1
|
Humboldt A, Rami F, Topp FM, Arnold D, Göhringer D, Pallan PS, Egli M, Richert C. Prolinyl Phosphoramidates of Nucleotides with Increased Reactivity. Angew Chem Int Ed Engl 2024; 63:e202319958. [PMID: 38300702 DOI: 10.1002/anie.202319958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Nucleoside monophosphates (NMPs) are the subunits of RNA. They are incorporated into growing complementary strands when sequences are copied in enzyme-free reactions using organic leaving groups at the phosphates. Amino acids are rarely considered as leaving groups, but proline can act as a leaving group when N-linked to NMPs, so that prolinyl NMPs hydrolyze in aqueous buffer at 37 °C, with half-life times as short as 2.4 h, and they act as monomers in enzyme-free primer extension. Still, their level of reactivity is insufficient for practical purposes, requiring months for some extensions. Herein we report the synthesis of eight substituted prolinyl AMPs together with seven related compounds and the results of a study of their reactivity. A δ-carboxy prolinyl NMP was found to be converted with a half-life time of just 11 min in magnesium-free buffer, and a δ-isopropyl prolinyl NMP was shown to react sevenfold faster than its prolinyl counterpart in enzyme-free genetic copying of RNA. Our results indicate that both anchimeric and steric effects can be employed to increase the reactivity of aminoacidyl nucleotides, i.e. compounds that combine two fundamental classes of biomolecules in one functional entity.
Collapse
Affiliation(s)
- Adrian Humboldt
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Fabian Rami
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Franka M Topp
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Dejana Arnold
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Daniela Göhringer
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| | - Pradeep S Pallan
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee, 37232, USA
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee, 37232, USA
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Zhou XJ, Good SS, Pietropaolo K, Huang Q, Moussa A, Hammond JM, Sommadossi JP. Bemnifosbuvir (BEM, AT-527), a novel nucleotide analogue inhibitor of the hepatitis C virus NS5B polymerase. Expert Opin Investig Drugs 2024; 33:9-17. [PMID: 38265202 DOI: 10.1080/13543784.2024.2305137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Chronic hepatitis C virus (HCV) persists as a public health concern worldwide. Consequently, optimizing HCV therapy remains an important objective. While current therapies are generally highly effective, advanced antiviral agents are needed to maximize cure rates with potentially shorter treatment durations in a broader patient population, particularly those patients with advanced diseases who remain difficult to treat. AREAS COVERED This review summarizes the in vitro anti-HCV activity, preclinical pharmacological properties of bemnifosbuvir (BEM, AT-527), a novel prodrug that is metabolically converted to AT-9010, the active guanosine triphosphate analogue that potently and selectively inhibits several viral RNA polymerases, including the HCV NS5B polymerase. Results from clinical proof-of-concept and phase 2 combination studies are also discussed. EXPERT OPINION BEM exhibits potent pan-genotype activity against HCV, and has favorable safety, and drug interaction profiles. BEM is approximately 10-fold more potent than sofosbuvir against HCV genotypes (GT) tested in vitro. When combined with a potent NS5A inhibitor, BEM is expected to be a promising once-daily oral antiviral for chronic HCV infection of all genotypes and fibrosis stages with potentially short treatment durations.
Collapse
Affiliation(s)
- Xiao-Jian Zhou
- Departments of Preclinical and Clinical Development, Atea Pharmaceuticals, Boston, MA, USA
| | - Steven S Good
- Departments of Preclinical and Clinical Development, Atea Pharmaceuticals, Boston, MA, USA
| | - Keith Pietropaolo
- Departments of Preclinical and Clinical Development, Atea Pharmaceuticals, Boston, MA, USA
| | - Qi Huang
- Departments of Preclinical and Clinical Development, Atea Pharmaceuticals, Boston, MA, USA
| | - Adel Moussa
- Departments of Preclinical and Clinical Development, Atea Pharmaceuticals, Boston, MA, USA
| | - Janet Mj Hammond
- Departments of Preclinical and Clinical Development, Atea Pharmaceuticals, Boston, MA, USA
| | - Jean-Pierre Sommadossi
- Departments of Preclinical and Clinical Development, Atea Pharmaceuticals, Boston, MA, USA
| |
Collapse
|
3
|
Novel intramolecular aminohydroxylation toward the syntheses of 2′-amino-2′-ethynyl nucleosides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Li J, Liu S, Shi J, Wang X, Xue Y, Zhu HJ. Tissue-Specific Proteomics Analysis of Anti-COVID-19 Nucleoside and Nucleotide Prodrug-Activating Enzymes Provides Insights into the Optimization of Prodrug Design and Pharmacotherapy Strategy. ACS Pharmacol Transl Sci 2021; 4:870-887. [PMID: 33855276 PMCID: PMC8033752 DOI: 10.1021/acsptsci.1c00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Nucleoside and nucleotide analogs are an essential class of antivirals for COVID-19 treatment. Several nucleoside/nucleotide analogs have shown promising effects against SARS-CoV-2 in vitro; however, their in vivo efficacy is limited. Nucleoside/nucleotide analogs are often formed as ester prodrugs to improve pharmacokinetics (PK) performance. After entering cells, the prodrugs undergo several enzymatic metabolism steps to form the active metabolite triphosphate nucleoside (TP-Nuc); prodrug activation is therefore associated with the abundance and catalytic activity of the corresponding activating enzymes. Having the activation of nucleoside/nucleotide prodrugs occur at the target site of action, such as the lung, is critical for anti-SARS-CoV-2 efficacy. Herein, we conducted an absolute quantitative proteomics study to determine the expression of relevant activating enzymes in human organs related to the PK and antiviral efficacy of nucleoside/nucleotide prodrugs, including the lung, liver, intestine, and kidney. The protein levels of prodrug-activating enzymes differed significantly among the tissues. Using catalytic activity values reported previously for individual enzymes, we calculated prodrug activation profiles in these tissues. The prodrugs evaluated in this study include nine McGuigan phosphoramidate prodrugs, two cyclic monophosphate prodrugs, two l-valyl ester prodrugs, and one octanoate prodrug. Our analysis showed that most orally administered nucleoside/nucleotide prodrugs were primarily activated in the liver, suggesting that parenteral delivery routes such as inhalation and intravenous infusion could be better options when these antiviral prodrugs are used to treat COVID-19. The results also indicated that the l-valyl ester prodrug design can plausibly improve drug bioavailability and enhance effects against SARS-CoV-2 intestinal infections. This study further revealed that an octanoate prodrug could provide a long-acting antiviral effect targeting SARS-CoV-2 infections in the lung. Finally, our molecular docking analysis suggested several prodrug forms of favipiravir and GS-441524 that are likely to exhibit favorable PK features over existing prodrug forms. In sum, this study revealed the activation mechanisms of various nucleoside/nucleotide prodrugs relevant to COVID-19 treatment in different organs and shed light on the development of more effective anti-COVID-19 prodrugs.
Collapse
Affiliation(s)
- Jiapeng Li
- Department
of Clinical Pharmacy, University of Michigan
College of Pharmacy, 428 Church Street, Room 4565 NUB, Ann Arbor, Michigan 48109, United States
| | - Shuhan Liu
- Department
of Clinical Pharmacy, University of Michigan
College of Pharmacy, 428 Church Street, Room 4565 NUB, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, United States
| | - Jian Shi
- Department
of Clinical Pharmacy, University of Michigan
College of Pharmacy, 428 Church Street, Room 4565 NUB, Ann Arbor, Michigan 48109, United States
| | - Xinwen Wang
- Department
of Pharmaceutical Sciences, Northeast Ohio
Medical University College of Pharmacy, Rootstown, Ohio 44272, United States
| | - Yanling Xue
- Department
of Clinical Pharmacy, University of Michigan
College of Pharmacy, 428 Church Street, Room 4565 NUB, Ann Arbor, Michigan 48109, United States
| | - Hao-Jie Zhu
- Department
of Clinical Pharmacy, University of Michigan
College of Pharmacy, 428 Church Street, Room 4565 NUB, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Vanden Avond MA, Meng H, Beatka MJ, Helbling DC, Prom MJ, Sutton JL, Slick RA, Dimmock DP, Pertusati F, Serpi M, Pileggi E, Crutcher P, Thomas S, Lawlor MW. The nucleotide prodrug CERC-913 improves mtDNA content in primary hepatocytes from DGUOK-deficient rats. J Inherit Metab Dis 2021; 44:492-501. [PMID: 33368311 DOI: 10.1002/jimd.12354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
Loss-of-function mutations in the deoxyguanosine kinase (DGUOK) gene result in a mitochondrial DNA (mtDNA) depletion syndrome. DGUOK plays an important role in converting deoxyribonucleosides to deoxyribonucleoside monophosphates via the salvage pathway for mtDNA synthesis. DGUOK deficiency manifests predominantly in the liver; the most common cause of death is liver failure within the first year of life and no therapeutic options are currently available. in vitro supplementation with deoxyguanosine or deoxyguanosine monophosphate (dGMP) were reported to rescue mtDNA depletion in DGUOK-deficient, patient-derived fibroblasts and myoblasts. CERC-913, a novel ProTide prodrug of dGMP, was designed to bypass defective DGUOK while improving permeability and stability relative to nucleoside monophosphates. To evaluate CERC-913 for its ability to rescue mtDNA depletion, we developed a primary hepatocyte culture model using liver tissue from DGUOK-deficient rats. DGUOK knockout rat hepatocyte cultures exhibit severely reduced mtDNA copy number (~10%) relative to wild type by qPCR and mtDNA content remains stable for up to 8 days in culture. CERC-913 increased mtDNA content in DGUOK-deficient hepatocytes up to 2.4-fold after 4 days of treatment in a dose-dependent fashion, which was significantly more effective than dGMP at similar concentrations. These early results suggest primary hepatocyte culture is a useful model for the study of mtDNA depletion syndromes and that CERC-913 treatment can improve mtDNA content in this model.
Collapse
Affiliation(s)
- Mark A Vanden Avond
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hui Meng
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Margaret J Beatka
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daniel C Helbling
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mariah J Prom
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jessica L Sutton
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rebecca A Slick
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David P Dimmock
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Elisa Pileggi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
A Cyclic Phosphoramidate Prodrug of 2'-Deoxy-2'-Fluoro-2'- C-Methylguanosine for the Treatment of Dengue Virus Infection. Antimicrob Agents Chemother 2020; 64:AAC.00654-20. [PMID: 32958712 DOI: 10.1128/aac.00654-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023] Open
Abstract
Monophosphate prodrug analogs of 2'-deoxy-2'-fluoro-2'-C-methylguanosine have been reported as potent inhibitors of hepatitis C virus (HCV) RNA-dependent RNA polymerase. These prodrugs also display potent anti-dengue virus activities in cellular assays although their prodrug moieties were designed to produce high levels of triphosphate in the liver. Since peripheral blood mononuclear cells (PBMCs) are among the major targets of dengue virus, different prodrug moieties were designed to effectively deliver 2'-deoxy-2'-fluoro-2'-C-methylguanosine monophosphate prodrugs and their corresponding triphosphates into PBMCs after oral administration. We identified a cyclic phosphoramidate, prodrug 17, demonstrating well-balanced anti-dengue virus cellular activity and in vitro stability profiles. We further determined the PBMC concentration of active triphosphate needed to inhibit virus replication by 50% (TP50). Compound 17 was assessed in an AG129 mouse model and demonstrated 1.6- and 2.2-log viremia reductions at 100 and 300 mg/kg twice a day (BID), respectively. At 100 mg/kg BID, the terminal triphosphate concentration in PBMCs exceeded the TP50 value, demonstrating TP50 as the target exposure for efficacy. In dogs, oral administration of compound 17 resulted in high PBMC triphosphate levels, exceeding the TP50 at 10 mg/kg. Unfortunately, 2-week dog toxicity studies at 30, 100, and 300 mg/kg/day showed that "no observed adverse effect level" (NOAEL) could not be achieved due to pulmonary inflammation and hemorrhage. The preclinical safety results suspended further development of compound 17. Nevertheless, present work has proven the concept that an efficacious monophosphate nucleoside prodrug could be developed for the potential treatment of dengue virus infection.
Collapse
|
7
|
Jovanovic D, Tremmel P, Pallan PS, Egli M, Richert C. The Enzyme‐Free Release of Nucleotides from Phosphoramidates Depends Strongly on the Amino Acid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dejana Jovanovic
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| | - Peter Tremmel
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| | - Pradeep S. Pallan
- Department of Biochemistry Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Martin Egli
- Department of Biochemistry Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Clemens Richert
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| |
Collapse
|
8
|
Jovanovic D, Tremmel P, Pallan PS, Egli M, Richert C. The Enzyme-Free Release of Nucleotides from Phosphoramidates Depends Strongly on the Amino Acid. Angew Chem Int Ed Engl 2020; 59:20154-20160. [PMID: 32757352 PMCID: PMC7436718 DOI: 10.1002/anie.202008665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Indexed: 12/23/2022]
Abstract
Phosphoramidates composed of an amino acid and a nucleotide analogue are critical metabolites of prodrugs, such as remdesivir. Hydrolysis of the phosphoramidate liberates the nucleotide, which can then be phosphorylated to become the pharmacologically active triphosphate. Enzymatic hydrolysis has been demonstrated, but a spontaneous chemical process may also occur. We measured the rate of enzyme-free hydrolysis for 17 phosphoramidates of ribonucleotides with amino acids or related compounds at pH 7.5. Phosphoramidates of proline hydrolyzed fast, with a half-life time as short as 2.4 h for Pro-AMP in ethylimidazole-containing buffer at 37 °C; 45-fold faster than Ala-AMP and 120-fold faster than Phe-AMP. Crystal structures of Gly-AMP, Pro-AMP, βPro-AMP and Phe-AMP bound to RNase A as crystallization chaperone showed how well the carboxylate is poised to attack the phosphoramidate, helping to explain this reactivity. Our results are significant for the design of new antiviral prodrugs.
Collapse
Affiliation(s)
- Dejana Jovanovic
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Peter Tremmel
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Pradeep S. Pallan
- Department of BiochemistryVanderbilt UniversitySchool of MedicineNashvilleTN37232USA
| | - Martin Egli
- Department of BiochemistryVanderbilt UniversitySchool of MedicineNashvilleTN37232USA
| | - Clemens Richert
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| |
Collapse
|
9
|
Wiemer AJ. Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharmacol Transl Sci 2020; 3:613-626. [PMID: 32821882 PMCID: PMC7409933 DOI: 10.1021/acsptsci.0c00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/08/2023]
Abstract
![]()
Drugs that contain phosphates (and
phosphonates or phosphinates)
have intrinsic absorption issues and are therefore often delivered
in prodrug forms to promote their uptake. Effective prodrug forms
distribute their payload to the site of the intended target and release
it efficiently with minimal byproduct toxicity. The ability to balance
unwanted payload release during transit with desired release at the
site of action is critical to prodrug efficacy. Despite decades of
research on prodrug forms, choosing the ideal prodrug form remains
a challenge which is often solved empirically. The recent emergency
use authorization of the antiviral remdesivir for COVID-19 exemplifies
a new approach for delivery of phosphate prodrugs by parenteral dosing,
which minimizes payload release during transit and maximizes tissue
payload distribution. This review focuses on the role of metabolic
activation in efficacy during oral and parenteral dosing of phosphate,
phosphonate, and phosphinate prodrugs. Through examining prior structure–activity
studies on prodrug forms and the choices that led to development of
remdesivir and other clinical drugs and drug candidates, a better
understanding of their ability to distribute to the planned site of
action, such as the liver, plasma, PBMCs, or peripheral tissues, can
be gained. The structure–activity relationships described here
will facilitate the rational design of future prodrugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
10
|
Good SS, Moussa A, Zhou XJ, Pietropaolo K, Sommadossi JP. Preclinical evaluation of AT-527, a novel guanosine nucleotide prodrug with potent, pan-genotypic activity against hepatitis C virus. PLoS One 2020; 15:e0227104. [PMID: 31914458 PMCID: PMC6949113 DOI: 10.1371/journal.pone.0227104] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/28/2019] [Indexed: 01/02/2023] Open
Abstract
Despite the availability of highly effective direct-acting antiviral (DAA) regimens for the treatment of hepatitis C virus (HCV) infections, sustained viral response (SVR) rates remain suboptimal for difficult-to-treat patient populations such as those with HCV genotype 3, cirrhosis or prior treatment experience, warranting development of more potent HCV replication antivirals. AT-527 is the hemi-sulfate salt of AT-511, a novel phosphoramidate prodrug of 2’-fluoro-2’-C-methylguanosine-5'-monophosphate that has potent in vitro activity against HCV. The EC50 of AT-511, determined using HCV laboratory strains and clinical isolates with genotypes 1–5, ranged from 5–28 nM. The active 5'-triphosphate metabolite, AT-9010, specifically inhibited the HCV RNA-dependent RNA polymerase. AT-511 did not inhibit the replication of other selected RNA or DNA viruses in vitro. AT-511 was approximately 10-fold more active than sofosbuvir (SOF) against a panel of laboratory strains and clinical isolates of HCV genotypes 1–5 and remained fully active against S282T resistance-associated variants, with up to 58-fold more potency than SOF. In vitro, AT-511 did not inhibit human DNA polymerases or elicit cytotoxicity or mitochondrial toxicity at concentrations up to 100 μM. Unlike the other potent guanosine analogs PSI-938 and PSI-661, no mutagenic O6-alkylguanine bases were formed when incubated with cytochrome P450 (CYP) 3A4, and AT-511 had IC50 values ≥25 μM against a panel of CYP enzymes. In hepatocytes from multiple species, the active triphosphate was the predominant metabolite produced from the prodrug, with a half-life of 10 h in human hepatocytes. When given orally to rats and monkeys, AT-527 preferentially delivered high levels of AT-9010 in the liver in vivo. These favorable preclinical attributes support the ongoing clinical development of AT-527 and suggest that, when used in combination with an HCV DAA from a different class, AT-527 may increase SVR rates, especially for difficult-to-treat patient populations, and could potentially shorten treatment duration for all patients.
Collapse
Affiliation(s)
- Steven S. Good
- Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
- * E-mail:
| | - Adel Moussa
- Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Xiao-Jian Zhou
- Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | - Keith Pietropaolo
- Atea Pharmaceuticals, Inc., Boston, Massachusetts, United States of America
| | | |
Collapse
|
11
|
Tao S, Zhou L, Zhang H, Zhou S, Amiralaei S, Shelton J, Ehteshami M, Jiang Y, Amblard F, Coats SJ, Schinazi RF. Intracellular metabolism and potential cardiotoxicity of a β-D-2'- C-methyl-2,6-diaminopurine ribonucleoside phosphoramidate that inhibits hepatitis C virus replication. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:204-224. [PMID: 31595843 DOI: 10.1080/15257770.2019.1671594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
β-D-2'-C-Methyl-2,6-diaminopurine ribonucleoside (2'-C-Me-DAPN) phosphoramidate prodrug (DAPN-PD) is a selective hepatitis C virus inhibitor that is metabolized intracellularly into two active metabolites: 2'-C-Methyl-DAPN triphosphate (2'-C-Me-DAPN-TP) and 2'-C-methyl-guanosine 5'-triphosphate (2'-C-Me-GTP). BMS-986094 and IDX-184 are also bioconverted to 2'-C-Me-GTP. A phase IIb clinical trial with BMS-986094 was abruptly halted due to adverse cardiac and renal effects. Herein, we developed an efficient large scale synthesis of DAPN-PD and determined intracellular pharmacology of DAPN-PD in comparison with BMS-986094 and IDX-184, versus Huh-7, HepG2 and interspecies primary hepatocytes and human cardiomyocytes. Imaging data of drug treated human cardiomyocytes was found to be most useful in determining toxicity potential as no obvious beating rate change was observed for IDX-184 up to 50 µM up at 48 h. However, with BMS-986094 and DAPN-PD at 10 µM changes to both beat rate and rhythm were noted.
Collapse
Affiliation(s)
- Sijia Tao
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Longhu Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongwang Zhang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shaoman Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Sheida Amiralaei
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yong Jiang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven J Coats
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Dousson CB. Current and future use of nucleo(s)tide prodrugs in the treatment of hepatitis C virus infection. Antivir Chem Chemother 2019; 26:2040206618756430. [PMID: 29463095 PMCID: PMC5890546 DOI: 10.1177/2040206618756430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
This review describes the current state of discovery of past most important nucleoside and nucleotide prodrugs in the treatment of hepatitis C virus infection as well as future potential drugs currently in discovery or clinical evaluation. I highlight first generation landmark prodrug compounds which have been the foundations of incremental improvements toward the discovery and approval milestone of Sofosbuvir. Sofosbuvir is the first nucleotide prodrug marketed for hepatitis C virus treatment and the backbone of current combination therapies. Since this approval, new nucleotide prodrugs using the same design of Sofosbuvir McGuigan prodrug have emerged, some of them progressing through advanced clinical trials and may become available as new incremental alternative hepatitis C virus treatments in the future. Although since Sofosbuvir success, only minimal design efforts have been invested in finding better liver targeted prodrugs, a few novel prodrugs are being studied and their different modes of activation may prove beneficial over the heart/liver targeting ratio to reduce potential drug–drug interaction in combination therapies and yield safer treatment to patients. Prodrugs have long been avoided as much as possible in the past by development teams due to their metabolism and kinetic characterization complexity, but with their current success in hepatitis C virus treatment, and the knowledge gained in this endeavor, should become a first choice in future tissue targeting drug discovery programs beyond the particular case of nucleos(t)ide analogs.
Collapse
Affiliation(s)
- Cyril B Dousson
- Idenix, an MSD Company-Medicinal Chemistry Cap Gamma, Montpellier, France
| |
Collapse
|
13
|
Lentini NA, Foust BJ, Hsiao CHC, Wiemer AJ, Wiemer DF. Phosphonamidate Prodrugs of a Butyrophilin Ligand Display Plasma Stability and Potent Vγ9 Vδ2 T Cell Stimulation. J Med Chem 2018; 61:8658-8669. [PMID: 30199251 PMCID: PMC6703555 DOI: 10.1021/acs.jmedchem.8b00655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small organophosphorus compounds stimulate Vγ9 Vδ2 T cells if they serve as ligands of butyrophilin 3A1. Because the most potent natural ligand is ( E)-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), which is the last intermediate in bacterial biosynthesis of isoprenoids that is not found in mammalian metabolism, activation of these T cells represents an important component of the immune response to bacterial infections. To identify butyrophilin ligands that may have greater plasma stability, and clinical potential, we have prepared a set of aryl phosphonamidate derivatives (9a-i) of the natural ligand. Testing of these new compounds in assays of T cell response has revealed that this strategy can provide compounds with high potency for expansion of Vγ9 Vδ2 T cells (9f, EC50 = 340 pM) and interferon γ production in response to loaded K562 cells (9e, EC50 = 62 nM). Importantly, all compounds of this class display extended plasma stability ( t1/2 > 24 h). These findings increase our understanding of metabolism of butyrophilin ligands and the structure-activity relationships of phosphonamidate prodrugs.
Collapse
Affiliation(s)
- Nicholas A Lentini
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
| | - Benjamin J Foust
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
| | - Chia-Hung Christine Hsiao
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
- Institute for Systems Genomics , University of Connecticut , Storrs , Connecticut 06269-3092 , United States
| | - David F Wiemer
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242-1294 , United States
- Department of Pharmacology , University of Iowa , Iowa City , Iowa 52242-1109 , United States
| |
Collapse
|
14
|
Rautio J, Meanwell NA, Di L, Hageman MJ. The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov 2018; 17:559-587. [DOI: 10.1038/nrd.2018.46] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Slusarczyk M, Serpi M, Pertusati F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir Chem Chemother 2018; 26:2040206618775243. [PMID: 29792071 PMCID: PMC5971382 DOI: 10.1177/2040206618775243] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories. Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues used in the clinic (poor cellular uptake, poor conversion to the 5'-monophosphate form), the ProTide approach has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer activity. ProTides consist of a 5'-nucleoside monophosphate in which the two hydroxyl groups are masked with an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free 5'-monophosphate, which is further transformed to the active 5'-triphosphate form of the nucleoside analogue. In this review, the seminal contribution of Chris McGuigan's research to this field is presented. His technology proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved antiviral agents.
Collapse
Affiliation(s)
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
Bennett F, Buevich AV, Huang HC, Girijavallabhan V, Kerekes AD, Huang Y, Malikzay A, Smith E, Ferrari E, Senior M, Osterman R, Wang L, Wang J, Pu H, Truong QT, Tawa P, Bogen SL, Davies IW, Weber AE. Concise syntheses and HCV NS5B polymerase inhibition of (2'R)-3 and (2'S)-2'-ethynyluridine-10 and related nucleosides. Bioorg Med Chem Lett 2017; 27:5349-5352. [PMID: 29056248 DOI: 10.1016/j.bmcl.2017.06.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/16/2022]
Abstract
(2'R)-Ethynyl uridine 3, and its (2'S)-diastereomer 10, are synthesised in a divergent fashion from the inexpensive parent nucleoside. Both nucleoside analogues are obtained from a total of 5 simple synthetic steps and 3 trivial column chromatography purifications. To evaluate their effectiveness against HCV NS5B polymerase, the nucleosides were converted to their respective 5'-O-triphosphates. Subsequently, this lead to the discovery of the 2'-β-ethynyl 18 and -propynyl 20 nucleotides having significantly improved potency over Sofosbuvir triphosphate 24.
Collapse
Affiliation(s)
- Frank Bennett
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA.
| | - Alexei V Buevich
- Merck & Co., Inc., MRL., Department of Structure Elucidation, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA.
| | - Hsueh-Cheng Huang
- Merck & Co., Inc., MRL., Department of Viirology, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA.
| | - Vinay Girijavallabhan
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Angela D Kerekes
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Yuhua Huang
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Asra Malikzay
- Merck & Co., Inc., MRL., Department of Viirology, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Elizabeth Smith
- Merck & Co., Inc., MRL., Department of Viirology, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Eric Ferrari
- Merck & Co., Inc., MRL., Department of Viirology, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Mary Senior
- Merck & Co., Inc., MRL., Department of Structure Elucidation, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Rebecca Osterman
- Merck & Co., Inc., MRL., Department of Structure Elucidation, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Lingyan Wang
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Jun Wang
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Haiyan Pu
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Quang T Truong
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Paul Tawa
- Merck & Co., Inc., MRL., Department of Viirology, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Stephane L Bogen
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Ian W Davies
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Ann E Weber
- Merck & Co., Inc., MRL., Department of Medicinal Chemistry, 2015 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| |
Collapse
|
17
|
Girijavallabhan V, Arasappan A, Bennett F, Chen K, Dang Q, Huang Y, Kerekes A, Nair L, Pissarnitski D, Verma V, Alvarez C, Chen P, Cole D, Esposite S, Huang Y, Hong Q, Liu Z, Pan W, Pu H, Rossman R, Truong Q, Vibulbhan B, Wang J, Zhao Z, Olsen D, Stamford A, Bogen S, Njoroge FG. 2'-Modified Guanosine Analogs for the Treatment of HCV. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:277-94. [PMID: 27104963 DOI: 10.1080/15257770.2016.1154968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel 2'-modified guanosine nucleosides were synthesized from inexpensive starting materials in 7-10 steps via hydroazidation or hydrocyanation reactions of the corresponding 2'-olefin. The antiviral effectiveness of the guanosine nucleosides was evaluated by converting them to the corresponding 5'-O-triphosphates (compounds 38-44) and testing their biochemical inhibitory activity against the wild-type NS5B polymerase.
Collapse
Affiliation(s)
| | | | - Frank Bennett
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Kevin Chen
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Qun Dang
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Ying Huang
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Angela Kerekes
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Latha Nair
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | | | - Vishal Verma
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Carmen Alvarez
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Ping Chen
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - David Cole
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Sara Esposite
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Yuhua Huang
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Qingmei Hong
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Zhidan Liu
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Weidong Pan
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Haiyan Pu
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | | | - Quang Truong
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | | | - Jun Wang
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - Zhiqiang Zhao
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | - David Olsen
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | | | - Stephane Bogen
- a Merck Research Laboratories , Kenilworth , NJ 07033 , USA
| | | |
Collapse
|
18
|
Role of Mitochondrial RNA Polymerase in the Toxicity of Nucleotide Inhibitors of Hepatitis C Virus. Antimicrob Agents Chemother 2015; 60:806-17. [PMID: 26596942 PMCID: PMC4750701 DOI: 10.1128/aac.01922-15] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/13/2015] [Indexed: 02/02/2023] Open
Abstract
Toxicity has emerged during the clinical development of many but not all nucleotide inhibitors (NI) of hepatitis C virus (HCV). To better understand the mechanism for adverse events, clinically relevant HCV NI were characterized in biochemical and cellular assays, including assays of decreased viability in multiple cell lines and primary cells, interaction with human DNA and RNA polymerases, and inhibition of mitochondrial protein synthesis and respiration. NI that were incorporated by the mitochondrial RNA polymerase (PolRMT) inhibited mitochondrial protein synthesis and showed a corresponding decrease in mitochondrial oxygen consumption in cells. The nucleoside released by the prodrug balapiravir (R1626), 4'-azido cytidine, was a highly selective inhibitor of mitochondrial RNA transcription. The nucleotide prodrug of 2'-C-methyl guanosine, BMS-986094, showed a primary effect on mitochondrial function at submicromolar concentrations, followed by general cytotoxicity. In contrast, NI containing multiple ribose modifications, including the active forms of mericitabine and sofosbuvir, were poor substrates for PolRMT and did not show mitochondrial toxicity in cells. In general, these studies identified the prostate cell line PC-3 as more than an order of magnitude more sensitive to mitochondrial toxicity than the commonly used HepG2 cells. In conclusion, analogous to the role of mitochondrial DNA polymerase gamma in toxicity caused by some 2'-deoxynucleotide analogs, there is an association between HCV NI that interact with PolRMT and the observation of adverse events. More broadly applied, the sensitive methods for detecting mitochondrial toxicity described here may help in the identification of mitochondrial toxicity prior to clinical testing.
Collapse
|
19
|
Xu Z, Ramsay Shaw B. Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-L-tryptophanyltriphosphates. Molecules 2015; 20:18808-26. [PMID: 26501247 PMCID: PMC6332514 DOI: 10.3390/molecules201018808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022] Open
Abstract
Phosphorus-modified prodrugs of dideoxynucleoside triphosphates (ddNTPs) have shown promise as pronucleotide strategies for improving antiviral activity compared to their parent dideoxynucleosides. Borane modified NTPs offer a promising choice as nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs). However, the availability of α-P-borano-γ-P-substituted NTP analogs remains limited due to challenges with synthesis and purification. Here, we report the chemical synthesis and stability of a new potential class of NRTI prodrugs: stavudine (d4T) 5′-α-P-borano-γ-P-N-l-tryptophanyltriphosphates. One-pot synthesis of these compounds was achieved via a modified cyclic trimetaphosphate approach. Pure Rp and Sp diastereomers were obtained after HPLC separation. Based on LC-MS analysis, we report degradation pathways, half-lives (5–36 days) and mechanisms arising from structural differences to generate the corresponding borano tri- and di-phosphates, and H-phosphonate, via several parallel routes in buffer at physiologically relevant pH and temperature. Here, the major hydrolysis products, d4T α-P-boranotriphosphate Rp and Sp isomers, were isolated by HPLC and identified with spectral data. We first propose that one of the major degradation products, d4T H-phosphonate, is generated from the d4T pronucleotides via a protonation-promoted intramolecular reduction followed by a second step nucleophilic attack. This report could provide valuable information for pronucleotide-based drug design in terms of selective release of target nucleotides.
Collapse
Affiliation(s)
- Zhihong Xu
- Shaw Department of Chemistry, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
20
|
Implications of efficient hepatic delivery by tenofovir alafenamide (GS-7340) for hepatitis B virus therapy. Antimicrob Agents Chemother 2015; 59:3563-9. [PMID: 25870059 DOI: 10.1128/aac.00128-15] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/03/2015] [Indexed: 12/28/2022] Open
Abstract
Tenofovir alafenamide (TAF) is a prodrug of tenofovir (TFV) currently in clinical evaluation for treatment for HIV and hepatitis B virus (HBV) infections. Since the target tissue for HBV is the liver, the hepatic delivery and metabolism of TAF in primary human hepatocytes in vitro and in dogs in vivo were evaluated here. Incubation of primary human hepatocytes with TAF resulted in high levels of the pharmacologically active metabolite tenofovir diphosphate (TFV-DP), which persisted in the cell with a half-life of >24 h. In addition to passive permeability, studies of transfected cell lines suggest that the hepatic uptake of TAF is also facilitated by the organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3, respectively). In order to inhibit HBV reverse transcriptase, TAF must be converted to the pharmacologically active form, TFV-DP. While cathepsin A is known to be the major enzyme hydrolyzing TAF in cells targeted by HIV, including lymphocytes and macrophages, TAF was primarily hydrolyzed by carboxylesterase 1 (CES1) in primary human hepatocytes, with cathepsin A making a small contribution. Following oral administration of TAF to dogs for 7 days, TAF was rapidly absorbed. The appearance of the major metabolite TFV in plasma was accompanied by a rapid decline in circulating TAF. Consistent with the in vitro data, high and persistent levels of TFV-DP were observed in dog livers. Notably, higher liver TFV-DP levels were observed after administration of TAF than those given TDF. These results support the clinical testing of once-daily low-dose TAF for the treatment of HBV infection.
Collapse
|
21
|
Abstract
A substantial portion of metabolism involves transformation of phosphate esters, including pathways leading to nucleotides and oligonucleotides, carbohydrates, isoprenoids and steroids, and phosphorylated proteins. Because the natural substrates bear one or more negative charges, drugs that target these enzymes generally must be charged as well, but small charged molecules can have difficulty traversing the cell membrane by means other than endocytosis. The resulting dichotomy has stimulated a great deal of effort to develop effective prodrugs, compounds that carry little or no charge to enable them to transit biological membranes, but able to release the parent drug once inside the target cell. This chapter presents recent studies on advances in prodrug forms, along with representative examples of their application to marketed and developmental drugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | | |
Collapse
|
22
|
Toti KS, Derudas M, Pertusati F, Sinnaeve D, Van den Broeck F, Margamuljana L, Martins JC, Herdewijn P, Balzarini J, McGuigan C, Van Calenbergh S. Synthesis of an apionucleoside family and discovery of a prodrug with anti-HIV activity. J Org Chem 2014; 79:5097-112. [PMID: 24804575 DOI: 10.1021/jo500659e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report the synthesis of a family of D- and L-furano-D-apionucleosides, their 3'-deoxy, as well as their 2',3'-dideoxy analogues with thymine and adenine nucleobases. Single carbon homologation of 1,2-O-isopropylidene-D-glycero-tetrafuranos-3-ulose (15) and optimized glycosylation conditions involving microwave irradiation were key to the successful synthesis of the target compounds. While all target nucleosides failed to show significant antiviral activity, we demonstrated that the triphosphate of 2',3'-deoxy-D-apio-D-furanoadenosine (1), in contrast to that of its D-apio-L-furanose epimer 2, was readily incorporated into a DNA template by HIV reverse transcriptase to act as a DNA chain terminator. This led us to convert adenine derivative 1 into two phosphoramidate prodrugs. ProTide 9b was found active against HIV-1 and HIV-2 (EC50 = 0.5-1.5 μM), indicating that the lack of activity of the parent nucleoside, and possibly also other members of the D-apio-D-furanose nucleoside family must be sought in the inefficient cellular conversion to the monophosphate.
Collapse
Affiliation(s)
- Kiran S Toti
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University , Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chirapu SR, Bauman JN, Eng H, Goosen TC, Strelevitz TJ, Sinha SC, Dow RL, Finn MG. Undesired versus designed enzymatic cleavage of linkers for liver targeting. Bioorg Med Chem Lett 2014; 24:1144-7. [PMID: 24461291 DOI: 10.1016/j.bmcl.2013.12.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/29/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022]
Abstract
A design for the selective release of drug molecules in the liver was tested, involving the attachment of a representative active agent by an ester linkage to various 2-substituted 5-aminovaleric acid carbamates. The anticipated pathway of carboxylesterase-1-mediated carbamate cleavage followed by lactamization and drug release was frustrated by unexpectedly high sensitivity of the ester linkage toward hydrolysis by carboxylesterase-2 and other microsomal components.
Collapse
Affiliation(s)
- Srinivas R Chirapu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Jonathan N Bauman
- Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - Heather Eng
- Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | - Theunis C Goosen
- Pfizer Global Research & Development, Eastern Point Road, Groton, CT 06340, USA
| | | | - Subhash C Sinha
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Robert L Dow
- Pfizer Global Research & Development, 620 Memorial Drive, Cambridge, MA 02139, USA.
| | - M G Finn
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Metabolism and pharmacokinetics of the anti-hepatitis C virus nucleotide prodrug GS-6620. Antimicrob Agents Chemother 2014; 58:1943-51. [PMID: 24419340 DOI: 10.1128/aac.02350-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The anti-hepatitis C virus nucleotide prodrug GS-6620 employs a double-prodrug approach, with l-alanine-isopropyl ester and phenol moieties attached to the 5'-phosphate that release the nucleoside monophosphate in hepatocytes and a 3'-isobutyryl ester added to improve permeability and oral bioavailability. Consistent with the stability found in intestinal homogenates, following oral administration, intact prodrug levels in blood plasma were the highest in dogs, followed by monkeys, and then were the lowest in hamsters. In contrast, liver levels of the triphosphate metabolite at the equivalent surface area-adjusted doses were highest in hamsters, followed by in dogs and monkeys. Studies in isolated primary hepatocytes suggest that relatively poor oral absorption in hamsters and monkeys was compensated for by relatively efficient hepatocyte activation. As intestinal absorption was found to be critical to the effectiveness of GS-6620 in nonclinical species, stomach pH, formulation, and food effect studies were completed in dogs. Consistent with in vitro absorption studies in Caco-2 cells, the absorption of GS-6620 was found to be complex and highly dependent on concentration. Higher rates of metabolism were observed at lower concentrations that were unable to saturate intestinal efflux transporters. In first-in-human clinical trials, the oral administration of GS-6620 resulted in poor plasma exposure relative to that observed in dogs and in large pharmacokinetic and pharmacodynamic variabilities. While a double-prodrug approach, including a 3'-isobutyryl ester, provided higher intrinsic intestinal permeability, this substitution appeared to be a metabolic liability, resulting in extensive intestinal metabolism and relatively poor oral absorption in humans.
Collapse
|
25
|
Coats SJ, Garnier-Amblard EC, Amblard F, Ehteshami M, Amiralaei S, Zhang H, Zhou L, Boucle SRL, Lu X, Bondada L, Shelton JR, Li H, Liu P, Li C, Cho JH, Chavre SN, Zhou S, Mathew J, Schinazi RF. Chutes and ladders in hepatitis C nucleoside drug development. Antiviral Res 2013; 102:119-47. [PMID: 24275341 DOI: 10.1016/j.antiviral.2013.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023]
Abstract
Chutes and Ladders is an exciting up-and-down-again game in which players race to be the first to the top of the board. Along the way, they will find ladders to help them advance, and chutes that will cause them to move backwards. The development of nucleoside analogs for clinical treatment of hepatitis C presents a similar scenario in which taking shortcuts may help quickly advance a program, but there is always a tremendous risk of being sent backwards as one competes for the finish line. In recent years the treatment options for chronic hepatitis C virus (HCV) infection have expand due to the development of a replicon based in vitro evaluation system, allowing for the identification of multiple drugable viral targets along with a concerted and substantial drug discovery effort. Three major drug targets have reached clinical study for chronic HCV infection: the NS3/4A serine protease, the large phosphoprotein NS5A, and the NS5B RNA-dependent RNA polymerase. Recently, two oral HCV protease inhibitors were approved by the FDA and were the first direct acting anti-HCV agents to result from the substantial research in this area. There are currently many new chemical entities from several different target classes that are being evaluated worldwide in clinical trials for their effectiveness at achieving a sustained virologic response (SVR) (Pham et al., 2004; Radkowski et al., 2005). Clearly the goal is to develop therapies leading to a cure that are safe, widely accessible and available, and effective against all HCV genotypes (GT), and all stages of the disease. Nucleoside analogs that target the HCV NS5B polymerase that have reached human clinical trials is the focus of this review as they have demonstrated significant advantages in the clinic with broader activity against the various HCV GT and a higher barrier to the development of resistant viruses when compared to all other classes of HCV inhibitors.
Collapse
Affiliation(s)
- Steven J Coats
- RFS Pharma, LLC, 1860 Montreal Road, Tucker, GA 30084, USA
| | | | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Sheida Amiralaei
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Hongwang Zhang
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Longhu Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Sebastien R L Boucle
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Lavanya Bondada
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Jadd R Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Hao Li
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Peng Liu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Chengwei Li
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Satish N Chavre
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Shaoman Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Judy Mathew
- RFS Pharma, LLC, 1860 Montreal Road, Tucker, GA 30084, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA 30033, USA.
| |
Collapse
|
26
|
Abstract
This review highlights ten "hot topics" in current antiviral research: (i) new nucleoside derivatives (i.e., PSI-352938) showing high potential as a direct antiviral against hepatitis C virus (HCV); (ii) cyclopropavir, which should be further pursued for treatment of human cytomegalovirus (HCMV) infections; (iii) North-methanocarbathymidine (N-MCT), with a N-locked conformation, showing promising activity against both α- and γ-herpesviruses; (iv) CMX001, an orally bioavailable prodrug of cidofovir with broad-spectrum activity against DNA viruses, including polyoma, adeno, herpes, and pox; (v) favipiravir, which is primarily pursued for the treatment of influenza virus infections, but also inhibits the replication of other RNA viruses, particularly (-)RNA viruses such as arena, bunya, and hanta; (vi) newly emerging antiarenaviral compounds which should be more effective (and less toxic) than the ubiquitously used ribavirin; (vii) antipicornavirus agents in clinical development (pleconaril, BTA-798, and V-073); (viii) natural products receiving increased attention as potential antiviral drugs; (ix) antivirals such as U0126 targeted at specific cellular kinase pathways [i.e., mitogen extracellular kinase (MEK)], showing activity against influenza and other viruses; and (x) two structurally unrelated compounds (i.e., LJ-001 and dUY11) with broad-spectrum activity against virtually all enveloped RNA and DNA viruses.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| |
Collapse
|
27
|
Barakat KH, Law J, Prunotto A, Magee WC, Evans DH, Tyrrell DL, Tuszynski J, Houghton M. Detailed computational study of the active site of the hepatitis C viral RNA polymerase to aid novel drug design. J Chem Inf Model 2013; 53:3031-43. [PMID: 24116674 DOI: 10.1021/ci4003969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hepatitis C virus (HCV) RNA polymerase, NS5B, is a leading target for novel and selective HCV drug design. The enzyme has been the subject of intensive drug discovery aimed at developing direct acting antiviral (DAA) agents that inhibit its activity and hence prevent the virus from replicating its genome. In this study, we focus on one class of NS5B inhibitors, namely nucleos(t)ide mimetics. Forty-one distinct nucleotide structures have been modeled within the active site of NS5B for the six major HCV genotypes. Our comprehensive modeling protocol employed 287 different molecular dynamics simulations combined with the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) methodology to rank and analyze these structures for all genotypes. The binding interactions of the individual compounds have been investigated and reduced to the atomic level. The present study significantly refines our understanding of the mode of action of NS5B-nucleotide-inhibitors, identifies the key structural elements necessary for their activity, and implements the tools for ranking the potential of additional much needed novel inhibitors of NS5B.
Collapse
Affiliation(s)
- Khaled H Barakat
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, ⊥Department of Oncology, and ∥Department of Physics, University of Alberta , Edmonton, AB, Canada T6G 2E1
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Du J, Chun BK, Mosley RT, Bansal S, Bao H, Espiritu C, Lam AM, Murakami E, Niu C, Micolochick Steuer HM, Furman PA, Sofia MJ. Use of 2′-Spirocyclic Ethers in HCV Nucleoside Design. J Med Chem 2013; 57:1826-35. [DOI: 10.1021/jm401224y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinfa Du
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Byoung-Kwon Chun
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Ralph T. Mosley
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Shalini Bansal
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Haiying Bao
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Christine Espiritu
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Angela M. Lam
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Eisuke Murakami
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Congrong Niu
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | | | - Phillip A. Furman
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| | - Michael J. Sofia
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States
| |
Collapse
|
29
|
An in vitro evaluation of antioxidant and colonic microbial profile levels following mushroom consumption. BIOMED RESEARCH INTERNATIONAL 2013; 2013:289821. [PMID: 24027755 PMCID: PMC3762205 DOI: 10.1155/2013/289821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 01/27/2023]
Abstract
The biological activity of mushroom consumption is achieved by the antioxidant effect of constituent biomolecules released during digestion. In the following study, the consumption of mushroom fungi was determined to increase the number of Lactobacillus and Bifidobacterium strains within the colon. The main phenolic antioxidant compounds identified were both gentisic and homogentisic acids. Moreover, the flavonoid catechin as well as a significant amount of δ- and γ-tocopherols was determined. The amount of Lactobacillus and Bifidobacterium strains from different sections of the human colon was significantly correlated with levels of antioxidative biomolecules. The experimental data clearly demonstrate a significant impact of mushroom consumption on the fermentative function of microorganisms in the human colon, resulting in the homeostasis of normal physiological colonic functions.
Collapse
|
30
|
Dusheiko G, Burney T. Hepatitis C treatment: interferon free or interferon freer? Lancet 2013; 381:2063-5. [PMID: 23499437 DOI: 10.1016/s0140-6736(13)60636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Geoffrey Dusheiko
- UCL Institute of Liver and Digestive Disease, Royal Free Hospital, London NW3 2PF, UK.
| | | |
Collapse
|
31
|
Sofia MJ. Nucleotide prodrugs for the treatment of HCV infection. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:39-73. [PMID: 23885998 DOI: 10.1016/b978-0-12-405880-4.00002-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The HCV RNA-dependent RNA polymerase is an essential enzyme in HCV viral replication and has been a prominent target in the search for therapies to treat individuals infected with HCV. The development of both nucleoside and nucleotide HCV inhibitors has been pursued because of their potential for showing pangenotypic activity and because of their high barrier to resistance. Even though nucleoside inhibitors were shown to be effective in a clinical setting, their potency limited their effectiveness. The exploitation of prodrug strategies to deliver nucleoside 5'-monophosphates has resulted in the development of a number of very potent inhibitors of HCV replication. In addition, several of these nucleotide prodrugs have demonstrated liver-targeting characteristics when administered orally. Human clinical studies have shown that a number of nucleotide prodrugs are potent inhibitors of viral replication leading to significant reductions in viral load when given orally. Combinations of these nucleotide prodrugs with either pegylated interferon-α and ribavirin or another direct acting antiviral alone has lead to cure rates as high as 100% after only 12 weeks of therapy. The combination of a nucleotide prodrug and another direct-acting antiviral agent holds the promise of delivering an interferon-free therapy for HCV patients thus eliminating the undesirable side effects associated with taking interferon.
Collapse
|
32
|
|
33
|
The race for interferon-free HCV therapies: a snapshot by the spring of 2012. Rev Med Virol 2012; 22:392-411. [DOI: 10.1002/rmv.1727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/05/2012] [Accepted: 07/13/2012] [Indexed: 12/16/2022]
|
34
|
Progress in the development of anti-hepatitis C virus nucleoside and nucleotide prodrugs. Future Med Chem 2012; 4:625-50. [PMID: 22458682 DOI: 10.4155/fmc.12.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The search for new anti-hepatitis C virus (HCV) therapeutics continues as the current treatment, consisting of PEGylated IFN-α and ribavirin, is of limited efficacy, nonspecific and can cause significant side effects. Modified nucleoside analogues with improved efficacy and selectivity, may become the backbone of the future standard of care for anti-HCV therapies. Several families of modified nucleoside are known to inhibit HCV RNA-dependent RNA polymerase, a vital enzyme for viral replication. Ongoing efforts are focused on improvement of potency, selectivity and delivery of antiviral nucleoside analogues, with several recent promising advances into clinical trials. This review summarizes the current progress in the development of new anti-HCV nucleoside and nucleotide prodrugs.
Collapse
|
35
|
Metabolic activation of the anti-hepatitis C virus nucleotide prodrug PSI-352938. Antimicrob Agents Chemother 2012; 56:3767-75. [PMID: 22526308 DOI: 10.1128/aac.00530-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PSI-352938 is a novel cyclic phosphate prodrug of β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methylguanosine-5'-monophosphate with potent anti-HCV activity. In order to inhibit the NS5B RNA-dependent RNA polymerase, PSI-352938 must be metabolized to the active triphosphate form, PSI-352666. During in vitro incubations with PSI-352938, significantly larger amounts of PSI-352666 were formed in primary hepatocytes than in clone A hepatitis C virus (HCV) replicon cells. Metabolism and biochemical assays were performed to define the molecular mechanism of PSI-352938 activation. The first step, removal of the isopropyl group on the 3',5'-cyclic phosphate moiety, was found to be cytochrome P450 (CYP) 3A4 dependent, with other CYP isoforms unable to catalyze the reaction. The second step, opening of the cyclic phosphate ring, was catalyzed by phosphodiesterases (PDEs) 2A1, 5A, 9A, and 11A4, all known to be expressed in the liver. The role of these enzymes in the activation of PSI-352938 was confirmed in primary human hepatocytes, where prodrug activation was reduced by inhibitors of CYP3A4 and PDEs. The third step, removal of the O(6)-ethyl group on the nucleobase, was shown to be catalyzed by adenosine deaminase-like protein 1. The resulting monophosphate was consecutively phosphorylated to the diphosphate and to the triphosphate PSI-352666 by guanylate kinase 1 and nucleoside diphosphate kinase, respectively. In addition, formation of nucleoside metabolites was observed in primary hepatocytes, and ecto-5'-nucleotidase was able to dephosphorylate the monophosphate metabolites. Since CYP3A4 is highly expressed in the liver, the CYP3A4-dependent metabolism of PSI-352938 makes it an effective liver-targeted prodrug, in part accounting for the potent antiviral activity observed clinically.
Collapse
|
36
|
Abstract
The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory β-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory β-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.
Collapse
|
37
|
Sofia MJ, Chang W, Furman PA, Mosley RT, Ross BS. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J Med Chem 2012; 55:2481-531. [PMID: 22185586 DOI: 10.1021/jm201384j] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael J Sofia
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States.
| | | | | | | | | |
Collapse
|
38
|
Hepatitis C virus nucleotide inhibitors PSI-352938 and PSI-353661 exhibit a novel mechanism of resistance requiring multiple mutations within replicon RNA. J Virol 2011; 85:12334-42. [PMID: 21957306 DOI: 10.1128/jvi.05639-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methylguanosine-5'-monophosphate. Both compounds are metabolized to the same active 5'-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2'-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2'-F-2'-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2'-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type.
Collapse
|
39
|
Ray AS, Hostetler KY. Application of kinase bypass strategies to nucleoside antivirals. Antiviral Res 2011; 92:277-91. [PMID: 21878354 DOI: 10.1016/j.antiviral.2011.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 12/19/2022]
Abstract
Nucleoside and nucleotide analogs have served as the cornerstones of antiviral therapy for many viruses. However, the requirement for intracellular activation and side-effects caused by distribution to off-target sites of toxicity still limit the efficacy of the current generation of drugs. Kinase bypass strategies, where phosphorylated nucleosides are delivered directly into cells, thereby, removing the requirement for enzyme catalyzed phosphorylation steps, have already changed the face of antiviral therapy in the form of the acyclic nucleoside phosphonates, cidofovir, adefovir (given orally as its dipivoxil prodrug) and tenofovir (given orally as its disoproxil prodrug), currently used clinically. These strategies hold further promise to advance the field of antiviral therapy with at least 10 kinase bypass and tissue targeted prodrugs, representing seven distinct prodrug classes, currently in clinical trials. This article reviews the history of kinase bypass strategies applied to nucleoside antivirals and the evolution of different tissue targeted prodrug strategies, highlighting clinically relevant examples.
Collapse
Affiliation(s)
- Adrian S Ray
- Gilead Sciences, Inc., Foster City, CA 94404, USA.
| | | |
Collapse
|