1
|
Troshkova N, Politanskaya L, Bagryanskaya I, Chuikov I, Wang J, Ilyina P, Mikhalski M, Esaulkova I, Volobueva A, Zarubaev V. Fluorinated 2-arylchroman-4-ones and their derivatives: synthesis, structure and antiviral activity. Mol Divers 2024; 28:3635-3660. [PMID: 38153637 DOI: 10.1007/s11030-023-10769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/10/2023] [Indexed: 12/29/2023]
Abstract
A number of new biologically interesting fluorinated 2-arylchroman-4-ones and their 3-arylidene derivatives were synthesized based on the p-toluenesulfonic acid-catalyzed one-pot reaction of 2-hydroxyacetophenones with benzaldehydes. It was found that obtained (E)-3-arylidene-2-aryl-chroman-4-ones reacted with malononitrile under base conditions to form 4,5-diaryl-4H,5H-pyrano[3,2-c]chromenes. The structures of the synthesized fluorinated compounds were confirmed by 1H, 19F, and 13C NMR spectral data, and for some representatives of heterocycles also using NOESY spectra and X-ray diffraction analysis. A large series of obtained flavanone derivatives as well as products of their modification (35 examples) containing from 1 to 12 fluorine atoms in the structure was tested in vitro for cytotoxicity in MDCK cell line and for antiviral activity against influenza A virus. Among the studied heterocycles 6,8-difluoro-2-(4-(trifluoromethyl)phenyl)chroman-4-one (IC50 = 6 μM, SI = 150) exhibited the greatest activity against influenza A/Puerto Rico/8/34 (H1N1) virus. Moreover, this compound appeared active against phylogenetically distinct influenza viruses, A(H5N2) and influenza B (SI's of 53 and 42, correspondingly). The data obtained suggest that the fluorinated derivatives of 2-arylchroman-4-ones are prospective scaffolds for further development of potent anti-influenza antivirals.
Collapse
Affiliation(s)
- Nadezhda Troshkova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Larisa Politanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090.
| | - Irina Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Igor Chuikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
| | - Jiaying Wang
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Ac. Lavrentiev Avenue, 9, Novosibirsk, Russian Federation, 630090
- Novosibirsk State University, Pirogova Street, 2, Novosibirsk, Russian Federation, 630090
| | - Polina Ilyina
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Mikhail Mikhalski
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Iana Esaulkova
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Alexandrina Volobueva
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| | - Vladimir Zarubaev
- Saint-Petersburg Pasteur Research Institute of Epidemiology and Microbiology, Mira Street, 14, Saint-Petersburg, Russian Federation, 197101
| |
Collapse
|
2
|
Tang MC, Wong KH, Azman AS, Lani R. Applications and advancements in animal models for antiviral research on mosquito-borne arboviruses. Animal Model Exp Med 2024; 7:673-684. [PMID: 38987937 PMCID: PMC11528384 DOI: 10.1002/ame2.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Vector-borne diseases caused by arthropod-borne viruses (arboviruses) are a considerable challenge to public health globally. Mosquito-borne arboviruses, such as Chikungunya, Dengue, and Zika viruses, cause a range of human illnesses and may be fatal. Currently, efforts to control these diseases still face challenges due to growing vector resistance towards insecticides, urbanization, and limited effective antiviral treatments and vaccines. Animal models are crucial in antiviral research on mosquito-borne arboviruses, playing a role in understanding disease mechanisms, vaccine development, and toxicity testing, but the application of animal models still faces the challenges of ethical considerations and animal-to-human translational success. Genetically engineered mouse models, hamster models and non-human primate (NHP) are currently used in arbovirus research, but new models such as tree shrews and novel humanized mice are emerging. In the context of Malaysian research, the use of long-tailed macaques as potential NHP models for arbovirus research is possible; however, it faces the ethical dilemma of using an endangered species for scientific purposes. Overall, animal models play a crucial role in advancing infectious disease research, but a balance between medical research and species conservation must be upheld.
Collapse
Affiliation(s)
| | - Ka Heng Wong
- School of ScienceMonash University MalaysiaSunwaySelangorMalaysia
| | | | - Rafidah Lani
- Department of Medical Microbiology, Faculty of MedicineUniversiti MalayaKuala LumpurMalaysia
| |
Collapse
|
3
|
Valivand N, Aravand S, Lotfi H, Esfahani AJ, Ahmadpour-Yazdi H, Gheibi N. Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways. Mol Biol Rep 2024; 51:931. [PMID: 39177837 DOI: 10.1007/s11033-024-09807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
Propolis is a natural product used in cancer treatment, which is produced by bees via different sources. The chemical composition of Propolis is determined based on the climatic and geographical conditions, as well as harvesting time and method. This compound has been the subject of numerous investigational endeavors due to its expansive therapeutic capacity which includes antibacterial, anti-fungal, anti-inflammatory, anti-oxidant, anti-viral, and anti-cancer effects. The growing incidence rate of different cancers necessitates the need for developing novel preventive and therapeutic strategies. Chemotherapy, radiotherapy, and stem cell therapy have proved effective in cancer treatment, regardless of the adverse events associated with these modalities. Clinical application of natural compounds such as Propolis may confer promise as an adjuvant therapeutic intervention, particularly in certain subpopulations of patients that develop adverse events associated with anticancer regimens. The diverse biologically active compounds of propolis are believed to confer anti-cancer potential by modulation of critical signaling cascades such as caffeic acid phenethyl ester, Galangin, Artepillin C, Chrysin, Quercetin, Caffeic acid, Nymphaeols A and C, Frondoside A, Genistein, p-coumaric acid, and Propolin C. This review article aims to deliver a mechanistic account of anti-cancer effects of propolis and its components. Propolis can prevent angiogenesis by downregulating pathways involving Jun-N terminal kinase, ERK1/2, Akt and NF-ƘB, while counteracting metastatic progression of cancer by inhibiting Wtn2 and FAK, and MAPK and PI3K/AKT signaling pathways. Moreover, propolis or its main components show regulatory effects on cyclin D, CDK2/4/6, and their inhibitors. Additionally, propolis-induced up-regulation of p21 and p27 may result in cell cycle arrest at G2/M or G0/G1. The broad anti-apoptotic effects of propolis are mediated through upregulation of TRAIL, Bax, p53, and downregulation of the ERK1/2 signaling pathway. Considering the growing body of evidence regarding different anti-cancers effects of propolis and its active components, this natural compound could be considered an effective adjuvant therapy aimed at reducing related side effects associated with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nassim Valivand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Aravand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azam Janati Esfahani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Ahmadpour-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
4
|
Agbebi EA, Omotuyi OI, Oyinloye BE, Okeke UB, Apanisile I, Okor B, Adefabijo D. Ethnomedicine, phytochemistry, and pharmacological activities of Uvaria chamae P. Beauv.: A comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5421-5436. [PMID: 38421410 DOI: 10.1007/s00210-024-03018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The use of medicinal plants as food and medicine has been a common practice in the world, especially in tropical African countries. One such plant in West Africa is Uvaria chamae, also known as Bush banana, renowned for its diverse ethnomedicinal applications and, more recently, for its pharmacological activities attributed to a rich array of phytochemical constituents. Various parts of the plant have been traditionally employed for the treatment of diverse health issues such as digestive disorders, fever, dysmenorrhea, cancer, wound healing, and many more. To unravel the bioactive compounds responsible for these medicinal properties, a comprehensive phytochemical analysis has been undertaken. Notable isolates include chamanetin, dichamanetin, uvaretin, and uvarinol from different parts of the plant. The pharmacological evaluation of these compounds has revealed significant anticancer and antimicrobial properties. Therefore, this review provides a thorough examination of the phytochemicals derived from Uvaria chamae, detailing their associated pharmacological activities both in vitro and in vivo. The review emphasizes the potential of Uvaria chamae as a valuable source of lead compounds for cancer chemotherapy and antimicrobial drug discovery.
Collapse
Affiliation(s)
- Emmanuel Ayodeji Agbebi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria.
- Department of Pharmacognosy and Natural Products, College of Pharmacy, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria.
| | - Olaposi Idowu Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
- Bio-Computing & Drug Research Unit, Mols and Sims, Ado Ekiti, Ekiti State, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, 3886, South Africa
| | - Uchenna Benjamin Okeke
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
| | - IyanuOluwa Apanisile
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
| | - Beatrice Okor
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
| | - Daniel Adefabijo
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
| |
Collapse
|
5
|
Kang N, Kim EA, Park A, Heo SY, Heo JH, Heo SJ. Antiviral Potential of Fucoxanthin, an Edible Carotenoid Purified from Sargassum siliquastrum, against Zika Virus. Mar Drugs 2024; 22:247. [PMID: 38921558 PMCID: PMC11204710 DOI: 10.3390/md22060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of -151.449, -303.478, and -290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections.
Collapse
Affiliation(s)
- Nalae Kang
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Eun-A Kim
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Areumi Park
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Seong-Yeong Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Jun-Ho Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
| | - Soo-Jin Heo
- Jeju Bio Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea; (N.K.); (E.-A.K.); (A.P.); (S.-Y.H.); (J.-H.H.)
- Department of Biology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Dobhal K, Garg R, Singh A, Semwal A. Insight into the Natural Biomolecules (BMs): Promising Candidates as Zika Virus Inhibitors. Infect Disord Drug Targets 2024; 24:e020224226681. [PMID: 38318833 DOI: 10.2174/0118715265272414231226092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024]
Abstract
Zika virus (ZIKV) is among the relatively new infectious disease threats that include SARS-CoV-2, coronavirus, monkeypox (Mpox) virus, etc. ZIKV has been reported to cause severe health risks to the fetus. To date, satisfactory treatment is still not available for the treatment of ZIKV infection. This review examines the last five years of work using natural biomolecules (BMs) to counteract the ZIKV through virtual screening and in vitro investigations. Virtual screening has identified doramectin, pinocembrin, hesperidins, epigallocatechin gallate, pedalitin, and quercetin as potentially active versus ZIKV infection. In vitro, testing has shown that nordihydroguaiaretic acid, mefloquine, isoquercitrin, glycyrrhetinic acid, patentiflorin-A, rottlerin, and harringtonine can reduce ZIKV infections in cell lines. However, in vivo, testing is limited, fortunately, emetine, rottlerin, patentiflorin-A, and lycorine have shown in vivo anti- ZIKV potential. This review focuses on natural biomolecules that show a particularly high selective index (>10). There is limited in vivo and clinical trial data for natural BMs, which needs to be an active area of investigation. This review aims to compile the known reference data and discuss the barriers associated with discovering and using natural BM agents to control ZIKV infection.
Collapse
Affiliation(s)
- Kiran Dobhal
- College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India
| | - Ruchika Garg
- School of Pharmacy, Maharaja Agrasen Universities, Baddi, Solan, Himachal Pradesh, 174103, India
| | - Alka Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University Balawala, Dehradun, Uttarakhand, India
| | - Amit Semwal
- College of Pharmacy, Shivalik College, Dehradun, Uttarakhand, India
| |
Collapse
|
7
|
Mushtaq Z, Aslam M, Imran M, Abdelgawad MA, Saeed F, Khursheed T, Umar M, Abdulmonem WA, Ghorab AHA, Alsagaby SA, Tufail T, Raza MA, Hussain M, Al JBawi E. Polymethoxyflavones: an updated review on pharmacological properties and underlying molecular mechanisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2189568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tara Khursheed
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed H. Al Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory sciences, College of Applied Medical Sciences, Majmaah University, AI Majmaah, Saudi Arabia
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, the University of Lahore, Lahore, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
8
|
Mohanty SS, Sahoo CR, Paidesetty SK, Padhy RN. Role of phytocompounds as the potential anti-viral agent: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2311-2329. [PMID: 37160482 PMCID: PMC10169142 DOI: 10.1007/s00210-023-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Viral diseases are the most notorious infective agent(s) causing morbidity and mortality in every nook and corner for ages; viruses are active in host cells, and specific anti-virus medicines' developments remain uncanny. In this century of the biological era, human viruses act predominantly as versatile spreaders. The infection of the present COVID-19 virus is up in the air; blithely, the integument of medicinal chemistry approaches, particularly bioactive derived phytocompounds could be helpful to control those human viruses, recognized in the last 100 years. Indeed, natural products are being used for various therapeutic purposes. The major bioactive phytocompounds are chemically containing coumarin, thiosulfonate, steroid, polysaccharide, tannin, lignin, proanthocyanidin, terpene, quinone, saponin, flavonoid, alkaloid, and polyphenol, that are documented for inhibitory action against several viral infections. Mostly, about 20-30% of plants from tropical or temperate regions are known to have some antiviral activity. This comprehensive analysis of bioactive-derived phytocompounds would represent a significant impact and might be helpful for antiviral research and the current state of viral treatments.
Collapse
Affiliation(s)
- Swati Sucharita Mohanty
- Department of Medical Oncology, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
- Present Address: Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, ICMR-Regional Medical Research Centre, 751023 Bhubaneswar, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Rabindra Nath Padhy
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| |
Collapse
|
9
|
Yi B, Chew BXZ, Chen H, Lee RCH, Fong YD, Chin WX, Mok CK, Chu JJH. Antiviral Activity of Catechin against Dengue Virus Infection. Viruses 2023; 15:1377. [PMID: 37376676 DOI: 10.3390/v15061377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Dengue virus (DENV) is the cause of dengue fever, infecting 390 million people worldwide per year. It is transmitted to humans through the bites of mosquitoes and could potentially develop severe symptoms. In spite of the rising social and economic impact inflicted by the disease on the global population, a conspicuous lack of efficacious therapeutics against DENV still persists. In this study, catechin, a natural polyphenol compound, was evaluated as a DENV infection inhibitor in vitro. Through time-course studies, catechin was shown to inhibit a post-entry stage of the DENV replication cycle. Further investigation revealed its role in affecting viral protein translation. Catechin inhibited the replication of all four DENV serotypes and chikungunya virus (CHIKV). Together, these results demonstrate the ability of catechin to inhibit DENV replication, hinting at its potential to be used as a starting scaffold for further development of antivirals against DENV infection.
Collapse
Affiliation(s)
- Bowen Yi
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Benjamin Xuan Zheng Chew
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuhui Deborah Fong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wei Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee Keng Mok
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Infectious Disease Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| |
Collapse
|
10
|
Pereira RS, Santos FCP, Campana PRV, Costa VV, de Pádua RM, Souza DG, Teixeira MM, Braga FC. Natural Products and Derivatives as Potential Zika virus Inhibitors: A Comprehensive Review. Viruses 2023; 15:v15051211. [PMID: 37243296 DOI: 10.3390/v15051211] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) is an arbovirus whose infection in humans can lead to severe outcomes. This article reviews studies reporting the anti-ZIKV activity of natural products (NPs) and derivatives published from 1997 to 2022, which were carried out with NPs obtained from plants (82.4%) or semisynthetic/synthetic derivatives, fungi (3.1%), bacteria (7.6%), animals (1.2%) and marine organisms (1.9%) along with miscellaneous compounds (3.8%). Classes of NPs reported to present anti-ZIKV activity include polyphenols, triterpenes, alkaloids, and steroids, among others. The highest values of the selectivity index, the ratio between cytotoxicity and antiviral activity (SI = CC50/EC50), were reported for epigallocatechin gallate (SI ≥ 25,000) and anisomycin (SI ≥ 11,900) obtained from Streptomyces bacteria, dolastane (SI = 1246) isolated from the marine seaweed Canistrocarpus cervicorni, and the flavonol myricetin (SI ≥ 862). NPs mostly act at the stages of viral adsorption and internalization in addition to presenting virucidal effect. The data demonstrate the potential of NPs for developing new anti-ZIKV agents and highlight the lack of studies addressing their molecular mechanisms of action and pre-clinical studies of efficacy and safety in animal models. To the best of our knowledge, none of the active compounds has been submitted to clinical studies.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Françoise Camila Pereira Santos
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
11
|
Zheng R, Chen D, Su J, Lai J, Wang C, Chen H, Ning Z, Liu X, Tian X, Li Y, Zhu B. Inhibition of HAdV-14 induced apoptosis by selenocystine through ROS-mediated PARP and p53 signaling pathways. J Trace Elem Med Biol 2023; 79:127213. [PMID: 37244045 DOI: 10.1016/j.jtemb.2023.127213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/10/2022] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Human Adenovirus (HAdV) can cause severe respiratory symptoms in people with low immunity and there is no targeted treatment for adenovirus infection. Anti-adenoviral drugs have high clinical significance for inhibiting adenovirus infection. Selenium (Se) plays an important role in anti-oxidation, redox signal transduction, and redox homeostasis. The excellent biological activity of Se is mainly achieved by being converted into selenocystine (SeC). Se participates in the active sites of various selenoproteins in the form of SeC. The ability of SeC to resist the virus has raised high awareness due to its unique antioxidative activity in recent years. The antiviral ability of the SeC was determined by detecting the infection rate of the virus in the cells. METHODS The experiment mainly investigated the antiviral mechanism of SeC by locating the virus in the cell, detecting the generation of ROS, observing the DNA status of the cell, and monitoring the mitochondrial membrane potential. RESULTS In the present study, SeC was designed to resist A549 cells infections caused by HAdV-14. SeC could prevent HAdV-14 from causing cell apoptosis-related to DNA damage. SeC significantly inhibited ROS generation and protect the cells from oxidative damage induced by ROS against HAdV-14. SeC induced the increase of antiviral cytokines such as IL-6 and IL-8 by activating the Jak2 signaling pathway, and repaired DNA lesions by suppressing ATR, p53, and PARP signaling pathways. CONCLUSION SeC might provide an effective selenium species with antiviral properties for the therapies against HAdV-14.
Collapse
Affiliation(s)
- Ruilin Zheng
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Danyang Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Jingyao Su
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Jia Lai
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Chenyang Wang
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Haitian Chen
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Zhihui Ning
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Xia Liu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, Guangdong, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China.
| | - Bing Zhu
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
12
|
Chen X, Wei Q, Si F, Wang F, Lu Q, Guo Z, Chai Y, Zhu R, Xing G, Jin Q, Zhang G. Design and Identification of a Novel Antiviral Affinity Peptide against Fowl Adenovirus Serotype 4 (FAdV-4) by Targeting Fiber2 Protein. Viruses 2023; 15:v15040821. [PMID: 37112802 PMCID: PMC10146638 DOI: 10.3390/v15040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Outbreaks of hydropericardium hepatitis syndrome caused by fowl adenovirus serotype 4 (FAdV-4) with a novel genotype have been reported in China since 2015, with significant economic losses to the poultry industry. Fiber2 is one of the important structural proteins on FAdV-4 virions. In this study, the C-terminal knob domain of the FAdV-4 Fiber2 protein was expressed and purified, and its trimer structure (PDB ID: 7W83) was determined for the first time. A series of affinity peptides targeting the knob domain of the Fiber2 protein were designed and synthesized on the basis of the crystal structure using computer virtual screening technology. A total of eight peptides were screened using an immunoperoxidase monolayer assay and RT-qPCR, and they exhibited strong binding affinities to the knob domain of the FAdV-4 Fiber2 protein in a surface plasmon resonance assay. Treatment with peptide number 15 (P15; WWHEKE) at different concentrations (10, 25, and 50 μM) significantly reduced the expression level of the Fiber2 protein and the viral titer during FAdV-4 infection. P15 was found to be an optimal peptide with antiviral activity against FAdV-4 in vitro with no cytotoxic effect on LMH cells up to 200 μM. This study led to the identification of a class of affinity peptides designed using computer virtual screening technology that targeted the knob domain of the FAdV-4 Fiber2 protein and may be developed as a novel potential and effective antiviral strategy in the prevention and control of FAdV-4.
Collapse
Affiliation(s)
- Xiao Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Fangyu Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qingxia Lu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenhua Guo
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongxiao Chai
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Rongfang Zhu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guangxu Xing
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Paul A, Chakraborty N, Sarkar A, Acharya K, Ranjan A, Chauhan A, Srivastava S, Singh AK, Rai AK, Mubeen I, Prasad R. Ethnopharmacological Potential of Phytochemicals and Phytogenic Products against Human RNA Viral Diseases as Preventive Therapeutics. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1977602. [PMID: 36860811 PMCID: PMC9970710 DOI: 10.1155/2023/1977602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
RNA viruses have been the most destructive due to their transmissibility and lack of control measures. Developments of vaccines for RNA viruses are very tough or almost impossible as viruses are highly mutable. For the last few decades, most of the epidemic and pandemic viral diseases have wreaked huge devastation with innumerable fatalities. To combat this threat to mankind, plant-derived novel antiviral products may contribute as reliable alternatives. They are assumed to be nontoxic, less hazardous, and safe compounds that have been in uses in the beginning of human civilization. In this growing COVID-19 pandemic, the present review amalgamates and depicts the role of various plant products in curing viral diseases in humans.
Collapse
Affiliation(s)
- Anamika Paul
- Department of Botany, Scottish Church College, Kolkata 700006, India
| | | | - Anik Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, U.P., India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| |
Collapse
|
14
|
Flavonoid Components, Distribution, and Biological Activities in Taxus: A review. Molecules 2023; 28:molecules28041713. [PMID: 36838700 PMCID: PMC9959731 DOI: 10.3390/molecules28041713] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Taxus, also known as "gold in plants" because of the famous agents with emphases on Taxol and Docetaxel, is a genus of the family Taxaceae, distributed almost around the world. The plants hold an important place in traditional medicine in China, and its products are used for treating treat dysuria, swelling and pain, diabetes, and irregular menstruation in women. In order to make a further study and better application of Taxus plants for the future, cited references from between 1958 and 2022 were collected from the Web of Science, the China National Knowledge Internet (CNKI), SciFinder, and Google Scholar, and the chemical structures, distribution, and bioactivity of flavonoids identified from Taxus samples were summed up in the research. So far, 59 flavonoids in total with different skeletons were identified from Taxus plants, presenting special characteristics of compound distribution. These compounds have been reported to display significant antibacterial, antiaging, anti-Alzheimer's, antidiabetes, anticancer, antidepressant, antileishmaniasis, anti-inflammatory, antinociceptive and antiallergic, antivirus, antilipase, neuronal protective, and hepatic-protective activities, as well as promotion of melanogenesis. Flavonoids represent a good example of the utilization of the Taxus species. In the future, further pharmacological and clinical experiments for flavonoids could be accomplished to promote the preparation of relative drugs.
Collapse
|
15
|
Shokry S, Hegazy A, Abbas AM, Mostafa I, Eissa IH, Metwaly AM, Yahya G, El-Shazly AM, Aboshanab KM, Mostafa A. Phytoestrogen β-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses. Vaccines (Basel) 2023; 11:228. [PMID: 36851106 PMCID: PMC9964242 DOI: 10.3390/vaccines11020228] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Influenza is a contagious infection in humans that is caused frequently by low pathogenic seasonal influenza viruses and occasionally by pathogenic avian influenza viruses (AIV) of H5, H7, and H9 subtypes. Recently, the clinical sector in poultry and humans has been confronted with many challenges, including the limited number of antiviral drugs and the rapid evolution of drug-resistant variants. Herein, the anti-influenza activities of various plant-derived phytochemicals were investigated against highly pathogenic avian influenza A/H5N1 virus (HPAIV H5N1) and seasonal low pathogenic human influenza A/H1N1 virus (LPHIV H1N1). Out of the 22 tested phytochemicals, the steroid compounds β-sitosterol and β-sitosterol-O-glucoside have very potent activity against the predefined influenza A viruses (IAV). Both steroids could induce such activity by affecting multiple stages during IAV replication cycles, including viral adsorption and replication with a major and significant impact on the virus directly in a cell-free status "viricidal effect". On a molecular level, several molecular docking studies suggested that β-sitosterol and β-sitosterol-O-glucoside exhibited viricidal effects through blocking active binding sites of the hemagglutinin surface protein, as well as showing inhibitory effects against replication through the binding with influenza neuraminidase activity and blocking the active sites of the M2 proton channel activity. The phytoestrogen β-sitosterol has structural similarity with the active form of the female sex hormone estradiol, and this similarity is likely one of the molecular determinants that enables the phytoestrogen β-sitosterol and its derivative to control IAV infection in vitro. This promising anti-influenza activity of β-sitosterol and its O-glycoside derivative, according to both in vitro and cheminformatics studies, recommend both phytochemicals for further studies going through preclinical and clinical phases as efficient anti-influenza drug candidates.
Collapse
Affiliation(s)
- Sara Shokry
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt
| | - Ahmad M. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Sinai 46612, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
16
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
17
|
Fong YD, Chu JJH. Natural products as Zika antivirals. Med Res Rev 2022; 42:1739-1780. [PMID: 35593443 PMCID: PMC9540820 DOI: 10.1002/med.21891] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is an arbovirus belonging to the flavivirus genus and is transmitted in Aedes mosquito vectors. Since its discovery in humans in 1952 in Uganda, ZIKV has been responsible for many outbreaks in South America, Africa, and Asia. Patients infected with ZIKV are usually asymptomatic; mild symptoms include fever, joint and muscle pain, and fatigue. However, severe infections may have neurological implications, such as Guillain-Barré syndrome and fetal microcephaly. To date, there are no existing approved therapeutic drugs or vaccines against ZIKV infections; treatments mainly target the symptoms of infection. Preventive measures against mosquito breeding are the main strategy for limiting the spread of the virus. Antiviral drug research for the treatment of ZIKV infection has been rapidly developing, with many drug candidates emerging from drug repurposing studies, and compound screening. In particular, several studies have demonstrated the potential of natural products as antivirals for ZIKV infection. Hence, this paper will review recent advances in natural products in ZIKV antiviral drug discovery.
Collapse
Affiliation(s)
- Yuhui Deborah Fong
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Justin Jang Hann Chu
- Integrative Sciences and Engineering Programme (ISEP), NUS Graduate School (NUSGS)National University of SingaporeSingaporeSingapore
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Program, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for ScienceTechnology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
18
|
Wang X, Chen Y, Shi H, Zou P. Erythromycin Estolate Is a Potent Inhibitor Against HCoV-OC43 by Directly Inactivating the Virus Particle. Front Cell Infect Microbiol 2022; 12:905248. [PMID: 35873167 PMCID: PMC9301004 DOI: 10.3389/fcimb.2022.905248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
In addition to antibacterial effects, macrolide antibiotics exhibit other extensive pharmacological effects, such as anti-inflammatory and antiviral activities. Erythromycin estolate, one of the macrolide antibiotics, was previously investigated to effectively inhibit infections of various flaviviruses including Zika virus, dengue virus, and yellow fever virus, but its antiviral effect against human coronavirus remains unknown. Thus, the current study was designed to evaluate the antiviral efficacy of erythromycin estolate against human coronavirus strain OC43 (HCoV-OC43) and to illustrate the underlying mechanisms. Erythromycin estolate effectively inhibited HCoV-OC43 infection in different cell types and significantly reduced virus titers at safe concentration without cell cytotoxicity. Furthermore, erythromycin estolate was identified to inhibit HCoV-OC43 infection at the early stage and to irreversibly inactivate virus by disrupting the integrity of the viral membrane whose lipid component might be the target of action. Together, it was demonstrated that erythromycin estolate could be a potential therapeutic drug for HCoV-OC43 infection.
Collapse
Affiliation(s)
- Xiaohuan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongkang Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Peng Zou,
| |
Collapse
|
19
|
Santos Pereira R, Vasconcelos Costa V, Luiz Menezes Gomes G, Rodrigues Valadares Campana P, Maia de Pádua R, Barbosa M, Oki Y, Heiden G, Fernandes GW, Menezes de Oliveira D, Souza DG, Martins Teixeira M, Castro Braga F. Anti-Zika Virus Activity of Plant Extracts Containing Polyphenols and Triterpenes on Vero CCL-81 and Human Neuroblastoma SH-SY5Y Cells. Chem Biodivers 2022; 19:e202100842. [PMID: 35285139 DOI: 10.1002/cbdv.202100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Abstract
Zika virus (ZIKV) infection is a global threat associated to neurological disorders in adults and microcephaly in children born to infected mothers. No vaccine or drug is available against ZIKV. We herein report the anti-ZIKV activity of 36 plant extracts containing polyphenols and/or triterpenes. ZIKV-infected Vero CCL-81 cells were treated with samples at non-cytotoxic concentrations, determined by MTT and LDH assays. One third of the extracts elicited concentration-dependent anti-ZIKV effect, with viral loads reduction from 0.4 to 3.8 log units. The 12 active extracts were tested on ZIKV-infected SH-SY5Y cells and significant reductions of viral loads (in log units) were induced by Maytenus ilicifolia (4.5 log), Terminalia phaeocarpa (3.7 log), Maytenus rigida (1.7 log) and Echinodorus grandiflorus (1.7 log) extracts. Median cytotoxic concentration (CC50 ) of these extracts in Vero cells were higher than in SH-SY5Y lineage. M. ilicifolia (IC50 =16.8±10.3 μg/mL, SI=3.4) and T. phaeocarpa (IC50 =22.0±6.8 μg/mL, SI=4.8) were the most active extracts. UPLC-ESI-MS/MS analysis of M. ilicifolia extract led to the identification of 7 triterpenes, of which lupeol and a mixture of friedelin/friedelinol showed no activity against ZIKV. The composition of T. phaeocarpa extract comprises phenolic acids, ellagitannins and flavonoids, as recently reported by us. In conclusion, the anti-ZIKV activity of 12 plant extracts is here described for the first time and polyphenols and triterpenes were identified as the probable bioactive constituents of T. phaeocarpa and M. ilicifolia, respectively.
Collapse
Affiliation(s)
- Rosângela Santos Pereira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Vivian Vasconcelos Costa
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil.,Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gabriel Luiz Menezes Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Priscilla Rodrigues Valadares Campana
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| | - Milton Barbosa
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Yumi Oki
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Gustavo Heiden
- Empresa Brasileira de Pesquisa Agropecuária Clima Temperado, CEP 96010-971, Pelotas, Brazil
| | - Geraldo Wilson Fernandes
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | | | - Daniele G Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte, Brazil
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, Brazil
| |
Collapse
|
20
|
ZIKV replication is differential in explants and cells of human placental which is suppressed by HSV-2 coinfection. Virology 2022; 570:45-56. [DOI: 10.1016/j.virol.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/25/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
|
21
|
Pinocembrin Reduces Keratinocyte Activation and Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis in BALB/c Mice through the Heme Oxygenase-1/Signal Transducer and Activator of Transcription 3 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7729836. [PMID: 35116069 PMCID: PMC8807039 DOI: 10.1155/2022/7729836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Psoriasis is an autoimmune disease characterized by chronic skin inflammation and excessive keratinocyte proliferation. The itchy, scaly, and erythematous lesions present on psoriatic skin negatively affect patients' quality of life. Pinocembrin is a flavonoid present in propolis, fruits, and vegetables. It exerts neuroprotective effects and was used for treating ischemic stroke in a human clinical trial. However, the effects of pinocembrin on psoriasis have never been examined. In this study, we evaluated the effects of pinocembrin on human HaCaT keratinocytes and BALB/c mice with imiquimod- (IMQ-) induced psoriatic dermatitis. In interferon-γ- (IFN-γ-) activated HaCaT cells, pinocembrin reduced the expression of inflammatory cytokines, namely, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and keratinocyte proliferation markers, namely, keratin (K)16, K17, and Ki-67. The mechanism underlying these inhibitory effects involved the regulation of the heme oxygenase- (HO-) 1/signal transducer and activator of transcription (STAT) 3 pathway. In the IMQ-induced psoriatic dermatitis mouse model, the topical application of pinocembrin significantly ameliorated the Skin Psoriasis Area and Severity Index score, epidermal thickness, inflammation, hyperplasia, hyperkeratosis, and cluster of differentiation (CD) 4+ T-cell infiltration. Expression of the inflammatory cytokines and keratinocyte proliferation markers in dorsal skin was significantly decreased in the pinocembrin-treated group. Meanwhile, in lesional skin, the expression of HO-1 was upregulated, but that of phospho-STAT3 (pSTAT3) was downregulated. Collectively, our results indicated the therapeutic potential of pinocembrin. Additional studies are warranted to evaluate its clinical benefits in patients with psoriasis.
Collapse
|
22
|
Sun ZG, Li ZN, Zhang JM, Hou XY, Yeh SM, Ming X. Recent Development of Flavonoids with Various Activities. Curr Top Med Chem 2022; 22:305-329. [PMID: 35040404 DOI: 10.2174/1568026622666220117111858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Flavonoids, a series of compounds with C6-C3-C6 structure, mostly originate from plant metabolism. Flavonoids have shown beneficial effects on many aspects of human physiology and health. Recently, many flavonoids with various activities have been discovered, which has led to more and more studies focusing on their physiological and pharmacodynamic activities. The anti-cancer and anti-viral activities especially have attracted the attention of many researchers. Therefore, the discovery and development of flavonoids as anti-disease drugs has great potential and may make significant contribution to fighting diseases. This review focus on the discovery and development of flavonoids in medicinal chemistry in recent years.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Jin-Mai Zhang
- Room 205, BIO-X white house, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, P.R. China
| | - Xiao-Yan Hou
- Qilu Pharmaceutical Co., Ltd, 8888 Lvyou Road, High-tech Zone, Jinan, 250104, P.R. China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
23
|
Fakhri S, Mohammadi Pour P, Piri S, Farzaei MH, Echeverría J. Modulating Neurological Complications of Emerging Infectious Diseases: Mechanistic Approaches to Candidate Phytochemicals. Front Pharmacol 2021; 12:742146. [PMID: 34764869 PMCID: PMC8576094 DOI: 10.3389/fphar.2021.742146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
Growing studies are revealing the critical manifestations of influenza, dengue virus (DENV) infection, Zika virus (ZIKV) disease, and Ebola virus disease (EVD) as emerging infectious diseases. However, their corresponding mechanisms of major complications headed for neuronal dysfunction are not entirely understood. From the mechanistic point of view, inflammatory/oxidative mediators are activated during emerging infectious diseases towards less cell migration, neurogenesis impairment, and neuronal death. Accordingly, the virus life cycle and associated enzymes, as well as host receptors, cytokine storm, and multiple signaling mediators, are the leading players of emerging infectious diseases. Consequently, chemokines, interleukins, interferons, carbohydrate molecules, toll-like receptors (TLRs), and tyrosine kinases are leading orchestrates of peripheral and central complications which are in near interconnections. Some of the resulting neuronal manifestations have attracted much attention, including inflammatory polyneuropathy, encephalopathy, meningitis, myelitis, stroke, Guillain-Barré syndrome (GBS), radiculomyelitis, meningoencephalitis, memory loss, headaches, cranial nerve abnormalities, tremor, and seizure. The complex pathophysiological mechanism behind the aforementioned complications urges the need for finding multi-target agents with higher efficacy and lower side effects. In recent decades, the natural kingdom has been highlighted as promising neuroprotective natural products in modulating several dysregulated signaling pathways/mediators. The present study provides neuronal manifestations of some emerging infectious diseases and underlying pathophysiological mechanisms. Besides, a mechanistic-based strategy is developed to introduce candidate natural products as promising multi-target agents in combating major dysregulated pathways towards neuroprotection in influenza, DENV infection, ZIKV disease, and EVD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
24
|
Cataneo AHD, Ávila EP, Mendes LADO, de Oliveira VG, Ferraz CR, de Almeida MV, Frabasile S, Duarte Dos Santos CN, Verri WA, Bordignon J, Wowk PF. Flavonoids as Molecules With Anti- Zika virus Activity. Front Microbiol 2021; 12:710359. [PMID: 34566915 PMCID: PMC8462986 DOI: 10.3389/fmicb.2021.710359] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-born virus that is mainly transmitted to humans by mosquitoes of the genus Aedes spp. Since its first isolation in 1947, only a few human cases had been described until large outbreaks occurred on Yap Island (2007), French Polynesia (2013), and Brazil (2015). Most ZIKV-infected individuals are asymptomatic or present with a self-limiting disease and nonspecific symptoms such as fever, myalgia, and headache. However, in French Polynesia and Brazil, ZIKV outbreaks led to the diagnosis of congenital malformations and microcephaly in newborns and Guillain-Barré syndrome (GBS) in adults. These new clinical presentations raised concern from public health authorities and highlighted the need for anti-Zika treatments and vaccines to control the neurological damage caused by the virus. Despite many efforts in the search for an effective treatment, neither vaccines nor antiviral drugs have become available to control ZIKV infection and/or replication. Flavonoids, a class of natural compounds that are well-known for possessing several biological properties, have shown activity against different viruses. Additionally, the use of flavonoids in some countries as food supplements indicates that these molecules are nontoxic to humans. Thus, here, we summarize knowledge on the use of flavonoids as a source of anti-ZIKV molecules and discuss the gaps and challenges in this area before these compounds can be considered for further preclinical and clinical trials.
Collapse
Affiliation(s)
| | - Eloah Pereira Ávila
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Camila Rodrigues Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Sandra Frabasile
- Sección Virologia, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | | | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| |
Collapse
|
25
|
Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomed Pharmacother 2021; 140:111596. [PMID: 34126315 PMCID: PMC8192980 DOI: 10.1016/j.biopha.2021.111596] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022] Open
Abstract
Flavonoids are natural phytochemicals known for their antiviral activity. The flavonoids acts at different stages of viral infection, such as viral entrance, replication and translation of proteins. Viruses cause various diseases such as SARS, Hepatitis, AIDS, Flu, Herpes, etc. These, and many more viral diseases, are prevalent in the world, and some (i.e. SARS-CoV-2) are causing global chaos. Despite much struggle, effective treatments for these viral diseases are not available. The flavonoid class of phytochemicals has a vast number of medicinally active compounds, many of which are studied for their potential antiviral activity against different DNA and RNA viruses. Here, we reviewed many flavonoids that showed antiviral activities in different testing environments such as in vitro, in vivo (mice model) and in silico. Some flavonoids had stronger inhibitory activities, showed no toxicity & the cell proliferation at the tested doses are not affected. Some of the flavonoids used in the in vivo studies also protected the tested mice prophylactically from lethal doses of virus, and effectively prevented viral infection. The glycosides of some of the flavonoids increased the solubility of some flavonoids, and therefore showed increased antiviral activity as compared to the non-glycoside form of that flavonoid. These phytochemicals are active against different disease-causing viruses, and inhibited the viruses by targeting the viral infections at multiple stages. Some of the flavonoids showed more potent antiviral activity than the market available drugs used to treat viral infections.
Collapse
Affiliation(s)
- Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan.
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Akhtar Muhammad
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul Hamid Emwas
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
26
|
Abstract
Abstract The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or 2019 Novel Coronavirus (2019-nCoV) has put the entire globe into unrest, primarily due to unavailability of specific drug against the viral proteins. In the last two decades the world has withstood many contagious disease crashes. SARS-CoV-2 has put the world and the mankind in danger. It is spreading unstoppably all over the world. The virus is evolving and thus the pathogenicity of SARS-CoV-2 strains has been different and making it difficult to develop a broad-spectrum anti-viral molecule that would be effective against all the SARS-CoV-2 variants. This imperative situation demands development of molecules for effective treatment against SARS-CoV-2. The phytomolecules or the bioactive molecules of plants could be a great alternative to combat SARS-CoV-2. The bioactive molecules with their antiviral properties and the secondary metabolites may effectively deactivate the functioning of viral proteins. The structural configuration of 2019-nCoV proteins and genomic information are available, thus contributing immensely for fast molecular docking studies and hence, enables screening of numerous accessible phytomolecules. In the current study, we have essentially highlighted common phytomolecules against the known viral proteins and described the mode of action of few plant-derived molecules which have the potential to suppress the activity of the viral proteins. Graphic abstract ![]()
Collapse
|
27
|
Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Drug Repurposing: A Strategy for Discovering Inhibitors against Emerging Viral Infections. Curr Med Chem 2021; 28:2887-2942. [PMID: 32787752 DOI: 10.2174/0929867327666200812215852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.
Collapse
|
28
|
Sharanya CS, Sabu A, Haridas M. Potent phytochemicals against COVID-19 infection from phyto-materials used as antivirals in complementary medicines: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:113. [PMID: 34095323 PMCID: PMC8170460 DOI: 10.1186/s43094-021-00259-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background Following the outbreak of the COVID-19 pandemic, there was a surge of research activity to find methods/drugs to treat it. There has been drug-repurposing research focusing on traditional medicines. Concomitantly, many researchers tried to find in silico evidence for traditional medicines. There is a great increase in article publication to commensurate the new-found research interests. This situation inspired the authors to have a comprehensive understanding of the multitude of publications related to the COVID-19 pandemic with a wish to get promising drug leads. Main body This review article has been conceived and made as a hybrid of the review of the selected papers advertised recently and produced in the interest of the COVID-19 situation, and in silico work done by the authors. The outcome of the present review underscores a recommendation for thorough MDS analyses of the promising drug leads. The inclusion of in silico work as an addition to the review was motivated by a recently published article of Toelzer and colleagues. The in silico investigation of free fatty acids is novel to the field and it buttresses the further MDS analysis of drug leads for managing the COVID-19 pandemic. Conclusion The review performed threw light on the need for MDS analyses to be considered together with the application of other in silico methods of prediction of pharmacologic properties directing towards the sites of drug-receptor regulation. Also, the present analysis would help formulate new recipes for complementary medicines.
Collapse
Affiliation(s)
- C S Sharanya
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Dr. Janaki Ammal Campus, Kannur University, Thalassery, 670661 India
| | - A Sabu
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Dr. Janaki Ammal Campus, Kannur University, Thalassery, 670661 India
| | - M Haridas
- Inter University Centre for Bioscience and Department of Biotechnology & Microbiology, Dr. Janaki Ammal Campus, Kannur University, Thalassery, 670661 India
| |
Collapse
|
29
|
Lima CS, Mottin M, de Assis LR, Mesquita NCDMR, Sousa BKDP, Coimbra LD, Santos KBD, Zorn KM, Guido RVC, Ekins S, Marques RE, Proença-Modena JL, Oliva G, Andrade CH, Regasini LO. Flavonoids from Pterogyne nitens as Zika virus NS2B-NS3 protease inhibitors. Bioorg Chem 2021; 109:104719. [PMID: 33636437 PMCID: PMC8227833 DOI: 10.1016/j.bioorg.2021.104719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022]
Abstract
Although the widespread epidemic of Zika virus (ZIKV) and its neurological complications are well-known there are still no approved drugs available to treat this arboviral disease or vaccine to prevent the infection. Flavonoids from Pterogyne nitens have already demonstrated anti-flavivirus activity, although their target is unknown. In this study, we virtually screened an in-house database of 150 natural and semi-synthetic compounds against ZIKV NS2B-NS3 protease (NS2B-NS3p) using docking-based virtual screening, as part of the OpenZika project. As a result, we prioritized three flavonoids from P. nitens, quercetin, rutin and pedalitin, for experimental evaluation. We also used machine learning models, built with Assay Central® software, for predicting the activity and toxicity of these flavonoids. Biophysical and enzymatic assays generally agreed with the in silico predictions, confirming that the flavonoids inhibited ZIKV protease. The most promising hit, pedalitin, inhibited ZIKV NS2B-NS3p with an IC50 of 5 μM. In cell-based assays, pedalitin displayed significant activity at 250 and 500 µM, with slight toxicity in Vero cells. The results presented here demonstrate the potential of pedalitin as a candidate for hit-to-lead (H2L) optimization studies towards the discovery of antiviral drug candidates to treat ZIKV infections.
Collapse
Affiliation(s)
- Caroline Sprengel Lima
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil
| | - Melina Mottin
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Leticia Ribeiro de Assis
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil
| | | | - Bruna Katiele de Paula Sousa
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Lais Durco Coimbra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Karina Bispo-Dos- Santos
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States
| | - Rafael V C Guido
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, NC, United States
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - José Luiz Proença-Modena
- Laboratory of Emerging Viruses (LEVE), Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Glaucius Oliva
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Luis Octavio Regasini
- Laboratory of Antibiotics and Chemotherapeutics (LAQ), Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
30
|
Silva B, Biluca FC, Gonzaga LV, Fett R, Dalmarco EM, Caon T, Costa ACO. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res Int 2021; 141:110086. [PMID: 33641965 DOI: 10.1016/j.foodres.2020.110086] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Honey is a natural ready-to-eat product rich in flavonoids, which is known by the wound healing properties due to both antibacterial and antioxidant activity. Flavonoids mitigate inflammatory processes, and thus it could currently support studies of anti-inflammatory potential of honeys. In this review, in vitro anti-inflammatory properties of flavonoids found in honey were prioritized. Mechanistic information of specific isolated flavonoids as modulators of inflammatory processes are summarized aiming to stimulate studies regarding the action of honey in inflammatory events. Lastly, a structure-activity relationship (SAR) of flavonoids was also included. Flavonoids found in honey have demonstrated antioxidant properties and ability to inhibit pro-inflammatory enzymes such as COX, LOX, iNOS, and pro-inflammatory mediators, including nitric oxide, cytokines and chemokines. Transcriptional factors such as NF-κB are also modulated by flavonoids, controlling the expression of several inflammatory mediators. SAR studies demonstrate the effect of flavonoids in the prevention of inflammatory cascades. Despite the promising reports of in vitro anti-inflammatory activity, well-designed clinical trials need yet to be performed to confirm the benefits of honeys from different botanical sources in diseases that include episodes of inflammation.
Collapse
Affiliation(s)
- Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Fabíola Carina Biluca
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
31
|
Mwaliko C, Nyaruaba R, Zhao L, Atoni E, Karungu S, Mwau M, Lavillette D, Xia H, Yuan Z. Zika virus pathogenesis and current therapeutic advances. Pathog Glob Health 2021; 115:21-39. [PMID: 33191867 PMCID: PMC7850325 DOI: 10.1080/20477724.2020.1845005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is an emerging arthropod-borne flavivirus that, upon infection, results in teratogenic effects and neurological disorders. ZIKV infections pose serious global public health concerns, prompting scientists to increase research on antivirals and vaccines against the virus. These efforts are still ongoing as the pathogenesis and immune evasion mechanisms of ZIKV have not yet been fully elaborated. Currently, no specific vaccines or drugs have been approved for ZIKV; however, some are undergoing clinical trials. Notably, several strategies have been used to develop antivirals, including drugs that target viral and host proteins. Additionally, drug repurposing is preferred since it is less costly and takes less time than other strategies because the drugs used have already been approved for human use. Likewise, different platforms have been evaluated for the design of vaccines, including DNA, mRNA, peptide, protein, viral vectors, virus-like particles (VLPSs), inactivated-virus, and live-attenuated virus vaccines. These vaccines have been shown to induce specific humoral and cellular immune responses and reduce viremia and viral RNA both in vitro and in vivo. Importantly, most of these vaccines have entered clinical trials. Understanding the viral disease mechanism will provide better strategies for developing therapeutic agents against ZIKV. This review provides a comprehensive summary of the viral pathogenesis of ZIKV and current advancements in the development of vaccines and drugs against this virus.
Collapse
Affiliation(s)
- Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Raphael Nyaruaba
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Samuel Karungu
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,International College, University of Chinese Academy of Sciences, Beijing, China,Microbiology, Sino-Africa Joint Research Center, Nairobi, Kenya
| | - Matilu Mwau
- Center for Infectious and Parasitic Diseases Control Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,CONTACT Han Xia ; Zhiming Yuan Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
32
|
Acquadro S, Civra A, Cagliero C, Marengo A, Rittà M, Francese R, Sanna C, Bertea C, Sgorbini B, Lembo D, Donalisio M, Rubiolo P. Punica granatum Leaf Ethanolic Extract and Ellagic Acid as Inhibitors of Zika Virus Infection. PLANTA MEDICA 2020; 86:1363-1374. [PMID: 32937663 DOI: 10.1055/a-1232-5705] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zika virus, an arthropod-borne flavivirus, is an emerging healthcare threat worldwide. Zika virus is responsible for severe neurological effects, such as paralytic Guillain-Barrè syndrome, in adults, and also congenital malformations, especially microcephaly. No specific antiviral drugs and vaccines are currently available, and treatments are palliative, but medicinal plants show great potential as natural sources of anti-Zika phytochemicals. This study deals with the investigation of the composition, cytotoxicity, and anti-Zika activity of Punica granatum leaf ethanolic extract, fractions, and phytoconstituents. P. granatum leaves were collected from different areas in Italy and Greece in different seasons. Crude extracts were analyzed and fractionated, and the pure compounds were isolated. The phytochemical and biomolecular fingerprint of the pomegranate leaves was determined. The antiviral activities of the leaf extract, fractions, and compounds were investigated against the MR766 and HPF2013 Zika virus strains in vitro. Both the extract and its fractions were found to be active against Zika virus infection. Of the compounds isolated, ellagic acid showed particular anti-Zika activities, with EC50 values of 30.86 µM for MR766 and 46.23 µM for HPF2013. The mechanism of action was investigated using specific antiviral assays, and it was demonstrated that ellagic acid was primarily active as it prevented Zika virus infection and was able to significantly reduce Zika virus progeny production. Our data demonstrate the anti-Zika activity of pomegranate leaf extract and ellagic acid for the first time. These findings identify ellagic acid as a possible anti-Zika candidate compound that can be used for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Stefano Acquadro
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Andrea Civra
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cecilia Cagliero
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Arianna Marengo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Massimo Rittà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cinzia Sanna
- Department of Environmental and Life Sciences University of Cagliari, Cagliari, Italy
| | - Cinzia Bertea
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Barbara Sgorbini
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Patrizia Rubiolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
33
|
Antiviral effect of silymarin against Zika virus in vitro. Acta Trop 2020; 211:105613. [PMID: 32621935 DOI: 10.1016/j.actatropica.2020.105613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) epidemic and its association with severe neurological syndromes have raised worldwide concern. Despite the great clinical relevance of this infection, no vaccine or specific treatment is available and the search for antiviral compounds against ZIKV is extremely necessary. Several natural compounds, such as silymarin, exhibit antioxidant, hepatoprotective, and antiviral properties; however, the antiviral potential of this compound remains partially investigated. Therefore, the objective of this study was to evaluate in vitro the antiviral activity of silymarin against ZIKV infection. Global antiviral activity, dose-dependent, plaque reduction, and time-of-drug-addition assays were used to determine the anti-ZIKV activity of silymarin. Additionally, to start characterizing the mechanisms of action we determined whether silymarin could have a virucidal effect and inhibit viral adsorption and penetration stages. Regarding its global antiviral activity, silymarin showed significant inhibition of ZIKV infection, protecting cells infected with EC50 equal to 34.17μg/mL, with a selectivity index greater than 17 and 4x greater than that of the positive control (ribavirin). Its greatest efficiency was achieved at 125μg/mL, whose cell viability did not differ from the control without infection and treatment. Furthermore, treatment with silymarin reduced viral load by up to two logs (> 90%) concerning viral control, when evaluating virucidal activity and the precocious times of infection. Thus, our results set to show the promising anti-ZIKV activity of silymarin, which does not seem to have a single inhibition mechanism, acting at different times of infection, and still has the advantage of silymarin be a phytotherapy already available on the market.
Collapse
|
34
|
Dibromopinocembrin and Dibromopinostrobin Are Potential Anti-Dengue Leads with Mild Animal Toxicity. Molecules 2020; 25:molecules25184154. [PMID: 32932762 PMCID: PMC7571160 DOI: 10.3390/molecules25184154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/21/2023] Open
Abstract
Dengue infection is one of the most deleterious public health concerns for two-billion world population being at risk. Plasma leakage, hemorrhage, and shock in severe cases were caused by immunological derangement from secondary heterotypic infection. Flavanone, commonly found in medicinal plants, previously showed potential as anti-dengue inhibitors for its direct antiviral effects and suppressing the pro-inflammatory cytokine from dengue immunopathogenesis. Here, we chemically modified flavanones, pinocembrin and pinostrobin, by halogenation and characterized them as potential dengue 2 inhibitors and performed toxicity tests in human-derived cells and in vivo animal model. Dibromopinocembrin and dibromopinostrobin inhibited dengue serotype 2 at the EC50s of 2.0640 ± 0.7537 and 5.8567 ± 0.5074 µM with at the CC50s of 67.2082 ± 0.9731 and >100 µM, respectively. Both of the compounds also showed minimal toxicity against adult C57BL/6 mice assessed by ALT and Cr levels in day one, three, and eight post-intravenous administration. Computational studies suggested the potential target be likely the NS5 methyltransferase at SAM-binding pocket. Taken together, these two brominated flavanones are potential leads for further drug discovery investigation.
Collapse
|
35
|
Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020; 12:nu12092534. [PMID: 32825564 PMCID: PMC7551920 DOI: 10.3390/nu12092534] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
This review summarizes the latest advancements in phytochemicals as functional antiviral agents. We focused on flavonoids, like apigenin, vitexin, quercetin, rutin and naringenin, which have shown a wide range of biological effects including antiviral activities. The molecular mechanisms of their antiviral effects mainly consist in the inhibition of viral neuraminidase, proteases and DNA/RNA polymerases, as well as in the modification of various viral proteins. Mixtures of different flavonoids or combination of flavonoids with antiviral synthetic drugs provide an enhancement of their antiviral effects. Recent strategies in drug delivery significantly contribute to overcoming the low bioavailability of flavonoids. Frequent viral infections worldwide have led to the need for new effective antiviral agents, which can be identified among the various phytochemicals. In this light, screening the antiviral activities of a cocktail of flavonoids would be advantageous in order to prevent viral infections and improve current antiviral therapies.
Collapse
Affiliation(s)
| | | | - Mauro Magnani
- Correspondence: (M.M.); (E.S.S.); Tel.: +39-0722-305-211 (M.M.); +39-0722-305-252 (E.S.S.)
| | | |
Collapse
|
36
|
Kumar A, Sharma M, Chaubey SN, Kumar A. Homology modeling and molecular dynamics based insights into Chalcone synthase and Chalcone isomerase in Phyllanthus emblica L. 3 Biotech 2020; 10:373. [PMID: 32832333 DOI: 10.1007/s13205-020-02367-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chalcone synthase (CHS) and chalcone isomerase (CHI) plays a major role in the biosynthesis of flavonoid in plants. In this study, we made extensive bioinformatics analysis to gain functional and structural insight into PeCHS and PeCHI proteins. The phylogenetic distribution of PeCHS and PeCHI genes encoding proteins demonstrated the close evolutionary relationship with different CHS and CHI proteins of other dicot plants. MicroRNA target analysis showed miR169n and 3p miR5053 targeting PeCHS gene while miR169c-3p and miR4248 are targeting PeCHI gene, respectively. Three-dimensional structural models of PeCHS and PeCHI proteins were elucidated by homology modeling with Ramachandran plots showing the excellent geometry of the proteins structure. Molecular docking revealed that cinnamoyl-coa and naringenin chalcone substrates are strongly bound to PeCHS and PeCHI proteins, respectively. Finally, molecular dynamics (MD) simulation for 30 ns, further yielded stability checks of ligands in the binding pocket and behavior of protein complexes. Thus MD simulation and interaction fraction analysis showed the stable conformation of PeCHS and PeCHI proteins with their respective substrates during theee simulation. Our study provides first-hand structural prospective of PeCHS and PeCHI proteins towards understanding the mechanism of flavonoid biosynthetic pathway in P. emblica.
Collapse
Affiliation(s)
- Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, 248007 India
| | - Mansi Sharma
- Bioclues.Org, Kukatpally, Hyderabad, 500072 India
| | - Swaroopa Nand Chaubey
- Department of Bioinformatics, Biotech Park, Sector G, Jankipuram, Lucknow, UP 226021 India
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, 151302 India
| |
Collapse
|
37
|
Goh VSL, Mok CK, Chu JJH. Antiviral Natural Products for Arbovirus Infections. Molecules 2020; 25:molecules25122796. [PMID: 32560438 PMCID: PMC7356825 DOI: 10.3390/molecules25122796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the course of the last 50 years, the emergence of several arboviruses have resulted in countless outbreaks globally. With a high proportion of infections occurring in tropical and subtropical regions where arthropods tend to be abundant, Asia in particular is a region that is heavily affected by arboviral diseases caused by dengue, Japanese encephalitis, West Nile, Zika, and chikungunya viruses. Major gaps in protection against the most significant emerging arboviruses remains as there are currently no antivirals available, and vaccines are only available for some. A potential source of antiviral compounds could be discovered in natural products—such as vegetables, fruits, flowers, herbal plants, marine organisms and microorganisms—from which various compounds have been documented to exhibit antiviral activities and are expected to have good tolerability and minimal side effects. Polyphenols and plant extracts have been extensively studied for their antiviral properties against arboviruses and have demonstrated promising results. With an abundance of natural products to screen for new antiviral compounds, it is highly optimistic that natural products will continue to play an important role in contributing to antiviral drug development and in reducing the global infection burden of arboviruses.
Collapse
Affiliation(s)
- Vanessa Shi Li Goh
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee-Keng Mok
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| |
Collapse
|
38
|
|
39
|
Chen H, Lao Z, Xu J, Li Z, Long H, Li D, Lin L, Liu X, Yu L, Liu W, Li G, Wu J. Antiviral activity of lycorine against Zika virus in vivo and in vitro. Virology 2020; 546:88-97. [PMID: 32452420 PMCID: PMC7194111 DOI: 10.1016/j.virol.2020.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/09/2022]
Abstract
The emergence and re-emergence of Zika virus (ZIKV), is a cause for international concern. These highly pathogenic arboviruses represent a serious health burden in tropical and subtropical areas worldwide. Despite these burdens, antiviral therapies do not exist, and inhibitors of ZIKV are therefore urgently needed. To elucidate the anti-ZIKV effect of lycorine, we used reverse transcription-quantitative real-time PCR (qRT-PCR), immunofluorescence, Westernwestern blot, and plaque forming assay to analyse viral RNA (vRNA), viral protein, progeny virus counts, and validated inhibitors in vitro using a variety of cell lines. Additionally, we found that lycorine acts post-infection according to time-of-addition assay, and inhibits RdRp activity. Lycorine protected AG6 mice against ZIKV-induced lethality by decreasing the viral load in the blood. Due to its potency and ability to target ZIKV infection in vivo and in vitro, lycorine might offer promising therapeutic possibilities for combatting ZIKV infections in the future.
Collapse
Affiliation(s)
- Huini Chen
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Zizhao Lao
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiangtao Xu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhaoxin Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Haishan Long
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Detang Li
- Department of Pharmacy, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Luping Lin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, 510060, China
| | - Xiaohong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Liangwen Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Geng Li
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China; Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianguo Wu
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
40
|
Zou M, Liu H, Li J, Yao X, Chen Y, Ke C, Liu S. Structure-activity relationship of flavonoid bifunctional inhibitors against Zika virus infection. Biochem Pharmacol 2020; 177:113962. [PMID: 32272109 DOI: 10.1016/j.bcp.2020.113962] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) infection is a global public health problem due to its rapid spread and the possibility of causing microcephaly. Currently, no specific antivirals against ZIKV are available for treatment. In the present study, several flavonoids (galangin, kaempferide, quercetin, myricetin and EGCG) were found to reduce ZIKV induced plaques and viral RNA copies with negligible cytotoxic effects on host cells. In addition, inhibition of ZIKV propagation by flavonoids showed structure-activity relationship. Our results demonstrate flavonoids as inhibitors of ZIKV entry and NS2B-NS3 protease. Hence, these flavonoids could be used as potential bifunctional drugs for treating ZIKV infections.
Collapse
Affiliation(s)
- Min Zou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Hongmiao Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingyan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangdong, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
41
|
Lai ZZ, Ho YJ, Lu JW. Cephalotaxine inhibits Zika infection by impeding viral replication and stability. Biochem Biophys Res Commun 2019; 522:1052-1058. [PMID: 31818462 PMCID: PMC7092853 DOI: 10.1016/j.bbrc.2019.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The Zika virus (ZIKV) is a mosquito-borne flavivirus that has reemerged as a serious public health problem around the world. Syndromes of infected people range from asymptomatic infections to severe neurological disorders, such as Guillain-Barré syndrome and microcephaly. Screening anti-ZIKV drugs derived from Chinese medicinal herbs is one method of identifying antiviral agents. In this paper, we report that (1) Cephalotaxine (CET), an alkaloid isolated from Cephalotaxus drupacea, was effective in inhibiting ZIKV activity in vitro (i.e., in Vero and A549 cell lines) and (2) the mechanisms which underlie these effects involve virucidal activity and a decrease in viral replication. Specifically, CET was found to decrease ZIKV RNA and viral protein expression, inhibit ZIKV replication, and inhibit ZIKV mRNA/protein production. We also determined that CET is effective in inhibiting dengue virus 1–4 (DENV1-4). Taken together, our findings indicate that CET could be an effective lead compound in the treatment of ZIKV and also suggest that further investigation and development of CET-derived drugs may lead to a new class of anti-Flavivirus medications. CET against ZIKV infection via inhibiting replication and stability. CET was identified as a potent inhibitor of ZIKV infection. CET as a candidate compound for potential ZIKV treatment.
Collapse
Affiliation(s)
- Zheng-Zong Lai
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC; Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
42
|
Antiviral activity of the FDA-approved drug candesartan cilexetil against Zika virus infection. Antiviral Res 2019; 172:104637. [DOI: 10.1016/j.antiviral.2019.104637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/18/2019] [Accepted: 10/20/2019] [Indexed: 11/24/2022]
|
43
|
Cataneo AHD, Kuczera D, Koishi AC, Zanluca C, Silveira GF, Arruda TBD, Suzukawa AA, Bortot LO, Dias-Baruffi M, Verri WA, Robert AW, Stimamiglio MA, Duarte Dos Santos CN, Wowk PF, Bordignon J. The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus. Sci Rep 2019; 9:16348. [PMID: 31705028 PMCID: PMC6841724 DOI: 10.1038/s41598-019-52626-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication. Among the natural compounds recognized for their medical properties, flavonoids, which can be found in fruits and vegetables, have been found to possess biological activity against a variety of viruses. Here, we demonstrate that the citrus flavanone naringenin (NAR) prevented ZIKV infection in human A549 cells in a concentration-dependent and ZIKV-lineage independent manner. NAR antiviral activity was also observed when primary human monocyte-derived dendritic cells were infected by ZIKV. NAR displayed its antiviral activity when the cells were treated after infection, suggesting that NAR acts on the viral replication or assembly of viral particles. Moreover, a molecular docking analysis suggests a potential interaction between NAR and the protease domain of the NS2B-NS3 protein of ZIKV which could explain the anti-ZIKV activity of NAR. Finally, the results support the potential of NAR as a suitable candidate molecule for developing anti-ZIKV treatments.
Collapse
Affiliation(s)
| | - Diogo Kuczera
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Andrea Cristine Koishi
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | | | - Thais Bonato de Arruda
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Andréia Akemi Suzukawa
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | - Leandro Oliveira Bortot
- Laboratório de Física Biológica, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcelo Dias-Baruffi
- Laboratório de Glicoimunologia, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Brazil
| | - Anny Waloski Robert
- Laboratório de Células Tronco, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil
| | | | | | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil.
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Paraná, Brazil.
| |
Collapse
|
44
|
Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R. Drugs for the Treatment of Zika Virus Infection. J Med Chem 2019; 63:470-489. [PMID: 31549836 DOI: 10.1021/acs.jmedchem.9b00775] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zika virus is an emerging flavivirus that causes the neurodevelopmental congenital Zika syndrome and that has been linked to the neuroinflammatory Guillain-Barré syndrome. The absence of a vaccine or a clinically approved drug to treat the disease combined with the likelihood that another outbreak will occur in the future defines an unmet medical need. Several promising drug candidate molecules have been reported via repurposing studies, high-throughput compound library screening, and de novo design in the short span of a few years. Intense research activity in this area has occurred in response to the World Health Organization declaration of a Public Health Emergency of International Concern on February 1, 2016. In this Perspective, the authors review the emergence of Zika virus, the biology of its replication, targets for therapeutic intervention, target product profile, and current drug development initiatives.
Collapse
Affiliation(s)
| | - Lana T Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China
| | | | - Rongshi Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China.,UNMC Center for Drug Discovery, Department of Pharmaceutical Sciences, College of Pharmacy, Fred and Pamela Buffett Cancer Center, and Center for Staphylococcal Research , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
45
|
Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals (Basel) 2019; 12:ph12030127. [PMID: 31480297 PMCID: PMC6789873 DOI: 10.3390/ph12030127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that spread throughout the American continent in 2015 causing considerable worldwide social and health alarm due to its association with ocular lesions and microcephaly in newborns, and Guillain-Barré syndrome (GBS) cases in adults. Nowadays, no licensed vaccines or antivirals are available against ZIKV, and thus, in this very short time, the scientific community has conducted enormous efforts to develop vaccines and antivirals. So that, different platforms (purified inactivated and live attenuated viruses, DNA and RNA nucleic acid based candidates, virus-like particles, subunit elements, and recombinant viruses) have been evaluated as vaccine candidates. Overall, these vaccines have shown the induction of vigorous humoral and cellular responses, the decrease of viremia and viral RNA levels in natural target organs, the prevention of vertical and sexual transmission, as well as that of ZIKV-associated malformations, and the protection of experimental animal models. Some of these vaccine candidates have already been assayed in clinical trials. Likewise, the search for antivirals have also been the focus of recent investigations, with dozens of compounds tested in cell culture and a few in animal models. Both direct acting antivirals (DAAs), directed to viral structural proteins and enzymes, and host acting antivirals (HAAs), directed to cellular factors affecting all steps of the viral life cycle (binding, entry, fusion, transcription, translation, replication, maturation, and egress), have been evaluated. It is expected that this huge collaborative effort will produce affordable and effective therapeutic and prophylactic tools to combat ZIKV and other related still unknown or nowadays neglected flaviviruses. Here, a comprehensive overview of the advances made in the development of therapeutic measures against ZIKV and the questions that still have to be faced are summarized.
Collapse
|
46
|
Doratoxylon apetalum, an Indigenous Medicinal Plant from Mascarene Islands, Is a Potent Inhibitor of Zika and Dengue Virus Infection in Human Cells. Int J Mol Sci 2019; 20:ijms20102382. [PMID: 31091703 PMCID: PMC6567149 DOI: 10.3390/ijms20102382] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) and Dengue virus (DENV) are mosquito-borne viruses of the Flavivirus genus that could cause congenital microcephaly and hemorrhage, respectively, in humans, and thus present a risk to global public health. A preventive vaccine against ZIKV remains unavailable, and no specific antiviral drugs against ZIKV and DENV are licensed. Medicinal plants may be a source of natural antiviral drugs which mostly target viral entry. In this study, we evaluate the antiviral activity of Doratoxylum apetalum, an indigenous medicinal plant from the Mascarene Islands, against ZIKV and DENV infection. Our data indicated that D. apetalum exhibited potent antiviral activity against a contemporary epidemic strain of ZIKV and clinical isolates of four DENV serotypes at non-cytotoxic concentrations in human cells. Time-of-drug-addition assays revealed that D. apetalum extract acts on ZIKV entry by preventing the internalisation of virus particles into the host cells. Our data suggest that D. apetalum-mediated ZIKV inhibition relates to virus particle inactivation. We suggest that D. apetalum could be a promising natural source for the development of potential antivirals against medically important flaviviruses.
Collapse
|