their research requiring assessment of ROS, oxidative damage and redox signalling in cells and in vivo.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Hülya Bayir
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vsevolod Belousov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russian Federation
| | | | - Kelvin J A Davies
- Gerontology, Molecular & Computational Biology, and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tobias P Dick
- German Cancer Research Center, DKFZ-ZMBH Alliance and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Henry J Forman
- Gerontology, Molecular & Computational Biology, and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Yvonne Janssen-Heininger
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - David Gems
- University of Vermont, Burlington, VT, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Rafael Radi
- Universidad de la República, Montevideo, Uruguay
| | | | | | - Paul J Thornalley
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Shinya Toyokuni
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Christine C Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Huiyong Yin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Barry Halliwell
- Department of Biochemistry and Life Sciences Institute Neurobiogy Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Hemmendinger M, Sauvain JJ, Hopf NB, Suárez G, Guseva Canu I. Challenges in Quantifying 8-OHdG and 8-Isoprostane in Exhaled Breath Condensate. Antioxidants (Basel) 2022; 11:antiox11050830. [PMID: 35624694 PMCID: PMC9138069 DOI: 10.3390/antiox11050830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Exhaled breath condensate (EBC) has attracted substantial interest in the last few years, enabling the assessment of airway inflammation with a non-invasive method. Concentrations of 8-Hydroxydesoxyguanosine (8-OHdG) and 8-isoprostane in EBC have been suggested as candidate biomarkers for lung diseases associated with inflammation and oxidative stress. EBC is a diluted biological matrix and consequently, requires highly sensitive chemical analytic methods (picomolar range) for biomarker quantification. We developed a new liquid chromatography coupled to tandem mass spectrometry method to quantify 8-OHdG and 8-isoprostane in EBC simultaneously. We applied this novel biomarker method in EBC obtained from 10 healthy subjects, 7 asthmatic subjects, and 9 subjects with chronic obstructive pulmonary disease. Both biomarkers were below the limit of detection (LOD) despite the good sensitivity of the chemical analytical method (LOD = 0.5 pg/mL for 8-OHdG; 1 pg/mL for 8-isoprostane). This lack of detection might result from factors affecting EBC collections. These findings are in line with methodological concerns already raised regarding the reliability of EBC collection for quantification of 8-OHdG and 8-isoprostane. Precaution is therefore needed when comparing literature results without considering methodological issues relative to EBC collection and analysis. Loss of analyte during EBC collection procedures still needs to be resolved before using these oxidative stress biomarkers in EBC.
Collapse
|
10
|
Mechanisms of Oxidative Stress and Therapeutic Targets following Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8815441. [PMID: 33688394 PMCID: PMC7920740 DOI: 10.1155/2021/8815441] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/17/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress (OS) is induced by the accumulation of reactive oxygen species (ROS) following intracerebral hemorrhage (ICH) and plays an important role in secondary brain injury caused by the inflammatory response, apoptosis, autophagy, and blood-brain barrier (BBB) disruption. This review summarizes the current state of knowledge regarding the pathogenic mechanisms of brain injury after ICH, markers for detecting OS, and therapeutic strategies that target OS to mitigate brain injury.
Collapse
|
11
|
Putman AK, Contreras GA, Sordillo LM. Isoprostanes in Veterinary Medicine: Beyond a Biomarker. Antioxidants (Basel) 2021; 10:antiox10020145. [PMID: 33498324 PMCID: PMC7909258 DOI: 10.3390/antiox10020145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress has been associated with many pathologies, in both human and animal medicine. Damage to tissue components such as lipids is a defining feature of oxidative stress and can lead to the generation of many oxidized products, including isoprostanes (IsoP). First recognized in the early 1990s, IsoP are formed in numerous biological fluids and tissues, chemically stable, and easily measured by noninvasive means. Additionally, IsoP are highly specific indicators of lipid peroxidation and thereby are regarded as excellent biomarkers of oxidative stress. Although there have been many advancements in the detection and use of IsoP as a biomarker, there is still a paucity of knowledge regarding the biological activity of these molecules and their potential roles in pathology of oxidative stress. Furthermore, the use of IsoP has been limited in veterinary species thus far and represents an avenue of opportunity for clinical applications in veterinary practice. Examples of clinical applications of IsoP in veterinary medicine include use as a novel biomarker to guide treatment recommendations or as a target to mitigate inflammatory processes. This review will discuss the history, biosynthesis, measurement, use as a biomarker, and biological action of IsoP, particularly in the context of veterinary medicine.
Collapse
|
12
|
Woolcock AD, Leisering A, Deshuillers P, Roque-Torres J, Moore GE. Feline urinary F 2-isoprostanes measured by enzyme-linked immunoassay and gas chromatography-mass spectroscopy are poorly correlated. J Vet Diagn Invest 2020; 32:648-655. [PMID: 32627704 DOI: 10.1177/1040638720939531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
15-F2T-isoprostanes are byproducts of lipid peroxidation and were determined to be the best marker of oxidative injury in a rodent model of oxidative stress. A previous study compared methods for measurement of urinary F2-isoprostanes (gas chromatography and negative ion chemical ionization-mass spectrometry, GC-NICI-MS; and ELISA) and found poor agreement in dogs, horses, and cows. Surprisingly, fair agreement between these methods was identified in a small population of cats. We evaluated the agreement between GC-NICI-MS and ELISA of urinary F2-isoprostanes in the urine of 50 mature cats ranging from healthy to systemically ill. All urine samples had detectable levels of F2-isoprostanes by both methods. Significant proportional bias and poor agreement were identified between the 2 methods (ρ = 0.364, p = 0.009) for all cats, and in subgroup analysis based on health status. The concentration of urinary F2-isoprostanes was significantly lower in systemically ill cats compared to healthy cats when measured by ELISA (p = 0.002) but not by GC-NICI-MS (p = 0.068). Our results indicate that GC-NICI-MS and ELISA have poor agreement when measuring urinary F2-isoprostanes in cats.
Collapse
Affiliation(s)
- Andrew D Woolcock
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Woolcock, Roque-Torres).,Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Leisering).,Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Moore).,Biopôle-Laboratoire d'analyses, L'École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France (Deshuillers)
| | - Ashley Leisering
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Woolcock, Roque-Torres).,Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Leisering).,Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Moore).,Biopôle-Laboratoire d'analyses, L'École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France (Deshuillers)
| | - Pierre Deshuillers
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Woolcock, Roque-Torres).,Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Leisering).,Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Moore).,Biopôle-Laboratoire d'analyses, L'École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France (Deshuillers)
| | - Janet Roque-Torres
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Woolcock, Roque-Torres).,Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Leisering).,Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Moore).,Biopôle-Laboratoire d'analyses, L'École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France (Deshuillers)
| | - George E Moore
- Departments of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Woolcock, Roque-Torres).,Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Leisering).,Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, IN (Moore).,Biopôle-Laboratoire d'analyses, L'École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France (Deshuillers)
| |
Collapse
|
13
|
Fanti F, Vincenti F, Montesano C, Serafini M, Compagnone D, Sergi M. dLLME-μSPE extraction coupled to HPLC-ESI-MS/MS for the determination of F2α-IsoPs in human urine. J Pharm Biomed Anal 2020; 186:113302. [DOI: 10.1016/j.jpba.2020.113302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 01/11/2023]
|
14
|
Liakh I, Pakiet A, Sledzinski T, Mika A. Methods of the Analysis of Oxylipins in Biological Samples. Molecules 2020; 25:E349. [PMID: 31952163 PMCID: PMC7024226 DOI: 10.3390/molecules25020349] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Oxylipins are derivatives of polyunsaturated fatty acids and due to their important and diverse functions in the body, they have become a popular subject of studies. The main challenge for researchers is their low stability and often very low concentration in samples. Therefore, in recent years there have been developments in the extraction and analysis methods of oxylipins. New approaches in extraction methods were described in our previous review. In turn, the old analysis methods have been replaced by new approaches based on mass spectrometry (MS) coupled with liquid chromatography (LC) and gas chromatography (GC), and the best of these methods allow hundreds of oxylipins to be quantitatively identified. This review presents comparative and comprehensive information on the progress of various methods used by various authors to achieve the best results in the analysis of oxylipins in biological samples.
Collapse
Affiliation(s)
- Ivan Liakh
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.L.); (T.S.)
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
15
|
Eick SM, Meeker JD, Brown P, Swartzendruber A, Rios-McConnell R, Shen Y, Milne GL, Vélez Vega C, Rosario Z, Alshawabkeh A, Cordero JF, Ferguson KK. Associations between socioeconomic status, psychosocial stress, and urinary levels of 8-iso-prostaglandin-F 2α during pregnancy in Puerto Rico. Free Radic Biol Med 2019; 143:95-100. [PMID: 31369838 PMCID: PMC6848779 DOI: 10.1016/j.freeradbiomed.2019.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 07/28/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Lower socioeconomic status (SES) and psychosocial stress during pregnancy have been associated with adverse birth outcomes. While hypothalamic-pituitary-axis activation is thought to be the primary driver, oxidative stress may also be involved mechanistically. We used data from the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) cohort (N=476) to examine associations between self-reported psychosocial stress measures, SES indicators, and urinary oxidative stress biomarker concentrations, hypothesizing that women with lower SES and increased psychosocial stress would have elevated oxidative stress biomarkers. METHODS Maternal age, education, marital status, insurance status, alcohol use and smoking status were obtained via self-reported questionnaires and were used as indicators of SES. Perceived stress, depression, negative life experiences, neighborhood perceptions, and social support were self-reported in questionnaires administered during pregnancy. Responses were grouped into tertiles for analysis, where the highest tertile corresponded to highest level of psychosocial stress. Urinary concentrations of 8-iso-prostaglandin F2α (8-iso-PGF2α) and its primary metabolite were measured at three study visits (median 18, 24, 28 weeks gestation) and averaged to reflect oxidative stress across pregnancy. Linear models were used to examine associations between SES indicators, tertiles of psychosocial stress and oxidative stress biomarkers. RESULTS Average levels of 8-iso-PGF2α and the 8-iso-PGF2α metabolite were higher among pregnant women who were younger, who had public compared to private insurance, and who were unemployed compared to employed. However, no associations were observed between psychosocial stress measures and biomarker concentrations in adjusted analyses. CONCLUSIONS Psychosocial stress during pregnancy, as indicated by self-reported questionnaire measures, was not associated with biomarkers of oxidative stress in the PROTECT study. However, results suggest that these biomarkers are elevated among women of lower SES, which is typically associated with stress. Notably, compared to other populations, self-reported psychosocial stress measures were lower in PROTECT compared to other populations.
Collapse
Affiliation(s)
- Stephanie M Eick
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 101 Buck Road, Athens, GA, 30329, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Hts, Ann Arbor, MI, 48109, United States
| | - Phil Brown
- Social Science Environmental Health Research Institute, Northeastern University, 318 INV 360 Huntington Ave. Boston, MA, 02115, United States
| | - Andrea Swartzendruber
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 101 Buck Road, Athens, GA, 30329, United States
| | - Rafael Rios-McConnell
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, Paseo Dr. Jose Celso Barbosa, PO Box 365067, San Juan, PR, 00936-5067, United States
| | - Ye Shen
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 101 Buck Road, Athens, GA, 30329, United States
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, 562 Preston Research Bldg, 2200 Pierce Avenue, Nashville, TN, 37232-6602, United States
| | - Carmen Vélez Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, Paseo Dr. Jose Celso Barbosa, PO Box 365067, San Juan, PR, 00936-5067, United States
| | - Zaira Rosario
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, Paseo Dr. Jose Celso Barbosa, PO Box 365067, San Juan, PR, 00936-5067, United States
| | - Akram Alshawabkeh
- College of Engineering, Northeastern University, 501 ST 360 Huntington Ave. Boston MA, 02115-500, United States
| | - José F Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 101 Buck Road, Athens, GA, 30329, United States
| | - Kelly K Ferguson
- Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Hts, Ann Arbor, MI, 48109, United States; Epidemiology Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC, 27709, United States.
| |
Collapse
|
16
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
17
|
Rosen EM, van 't Erve TJ, Boss J, Sathyanarayana S, Barrett ES, Nguyen RHN, Bush NR, Milne GL, McElrath TF, Swan SH, Ferguson KK. Urinary oxidative stress biomarkers and accelerated time to spontaneous delivery. Free Radic Biol Med 2019; 130:419-425. [PMID: 30445128 PMCID: PMC6331226 DOI: 10.1016/j.freeradbiomed.2018.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Oxidative stress has been implicated in numerous birth outcomes, including spontaneous preterm birth. However, the relationship with presentation at delivery has been less well studied. We assessed the relationship between oxidative stress biomarkers and gestational duration with a focus on spontaneous presentation for delivery. METHODS Our sample included 740 women from a multi-center prospective cohort study, recruited from 2010 to 2012. Resultant measures of oxidative stress in pregnancy prostaglandin F2α (PGF2α), 8-iso-prostaglandin F2α (8-iso-PGF2α), and the primary 8-iso-PGF2α metabolite were measured in third trimester urine samples. Information on presentation for delivery was abstracted from medical records. We examined associations with preterm birth using adjusted logistic models. Time to event (overall delivery and spontaneous delivery) was examined using adjusted accelerated failure time models. RESULTS The 8-iso-PGF2α metabolite was associated with increased odds of overall preterm birth (OR: 1.44 [95% CI: 1.00, 2.06]), and the association with spontaneous preterm birth was similar in magnitude but not statistically significant (OR: 1.45 [95% CI: 0.96, 2.20]). We did not detect associations between other biomarkers and preterm birth, or between biomarkers and timing of overall or spontaneous delivery in accelerated failure time models. CONCLUSIONS Our data suggest that increased oxidative stress, as indicated by the 8-iso-PGF2α metabolite, may be associated with preterm birth. In contrast to previous studies, associations were similar among individuals with spontaneous versus non-spontaneous presentation for delivery.
Collapse
Affiliation(s)
- Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Thomas J van 't Erve
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98101, USA
| | - Emily S Barrett
- Department of Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA
| | - Ruby H N Nguyen
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Nicole R Bush
- Departments of Psychiatry and Pediatrics, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Thomas F McElrath
- Department of Maternal-Fetal Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shanna H Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
18
|
Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Anal Chim Acta 2017; 1037:63-74. [PMID: 30292316 DOI: 10.1016/j.aca.2017.11.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022]
Abstract
Misregulation of oxidative and antioxidative processes in the organism - oxidative stress - contributes to the pathogenesis of different diseases, e.g. inflammatory or neurodegenerative diseases. Oxidative stress leads to autoxidation of polyunsaturated fatty acids giving rise to prostaglandin-like isoprostanes (IsoP) and isofurans (IsoF). On the one hand they could serve as biomarker of oxidative stress and on the other hand may act as lipid mediators, similarly as the enzymatically formed oxylipins. In the present paper we describe the development of an LC-ESI(-)-MS/MS method allowing the parallel quantification of 27 IsoP and 8 IsoF derived from 6 different PUFA (ALA, ARA, EPA, AdA, n6-DPA, DHA) within 12 min. The chromatographic separation was carried out on an RP-C18 column (2.1 × 150 mm, 1.8 μm) yielding narrow peaks with an average width at half maximum of 3.3-4.2 s. Detection was carried out on a triple quadrupole mass spectrometer operating in selected reaction monitoring mode allowing the selective detection of regioisomers. The limit of detection ranged between 0.1 and 1 nM allowing in combination with solid phase extraction the detection of IsoP and IsoF at subnanomolar concentrations in biological samples. The method was validated for human plasma showing high accuracy and precision. Application of the approach on the investigation of oxidative stress in cultured cells indicated a distinct pattern of IsoP and IsoF in response to reactive oxygen species which warrants further investigation. The described method is not only the most comprehensive approach for the simultaneous quantification of IsoP and IsoF, but it was also integrated in a targeted metabolomics method (Ostermann et al. (2015) Anal Bioanal Chem) allowing the quantification of in total 164 oxylipins formed enzymatically and non-enzymatically within 30.5 min.
Collapse
|
19
|
Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6501046. [PMID: 28698768 PMCID: PMC5494111 DOI: 10.1155/2017/6501046] [Citation(s) in RCA: 482] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/26/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen species (ROS) formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1) ROS in leukocytes and platelets by flow cytometry, (2) markers based on ROS-induced modifications of lipids, DNA, and proteins, (3) enzymatic players of redox status, and (4) total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.
Collapse
|
20
|
Harms JE, Kuczmarski JM, Kim JS, Thomas GD, Kaufman MP. The role played by oxidative stress in evoking the exercise pressor reflex in health and simulated peripheral artery disease. J Physiol 2017; 595:4365-4378. [PMID: 28369936 DOI: 10.1113/jp273816] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/23/2017] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Ligating the femoral artery of a rat for 72 h, a model for peripheral artery disease, causes an exaggerated exercise pressor reflex in response to muscle contraction. Likewise, the hindlimb muscles of rats with ligated femoral arteries show increased levels of reactive oxygen species. Infusion of tiron, a superoxide scavenger, attenuated the exaggerated pressor reflex and reduced reactive oxygen species production in rats with ligated femoral arteries. Conversely, we found no effect of tiron infusion on the pressor reflex in rats with patent femoral arteries. These results suggest a role of reactive oxygen species with respect to causing the exaggerated pressor response to contraction seen in rats with ligated arteries and peripheral artery disease. ABSTRACT Contraction of muscle evokes the exercise pressor reflex (EPR), which is expressed partly by increases in heart rate and arterial pressure. Patients with peripheral artery disease (PAD) show an exaggerated EPR, sometimes report pain when walking and are at risk for cardiac arrthymias. Previous research suggested that reactive oxygen species (ROS) mediate the exaggerated EPR associated with PAD. To examine the effects of ROS on the EPR, we infused a superoxide scavenger, tiron, into the superficial epigastric artery of decerebrated rats. In some, we simulated PAD by ligating a femoral artery for 72 h before the experiment. The peak EPR in 'ligated' rats during saline infusion averaged 31 ± 4 mmHg, whereas the peak EPR in these rats during tiron infusion averaged 13 ± 2 mmHg (n = 12; P < 0.001); the attenuating effect of tiron on the EPR was partly reversed when saline was reinfused into the superficial epigastric artery (21 ± 2 mmHg; P < 0.01 vs. tiron). The peak EPR in 'ligated' rats was also attenuated (n = 7; P < 0.01) by infusion of gp91ds-tat, a peptide that blocks the activity of NAD(P)H oxidase. Tiron infusion had no effect on the EPR in rats with patent femoral arteries (n = 9). Western blots showed that the triceps surae muscles of 'ligated' rats expressed more Nox2 and p67phox, which are components of NADPH oxidase, compared to triceps surae muscles of 'freely perfused' rats. Tiron added to muscle homogenates reduced ROS production in vitro. The results of the present study provide further evidence indicating that ROS mediates the exaggeration of EPR in rats with simulated PAD.
Collapse
Affiliation(s)
- Jonathan E Harms
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| | | | - Joyce S Kim
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Gail D Thomas
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Marc P Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
21
|
Aszyk J, Kot J, Tkachenko Y, Woźniak M, Bogucka-Kocka A, Kot-Wasik A. Novel liquid chromatography method based on linear weighted regression for the fast determination of isoprostane isomers in plasma samples using sensitive tandem mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1051:17-23. [DOI: 10.1016/j.jchromb.2017.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/15/2017] [Accepted: 02/19/2017] [Indexed: 10/20/2022]
|
22
|
Peel AM, Crossman-Barnes CJ, Tang J, Fowler SJ, Davies GA, Wilson AM, Loke YK. Biomarkers in adult asthma: a systematic review of 8-isoprostane in exhaled breath condensate. J Breath Res 2017; 11:016011. [PMID: 28102831 DOI: 10.1088/1752-7163/aa5a8a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We aimed to assess the evidence for the use of 8-isoprostane in exhaled breath condensate (EBC) as a biomarker in adult asthma. DESIGN A systematic review and meta-analysis of EBC 8-isoprostane. METHODS We searched a number of online databases (including PubMed, Embase and Scopus) in January 2016. We included studies of adult non-smokers with EBC collection and asthma diagnosis conducted according to recognised guidelines. We aimed to pool data using random effects meta-analysis and assess heterogeneity using I 2. RESULTS We included twenty studies, the findings from which were inconsistent. Seven studies (n = 329) reported 8-isoprostane levels in asthma to be significantly higher than that of control groups, whilst six studies (n = 403) did not. Only four studies were appropriate for inclusion in a random effects meta-analysis of mean difference. This found a statistically significant between-groups difference of 22 pg ml-1. Confidence in the result is limited by the small number of studies and by substantial statistical heterogeneity (I 2 = 94). CONCLUSION The clinical value of EBC 8-isoprostane as a quantitative assessment of oxidative stress in asthma remains unclear due to variability in results and methodological heterogeneity. It is essential to develop a robust and standardised methodology if the use of EBC 8-isoprostane in asthma is to be properly evaluated.
Collapse
Affiliation(s)
- Adam M Peel
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Higher levels of oxidative stress, as measured by F2-isoprostanes, have been associated with chronic diseases such as CVD and some cancers. Improvements in diet and physical activity may help reduce oxidative stress; however, previous studies regarding associations between lifestyle factors and F2-isoprostane concentrations have been inconsistent. The aim of this cross-sectional study was to investigate whether physical activity and intakes of fruits/vegetables, antioxidant nutrients, dietary fat subgroups and alcohol are associated with concentrations of F2-isoprostane and the major F2-isoprostane metabolite. Urinary F2-isoprostane and its metabolite were measured in urine samples collected at enrolment from 912 premenopausal women (aged 35-54 years) participating in the Sister Study. Physical activity, alcohol consumption and dietary intakes were self-reported via questionnaires. With adjustment for potential confounders, the geometric means of F2-isoprostane and its metabolite were calculated according to quartiles of dietary intakes, alcohol consumption and physical activity, and linear regression models were used to evaluate trends. Significant inverse associations were found between F2-isoprostane and/or its metabolite and physical activity, vegetables, fruits, vitamin C, α-carotene, vitamin E, β-carotene, vitamin A, Se, lutein+zeaxanthin and long-chain n-3 fatty acids. Although trans fats were positively associated with both F2-isoprostane and its metabolite, other dietary fat subgroups including SFA, n-6 fatty acids, n-3 fatty acids, MUFA, PUFA, short-chain n-3 fatty acids, long-chain n-3 fatty acids and total fat were not associated with either F2-isoprostane or its metabolite. Our findings suggest that lower intake of antioxidant nutrients and higher intake of trans fats may be associated with greater oxidative stress among premenopausal women.
Collapse
|
24
|
Direct analysis of prostaglandin-E2 and -D2 produced in an inflammatory cell reaction and its application for activity screening and potency evaluation using turbulent flow chromatography liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2016; 1463:128-35. [DOI: 10.1016/j.chroma.2016.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023]
|
25
|
Xiao Y, Fu X, Pattengale P, Dien Bard J, Xu YK, O'Gorman MR. A sensitive LC-MS/MS method for the quantification of urinary 8-iso-prostaglandin F2α (8-iso-PGF2α) including pediatric reference interval. Clin Chim Acta 2016; 460:128-34. [DOI: 10.1016/j.cca.2016.06.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 01/07/2023]
|
26
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 PMCID: PMC5446086 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
27
|
Guertin KA, Grant RK, Arnold KB, Burwell L, Hartline J, Goodman PJ, Minasian LM, Lippman SM, Klein E, Cassano PA. Effect of long-term vitamin E and selenium supplementation on urine F2-isoprostanes, a biomarker of oxidative stress. Free Radic Biol Med 2016; 95:349-56. [PMID: 27012420 PMCID: PMC4867301 DOI: 10.1016/j.freeradbiomed.2016.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cigarette smoking generates reactive oxidant species and contributes to systemic oxidative stress, which plays a role in the pathophysiology of chronic diseases. Nutrients with antioxidant properties, including vitamin E and selenium, are proposed to reduce systemic oxidative burden and thus to mitigate the negative health effects of reactive oxidant species. OBJECTIVE Our objective was to determine whether long-term supplementation with vitamin E and/or selenium reduces oxidative stress in smokers, as measured by urine 8-iso-prostaglandin F2-alpha (8-iso-PGF2α). DESIGN We measured urine 8-iso-PGF2α with competitive enzyme linked immunoassay (ELISA) in 312 male current smokers after 36 months of intervention in a randomized placebo-controlled trial of vitamin E (400IU/d all rac-α-tocopheryl acetate) and/or selenium (200µg/d L-selenomethionine). We used linear regression to estimate the effect of intervention on urine 8-iso-PGF2α, with adjustments for age and race. RESULTS Compared to placebo, vitamin E alone lowered urine 8-iso-PGF2α by 21% (p=0.02); there was no effect of combined vitamin E and selenium (intervention arm lower by 9%; p=0.37) or selenium alone (intervention arm higher by 8%; p=0.52). CONCLUSIONS Long-term vitamin E supplementation decreases urine 8-iso-PGF2α among male cigarette smokers, but we observed little to no evidence for an effect of selenium supplementation, alone or combined with vitamin E.
Collapse
Affiliation(s)
- Kristin A Guertin
- Division of Nutritional Sciences, Cornell University, 209 Savage Hall, Ithaca, NY 14853, USA
| | - Rachael K Grant
- Division of Nutritional Sciences, Cornell University, 209 Savage Hall, Ithaca, NY 14853, USA
| | | | - Lindsay Burwell
- Division of Nutritional Sciences, Cornell University, 209 Savage Hall, Ithaca, NY 14853, USA
| | | | | | - Lori M Minasian
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Scott M Lippman
- University of California San Diego Cancer Center, San Diego, CA, USA
| | | | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, 209 Savage Hall, Ithaca, NY 14853, USA; Department of Healthcare Policy and Research, Division of Biostatistics and Epidemiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
28
|
Quantitative profiling of prostaglandins as oxidative stress biomarkers in vitro and in vivo by negative ion online solid phase extraction - Liquid chromatography-tandem mass spectrometry. Anal Biochem 2016; 498:68-77. [PMID: 26808647 DOI: 10.1016/j.ab.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
Abstract
Free radical-mediated oxidation of arachidonic acid to prostanoids has been implicated in a variety of pathophysiological conditions such as oxidative stress. Here, we report on the development of a liquid chromatography-mass spectrometry method to measure several classes of prostaglandin derivatives based on regioisomer-specific mass transitions down to levels of 20 pg/ml applied to the measurement of prostaglandin biomarkers in primary hepatocytes. The quantitative profiling of prostaglandin derivatives in rat and human hepatocytes revealed the increase of several isomers on stress response. In addition to the well-established markers for oxidative stress such as 8-iso-prostaglandin F2α and the prostaglandin isomers PE2 and PD2, this method revealed a significant increase of 15R-prostaglandin D2 from 236.1 ± 138.0 pg/1E6 cells in untreated rat hepatocytes to 2001 ± 577.1 pg/1E6 cells on treatment with ferric NTA (an Fe(3+) chelate with nitrilotriacetic acid causing oxidative stress in vitro as well as in vivo). Like 15R-prostaglandin D2, an unassigned isomer that revealed a more significant increase than commonly analyzed prostaglandin derivatives was identified. Mass spectrometric detection on a high-resolution instrument enabled high-quality quantitative analysis of analytes in plasma levels from rat experiments, where increased concentrations up to 23-fold change treatment with Fe(III)NTA were observed.
Collapse
|
29
|
Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HHHW, Ghezzi P. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid Redox Signal 2015; 23:1144-70. [PMID: 26415143 PMCID: PMC4657513 DOI: 10.1089/ars.2015.6317] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. RECENT ADVANCES An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. FUTURE DIRECTIONS Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- 1 Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Paul G Winyard
- 2 University of Exeter Medical School , Exeter, United Kingdom
| | | | - Sean S Davies
- 4 Department of Medicine, Vanderbilt University , Nashville, Tennessee.,5 Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University , Nashville, Tennessee
| | - Roland Stocker
- 6 Vascular Biology Division, Victor Chang Cardiac Research Institute , Darlinghurst, New South Wales, Australia .,7 School of Medical Sciences, University of New South Wales , Sydney, New South Wales, Australia
| | - David Cheng
- 6 Vascular Biology Division, Victor Chang Cardiac Research Institute , Darlinghurst, New South Wales, Australia
| | - Annie R Knight
- 2 University of Exeter Medical School , Exeter, United Kingdom
| | | | - Jeannette Oettrich
- 1 Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Tatjana Ruskovska
- 8 Faculty of Medical Sciences, Goce Delcev University , Stip, Macedonia
| | | | - Antonio Cuadrado
- 9 Centro de Investigación Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , ISCIII, Madrid, Spain .,10 Instituto de Investigaciones Biomedicas "Alberto Sols" UAM-CSIC , Madrid, Spain .,11 Instituto de Investigacion Sanitaria La Paz (IdiPaz) , Madrid, Spain .,12 Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid , Madrid, Spain
| | - Daniela Weber
- 13 Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) , Nuthetal, Germany
| | - Henrik Enghusen Poulsen
- 14 Faculty of Health Science, University of Copenhagen , Copenhagen, Denmark .,15 Bispebjerg-Frederiksberg Hospital , Copenhagen, Denmark
| | - Tilman Grune
- 13 Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) , Nuthetal, Germany
| | - Harald H H W Schmidt
- 1 Faculty of Health, Medicine and Life Sciences, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pietro Ghezzi
- 16 Brighton and Sussex Medical School , Brighton, United Kingdom
| |
Collapse
|
30
|
Cho JH, Suh JD, Kim YW, Hong SC, Kim IT, Kim JK. Reduction in oxidative stress biomarkers after adenotonsillectomy. Int J Pediatr Otorhinolaryngol 2015; 79:1408-11. [PMID: 26231743 DOI: 10.1016/j.ijporl.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES A number of otolaryngic conditions such as chronic tonsillitis, adenoid hypertrophy, and obstructive sleep apnea are associated with oxidative stress and elevated levels of serum oxidants. The objective of this study is to measure changes in urine biomarkers of oxidative stress in children after adenotonsillectomy. METHODS Twenty-two children with sleep disordered breathing (SDB) with tonsil and adenoid hypertrophy were enrolled prior to adenotonsillectomy. Controls consisted of 20 healthy children. Urine samples were collected from all patients. Levels of three urinary biomarkers for oxidative status, 8-hydroxy-2-deoxyguanosine (8-OxodG), F(2)-isoprostane, and malondialdehyde (MDA) were measured using high performance liquid chromatography. For the study group, urine samples were repeated 3 weeks after surgery. RESULTS In the study group, preoperative urinary levels of 8-OxodG were higher than in controls (p=0.015). Levels decreased after surgery compared to preoperative levels (p=0.002), and reached control levels (p=0.167) at 3 weeks. Levels of urinary F(2)-isoprostane were similar in both groups (p=0.252), but decreased significantly after surgery (p=0.020). CONCLUSIONS Children with SDB have elevated levels of urinary 8-OxodG, a marker of oxidative stress. Adenotonsillectomy results in decreased 8-OxodG and F(2)-isoprostane. These findings suggest that urine analysis may represent a valuable tool for the measurement of oxidative stress.
Collapse
Affiliation(s)
- Jae Hoon Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konkuk University, Seoul, South Korea
| | - Jeffrey D Suh
- Department of Head and Neck Surgery, UCLA School of Medicine, Los Angeles, CA, USA
| | - Yong Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konkuk University, Seoul, South Korea
| | - Seok-Chan Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konkuk University, Seoul, South Korea
| | - In-Tae Kim
- Seegene Medical Foundation, Seoul, South Korea
| | - Jin Kook Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konkuk University, Seoul, South Korea.
| |
Collapse
|
31
|
Ryman V, Pighetti G, Lippolis J, Gandy J, Applegate C, Sordillo L. Quantification of bovine oxylipids during intramammary Streptococcus uberis infection. Prostaglandins Other Lipid Mediat 2015; 121:207-17. [DOI: 10.1016/j.prostaglandins.2015.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/09/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022]
|
32
|
Milne GL, Dai Q, Roberts LJ. The isoprostanes--25 years later. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:433-45. [PMID: 25449649 PMCID: PMC5404383 DOI: 10.1016/j.bbalip.2014.10.007] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
33
|
Paterson RW, Toombs J, Slattery CF, Schott JM, Zetterberg H. Biomarker modelling of early molecular changes in Alzheimer's disease. Mol Diagn Ther 2014; 18:213-27. [PMID: 24281842 DOI: 10.1007/s40291-013-0069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The preclinical phase of Alzheimer's disease (AD) occurs years, possibly decades, before the onset of clinical symptoms. Being able to detect the very earliest stages of AD is critical to improving understanding of AD biology, and identifying individuals at greatest risk of developing clinical symptoms with a view to treating AD pathophysiology before irreversible neurodegeneration occurs. Studies of dominantly inherited AD families and longitudinal studies of sporadic AD have contributed to knowledge of the earliest AD biomarkers. Here we appraise this evidence before reviewing novel, particularly fluid, biomarkers that may provide insights into AD pathogenesis and relate these to existing hypothetical disease models.
Collapse
Affiliation(s)
- Ross W Paterson
- Dementia Research Centre, Department of Neurodegeneration, UCL Institute of Neurology, London, UK,
| | | | | | | | | |
Collapse
|
34
|
The impact of exogenous ω-6 and ω-3 polyunsaturated fatty acids on the induced production of pro- and anti-inflammatory prostaglandins and leukotrienes in Atlantic salmon head kidney cells using a full factorial design and LC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:164-71. [DOI: 10.1016/j.jchromb.2014.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 11/18/2022]
|
35
|
Brenner DR, Scherer D, Muir K, Schildkraut J, Boffetta P, Spitz MR, Le Marchand L, Chan AT, Goode EL, Ulrich CM, Hung RJ. A review of the application of inflammatory biomarkers in epidemiologic cancer research. Cancer Epidemiol Biomarkers Prev 2014; 23:1729-51. [PMID: 24962838 DOI: 10.1158/1055-9965.epi-14-0064] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways, including increased levels of DNA adduct formation, increased angiogenesis, and altered antiapoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute-phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers, we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker, including strengths, weaknesses, and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multifaceted approaches to examine the relationship between inflammatory markers and their roles in cancer development.
Collapse
Affiliation(s)
- Darren R Brenner
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada. Department of Cancer Epidemiology and Prevention, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Dominique Scherer
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Paolo Boffetta
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | | | | | - Andrew T Chan
- Dana Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany. Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Silva C, Cavaco C, Perestrelo R, Pereira J, Câmara JS. Microextraction by Packed Sorbent (MEPS) and Solid-Phase Microextraction (SPME) as Sample Preparation Procedures for the Metabolomic Profiling of Urine. Metabolites 2014; 4:71-97. [PMID: 24958388 PMCID: PMC4018671 DOI: 10.3390/metabo4010071] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/14/2014] [Accepted: 01/21/2014] [Indexed: 12/18/2022] Open
Abstract
For a long time, sample preparation was unrecognized as a critical issue in the analytical methodology, thus limiting the performance that could be achieved. However, the improvement of microextraction techniques, particularly microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME), completely modified this scenario by introducing unprecedented control over this process. Urine is a biological fluid that is very interesting for metabolomics studies, allowing human health and disease characterization in a minimally invasive form. In this manuscript, we will critically review the most relevant and promising works in this field, highlighting how the metabolomic profiling of urine can be an extremely valuable tool for the early diagnosis of highly prevalent diseases, such as cardiovascular, oncologic and neurodegenerative ones.
Collapse
Affiliation(s)
- Catarina Silva
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Carina Cavaco
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - Jorge Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| | - José S Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal 9000-390, Portugal.
| |
Collapse
|
37
|
Optimized method for quantification of total F(2)-isoprostanes using gas chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2013; 90:161-6. [PMID: 24378611 DOI: 10.1016/j.jpba.2013.11.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/24/2013] [Accepted: 11/25/2013] [Indexed: 11/20/2022]
Abstract
F2-isoprostanes are produced from the oxidative degradation of arachidonic acid and are considered the gold standard marker of lipid peroxidation in biological samples. We developed a liquid-liquid extraction method for the determination of total isoprostanes using negative chemical ionization gas chromatography-tandem mass spectrometry in plasma and tissue homogenates. Incorporating liquid-liquid extraction allows for greater sample through-put than current approaches. Here we describe the protocol and include numerous trouble-shooting suggestions. The method found healthy individuals with 150-250 pg of isoprostanes per ml of plasma and end stage kidney disease patients to have the highest measured values of up to 1100 pg/ml. This assay has an accurate working linear range of 40-1000 pg of isoprostanes (100-2500 pg/ml) and an average coefficient of variance of 7%. Tissue values for healthy mice liver were 50-70 pg/μg protein. This method provides increased ion selectivity and detection capabilities with economical sample through-put.
Collapse
|
38
|
Milne GL, Gao B, Terry ES, Zackert WE, Sanchez SC. Measurement of F2- isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Radic Biol Med 2013; 59:36-44. [PMID: 23044261 PMCID: PMC4306329 DOI: 10.1016/j.freeradbiomed.2012.09.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 11/13/2022]
Abstract
F2-Isoprostanes (IsoPs) are isomers of prostaglandin F2α formed from the nonenzymatic free radical-catalyzed peroxidation of arachidonic acid. Since discovery of these molecules by Morrow and Roberts in 1990, F2-IsoPs have been shown to be excellent biomarkers as well as potent mediators of oxidative stress in vivo in humans. Isofurans (IsoFs) are also oxidation products generated from the nonenzymatic oxidation of arachidonic acid. IsoFs are preferentially formed instead of F2-IsoPs in settings of increased oxygen tension. The protocol presented herein is the current methodology that our laboratory uses to quantify F2-IsoPs and IsoFs in biological tissues and fluids using gas chromatography/mass spectrometry (GC/MS). A variety of analytical procedures to measure F2-IsoPs, including other GC/MS methods and liquid chromatography/MS and immunological approaches, are reported in the literature. This method provides a very low limit of quantitation and is suitable for analysis of both F2-IsoPs and IsoFs from a variety of biological sources including urine, plasma, tissues, cerebral spinal fluid, exhaled breath condensate, and amniotic fluid, among others.
Collapse
Affiliation(s)
- Ginger L Milne
- Eicosanoid Core Laboratory, Vanderbilt University School of Medicine, Nashville, TN 37232-6602, USA.
| | | | | | | | | |
Collapse
|
39
|
Zhang ZJ. Systematic review on the association between F 2-isoprostanes and cardiovascular disease. Ann Clin Biochem 2013; 50:108-114. [DOI: 10.1258/acb.2012.011263] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
BackgroundOxidative stress may play an aetiological role in the development and progression of cardiovascular disease (CVD). However, evidence on its biochemical markers has been controversial. This article aimed to assess the role of F2-isoprostanes, a marker for measuring in vivo lipid oxidation, as a biomarker for CVD, including coronary artery disease, stroke and peripheral artery disease.MethodsA literature search was performed using PubMed and EMBASE (from 1966 to February 2012). Studies that investigated the association between F2-isoprostanes and CVD were eligible.ResultsOf the 22 eligible studies retrieved, 20 studies showed a significant association between F2-isoprostanes and CVD. However, to date, there have been only four population-based studies, with one study reporting null association. Although data from prospective studies are ideal to examine a role of such biomarkers in predicting future CVD events, only two studies were prospective. In addition, differences in population characteristics, sample handling/storage and assays, coupled with a lack of confounding adjustment, may all contribute to the enormous variation in previous studies.ConclusionsHigh levels of F2-isoprostanes in urine or blood may be a non-specific indicator of CVD. However, further population-based studies are needed. In addition, multivariable analyses are required for future studies to control confounding and improve classification accuracy.
Collapse
Affiliation(s)
- Zhi-Jiang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 East Lake Road, Wuhan, Hubei 430071, China
| |
Collapse
|
40
|
Lai CH, Jaakkola JJ, Chuang CY, Liou SH, Lung SC, Loh CH, Yu DS, Strickland PT. Exposure to cooking oil fumes and oxidative damages: a longitudinal study in Chinese military cooks. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:94-100. [PMID: 22968348 PMCID: PMC4029104 DOI: 10.1038/jes.2012.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cooking oil fumes (COF) contain polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines, benzene, and formaldehyde, which may cause oxidative damages to DNA and lipids. We assessed the relations between exposure to COF and subsequent oxidative DNA damage and lipid peroxidation among military cooks and office-based soldiers. The study population, including 61 Taiwanese male military cooks and a reference group of 37 office soldiers, collected urine samples pre-shift of the first weekday and post-shift of the fifth workday. We measured airborne particulate PAHs in military kitchens and offices and concentrations of urinary 1-OHP, a biomarker of PAH exposure, urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarkers of oxidative DNA damage, and urinary isoprostane (Isop). Airborne particulate PAHs levels in kitchens significantly exceeded those in office areas. The concentrations of urinary 1-OHP among military cooks increased significantly after 5 days of exposure to COF. Using generalized estimating equation analysis adjusting for confounding, a change in log(8-OHdG) and log(Isop) were statistically significantly related to a unit change in log(1-OHP) (regression coefficient (β), β=0.06, 95% CI 0.001-0.12) and (β=0.07, 95% CI 0.001-0.13), respectively. Exposure to PAHs, or other compounds in cooking oil fumes, may cause both oxidative DNA damage and lipid peroxidation.
Collapse
Affiliation(s)
- Ching-Huang Lai
- Department of Public Health, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research, Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Chien-Yi Chuang
- Department of Public Health, National Defence Medical Centre, Taipei, Taiwan, R.O.C
| | - Saou-Hsing Liou
- Department of Public Health, National Defence Medical Centre, Taipei, Taiwan, R.O.C
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli County, Taiwan, R.O.C
| | - Shih-Chun Lung
- Research Centre for Environmental Changes, Academia Sinica, Taiwan, R.O.C
| | - Ching-Hui Loh
- Superintendent Office, Headquarter, Songshan Armed Forces General Hospital, Taipei, Taiwan, R.O.C
| | - Dah-Shyong Yu
- Superintendent Office, Headquarter, Taipei, National Defence Medical Centre, Taiwan, R.O.C
| | - Paul T. Strickland
- Department of Environment Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, U.S.A
| |
Collapse
|
41
|
Development of an extraction method for the determination of prostaglandins in biological tissue samples using liquid chromatography–tandem mass spectrometry: Application to gonads of Atlantic cod (Gadus morhua). Anal Chim Acta 2012; 749:51-5. [DOI: 10.1016/j.aca.2012.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 11/23/2022]
|
42
|
Coccini T, Roda E, Barni S, Signorini C, Manzo L. Long-lasting oxidative pulmonary insult in rat after intratracheal instillation of silica nanoparticles doped with cadmium. Toxicology 2012; 302:203-11. [PMID: 22898625 DOI: 10.1016/j.tox.2012.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
Abstract
Silica/cadmium containing nanomaterials are now produced on industrial scale due to their potential for a variety of technological applications. Nevertheless, information on toxicity, exposure and health impact of these nanomaterials is still limited. In this study, in vivo effects of silica nanoparticles (SiNPs) doped with Cd (SiNPs-Cd, 1mg/rat), soluble CdCl(2) (400 μg/rat), or SiNPs (600 μg/rat) have been investigated by evaluating F(2)-isoprostanes (F(2)-IsoPs), superoxide dismutase (SOD1), inducible nitric oxide synthase (iNOS) and cyclooxygenase type 2 (COX-2) enzymes, as markers of oxidative stress, 24h, 7 and 30 days after intra-tracheal (i.t.) instillation to rats. Free and esterified F(2)-IsoPs were evaluated in lung and plasma samples by GC/NICI-MS/MS analysis, and SOD1, iNOS and COX-2 expression in pulmonary tissue by immunocytochemistry. Thirty days after exposure, pulmonary total F(2)-IsoPs were increased by 56% and 43% in CdCl(2) and SiNPs-Cd groups, respectively, compared to controls (32.8 ± 7.8 ng/g). Parallel elevation of free F(2)-IsoPs was observed in plasma samples (by 113% and 95% in CdCl(2) and SiNPs-Cd groups, respectively), compared to controls (28 ± 8 pg/ml). These effects were already detectable at day 7 and lasted until day 30 post-exposure. Pulmonary SOD1-, iNOS-, and COX-2-immunoreactivity was significantly enhanced in a time-dependent manner (7 days <30 days) after both CdCl(2) and SiNPs-Cd treatments. SiNPs did not influence any of the evaluated endpoints. The results indicate the capacity of engineered SiNPs-Cd to cause long-lasting oxidative tissue injury following pulmonary exposure in rat.
Collapse
Affiliation(s)
- Teresa Coccini
- Salvatore Maugeri Foundation IRCCS Institute of Pavia, and University of Pavia, Toxicology Division and European Centre for Nanomedicine, Pavia, Italy.
| | | | | | | | | |
Collapse
|
43
|
Il'yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clin Chim Acta 2012; 413:1446-53. [PMID: 22683781 DOI: 10.1016/j.cca.2012.06.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/03/2012] [Indexed: 02/07/2023]
Abstract
Oxidative damage produced by reactive oxygen species (ROS) has been implicated in the etiology and pathology of many health conditions, including a large number of chronic diseases. Urinary biomarkers of oxidative status present a great opportunity to study redox balance in human populations. With urinary biomarkers, specimen collection is non-invasive and the organic/metal content is low, which minimizes the artifactual formation of oxidative damage to molecules in specimens. Also, urinary levels of the biomarkers present intergraded indices of redox balance over a longer period of time compared to blood levels. This review summarizes the criteria for evaluation of biomarkers applicable to epidemiological studies and evaluation of several classes of biomarkers that are formed non-enzymatically: oxidative damage to lipids, proteins, DNA, and allantoin, an oxidative product of uric acid. The review considers formation, metabolism, and exertion of each biomarker, available data on validation in animal and clinical models of oxidative stress, analytical approaches, and their intra- and inter-individual variation. The recommended biomarkers for monitoring oxidative status over time are F₂-isoprostanes and 8-oxodG. For inter-individual comparisons, F₂-isoprostanes are recommended, whereas urinary 8-oxodG levels may be confounded by differences in the DNA repair capacity. Promising urinary biomarkers include allantoin, acrolein-lysine, and dityrosine.
Collapse
Affiliation(s)
- Dora Il'yasova
- Duke Cancer Institute, Duke University Medical Center, Box 2715, Durham, NC 27710, USA.
| | | | | |
Collapse
|
44
|
Daughton CG. Using biomarkers in sewage to monitor community-wide human health: isoprostanes as conceptual prototype. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:16-38. [PMID: 22425170 DOI: 10.1016/j.scitotenv.2012.02.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/10/2012] [Accepted: 02/18/2012] [Indexed: 04/14/2023]
Abstract
Timely assessment of the aggregate health of small-area human populations is essential for guiding the optimal investment of resources needed for preventing, avoiding, controlling, or mitigating exposure risks. Seeking those interventions yielding the greatest benefit with respect to allocation of resources is essential for making progress toward community sustainability, promoting social justice, and maintaining or improving health and well-being. More efficient approaches are needed for revealing cause-effect linkages between environmental stressors and human health and for measuring overall aggregate health of small-area populations. A new concept is presented--community health assessment via Sewage Chemical Information Mining (SCIM)--for quickly gauging overall, aggregate health status or trends for entire small-area populations. The approach--BioSCIM--would monitor raw sewage for specific biomarkers broadly associated with human disease, stress, or health. A wealth of untapped chemical information resides in raw sewage, a portion comprising human biomarkers of exposure and effects. BioSCIM holds potential for capitalizing on the presence of biomarkers in sewage for accomplishing any number of objectives. One of the many potential applications of BioSCIM could use various biomarkers of stress resulting from the collective excretion from all individuals in a local population. A prototype example is presented using a class of biomarkers that measures collective, systemic oxidative stress--the isoprostanes (prostaglandin-like free-radical catalyzed oxidation products from certain polyunsaturated fatty acids). Sampling and analysis of raw sewage hold great potential for quickly determining aggregate biomarker levels for entire communities. Presented are the basic principles of BioSCIM, together with its anticipated limitations, challenges, and potential applications in assessing community-wide health. Community health assessment via BioSCIM could allow rapid assessments and intercomparisons of health status among distinct populations, revealing hidden or emerging trends or disparities and aiding in evaluating correlations (or hypotheses) between stressor exposures and disease.
Collapse
Affiliation(s)
- Christian G Daughton
- Environmental Sciences Division, National Exposure Research Laboratory, US Environmental Protection Agency, 944 East Harmon Avenue, Las Vegas, NV 89119, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602, USA.
| | | | | | | | | |
Collapse
|
46
|
de Grauw JC, van de Lest CHA, van Weeren PR. A targeted lipidomics approach to the study of eicosanoid release in synovial joints. Arthritis Res Ther 2011; 13:R123. [PMID: 21794148 PMCID: PMC3239362 DOI: 10.1186/ar3427] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/17/2011] [Accepted: 07/27/2011] [Indexed: 01/15/2023] Open
Abstract
Introduction Articular tissues are capable of producing a range of eicosanoid mediators, each of which has individual biological effects and may be affected by anti-inflammatory treatment. We set out to develop and evaluate a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) approach for the simultaneous analysis of multiple eicosanoid lipid mediators in equine synovial fluid (SF), and to illustrate its use for investigation of the in vivo effects of non-steroidal anti-inflammatory drug (NSAID) treatment. Methods Synovial fluid samples were obtained from normal joints of 6 adult horses at baseline (0 hr) and at 8, 24 and 168 hours after experimental induction of transient acute synovitis, with horses treated once daily with oral NSAID (meloxicam, 0.6 mg/kg) or placebo. Following solid-phase extraction, SF lipid mediator quantitation was based on liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis, and results were compared between disease states using linear discriminant analysis (LDA) and analysis of variance (ANOVA) with multiple comparisons corrections. Results Of a total of 23 mediators targeted, 14 could be reliably identified and quantified in SF samples based on detection of characteristic fragment ions at retention times similar to those of commercial standards. LDA analysis of baseline, 8, 24 and 168 hour synovial fluid samples revealed a separation of these groups into discrete clusters, reflecting dynamic changes in eicosanoid release over the course of synovitis. Prostaglandin (PG) E2 was significantly lower in NSAID vs. placebo treated samples at all time points; PGE1, 11-hydroxyeicosatetraenoic acid (11-HETE) and 13,14-dihydro-15keto PGF2α were reduced at 8 and 24 hours by NSAID treatment; while 15-HETE, 6-keto PGF1α, PGF2α, 13,14-dihydro-15keto PGE2 and thromboxane B2 (TXB2) were reduced at the 8 hour time point only. An interesting pattern was seen for Leukotriene B4 (LTB4), NSAID treatment causing an initial increase at 8 hours, but a significant reduction by 168 hours. Conclusions The described method allows a comprehensive analysis of synovial fluid eicosanoid profiles. Eicosanoid release in inflamed joints as well as differences between NSAID treated and placebo treated individuals are not limited to PGE2 or to the early inflammatory phase.
Collapse
Affiliation(s)
- Janny C de Grauw
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584 CM, Utrecht, The Netherlands.
| | | | | |
Collapse
|
47
|
Ware LB, Fessel JP, May AK, Roberts LJ. Plasma biomarkers of oxidant stress and development of organ failure in severe sepsis. Shock 2011; 36:12-7. [PMID: 21372753 PMCID: PMC3117035 DOI: 10.1097/shk.0b013e318217025a] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We hypothesized that circulating levels of lipid peroxidation products in patients with severe sepsis are associated with the development of pulmonary, renal, hepatic, circulatory, and coagulation failure. Plasma levels of F2-isoprostanes and isofurans were measured by mass spectroscopy on intensive care unit day 2 in 50 critically ill patients with severe sepsis. Plasma F2-isoprostane levels were higher in patients who developed renal failure compared with those who did not (65 pg/mL [interquartile range {IQR} 44-112] vs. 44 pg/mL [IQR 29-54], P = 0.009) as were isofuran levels (1,223 pg/mL [IQR 348-2,531] vs. 329 pg/mL [IQR 156-1,127], P = 0.009). Plasma F2-isoprostane levels were higher in patients who developed hepatic failure compared with those who did not (72 pg/mL [IQR 44-112] vs. 44 pg/mL [IQR 30-65], P = 0.023), and there was also a trend for higher isofuran levels (1,411 pg/mL [IQR 298-1,965] vs. 525 pg/mL [IQR 160-1,223], P = 0.14). Coagulation failure (thrombocytopenia) was associated with higher isofuran levels. Circulatory failure and acute lung injury were not associated with elevated levels of isoprostanes or isofurans. Patients with isoprostane levels above the 25th percentile had higher mortality (42%) compared with patients with levels below the 25th percentile (8%, P = 0.03). Plasma levels of F2-isoprostanes and isofurans are associated with renal, hepatic, and coagulation failure, but not with circulatory or pulmonary failure in severe sepsis, suggesting that lipid peroxidation is a prominent feature of septic multisystem organ failure. Plasma isoprostanes and isofurans may be useful for monitoring oxidative stress in treatment trials of antioxidant therapies in severe sepsis.
Collapse
Affiliation(s)
- Lorraine B Ware
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-2650, USA.
| | | | | | | |
Collapse
|
48
|
Menon R, Fortunato SJ, Milne GL, Brou L, Carnevale C, Sanchez SC, Hubbard L, Lappas M, Drobek CO, Taylor RN. Amniotic fluid eicosanoids in preterm and term births: effects of risk factors for spontaneous preterm labor. Obstet Gynecol 2011; 118:121-134. [PMID: 21691170 PMCID: PMC3286836 DOI: 10.1097/aog.0b013e3182204eaa] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate amniotic fluid arachidonic acid metabolites using enzymatic and nonenzymatic (lipid peroxidation) pathways in spontaneous preterm birth and term births, and to estimate whether prostanoid concentrations correlate with risk factors (race, cigarette smoking, and microbial invasion of amniotic cavity) associated with preterm birth. METHODS In a case-control study, amniotic fluid was collected at the time of labor or during cesarean delivery. Amniotic fluid samples were subjected to gas chromatography, negative ion chemical ionization, and mass spectrometry for prostaglandin (PG) E2, PGF2α, and PGD2 and for 6-keto-PGF1α (thromboxane 2 and F2-isoprostane). Primary analysis examined differences between prostanoid concentrations in preterm birth (n=133) compared with term births (n=189). Secondary stratified analyses (by race, cigarette smoking, and microbial invasion of amniotic cavity) compared eicosanoid concentrations in three epidemiological risk factors. RESULTS Amniotic fluid F2-isoprostane, PGE2, and PGD2 were significantly higher at term than in preterm birth, whereas PGF2α was higher in preterm birth 6-keto-PGF1α and thromboxane 2 concentrations were not different. Data stratified by race (African American or white) showed no significant disparity among prostanoid concentrations. Regardless of gestational age status, F2-isoprostane was threefold higher in smokers, and other eicosanoids were also higher in smokers compared with nonsmokers. Preterm birth with microbial invasion of amniotic cavity had significantly higher F2-isoprostane compared with preterm birth without microbial invasion of amniotic cavity. CONCLUSION Most amniotic fluid eicosanoid concentrations (F2-isoprostane, PGE2, and PGD2), are higher at term than in preterm births. The only amniotic fluid eicosanoid that is not higher at term is PGF2α.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- The Perinatal Research Center, Nashville, TN
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA
| | | | - Ginger L. Milne
- Division of Clinical Pharmacology, Eicosanoid core laboratory, Vanderbilt University, Nashville, TN
| | - Lina Brou
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Claudine Carnevale
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Stephanie C. Sanchez
- Division of Clinical Pharmacology, Eicosanoid core laboratory, Vanderbilt University, Nashville, TN
| | | | - Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | | | - Robert N. Taylor
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA
| |
Collapse
|
49
|
Barocas DA, Motley S, Cookson MS, Chang SS, Penson DF, Dai Q, Milne G, Roberts LJ, Morrow J, Concepcion RS, Smith JA, Fowke JH. Oxidative stress measured by urine F2-isoprostane level is associated with prostate cancer. J Urol 2011; 185:2102-7. [PMID: 21496850 DOI: 10.1016/j.juro.2011.02.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 10/23/2010] [Indexed: 12/31/2022]
Abstract
PURPOSE Oxidative stress is implicated in prostate cancer by several lines of evidence. We studied the relationship between the level of F2-isoprostanes, a validated biomarker of oxidative stress, and prostate cancer and high grade prostatic intraepithelial neoplasia. MATERIALS AND METHODS This case-control analysis within the Nashville Men's Health Study included men recruited at prostate biopsy. Body morphometrics, health history and urine were collected from more than 2,000 men before biopsy. F2-isoprostanes were measured by gas chromatography/mass spectrometry within an age matched sample of Nashville Men's Health Study participants that included 140 patients with high grade prostatic intraepithelial neoplasia, 160 biopsy negative controls and 200 prostate cancer cases. Multivariable linear and logistic regression was used to determine the associations between F2-isoprostane level, and high grade prostatic intraepithelial neoplasia and prostate cancer. RESULTS Mean patient age was 66.9 years (SD 7.2) and 10.1% were nonwhite. Adjusted geometric mean F2-isoprostane levels were higher in patients with prostate cancer (1.82, 95% CI 1.66-2.00) or high grade prostatic intraepithelial neoplasia (1.82, 95% CI 1.68-1.96) than in controls (1.63, 95% CI 1.49-1.78, p <0.001), but were similar across Gleason scores (p = 0.511). The adjusted odds of high grade prostatic intraepithelial neoplasia and prostate cancer increased with increasing F2-isoprostane quartile (p-trend = 0.015 and 0.047, respectively) and the highest F2-isoprostane quartile was associated with significantly increased odds of prostate cancer (OR 2.44, 95% CI 1.17-5.09, p = 0.017). CONCLUSIONS Pre-diagnosis urine F2-isoprostane level is increased in men with high grade prostatic intraepithelial neoplasia or prostate cancer, suggesting urinary F2-isoprostane provides a biomarker for the role for oxidative stress in prostate carcinogenesis. F2-isoprostanes may also serve to estimate the efficacy of interventions targeting oxidative stress mechanisms in prostate cancer prevention or treatment.
Collapse
Affiliation(s)
- Daniel A Barocas
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Davies SS, Roberts LJ. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic Biol Med 2011; 50:559-66. [PMID: 21126576 PMCID: PMC3058898 DOI: 10.1016/j.freeradbiomed.2010.11.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 12/17/2022]
Abstract
Coronary heart disease (CHD) is the leading single cause of death in the United States and most Western countries, killing more than 400,000 Americans per year. Although CHD often manifests suddenly as a fatal myocardial infarction, the atherosclerosis that gives rise to the infarction develops gradually and can be markedly slowed or even reversed through pharmacological and lifestyle interventions. These same atherosclerotic processes also drive related vascular diseases such as stroke and peripheral artery disease, and individuals surviving occlusive events often develop additional complications including ischemic cardiomyopathy and heart failure. Therefore, better detection of subclinical atherosclerosis, along with more effective treatments, could significantly reduce the rate of death from CHD and related vascular diseases in the United States. In recent years, oxidation of polyunsaturated fatty acids (PUFAs) in plasma lipoproteins has been postulated to be a critical step in the development of atherosclerosis. If so, then monitoring lipid peroxidation should be a useful indicator of disease risk and progression. This review focuses on the evidence that specific PUFA peroxidation products, the F(2)-isoprostanes, are useful biomarkers that could potentially be utilized as indicators of CHD.
Collapse
Affiliation(s)
- Sean S Davies
- Division of Clinical Pharmacology and Department of Pharmacology, Vanderbilt University, Nashville, TN 37221, USA.
| | | |
Collapse
|