1
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
2
|
Osolodkin DI, Kozlovskaya LI, Iusupov IR, Kurkin AV, Shustova EY, Orlov AA, Khvatov EV, Mutnykh ES, Kurashova SS, Vetrova AN, Yatsenko DO, Goryashchenko AS, Ivanov VN, Lukyanenko ER, Karpova EV, Stepanova DA, Volok VP, Sotskova SE, Dzagurova TK, Karganova GG, Lukashev AN, Ishmukhametov AA. Phenotypic assessment of antiviral activity for spiro-annulated oxepanes and azepenes. Chem Biol Drug Des 2024; 103:e14553. [PMID: 38789394 DOI: 10.1111/cbdd.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Evolutionary potential of viruses can result in outbreaks of well-known viruses and emergence of novel ones. Pharmacological methods of intervening the reproduction of various less popular, but not less important viruses are not available, as well as the spectrum of antiviral activity for most known compounds. In the framework of chemical biology paradigm, characterization of antiviral activity spectrum of new compounds allows to extend the antiviral chemical space and provides new important structure-activity relationships for data-driven drug discovery. Here we present a primary assessment of antiviral activity of spiro-annulated derivatives of seven-membered heterocycles, oxepane and azepane, in phenotypic assays against viruses with different genomes, virion structures, and genome realization schemes: orthoflavivirus (tick-borne encephalitis virus, TBEV), enteroviruses (poliovirus, enterovirus A71, echovirus 30), adenovirus (human adenovirus C5), hantavirus (Puumala virus). Hit compounds inhibited reproduction of adenovirus C5, the only DNA virus in the studied set, in the yield reduction assay, and did not inhibit reproduction of RNA viruses.
Collapse
Affiliation(s)
- Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ildar R Iusupov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Y Shustova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Alexey A Orlov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Elena S Mutnykh
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | | | - Anna N Vetrova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Darya O Yatsenko
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | | | - Vladimir N Ivanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Evgenia V Karpova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Daria A Stepanova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Viktor P Volok
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Svetlana E Sotskova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Tamara K Dzagurova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Galina G Karganova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander N Lukashev
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
3
|
Farghaly TA, Masaret GS, Riyadh SM, Harras MF. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles. Mini Rev Med Chem 2024; 24:1602-1629. [PMID: 38008942 DOI: 10.2174/0113895575277122231108095511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sayed M Riyadh
- Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Corrigendum: Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1343080. [PMID: 38149269 PMCID: PMC10750826 DOI: 10.3389/fmicb.2023.1343080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2023.1233433.].
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
5
|
Afzal S, Ali L, Batool A, Afzal M, Kanwal N, Hassan M, Safdar M, Ahmad A, Yang J. Hantavirus: an overview and advancements in therapeutic approaches for infection. Front Microbiol 2023; 14:1233433. [PMID: 37901807 PMCID: PMC10601933 DOI: 10.3389/fmicb.2023.1233433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Hantaviruses are a significant and emerging global public health threat, impacting more than 200,000 individuals worldwide each year. The single-stranded RNA viruses belong to the Hantaviridae family and are responsible for causing two acute febrile diseases in humans: Hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS). Currently, there are no licensed treatments or vaccines available globally for HTNV infection. Various candidate drugs have shown efficacy in increasing survival rates during the early stages of HTNV infection. Some of these drugs include lactoferrin, ribavirin, ETAR, favipiravir and vandetanib. Immunotherapy utilizing neutralizing antibodies (NAbs) generated from Hantavirus convalescent patients show efficacy against HTNV. Monoclonal antibodies such as MIB22 and JL16 have demonstrated effectiveness in protecting against HTNV infection. The development of vaccines and antivirals, used independently and/or in combination, is critical for elucidating hantaviral infections and the impact on public health. RNA interference (RNAi) arised as an emerging antiviral therapy, is a highly specific degrades RNA, with post-transcriptional mechanism using eukaryotic cells platform. That has demonstrated efficacy against a wide range of viruses, both in vitro and in vivo. Recent antiviral methods involve using small interfering RNA (siRNA) and other, immune-based therapies to target specific gene segments (S, M, or L) of the Hantavirus. This therapeutic approach enhances viral RNA clearance through the RNA interference process in Vero E6 cells or human lung microvascular endothelial cells. However, the use of siRNAs faces challenges due to their low biological stability and limited in vivo targeting ability. Despite their successful inhibition of Hantavirus replication in host cells, their antiviral efficacy may be hindered. In the current review, we focus on advances in therapeutic strategies, as antiviral medications, immune-based therapies and vaccine candidates aimed at enhancing the body's ability to control the progression of Hantavirus infections, with the potential to reduce the risk of severe disease.
Collapse
Affiliation(s)
- Samia Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Anum Batool
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Momina Afzal
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Nida Kanwal
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | | | | | - Atif Ahmad
- CEMB, University of the Punjab, Lahore, Pakistan
| | - Jing Yang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| |
Collapse
|
6
|
Way H, Roh J, Venteicher B, Chandra S, Thomas AA. Synthesis of ribavirin 1,2,3- and 1,2,4-triazolyl analogs with changes at the amide and cytotoxicity in breast cancer cell lines. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 42:38-64. [PMID: 35929908 DOI: 10.1080/15257770.2022.2107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We report the synthesis and cytotoxicity in MCF-7 and MDA-MB-231 breast cancer cells of novel 1,2,3- and 1,2,4-triazolyl analogs of ribavirin. We modified ribavirin's carboxamide moiety to test the effects of lipophilic groups. 1-β-D-Ribofuranosyl-1H-1,2,3-triazoles were prepared using Click Chemistry, whereas an unprecedented application of a prior 1,2,4-triazole ring synthesis was used for 1-β-D-ribofuranosyl-1H-1,2,4-triazole analogs. Though cytotoxicity was mediocre and there was no correlation with lipophilicity, we discovered that a structurally similar concentrative nucleoside transporter 2 (CNT2) inhibitor was modestly cytotoxic (MCF-7 IC50 of 42 µM). These syntheses could be used to efficiently investigate variation in the nucleobase.
Collapse
Affiliation(s)
- Hannah Way
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Joshua Roh
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Brooklynn Venteicher
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska at Kearney, Kearney, Nebraska, USA
| | - Allen A Thomas
- Department of Chemistry, University of Nebraska at Kearney, Kearney, Nebraska, USA
| |
Collapse
|
7
|
Abstract
Hantavirus induced hemorrhagic fever with renal syndrome (HFRS) is an emerging viral zoonosis affecting up to 200,000 humans annually worldwide. This review article is focused on recent advances in the mechanism, epidemiology, diagnosis, and treatment of hantavirus induced HFRS. The importance of interactions between viral and host factors in the design of therapeutic strategies is discussed. Hantavirus induced HFRS is characterized by thrombocytopenia and proteinuria of varying severities. The mechanism of kidney injury appears immunopathological with characteristic deterioration of endothelial cell function and compromised barrier functions of the vasculature. Although multidisciplinary research efforts have provided insights about the loss of cellular contact in the endothelium leading to increased permeability, the details of the molecular mechanisms remain poorly understood. The epidemiology of hantavirus induced renal failure is associated with viral species and the geographical location of the natural host of the virus. The development of vaccine and antiviral therapeutics is necessary to avoid potentially severe outbreaks of this zoonotic illness in the future. The recent groundbreaking approach to the SARS-CoV-2 mRNA vaccine has revolutionized the general field of vaccinology and has provided new directions for the use of this promising platform for widespread vaccine development, including the development of hantavirus mRNA vaccine. The combinational therapies specifically targeted to inhibit hantavirus replication and vascular permeability in infected patients will likely improve the disease outcome.
Collapse
|
8
|
Li Z, Wang F, Liu Y, Zhai D, Zhang X, Ying Q, Jia M, Xue X, Meng J, Li J, Wu X, Li M. Coumarin Derivative N6 as a Novel anti-hantavirus Infection Agent Targeting AKT. Front Pharmacol 2021; 12:745646. [PMID: 34938178 PMCID: PMC8685952 DOI: 10.3389/fphar.2021.745646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/10/2021] [Indexed: 12/23/2022] Open
Abstract
Hantaviruses are globally emerging zoonotic viruses that can cause hemorrhagic fever with renal syndrome (HFRS) in Asia and Europe, which is primarily caused by Hantaan virus (HTNV) infection, results in profound morbidity and mortality. However, no specific treatment is available for this disease. Coumarin derivatives have been reported as antiviral molecules, while studies about the bioactivity of coumarin derivatives against HTNV infection are limited. To study the potential antiviral activity of coumarin derivatives, 126 coumarin derivatives are synthesized, and their inhibitory activity against HTNV is analyzed in vitro. Among these compounds, N6 inhibits HTNV with relatively high selectivity index at 10.9, and the viral titer of HTNV is reduced significantly after 5, 10, and 20 μM N6 treatments. Furthermore, the administration of N6 at the early stage of HTNV infection can inhibit the replication and production of infectious HTNV in host cell, this therapeutic efficacy is confirmed in HTNV-infected newborn mice at the early stage of infection. The molecular docking results show that N6 forms interactions with the key amino acid residues at its active site, and reveals several molecular interactions responsible for the observed affinity, and the treatment of N6 can inhibit the expression of p (Ser473)Akt and HTNV nucleocapsid protein significantly. As such, these observations demonstrate that coumarin derivative N6 might be used as a potential agent against HTNV infection.
Collapse
Affiliation(s)
- Zhoupeng Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Fang Wang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yongsheng Liu
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Dongshen Zhai
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxiao Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Qikang Ying
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Min Jia
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiaoyan Xue
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jingru Meng
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jing Li
- Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
- Precision Pharmacy and Drug Development Center, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Yarovaya OI, Kovaleva KS, Zaykovskaya AA, Yashina LN, Scherbakova NS, Scherbakov DN, Borisevich SS, Zubkov FI, Antonova AS, Peshkov RY, Eltsov IV, Pyankov OV, Maksyutov RA, Salakhutdinov NF. New class of hantaan virus inhibitors based on conjugation of the isoindole fragment to (+)-camphor or (-)-fenchone hydrazonesv. Bioorg Med Chem Lett 2021; 40:127926. [PMID: 33705902 DOI: 10.1016/j.bmcl.2021.127926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 11/20/2022]
Abstract
This work presents the design and synthesis of camphor, fenchone, and norcamphor N-acylhydrazone derivatives as a new class of inhibitors of the Hantaan virus, which causes haemorrhagic fever with renal syndrome (HFRS). A cytopathic model was developed for testing chemotherapeutics against the Hantaan virus, strain 76-118. In addition, a study of the antiviral activity was carried out using a pseudoviral system. It was found that the hit compound possesses significant activity (IC50 = 7.6 ± 2 µM) along with low toxicity (CC50 > 1000 µM). Using molecular docking procedures, the binding with Hantavirus nucleoprotein was evaluated and the correlation between the structure of the synthesised compounds and the antiviral activity was established.
Collapse
Affiliation(s)
- Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| | - Kseniya S Kovaleva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| | - Anna A Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Liudmila N Yashina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Nadezda S Scherbakova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Dmitry N Scherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Sophia S Borisevich
- Ufa Institute of Chemistry, Ufa Federal Research Center, RAS, Octyabrya pr., 71, Ufa 450054, Russia
| | - Fedor I Zubkov
- Organic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Alexandra S Antonova
- Organic Chemistry Department, Faculty of Science, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Roman Yu Peshkov
- Novosibirsk State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Ilia V Eltsov
- Novosibirsk State University, Pirogova St. 1, Novosibirsk 630090, Russia
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region 630559, Russia
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Lavrent'ev av., 9, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Kataev VE, Garifullin BF. Antiviral nucleoside analogs. Chem Heterocycl Compd (N Y) 2021; 57:326-341. [PMID: 34007086 PMCID: PMC8118684 DOI: 10.1007/s10593-021-02912-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
The minireview surveys the modification of native nucleosides as a result of which huge libraries of nucleoside analogs of various structures were synthesized. Particular attention is paid to the synthesis of the so-called prodrug forms of nucleoside analogs which ensure their penetration into the cell and metabolism to active 5'-triphosphate derivatives. All the best known antiviral cyclic nucleoside analogs approved for the treatment of HIV infections, hepatitis B, C, and influenza since the 1960s, as well as those in various stages of clinical trials in recent years, are listed. Nucleoside analogs that have shown the ability to inhibit the replication of SARS-CoV and MERS-CoV are discussed, including remdesivir, approved by the FDA for emergency use in the fight against COVID-19.
Collapse
Affiliation(s)
- Vladimir E. Kataev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St., Kazan, 420088 Tatarstan Russia
| | - Bulat F. Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St., Kazan, 420088 Tatarstan Russia
| |
Collapse
|
11
|
Swathi K, Nikitha B, Chandrakala B, Lakshmanadevi K, Malleswari M. Repurposing antiviral drugs on recently emerged viral infections: A review article. MATERIALS TODAY. PROCEEDINGS 2021:S2214-7853(21)02162-3. [PMID: 33816131 PMCID: PMC8010379 DOI: 10.1016/j.matpr.2021.03.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/07/2021] [Indexed: 12/04/2022]
Abstract
Finer understandings of drugs, for newly emerged diseases are becoming difficult nowadays. The contemporary approach is Drug Repurposing. Drug repurposing implies the exploration of surviving drugs for new restorative motive. Apart from conventional drug approaches, it is a profitable, brisk and reliable approach. The equivalent therapies for newly emerging and remerging viral infections are strenuous spot these days. The drug repurposing has helped in treating many viral reprofiling infectious diseases like CoVID-19, MERS, SARS, Influenza, Swine flu, Hanta, Zika, Ebola, Marburg, Human Adeno virus infection etc. The present review looks at describing the drug repurposing approach in various viral infections.
Collapse
Affiliation(s)
- K Swathi
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - B Nikitha
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - B Chandrakala
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - K Lakshmanadevi
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| | - M Malleswari
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam, Tirupati 517502, Andhra Pradesh, India
| |
Collapse
|
12
|
Lin X, Liang C, Zou L, Yin Y, Wang J, Chen D, Lan W. Advance of structural modification of nucleosides scaffold. Eur J Med Chem 2021; 214:113233. [PMID: 33550179 PMCID: PMC7995807 DOI: 10.1016/j.ejmech.2021.113233] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022]
Abstract
With Remdesivir being approved by FDA as a drug for the treatment of Corona Virus Disease 2019 (COVID-19), nucleoside drugs have once again received widespread attention in the medical community. Herein, we summarized modification of traditional nucleoside framework (sugar + base), traizole nucleosides, nucleoside analogues assembled by other drugs, macromolecule-modified nucleosides, and their bioactivity rules. 2'-"Ara"-substituted by -F or -CN group, and 3'-"ara" substituted by acetylenyl group can greatly influence their anti-tumor activities. Dideoxy dehydrogenation of 2',3'-sites can enhance antiviral efficiencies. Acyclic nucleosides and L-type nucleosides mainly represented antiviral capabilities. 5-F Substituted uracil analogues exihibit anti-tumor effects, and the substrates substituted by -I, -CF3, bromovinyl group usually show antiviral activities. The sugar coupled with 1-N of triazolid usually displays anti-tumor efficiencies, while the sugar coupled with 2-N of triazolid mainly represents antiviral activities. The nucleoside analogues assembled by cholesterol, polyethylene glycol, fatty acid and phospholipid would improve their bioavailabilities and bioactivities, or reduce their toxicities.
Collapse
Affiliation(s)
- Xia Lin
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Guangxi Medical College, Nanning, 530023, China
| | | | - Lianjia Zou
- Guangxi Medical College, Nanning, 530023, China
| | - Yanchun Yin
- Guangxi Medical College, Nanning, 530023, China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Dandan Chen
- Guangxi Medical College, Nanning, 530023, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
13
|
Dheerasekara K, Sumathipala S, Muthugala R. Hantavirus Infections-Treatment and Prevention. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020; 12:410-421. [PMID: 33144850 PMCID: PMC7594967 DOI: 10.1007/s40506-020-00236-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Purpose of review Hantavirus infection is an emerging zoonosis and there are two main clinical presentations, hemorrhagic fever with renal syndrome (HFRS) and Hantavirus pulmonary syndrome (HPS). Although Hantavirus infections have a worldwide distribution with a high mortality rate, a safe and effective vaccine or an antiviral drug against the Hantavirus disease is yet to be available. This review summarizes all the efforts undertaken to develop medical countermeasures in vitro, in vivo, and human clinical trials against Hantavirus infections. Recent findings Multiple antivirals are shown to be effective with limited evidence and recent studies on immunotherapy were not very conclusive. There are multiple vaccine candidates with evidence of conferring long protective immunity against Hantaviruses. Some of these had been already trialed on humans. Summary At present, severe HPS or HFRS case management is purely based on supportive treatments, often in an intensive care unit. Rodent control and public health education and promotion play a major role in preventing Hantavirus infection.
Collapse
Affiliation(s)
| | - Saranga Sumathipala
- Department of Virology, Teaching Hospital Anuradhapura, Anuradhapura, Sri Lanka
| | | |
Collapse
|
14
|
Andreeva OV, Garifullin BF, Zarubaev VV, Slita AV, Yesaulkova IL, Saifina LF, Shulaeva MM, Belenok MG, Semenov VE, Kataev VE. Synthesis of 1,2,3-triazolyl nucleoside analogues and their antiviral activity. Mol Divers 2020; 25:473-490. [PMID: 32930935 PMCID: PMC7490575 DOI: 10.1007/s11030-020-10141-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Abstract Based on the fact that a search for influenza antivirals among nucleoside analogues has drawn very little attention of chemists, the present study reports the synthesis of a series of 1,2,3-triazolyl nucleoside analogues in which a pyrimidine fragment is attached to the ribofuranosyl-1,2,3-triazol-4-yl moiety by a polymethylene linker of variable length. Target compounds were prepared by the Cu alkyne-azide cycloaddition (CuAAC) reaction. Derivatives of uracil, 6-methyluracil, 3,6-dimethyluracil, thymine and quinazolin-2,4-dione with ω-alkyne substituent at the N1 (or N5) atom and azido 2,3,5-tri-O-acetyl-D-β-ribofuranoside were used as components of the CuAAC reaction. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. The best values of IC50 (inhibiting concentration) and SI (selectivity index) were demonstrated by the lead compound 4i in which the 1,2,3-triazolylribofuranosyl fragment is attached to the N1 atom of the quinazoline-2,4-dione moiety via a butylene linker (IC50 = 30 μM, SI = 24) and compound 8n in which the 1,2,3-triazolylribofuranosyl fragment is attached directly to the N5 atom of the 6-methyluracil moiety (IC50 = 15 μM, SI = 5). According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 4i and 8n against H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRP). Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-020-10141-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan, Russian Federation, 420088
| | - Bulat F Garifullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan, Russian Federation, 420088
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, Mira Str., 14, Saint Petersburg, Russian Federation, 197101
| | - Alexander V Slita
- Pasteur Institute of Epidemiology and Microbiology, Mira Str., 14, Saint Petersburg, Russian Federation, 197101
| | - Iana L Yesaulkova
- Pasteur Institute of Epidemiology and Microbiology, Mira Str., 14, Saint Petersburg, Russian Federation, 197101
| | - Liliya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan, Russian Federation, 420088
| | - Marina M Shulaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan, Russian Federation, 420088
| | - Maya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan, Russian Federation, 420088
| | - Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan, Russian Federation, 420088.
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, Kazan, Russian Federation, 420088
| |
Collapse
|
15
|
Development of small-molecule inhibitors against hantaviruses. Microbes Infect 2020; 22:272-277. [PMID: 32445882 DOI: 10.1016/j.micinf.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022]
Abstract
Hantavirus (HV), a pathogen of animal infectious diseases that poses a threat to humans, has attracted extensive attention. Clinically, HV can cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), between which HFRS is mostly in Eurasia, and HPS is mostly in the Americas. This paper reviews the research progress of small-molecule inhibitors of HV.
Collapse
|
16
|
Liu R, Ma H, Shu J, Zhang Q, Han M, Liu Z, Jin X, Zhang F, Wu X. Vaccines and Therapeutics Against Hantaviruses. Front Microbiol 2020; 10:2989. [PMID: 32082263 PMCID: PMC7002362 DOI: 10.3389/fmicb.2019.02989] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Hantaviruses (HVs) are rodent-transmitted viruses that can cause hantavirus cardiopulmonary syndrome (HCPS) in the Americas and hemorrhagic fever with renal syndrome (HFRS) in Eurasia. Together, these viruses have annually caused approximately 200,000 human infections worldwide in recent years, with a case fatality rate of 5–15% for HFRS and up to 40% for HCPS. There is currently no effective treatment available for either HFRS or HCPS. Only whole virus inactivated vaccines against HTNV or SEOV are licensed for use in the Republic of Korea and China, but the protective efficacies of these vaccines are uncertain. To a large extent, the immune correlates of protection against hantavirus are not known. In this review, we summarized the epidemiology, virology, and pathogenesis of four HFRS-causing viruses, HTNV, SEOV, PUUV, and DOBV, and two HCPS-causing viruses, ANDV and SNV, and then discussed the existing knowledge on vaccines and therapeutics against these diseases. We think that this information will shed light on the rational development of new vaccines and treatments.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jiayi Shu
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education & Health, Shanghai Medical College, Fudan University, Shanghai, China.,Viral Disease and Vaccine Translational Research Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Mingwei Han
- Cadet Brigade, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xia Jin
- Scientific Research Center, Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Ministry of Education & Health, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
5,6-Dichloro-2-phenyl-benzotriazoles: New Potent Inhibitors of Orthohantavirus. Viruses 2020; 12:v12010122. [PMID: 31968537 PMCID: PMC7019903 DOI: 10.3390/v12010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Orthohantaviruses, previously known as hantaviruses (family Hantaviridae, order Bunyavirales), are emerging zoonoses hosted by different rodent and insectivore species. Orthohantaviruses are transmitted by aerosolized excreta (urine, saliva and feces) of their reservoir hosts. When transmitted to humans, they cause hemorrhagic fever with renal syndrome (HFRS) in Asia and Europe and hantavirus (cardio) pulmonary syndrome (HPS) in the Americas. Clinical studies have shown that early treatments of HFRS patients with ribavirin (RBV) improve prognosis. Nevertheless, there is the need for urgent development of specific antiviral drugs. In the search for new RNA virus inhibitors, we recently identified a series of variously substituted 5,6-dichloro-1(2)-phenyl-1(2)H-benzo[d][1,2,3]triazole derivatives active against the human respiratory syncytial virus (HRSV). Interestingly, several 2-phenyl-benzotriazoles resulted in fairly potent inhibitors of the Hantaan virus in a chemiluminescence focus reduction assay (C-FRA) showing an EC50 = 4–5 µM, ten-fold more active than ribavirin. Currently, there are no FDA approved drugs for the treatment of orthohantavirus infections. Antiviral activities and cytotoxicity profiles suggest that 5,6-dichloro-1(2)-phenyl-1(2)H-benzo[d][1,2,3]triazoles could be promising candidates for further investigation as a potential treatment of hantaviral diseases.
Collapse
|
18
|
Progress on the Prevention and Treatment of Hantavirus Disease. Viruses 2019; 11:v11070610. [PMID: 31277410 PMCID: PMC6669544 DOI: 10.3390/v11070610] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022] Open
Abstract
Hantaviruses, members of the order Bunyavirales, family Hantaviridae, have a world-wide distribution and are responsible for greater than 150,000 cases of disease per year. The spectrum of disease associated with hantavirus infection include hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) also known as hantavirus cardiopulmonary syndrome (HCPS). There are currently no FDA-approved vaccines or treatments for these hantavirus diseases. This review provides a summary of the status of vaccine and antiviral treatment efforts including those tested in animal models or human clinical trials.
Collapse
|
19
|
Perley CC, Brocato RL, Kwilas SA, Daye S, Moreau A, Nichols DK, Wetzel KS, Shamblin J, Hooper JW. Three asymptomatic animal infection models of hemorrhagic fever with renal syndrome caused by hantaviruses. PLoS One 2019; 14:e0216700. [PMID: 31075144 PMCID: PMC6510444 DOI: 10.1371/journal.pone.0216700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
Hantaan virus (HTNV) and Puumala virus (PUUV) are rodent-borne hantaviruses that are the primary causes of hemorrhagic fever with renal syndrome (HFRS) in Europe and Asia. The development of well characterized animal models of HTNV and PUUV infection is critical for the evaluation and the potential licensure of HFRS vaccines and therapeutics. In this study we present three animal models of HTNV infection (hamster, ferret and marmoset), and two animal models of PUUV infection (hamster, ferret). Infection of hamsters with a ~3 times the infectious dose 99% (ID99) of HTNV by the intramuscular and ~1 ID99 of HTNV by the intranasal route leads to a persistent asymptomatic infection, characterized by sporadic viremia and high levels of viral genome in the lung, brain and kidney. In contrast, infection of hamsters with ~2 ID99 of PUUV by the intramuscular or ~1 ID99 of PUUV by the intranasal route leads to seroconversion with no detectable viremia, and a transient detection of viral genome. Infection of ferrets with a high dose of either HTNV or PUUV by the intramuscular route leads to seroconversion and gradual weight loss, though kidney function remained unimpaired and serum viremia and viral dissemination to organs was not detected. In marmosets a 1,000 PFU HTNV intramuscular challenge led to robust seroconversion and neutralizing antibody production. Similarly to the ferret model of HTNV infection, no renal impairment, serum viremia or viral dissemination to organs was detected in marmosets. This is the first report of hantavirus infection in ferrets and marmosets.
Collapse
Affiliation(s)
- Casey C. Perley
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Rebecca L. Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Steven A. Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Sharon Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Alicia Moreau
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Donald K. Nichols
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Kelly S. Wetzel
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Joshua Shamblin
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Ft. Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Gowen BB, Hickerson BT. Hemorrhagic fever of bunyavirus etiology: disease models and progress towards new therapies. J Microbiol 2017; 55:183-195. [DOI: 10.1007/s12275-017-7029-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 01/14/2023]
|
21
|
Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res 2017; 234:118-134. [PMID: 28137457 PMCID: PMC7114536 DOI: 10.1016/j.virusres.2017.01.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/15/2022]
Abstract
Bunyavirus and arenavirus are important public health threats. Bunyavirus and arenavirus molecular biology, common and differential features. Implications of LACV L protein structure for understanding viral RNA synthesis. Current state and future perspectives on bunya- and arenavirus antivirals.
Bunyaviridae and Arenaviridae virus families include an important number of highly pathogenic viruses for humans. They are enveloped viruses with negative stranded RNA genomes divided into three (bunyaviruses) or two (arenaviruses) segments. Each genome segment is coated by the viral nucleoproteins (NPs) and the polymerase (L protein) to form a functional ribonucleoprotein (RNP) complex. The viral RNP provides the necessary context on which the L protein carries out the biosynthetic processes of RNA replication and gene transcription. Decades of research have provided a good understanding of the molecular processes underlying RNA synthesis, both RNA replication and gene transcription, for these two families of viruses. In this review we will provide a global view of the common features, as well as differences, of the molecular biology of Bunyaviridae and Arenaviridae. We will also describe structures of protein and protein-RNA complexes so far determined for these viral families, mainly focusing on the L protein, and discuss their implications for understanding the mechanisms of viral RNA replication and gene transcription within the architecture of viral RNPs, also taking into account the cellular context in which these processes occur. Finally, we will discuss the implications of these structural findings for the development of antiviral drugs to treat human diseases caused by members of the Bunyaviridae and Arenaviridae families.
Collapse
Affiliation(s)
- François Ferron
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Juan Reguera
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France; INSERM, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
22
|
Poliquin PG, Drebot M, Grolla A, Jones SE, Larke B, Strong JE. Therapeutic Approaches for New World Hantaviruses. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015. [DOI: 10.1007/s40506-015-0047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Bioactive nucleoside analogues possessing selected five-membered azaheterocyclic bases. Eur J Med Chem 2015; 97:409-18. [DOI: 10.1016/j.ejmech.2014.11.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 11/23/2022]
|
24
|
Moreli ML, Marques-Silva AC, Pimentel VA, da Costa VG. Effectiveness of the ribavirin in treatment of hantavirus infections in the Americas and Eurasia: a meta-analysis. Virusdisease 2014; 25:385-9. [PMID: 25674609 DOI: 10.1007/s13337-014-0219-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/07/2014] [Indexed: 11/30/2022] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are transmitted to humans through infection with the old- and new-world hantaviruses, respectively. Together these diseases affect tens of thousands of people every year, and no specific treatment is available. To investigate whether ribavirin treatment for hantaviruses infections decreases disease severity, we conducted a meta-analysis involving human and animal studies. After defining the research protocol and criteria for inclusion/exclusion, we identified seven studies. We found that in groups with HPS who were treated with ribavirin, there was no significant reduction in mortality (RR 0.99, 95 % CI 0.60-1.61, I(2) = 0 %). On the other hand, for animal group with HPS-like disease, there was significant increase in survival (RR 0.05, 95 % CI 0.01-0.34, I(2) = 0 %). For animal group infected with the old-world hantaviruses, treated with ribavirin, there was a statistically significant increase in survival (RR 0.56, 95 % CI 0.42-0.76, I(2) = 64 %). Similarly, for humans with HFRS treated, there was increase in survival (RR 0.28, 95 % CI 0.08-1), although only a study exist. Our meta-analysis provides data that should be interpreted with caution, partly due to the limited number of studies available. Additionally, the results of the application of ribavirin in the population with HPS could not be determined, particularly in patients in the end stage of this disease.
Collapse
Affiliation(s)
- Marcos L Moreli
- Virology Laboratory, Federal University of Goiás, Jataí, Brazil
| | | | | | | |
Collapse
|
25
|
Maddila S, Pagadala R, Jonnalagadda SB. Synthesis and Insecticidal Activity of Tetrazole-Linked Triazole Derivatives. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suresh Maddila
- School of Chemistry & Physics; University of KwaZulu-Natal; Westville Campus, Chiltern Hills Durban 4000 South Africa
| | - Ramakanth Pagadala
- School of Chemistry & Physics; University of KwaZulu-Natal; Westville Campus, Chiltern Hills Durban 4000 South Africa
| | - Sreekanth B. Jonnalagadda
- School of Chemistry & Physics; University of KwaZulu-Natal; Westville Campus, Chiltern Hills Durban 4000 South Africa
| |
Collapse
|
26
|
Krajczyk A, Kulinska K, Kulinski T, Hurst BL, Day CW, Smee DF, Ostrowski T, Januszczyk P, Zeidler J. Antivirally active ribavirin analogues--4,5-disubstituted 1,2,3-triazole nucleosides: biological evaluation against certain respiratory viruses and computational modelling. Antivir Chem Chemother 2014; 23:161-71. [PMID: 23538746 DOI: 10.3851/imp2564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ribavirin is a broad-spectrum antiviral agent that derives some of its activity from inhibition of cellular inosine monophosphate dehydrogenase (IMPDH), resulting in lower guanosine triphosphate (GTP) levels. Here we report the biological activities of three ribavirin analogues. METHODS Antiviral activities of test compounds were performed by in vitro cytopathic effect inhibition assays against influenza A (H1N1, H3N2 and H5N1), influenza B, measles, parainfluenza type 3 (PIV-3) and respiratory syncytial viruses. Compounds were modelled into the ribavirin 5'-monophosphate binding site of the crystallographic structure of the human type II IMPDH (hIMPDH2) ternary complex. Effects of compounds on intracellular GTP levels were performed by strong anion exchange HPLC analysis. RESULTS Of the three compounds evaluated, the 5-ethynyl nucleoside (ETCAR) exhibited virus-inhibitory activities (at 1.2-20 μM, depending upon the virus) against most of the viruses, except for weak activity against PIV-3 (62 μM). Antiviral activity of ETCAR was similar to ribavirin; however, cytotoxicity of ETCAR was greater than ribavirin. Replacing the 5-ethynyl group with a 5-propynyl or bromo substituent (BrCAR) considerably reduced antiviral activity. Computational studies of ternary complexes of hIMPDH2 enzyme with 5'-monophosphates of the compounds helped rationalize the observed differences in biological activity. All compounds suppressed GTP levels in cells; additionally, BrCAR suppressed adenosine triphosphate and elevated uridine triphosphate levels. CONCLUSIONS Three compounds related to ribavirin inhibited IMPDH and had weak to moderate antiviral activity. Cytotoxicity adversely affected the antiviral selectivity of ETCAR. As with ribavirin, reduction in intracellular GTP may play a role in virus inhibition.
Collapse
Affiliation(s)
- Anna Krajczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ogg M, Jonsson CB, Camp JV, Hooper JW. Ribavirin protects Syrian hamsters against lethal hantavirus pulmonary syndrome--after intranasal exposure to Andes virus. Viruses 2013; 5:2704-20. [PMID: 24217424 PMCID: PMC3856411 DOI: 10.3390/v5112704] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 11/16/2022] Open
Abstract
Andes virus, ANDV, harbored by wild rodents, causes the highly lethal hantavirus pulmonary syndrome (HPS) upon transmission to humans resulting in death in 30% to 50% of the cases. As there is no treatment for this disease, we systematically tested the efficacy of ribavirin in vitro and in an animal model. In vitro assays confirmed antiviral activity and determined that the most effective doses were 40 µg/mL and above. We tested three different concentrations of ribavirin for their capability to prevent HPS in the ANDV hamster model following an intranasal challenge. While the highest level of ribavirin (200 mg/kg) was toxic to the hamster, both the middle (100 mg/kg) and the lowest concentration (50 mg/kg) prevented HPS in hamsters without toxicity. Specifically, 8 of 8 hamsters survived intranasal challenge for both of those groups whereas 7 of 8 PBS control-treated animals developed lethal HPS. Further, we report that administration of ribavirin at 50 mg/kg/day starting on days 6, 8, 10, or 12 post-infection resulted in significant protection against HPS in all groups. Administration of ribavirin at 14 days post-infection also provided a significant level of protection against lethal HPS. These data provide in vivo evidence supporting the potential use of ribavirin as a post-exposure treatment to prevent HPS after exposure by the respiratory route.
Collapse
Affiliation(s)
- Monica Ogg
- Molecular Virology Branch, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21772, USA; E-Mail:
| | - Colleen B. Jonsson
- Department of Microbiology and Immunology, Center for Predictive Medicine for Infectious Diseases and Biodefense, Louisville, KY 40202, USA; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.B.J.); (J.W.H.); Tel.: +1-502-413-1177 (C.B.J); +1-301-619-6101 (J.W.H)
| | - Jeremy V. Camp
- Department of Microbiology and Immunology, Center for Predictive Medicine for Infectious Diseases and Biodefense, Louisville, KY 40202, USA; E-Mail:
| | - Jay W. Hooper
- Molecular Virology Branch, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21772, USA; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (C.B.J.); (J.W.H.); Tel.: +1-502-413-1177 (C.B.J); +1-301-619-6101 (J.W.H)
| |
Collapse
|
28
|
Mustonen J, Mäkelä S, Outinen T, Laine O, Jylhävä J, Arstila PT, Hurme M, Vaheri A. The pathogenesis of nephropathia epidemica: new knowledge and unanswered questions. Antiviral Res 2013; 100:589-604. [PMID: 24126075 DOI: 10.1016/j.antiviral.2013.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 01/20/2023]
Abstract
Puumala virus (PUUV) causes an acute hemorrhagic fever with renal syndrome (HFRS), a zoonosis also called nephropathia epidemica (NE). The reservoir host of PUUV is the bank vole (Myodes glareolus). Herein we review the main clinical manifestations of NE, acute kidney injury, increased vascular permeability, coagulation abnormalities as well as pulmonary, cardiac, central nervous system and ocular manifestations of the disease. Several biomarkers of disease severity have recently been discovered: interleukin-6, pentraxin-3, C-reactive protein, indoleamine 2,3-dioxygenase, cell-free DNA, soluble urokinase-type plasminogen activator, GATA-3 and Mac-2 binding protein. The role of cytokines, vascular endothelial growth hormone, complement, bradykinin, cellular immune response and other mechanisms in the pathogenesis of NE as well as host genetic factors will be discussed. Finally therapeutic aspects and directions for further research will be handled.
Collapse
Affiliation(s)
- Jukka Mustonen
- School of Medicine, University of Tampere, Tampere, Finland; Department of Internal Medicine, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Byrd CM, Grosenbach DW, Hruby DE. Antiviral options for biodefense. Curr Opin Virol 2013; 3:537-41. [DOI: 10.1016/j.coviro.2013.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
|
30
|
The murine model for Hantaan virus-induced lethal disease shows two distinct paths in viral evolutionary trajectory with and without ribavirin treatment. J Virol 2013; 87:10997-1007. [PMID: 23903835 DOI: 10.1128/jvi.01394-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro, ribavirin acts as a lethal mutagen in Hantaan virus (HTNV)-infected Vero E6 cells, resulting in an increased mutation load and viral population extinction. In this study, we asked whether ribavirin treatment in the lethal, suckling mouse model of HTNV infection would act similarly. The HTNV genomic RNA (vRNA) copy number and infectious virus were measured in lungs of untreated and ribavirin-treated mice. In untreated, HTNV-infected mice, the vRNA copy number increased for 10 days postinfection (dpi) and thereafter remained constant through 26 dpi. Surprisingly, in ribavirin-treated, HTNV-infected mice, vRNA levels were similar to those in untreated mice between 10 and 26 dpi. Infectious virus levels, however, were different: in ribavirin-treated mice, the amount of infectious HTNV was significantly decreased relative to that in untreated mice, suggesting that ribavirin reduced the specific infectivity of the virus (amount of infectious virus produced per vRNA copy). Mutational analysis revealed a ribavirin-associated elevation in mutation frequency in HTNV vRNA similar to that previously reported in vitro. Codon-based analyses of rates of nonsynonymous (dN) and synonymous (dS) substitutions in the S segment revealed a positive selection for codons within the HTNV N protein gene in the ribavirin-treated vRNA population. In contrast, the vRNA population in untreated, HTNV-infected mice showed a lower level of diversity, reflecting purifying selection for the wild-type genome. In summary, these experiments show two different evolutionary paths that Hantavirus may take during infection in a lethal murine model of disease, as well as the importance of the in vivo host environment in the evolution of the virus, which was not apparent in our prior in vitro model system.
Collapse
|
31
|
González-González CA, Fuentes-Benítez A, Cuevas-Yáñez E, Corona-Becerril D, González-Romero C, González-Calderón D. Corey lactone as key precursor for a facile synthesis of novel 1,2,3-triazole carbocyclic nucleosides via Click Chemistry. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Papa A. Dobrava-Belgrade virus: Phylogeny, epidemiology, disease. Antiviral Res 2012; 95:104-17. [DOI: 10.1016/j.antiviral.2012.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
|
33
|
Sargianou M, Watson DC, Chra P, Papa A, Starakis I, Gogos C, Panos G. Hantavirus infections for the clinician: From case presentation to diagnosis and treatment. Crit Rev Microbiol 2012; 38:317-29. [DOI: 10.3109/1040841x.2012.673553] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Kolganova NA, Florentiev VL, Chudinov AV, Zasedatelev AS, Timofeev EN. Simple and stereoselective preparation of an 4-(aminomethyl)-1,2,3-triazolyl nucleoside phosphoramidite. Chem Biodivers 2011; 8:568-76. [PMID: 21480503 DOI: 10.1002/cbdv.201000047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple and stereoselective synthesis of a protected 4-(aminomethyl)-1-(2-deoxy-β-D-ribofuranosyl)-1,2,3-triazole cyanoethyl phosphoramidite was developed for the modification of synthetic oligonucleotides. The configuration of the 1,2,3-triazolyl moiety with respect to the deoxyribose was unambiguously determined in ROESY experiments. The aminomethyl group of the triazolyl nucleotide was fully functional in labelling reactions. Furthermore, the hybridization behavior of 5' triazole-terminated oligonucleotide was similar to that of 5' aminohexyl-terminated oligomer with the same sequence. Internal modifications of the oligonucleotide strands resulted in significant decrease of duplex stability.
Collapse
Affiliation(s)
- Natalia A Kolganova
- Engelhardt Institute of Molecular Biology, 32 Vavilov St., Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
35
|
Krüger DH, Schönrich G, Klempa B. Human pathogenic hantaviruses and prevention of infection. HUMAN VACCINES 2011; 7:685-93. [PMID: 21508676 DOI: 10.4161/hv.7.6.15197] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hantaviruses are emerging viruses which are hosted by small mammals. When transmitted to humans, they can cause two clinical syndromes, hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. The review compiles the current list of hantaviruses which are thought to be pathogenic in humans on the basis of molecular or at least serological evidence. Whereas induction of a neutralizing humoral immune response is considered to be protective against infection, the dual role of cellular immunity (protection versus immunopathogenicity) is discussed. For active immunisation, inactivated virus vaccines are licensed in certain Asian countries. Moreover, several classical and molecular vaccine approaches are in pre-clinical stages of development. The development of hantavirus vaccines is hampered by the lack of adequate animal models of hantavirus-associated disease. In addition to active immunization strategies, the review summarizes other ways of infection prevention, as passive immunization, chemoprophylaxis, and exposition prophylaxis.
Collapse
Affiliation(s)
- Detlev H Krüger
- Institute of Medical Virology, Helmut Ruska Haus, University Medicine Charité, Charitéplatz, Berlin, Germany.
| | | | | |
Collapse
|
36
|
Rusnak JM. Experience with Ribavirin for Treatment and Postexposure Prophylaxis of Hemorrhagic Fever Viruses: Crimean Congo Hemorrhagic Fever, Lassa Fever, and Hantaviruses. APPLIED BIOSAFETY 2011. [DOI: 10.1177/153567601101600203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
37
|
Klingström J, Ahlm C. Hantavirus protein interactions regulate cellular functions and signaling responses. Expert Rev Anti Infect Ther 2011; 9:33-47. [PMID: 21171876 DOI: 10.1586/eri.10.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rodent-borne pathogenic hantaviruses cause two severe and often lethal zoonotic diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Currently, no US FDA-approved therapeutics or vaccines are available for HFRS/HCPS. Infections with hantaviruses are not lytic, and it is currently not known exactly why infections in humans cause disease. A better understanding of how hantaviruses interfere with normal cell functions and activation of innate and adaptive immune responses might provide clues to future development of specific treatment and/or vaccines against hantavirus infection. In this article, the current knowledge regarding immune responses observed in patients, hantavirus interference with cellular proteins and signaling pathways, and possible approaches in the development of therapeutics are discussed.
Collapse
Affiliation(s)
- Jonas Klingström
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | |
Collapse
|
38
|
Charrel RN, Coutard B, Baronti C, Canard B, Nougairede A, Frangeul A, Morin B, Jamal S, Schmidt CL, Hilgenfeld R, Klempa B, de Lamballerie X. Arenaviruses and hantaviruses: from epidemiology and genomics to antivirals. Antiviral Res 2011; 90:102-14. [PMID: 21356244 DOI: 10.1016/j.antiviral.2011.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
Abstract
The arenaviruses and hantaviruses are segmented genome RNA viruses that are hosted by rodents. Due to their association with rodents, they are globally widespread and can infect humans via direct or indirect routes of transmission, causing considerable human morbidity and mortality. Nevertheless, despite their obvious and emerging importance as pathogens, there are currently no effective antiviral drugs (except ribavirin which proved effective against Lassa virus) with which to treat humans infected by any of these viruses. The EU-funded VIZIER project (Comparative Structural Genomics of Viral Enzymes Involved in Replication) was instigated with an ultimate view of contributing to the development of antiviral therapies for RNA viruses, including the arenaviruses and bunyaviruses. This review highlights some of the major features of the arenaviruses and hantaviruses that have been investigated during recent years. After describing their classification and epidemiology, we review progress in understanding the genomics as well as the structure and function of replicative enzymes achieved under the VIZIER program and the development of new disease control strategies.
Collapse
Affiliation(s)
- R N Charrel
- Unité des Virus Emergents UMR190, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McDowell M, Gonzales SR, Kumarapperuma SC, Jeselnik M, Arterburn JB, Hanley KA. A novel nucleoside analog, 1-beta-d-ribofuranosyl-3-ethynyl-[1,2,4]triazole (ETAR), exhibits efficacy against a broad range of flaviviruses in vitro. Antiviral Res 2010; 87:78-80. [PMID: 20416341 DOI: 10.1016/j.antiviral.2010.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 12/21/2022]
Abstract
Antiviral therapies are urgently needed to control emerging flaviviruses such as dengue, West Nile, and yellow fever. Ribavirin (RBV) has shown activity against flaviviruses in cultured cells, but efficacy in animal models has generally been poor. In a preliminary screen of novel, synthetic 1-beta-d-ribofuranosyl-azole analogs, two compounds, 1-beta-d-ribofuranosyl-3-ethynyl-[1,2,4]triazole (ETAR) and 1-beta-d-ribofuranosyl-4-ethynyl-[1,3]imidazole (IM18), significantly reduced the replication of dengue virus serotype 2 (DENV-2) in cultured Vero cells. In the current study we demonstrated that the effective concentration 50 (EC(50)) of ETAR for DENV-2 is substantially lower than both IM18 and RBV. Moreover, ETAR reduced the replication of five additional flaviviruses, including DENV serotypes 1, 3 and 4, Langat virus and Modoc virus, > or =1000-fold relative to untreated controls. Addition of exogenous guanosine to DENV-2 infected cells negated the antiviral effects of both RBV and ETAR, indicating that GTP depletion is a major mechanism of action for both drugs. ETAR represents a promising drug candidate for the treatment of flavivirus infections.
Collapse
Affiliation(s)
- Michael McDowell
- Department of Biology, New Mexico State University, Las Cruces, 88003, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ibrahim MA, El-Mahdy KM. Synthesis and Antimicrobial Activity of Some New Heterocyclic Schiff Bases Derived from 2-Amino-3-formylchromone. PHOSPHORUS SULFUR 2009. [DOI: 10.1080/10426500802625594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Magdy A. Ibrahim
- a Department of Chemistry, Faculty of Education , Ain Shams University , Cairo, Egypt
| | - Kamelia M. El-Mahdy
- a Department of Chemistry, Faculty of Education , Ain Shams University , Cairo, Egypt
| |
Collapse
|
41
|
Meerburg BG, Singleton GR, Kijlstra A. Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 2009; 35:221-70. [DOI: 10.1080/10408410902989837] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Youcef RA, Santos MD, Roussel S, Baltaze JP, Lubin-Germain N, Uziel J. Huisgen Cycloaddition Reaction of C-Alkynyl Ribosides under Micellar Catalysis: Synthesis of Ribavirin Analogues. J Org Chem 2009; 74:4318-23. [DOI: 10.1021/jo900594x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ramzi Aït Youcef
- Université de Cergy-Pontoise, UMR CNRS 8123, Laboratoire de Synthèse Organique Sélective et Chimie Organométallique, F-95000 Cergy-Pontoise Cedex, France, and Université Paris-Sud XI, UMR CNRS 8182, ICMMO, 91405 Orsay Cedex, France
| | - Mickaël Dos Santos
- Université de Cergy-Pontoise, UMR CNRS 8123, Laboratoire de Synthèse Organique Sélective et Chimie Organométallique, F-95000 Cergy-Pontoise Cedex, France, and Université Paris-Sud XI, UMR CNRS 8182, ICMMO, 91405 Orsay Cedex, France
| | - Sandrine Roussel
- Université de Cergy-Pontoise, UMR CNRS 8123, Laboratoire de Synthèse Organique Sélective et Chimie Organométallique, F-95000 Cergy-Pontoise Cedex, France, and Université Paris-Sud XI, UMR CNRS 8182, ICMMO, 91405 Orsay Cedex, France
| | - Jean-Pierre Baltaze
- Université de Cergy-Pontoise, UMR CNRS 8123, Laboratoire de Synthèse Organique Sélective et Chimie Organométallique, F-95000 Cergy-Pontoise Cedex, France, and Université Paris-Sud XI, UMR CNRS 8182, ICMMO, 91405 Orsay Cedex, France
| | - Nadège Lubin-Germain
- Université de Cergy-Pontoise, UMR CNRS 8123, Laboratoire de Synthèse Organique Sélective et Chimie Organométallique, F-95000 Cergy-Pontoise Cedex, France, and Université Paris-Sud XI, UMR CNRS 8182, ICMMO, 91405 Orsay Cedex, France
| | - Jacques Uziel
- Université de Cergy-Pontoise, UMR CNRS 8123, Laboratoire de Synthèse Organique Sélective et Chimie Organométallique, F-95000 Cergy-Pontoise Cedex, France, and Université Paris-Sud XI, UMR CNRS 8182, ICMMO, 91405 Orsay Cedex, France
| |
Collapse
|
43
|
Synthesis and anti-Hantaan virus activity of N(1)-3-fluorophenyl-inosine. Antiviral Res 2009; 83:80-5. [PMID: 19501259 DOI: 10.1016/j.antiviral.2009.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 03/23/2009] [Accepted: 03/25/2009] [Indexed: 12/21/2022]
Abstract
As part of an ongoing effort to develop new antiviral nucleoside analogs, our interest was drawn to N(1)-aryl purines as a novel structural class and potential scaffold for drug discovery. Herein, we describe the synthesis of N(1)-3-fluorophenyl-inosine (FPI) and N(1)-3-fluorophenyl-hypoxanthine (FP-Hx) and their antiviral activity against hantaviruses. The EC(50) for FPI and FP-Hx were 94 and 234microM, respectively, against Hantaan virus. FPI was not toxic to mammalian cells at concentrations that exhibited antiviral activity. Analysis of its metabolism revealed a low conversion of FPI in Vero E6 or human cells to a 5'-triphosphate, and it was a poor substrate for human purine nucleoside phosphorylase. Further, the compound did not alter GTP levels indicating FPI does not inhibit inosine monophosphate dehydrogenase. With respect to the virus, FPI did not decrease viral RNA levels or increase the mutation frequency of the viral RNA. This suggests that the antiviral activity of FPI might be solely due to the interaction of FPI or its metabolites with viral or host proteins involved in post-replication events that would affect the levels of infectious virus released. Synthesis of other compounds structurally similar to FPI is warranted to identify more potent agents that selectively abrogate production of infectious virus.
Collapse
|