1
|
Pichetpongtorn P, Ruangdachsuwan S, Churod T, Komaikul J, Masrinoul P, Yusakul G, Kitisripanya T. Curcuma sp. "Khamin Oi" extracts inhibit human coronavirus OC43 replication in HCT-8 colorectal cell line. Heliyon 2024; 10:e40569. [PMID: 39654703 PMCID: PMC11625121 DOI: 10.1016/j.heliyon.2024.e40569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Plants belonging to the genus Curcuma have shown promise in exerting antiviral activity. In this study, Curcuma sp. "Khamin Oi" (CKO), a traditional Thai medicinal herb listed in Thai herbal pharmacopoeia, was subjected to extraction using a variety of solvents. Consequently, LC-MS/MS and GC-MS/MS analyses were conducted to assess the phytochemical profiles of all the crude extracts and identify the compounds potentially responsible for their antiviral effects. The antiviral effects of these extracts against the human coronavirus OC43 (HCoV-OC43) were also investigated. An in-cell ELISA was used to investigate the anti-HCoV-OC43 replication activity of the crude rhizome extracts of CKO. Among the extracts, the crude hexane extract of CKO exhibited the lowest IC50 (3.62 μg/mL), with a high selectivity index (SI) of 31.90, despite having the lowest curcuminoid content. While the methanolic extract of Curcuma longa L., known for its high curcuminoid content among Curcuma species, showed an IC50 of 14.83 μg/mL with an SI of 2.80. Further in vitro and in vivo investigations of CKO crude extract are necessary to understand its potential anti-HCoV-OC43 properties.
Collapse
Affiliation(s)
| | - Sasiporn Ruangdachsuwan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Theeraporn Churod
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Jukrapun Komaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Groß R, Reßin H, von Maltitz P, Albers D, Schneider L, Bley H, Hoffmann M, Cortese M, Gupta D, Deniz M, Choi JY, Jansen J, Preußer C, Seehafer K, Pöhlmann S, Voelker DR, Goffinet C, Pogge-von Strandmann E, Bunz U, Bartenschlager R, El Andaloussi S, Sparrer KMJ, Herker E, Becker S, Kirchhoff F, Münch J, Müller JA. Phosphatidylserine-exposing extracellular vesicles in body fluids are an innate defence against apoptotic mimicry viral pathogens. Nat Microbiol 2024; 9:905-921. [PMID: 38528146 PMCID: PMC10994849 DOI: 10.1038/s41564-024-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Some viruses are rarely transmitted orally or sexually despite their presence in saliva, breast milk, or semen. We previously identified that extracellular vesicles (EVs) in semen and saliva inhibit Zika virus infection. However, the antiviral spectrum and underlying mechanism remained unclear. Here we applied lipidomics and flow cytometry to show that these EVs expose phosphatidylserine (PS). By blocking PS receptors, targeted by Zika virus in the process of apoptotic mimicry, they interfere with viral attachment and entry. Consequently, physiological concentrations of EVs applied in vitro efficiently inhibited infection by apoptotic mimicry dengue, West Nile, Chikungunya, Ebola and vesicular stomatitis viruses, but not severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus 1, hepatitis C virus and herpesviruses that use other entry receptors. Our results identify the role of PS-rich EVs in body fluids in innate defence against infection via viral apoptotic mimicries, explaining why these viruses are primarily transmitted via PS-EV-deficient blood or blood-ingesting arthropods rather than direct human-to-human contact.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Hanna Reßin
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Laura Schneider
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Hanna Bley
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Dhanu Gupta
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Miriam Deniz
- Clinic for Gynecology and Obstetrics, Ulm University Medical Center, Ulm, Germany
| | - Jae-Yeon Choi
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jenny Jansen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Preußer
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
| | | | - Christine Goffinet
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elke Pogge-von Strandmann
- Core Facility Extracellular Vesicles, Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Uwe Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Samir El Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Eva Herker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Haun BK, To A, Williams CA, Ball A, Fong K, Wong TAS, Shobayo B, Teahton J, Ching L, Kamara V, Tekah DM, Humphrey P, Berestecky J, Nerurkar VR, Lehrer AT. A Serological Multiplexed Immunoassay (MIA) Detects Antibody Reactivity to SARS-CoV-2 and Other Viral Pathogens in Liberia and Is Configurable as a Multiplexed Inhibition Test (MINT). IMMUNO 2024; 4:108-124. [PMID: 39391865 PMCID: PMC11465787 DOI: 10.3390/immuno4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
The SARS-CoV-2 pandemic ignited global efforts to rapidly develop testing, therapeutics, and vaccines. However, the rewards of these efforts were slow to reach many low- to middle-income countries (LMIC) across the African continent and globally. Therefore, two bead-based multiplexed serological assays were developed to determine SARS-CoV-2 exposure across four counties in Liberia. This study was conducted during the summer of 2021 on 189 samples collected throughout Grand Bassa, Bong, Margibi, and Montserrado counties. Our multiplexed immunoassay (MIA) detected elevated exposure to SARS-CoV-2 and multiple variant antigens. Additionally, we detected evidence of exposure to Dengue virus serotype 2, Chikungunya virus, and the seasonal coronavirus NL63. Our multiplexed inhibition test (MINT) was developed from the MIA to observe antibody-mediated inhibition of SARS-CoV-2 spike protein binding to its cognate cellular receptor ACE-2. We detected inhibitory antibodies in the tested Liberian samples, which were collectively consistent with a convalescent serological profile. These complementary assays serve to supplement existing serological testing needs and may enhance the technical capacity of scientifically underrepresented regions globally.
Collapse
Affiliation(s)
- Brien K. Haun
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Albert To
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Caitlin A. Williams
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Aquena Ball
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Karalyn Fong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Teri Ann S. Wong
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Bode Shobayo
- National Public Health Institute of Liberia, Monrovia 1000, Liberia
| | - Julius Teahton
- National Public Health Institute of Liberia, Monrovia 1000, Liberia
| | - Lauren Ching
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Varney Kamara
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - Davidetta M. Tekah
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - Peter Humphrey
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
| | - John Berestecky
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Biological Sciences, Medical Science, TJR Faulkner College of Science and Technology, University of Liberia, Fendall 1000, Liberia
- Math Science Department, Kapiolani Community College, University of Hawaii, Honolulu, HI 96816, USA
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Axel T. Lehrer
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
4
|
Rufyikiri AS, Martinez R, Addo PW, Wu BS, Yousefi M, Malo D, Orsat V, Vidal SM, Fritz JH, MacPherson S, Lefsrud M. Germicidal efficacy of continuous and pulsed ultraviolet-C radiation on pathogen models and SARS-CoV-2. Photochem Photobiol Sci 2024; 23:339-354. [PMID: 38308169 DOI: 10.1007/s43630-023-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 02/04/2024]
Abstract
Ultraviolet radiation's germicidal efficacy depends on several parameters, including wavelength, radiant exposure, microbial physiology, biological matrices, and surfaces. In this work, several ultraviolet radiation sources (a low-pressure mercury lamp, a KrCl excimer, and four UV LEDs) emitting continuous or pulsed irradiation were compared. The greatest log reductions in E. coli cells and B. subtilis endospores were 4.1 ± 0.2 (18 mJ cm-2) and 4.5 ± 0.1 (42 mJ cm-2) with continuous 222 nm, respectively. The highest MS2 log reduction observed was 2.7 ± 0.1 (277 nm at 3809 mJ cm-2). Log reductions of SARS-CoV-2 with continuous 222 nm and 277 nm were ≥ 3.4 ± 0.7, with 13.3 mJ cm-2 and 60 mJ cm-2, respectively. There was no statistical difference between continuous and pulsed irradiation (0.83-16.7% [222 nm and 277 nm] or 0.83-20% [280 nm] duty rates) on E. coli inactivation. Pulsed 260 nm radiation (0.5% duty rate) at 260 nm yielded significantly greater log reduction for both bacteria than continuous 260 nm radiation. There was no statistical difference in SARS-CoV-2 inactivation between continuous and pulsed 222 nm UV-C radiation and pulsed 277 nm radiation demonstrated greater germicidal efficacy than continuous 277 nm radiation. Greater radiant exposure for all radiation sources was required to inactivate MS2 bacteriophage. Findings demonstrate that pulsed irradiation could be more useful than continuous UV radiation in human-occupied spaces, but threshold limit values should be respected. Pathogen-specific sensitivities, experimental setup, and quantification methods for determining germicidal efficacy remain important factors when optimizing ultraviolet radiation for surface decontamination or other applications.
Collapse
Affiliation(s)
- Anne Sophie Rufyikiri
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Rebecca Martinez
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Philip W Addo
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Bo-Sen Wu
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mitra Yousefi
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Danielle Malo
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Medicine, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Human Genetics, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Valérie Orsat
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Silvia M Vidal
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Human Genetics, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Jörg H Fritz
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
5
|
Engler M, Albers D, Von Maltitz P, Groß R, Münch J, Cirstea IC. ACE2-EGFR-MAPK signaling contributes to SARS-CoV-2 infection. Life Sci Alliance 2023; 6:e202201880. [PMID: 37402592 PMCID: PMC10320016 DOI: 10.26508/lsa.202201880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
SARS-CoV-2 triggered the most severe pandemic of recent times. To enter into a host cell, SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2). However, subsequent studies indicated that other cell membrane receptors may act as virus-binding partners. Among these receptors, the epidermal growth factor receptor (EGFR) was hypothesized not only as a spike protein binder, but also to be activated in response to SARS-CoV-2. In our study, we aim at dissecting EGFR activation and its major downstream signaling pathway, the mitogen-activated signaling pathway (MAPK), in SARS-CoV-2 infection. Here, we demonstrate the activation of EGFR-MAPK signaling axis by the SARS-CoV-2 spike protein and we identify a yet unknown cross talk between ACE2 and EGFR that regulated ACE2 abundance and EGFR activation and subcellular localization, respectively. By inhibiting the EGFR-MAPK activation, we observe a reduced infection with either spike-pseudotyped particles or authentic SARS-CoV-2, thus indicating that EGFR serves as a cofactor and the activation of EGFR-MAPK contributes to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Dan Albers
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Pascal Von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
6
|
Delbue S, Pariani E, Parapini S, Galli C, Basilico N, D'Alessandro S, Pellegrino S, Pini E, Ciceri S, Ferraboschi P, Grisenti P. Heat-Treated Lysozyme Hydrochloride: A Study on Its Structural Modifications and Anti-SARS-CoV-2 Activity. Molecules 2023; 28:molecules28062848. [PMID: 36985820 PMCID: PMC10054570 DOI: 10.3390/molecules28062848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Lysozyme (E.C. 3.2.1.17), an about 14 kDa protein and pI 11, widely spread in nature, is present in humans mainly in milk, saliva, and intestinal mucus as a part of innate defense mechanisms. It is endowed with antimicrobial activity due to its action as an N-acetylmuramidase, cleaving the 1-4β glycosidic linkage in the peptidoglycan layer of Gram-positive bacteria. This antimicrobial activity is exerted only against a limited number of Gram-negative bacteria. Different action mechanisms are proposed to explain its activity against Gram-negative bacteria, viruses, and fungi. The antiviral activity prompted the study of a possible application of lysozyme in the treatment of SARS-CoV-2 infections. Among the different sources of lysozyme, the chicken egg albumen was chosen, being the richest source of this protein (c-type lysozyme, 129 amino acids). Interestingly, the activity of lysozyme hydrochloride against SARS-CoV-2 was related to the heating (to about 100 °C) of this molecule. A chemical-physical characterization was required to investigate the possible modifications of native lysozyme hydrochloride by heat treatment. The FTIR analysis of the two preparations of lysozyme hydrochloride showed appreciable differences in the secondary structure of the two protein chains. HPLC and NMR analyses, as well as the enzymatic activity determination, did not show significant modifications.
Collapse
Affiliation(s)
- Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Galli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Sarah D'Alessandro
- Department of Pharmacological and Biomedical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "Alessandro Marchesini", University of Milan, 20133 Milan, Italy
| | - Elena Pini
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "Alessandro Marchesini", University of Milan, 20133 Milan, Italy
| | - Samuele Ciceri
- Department of Pharmaceutical Sciences, University of Milan, Via L. Mangiagalli 25, 20133 Milan, Italy
| | - Patrizia Ferraboschi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Saldini 50, 20133 Milan, Italy
| | - Paride Grisenti
- Bioseutica, Landbouwweg 83, 3899 BD Zeewolde, The Netherlands
- Bioseutica, Corso Elvezia 4, 6900 Lugano, Switzerland
| |
Collapse
|
7
|
Tang M, Zhang X, Huang Y, Cheng W, Qu J, Gui S, Li L, Li S. Peptide-based inhibitors hold great promise as the broad-spectrum agents against coronavirus. Front Microbiol 2023; 13:1093646. [PMID: 36741878 PMCID: PMC9893414 DOI: 10.3389/fmicb.2022.1093646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome (MERS), and the recent SARS-CoV-2 are lethal coronaviruses (CoVs) that have caused dreadful epidemic or pandemic in a large region or globally. Infections of human respiratory systems and other important organs by these pathogenic viruses often results in high rates of morbidity and mortality. Efficient anti-viral drugs are needed. Herein, we firstly take SARS-CoV-2 as an example to present the molecular mechanism of CoV infection cycle, including the receptor binding, viral entry, intracellular replication, virion assembly, and release. Then according to their mode of action, we provide a summary of anti-viral peptides that have been reported in peer-reviewed publications. Even though CoVs can rapidly evolve to gain resistance to the conventional small molecule drugs, peptide-based inhibitors targeting various steps of CoV lifecycle remain a promising approach. Peptides can be continuously modified to improve their antiviral efficacy and spectrum along with the emergence of new viral variants.
Collapse
Affiliation(s)
- Mingxing Tang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yanhong Huang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jing Qu
- Department of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuiqing Gui
- Department of Critical Care Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China,*Correspondence: Shuiqing Gui, ✉
| | - Liang Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China,Liang Li, ✉
| | - Shuo Li
- Department of Otolaryngology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,Shuo Li, ✉
| |
Collapse
|
8
|
Choonong R, Ruangdachsuwan S, Churod T, Palabodeewat S, Punyahathaikul S, Juntarapornchai S, Ketsuwan K, Komaikul J, Masrinoul P, Kitisripanya T, Juengwatanatrakul T, Yusakul G, Kanchanapoom T, Putalun W. Evaluating the in Vitro Efficacy of Quassinoids from Eurycoma longifolia and Eurycoma harmandiana against Common Cold Human Coronavirus OC43 and SARS-CoV-2 Using In-Cell Enzyme-Linked Immunosorbent Assay. JOURNAL OF NATURAL PRODUCTS 2022; 85:2779-2788. [PMID: 36399766 DOI: 10.1021/acs.jnatprod.2c00736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has become a pandemic and public health crisis. SARS-CoV-2 and the seasonal common cold coronavirus (HCoV-OC43) belong to the beta genus of human coronaviruses (HCoVs). In-cell ELISA assays were performed using HCoV-OC43 and SARS-CoV-2 and evaluated the antiviral activity of herbal plants. Eurycoma longifolia (EL) and Eurycoma harmandiana (EH) roots (antipyretic properties) and their constituent quassinoids, especially chaparrinone and eurycomalactone, showed potent anti-HCoV-OC43 and SARS-CoV-2 activities, and the low IC50 values of the mentioned constituents were observed in the range of 0.32-0.51 μM. Eurycomanone and 13β,21-dihydroeurycomanone may contribute to the antiviral activity of EL, whereas chaparrinone is the major and active antiviral constituent of EH root. The content of quassinoids, β-carboline, and canthin-6-one alkaloids and the cytotoxicity profile of EL and EH extracts were varied regarding extraction solvents. The boiled water and 50% EtOH extractions of both plants were less toxic than those with 95% EtOH as the extraction solvent. Our research suggests that quassinoids, which come from EL and EH roots and are anti-coronavirus compounds, are potential treatment candidates for COVID-19 and merit further in vivo investigations.
Collapse
Affiliation(s)
| | - Sasiporn Ruangdachsuwan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Theeraporn Churod
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Somnuek Palabodeewat
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Surat Punyahathaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sanjira Juntarapornchai
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Kunjimas Ketsuwan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jukrapun Komaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Groß R, Conzelmann C, Münch J, Müller JA. Detection of SARS-CoV-2 in Human Breast Milk. Methods Mol Biol 2022; 2610:129-135. [PMID: 36534287 DOI: 10.1007/978-1-0716-2895-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Certain viral pathogens can be shed into the human breast milk and cause infections in the infant upon breastfeeding. Thus, it is important to clarify whether viral RNA as well as infectious virus can be found in breast milk. The complexity of this body fluid poses several challenges for viral RNA isolation and detection of infectious virus. We here provide a protocol that allowed the identification of SARS-CoV-2 RNA in breast milk and the isolation of infectious virus after the virus has been artificially spiked into milk samples.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
10
|
Weil T, Kirupakaran A, Le MH, Rebmann P, Mieres-Perez J, Issmail L, Conzelmann C, Müller JA, Rauch L, Gilg A, Wettstein L, Groß R, Read C, Bergner T, Pålsson SA, Uhlig N, Eberlein V, Wöll H, Klärner FG, Stenger S, Kümmerer BM, Streeck H, Fois G, Frick M, Braubach P, Spetz AL, Grunwald T, Shorter J, Sanchez-Garcia E, Schrader T, Münch J. Advanced Molecular Tweezers with Lipid Anchors against SARS-CoV-2 and Other Respiratory Viruses. JACS AU 2022; 2:2187-2202. [PMID: 36186568 PMCID: PMC9516563 DOI: 10.1021/jacsau.2c00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 presents a global health emergency. Therapeutic options against SARS-CoV-2 are still very limited but urgently required. Molecular tweezers are supramolecular agents that destabilize the envelope of viruses resulting in a loss of viral infectivity. Here, we show that first-generation tweezers, CLR01 and CLR05, disrupt the SARS-CoV-2 envelope and abrogate viral infectivity. To increase the antiviral activity, a series of 34 advanced molecular tweezers were synthesized by insertion of aliphatic or aromatic ester groups on the phosphate moieties of the parent molecule CLR01. A structure-activity relationship study enabled the identification of tweezers with a markedly enhanced ability to destroy lipid bilayers and to suppress SARS-CoV-2 infection. Selected tweezer derivatives retain activity in airway mucus and inactivate the SARS-CoV-2 wildtype and variants of concern as well as respiratory syncytial, influenza, and measles viruses. Moreover, inhibitory activity of advanced tweezers against respiratory syncytial virus and SARS-CoV-2 was confirmed in mice. Thus, potentiated tweezers are broad-spectrum antiviral agents with great prospects for clinical development to combat highly pathogenic viruses.
Collapse
Affiliation(s)
- Tatjana Weil
- Institute
of Molecular Virology, Ulm University Medical
Center, Ulm89081, Germany
| | - Abbna Kirupakaran
- Faculty
of Chemistry, University of Duisburg-Essen, Essen45117, Germany
| | - My-Hue Le
- Faculty
of Chemistry, University of Duisburg-Essen, Essen45117, Germany
| | - Philipp Rebmann
- Faculty
of Chemistry, University of Duisburg-Essen, Essen45117, Germany
| | - Joel Mieres-Perez
- Computational
Biochemistry, University of Duisburg-Essen, Essen45117, Germany
| | - Leila Issmail
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, Leipzig04103, Germany
| | - Carina Conzelmann
- Institute
of Molecular Virology, Ulm University Medical
Center, Ulm89081, Germany
| | - Janis A. Müller
- Institute
of Virology, Philipps University of Marburg, Marburg35043, Germany
| | - Lena Rauch
- Institute
of Molecular Virology, Ulm University Medical
Center, Ulm89081, Germany
| | - Andrea Gilg
- Institute
of Molecular Virology, Ulm University Medical
Center, Ulm89081, Germany
| | - Lukas Wettstein
- Institute
of Molecular Virology, Ulm University Medical
Center, Ulm89081, Germany
| | - Rüdiger Groß
- Institute
of Molecular Virology, Ulm University Medical
Center, Ulm89081, Germany
| | - Clarissa Read
- Central
Facility for Electron Microscopy, Ulm University, Ulm89081, Germany
- Institute
of Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Tim Bergner
- Central
Facility for Electron Microscopy, Ulm University, Ulm89081, Germany
| | - Sandra Axberg Pålsson
- Department
of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm10691, Sweden
| | - Nadja Uhlig
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, Leipzig04103, Germany
| | - Valentina Eberlein
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, Leipzig04103, Germany
| | - Heike Wöll
- Faculty
of Chemistry, University of Duisburg-Essen, Essen45117, Germany
| | | | - Steffen Stenger
- Institute
for Microbiology and Hygiene, Ulm University
Medical Center, Ulm89081, Germany
| | - Beate M. Kümmerer
- Institute
of Virology, Medical Faculty, University
of Bonn, Bonn53127, Germany
- German
Centre for Infection Research (DZIF),
partner site Bonn-Cologne, Bonn53127, Germany
| | - Hendrik Streeck
- Institute
of Virology, Medical Faculty, University
of Bonn, Bonn53127, Germany
- German
Centre for Infection Research (DZIF),
partner site Bonn-Cologne, Bonn53127, Germany
| | - Giorgio Fois
- Institute
of General Physiology, Ulm University, Ulm89081, Germany
| | - Manfred Frick
- Institute
of General Physiology, Ulm University, Ulm89081, Germany
| | - Peter Braubach
- Institute
of Pathology, Hannover Medical School (MHH), Hannover30625, Germany
| | - Anna-Lena Spetz
- Department
of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm10691, Sweden
| | - Thomas Grunwald
- Fraunhofer
Institute for Cell Therapy and Immunology IZI, Leipzig04103, Germany
| | - James Shorter
- Department
of Biochemistry and Biophysics, Perelman
School of Medicine at the University of Pennsylvania, Philadelphia19104, United States
| | - Elsa Sanchez-Garcia
- Computational
Biochemistry, University of Duisburg-Essen, Essen45117, Germany
| | - Thomas Schrader
- Faculty
of Chemistry, University of Duisburg-Essen, Essen45117, Germany
| | - Jan Münch
- Institute
of Molecular Virology, Ulm University Medical
Center, Ulm89081, Germany
| |
Collapse
|
11
|
Berge-Seidl S, Nielsen NV, Rodriguez Alfonso AA, Etscheid M, Kandanur SPS, Haug BE, Stensland M, Thiede B, Karacan M, Preising N, Wiese S, Ständker L, Declerck PJ, Løset GÅ, Kanse SM. Identification of a Phage Display-Derived Peptide Interacting with the N-Terminal Region of Factor VII Activating Protease (FSAP) Enables Characterization of Zymogen Activation. ACS Chem Biol 2022; 17:2631-2642. [PMID: 36070465 PMCID: PMC9486805 DOI: 10.1021/acschembio.2c00538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 01/19/2023]
Abstract
Factor VII Activating protease (FSAP) has a protective effect in diverse disease conditions as inferred from studies in FSAP-/- mice and humans deficient in FSAP activity due to single-nucleotide polymorphism. The zymogen form of FSAP in plasma is activated by extracellular histones that are released during tissue injury or inflammation or by positively charged surfaces. However, it is not clear whether this activation mechanism is specific and amenable to manipulation. Using a phage display approach, we have identified a Cys-constrained 11 amino acid peptide, NNKC9/41, that activates pro-FSAP in plasma. The synthetic linear peptide has a propensity to cyclize through the terminal Cys groups, of which the antiparallel cyclic dimer, but not the monocyclic peptide, is the active component. Other commonly found zymogens in the plasma, related to the hemostasis system, were not activated. Binding studies with FSAP domain deletion mutants indicate that the N-terminus of FSAP is the key interaction site of this peptide. In a monoclonal antibody screen, we identified MA-FSAP-38C7 that prevented the activation of pro-FSAP by the peptide. This antibody bound to the LESLDP sequence (amino acids 30-35) in an intrinsically disordered stretch in the N-terminus of FSAP. The plasma clotting time was shortened by NNKC9/41, and this was reversed by MA-FSAP-38C7, demonstrating the utility of this peptide. Peptide NNKC9/41 will be useful as a tool to delineate the molecular mechanism of activation of pro-FSAP, elucidate its biological role, and provide a starting point for the pharmacological manipulation of FSAP activity.
Collapse
Affiliation(s)
| | - Nis Valentin Nielsen
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| | | | | | | | - Bengt Erik Haug
- Department
of Chemistry and Center for Pharmacy, University
of Bergen, 5007 Bergen, Norway
| | - Maria Stensland
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| | - Bernd Thiede
- Department
of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Paul J. Declerck
- Department
of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Geir Åge Løset
- Department
of Biosciences, University of Oslo, 0371 Oslo, Norway
- Nextera
AS, 0349 Oslo, Norway
| | - Sandip M. Kanse
- Oslo
University Hospital and Medical Faculty, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
12
|
Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Commun Biol 2022; 5:681. [PMID: 35804152 PMCID: PMC9270327 DOI: 10.1038/s42003-022-03613-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
The transmembrane serine protease 2 (TMPRSS2) primes the SARS-CoV-2 Spike (S) protein for host cell entry and represents a promising target for COVID-19 therapy. Here we describe the in silico development and in vitro characterization of peptidomimetic TMPRSS2 inhibitors. Molecular docking studies identified peptidomimetic binders of the TMPRSS2 catalytic site, which were synthesized and coupled to an electrophilic serine trap. The compounds inhibit TMPRSS2 while demonstrating good off-target selectivity against selected coagulation proteases. Lead candidates are stable in blood serum and plasma for at least ten days. Finally, we show that selected peptidomimetics inhibit SARS-CoV-2 Spike-driven pseudovirus entry and authentic SARS-CoV-2 infection with comparable efficacy as camostat mesylate. The peptidomimetic TMPRSS2 inhibitors also prevent entry of recent SARS-CoV-2 variants of concern Delta and Omicron BA.1. In sum, our study reports antivirally active and stable TMPRSS2 inhibitors with prospects for further preclinical and clinical development as antiviral agents against SARS-CoV-2 and other TMPRSS2-dependent viruses. This study describes the development and characterization of peptidomimetic inhibitors of TMPRSS2, which primes the Spike protein of SARS-CoV-2. The inhibitors are shown to prevent SARS-CoV-2 infection in cells as efficiently as camostat mesylate.
Collapse
|
13
|
Weil T, Lawrenz J, Seidel A, Münch J, Müller JA. Immunodetection assays for the quantification of seasonal common cold coronaviruses OC43, NL63, or 229E infection confirm nirmatrelvir as broad coronavirus inhibitor. Antiviral Res 2022; 203:105343. [PMID: 35598779 PMCID: PMC9119192 DOI: 10.1016/j.antiviral.2022.105343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 01/21/2023]
Abstract
Besides pandemic SARS-CoV-2, also endemic seasonal human common cold coronaviruses (hCoVs) have a significant impact on human health and economy. Studies on hCoVs and the identification of antivirals are therefore crucial to improve human well-being. However, hCoVs have long been neglected and the methodology to study virus infection, replication and inhibition warrants being updated. We here evaluated the established plaque-based assays to determine viral titers and cell-to-cell spread and developed protocols for the immunodetection of the viral nucleocapsid protein by flow cytometry and in-cell ELISA to study infection rates at early time points. The developed protocols allow detection of hCoV-229E infection after 2, and hCoV-NL63 and -OC43 infection after 3 days at a single cell level or in a 96 well microtiter format, in large sample numbers without being laborious or expensive. Both assays can be applied to assess the susceptibility of cells to hCoV infection and replication, and to determine the efficacy of antiviral compounds as well as neutralizing antibodies in a sensitive and quantitative manner. Application revealed that clinically applied SARS-CoV-2 targeting monoclonal antibodies are inactive against hCoVs, but that the viral polymerase targeting antivirals remdesivir and molnupiravir are broadly active also against all three hCoVs. Further, the in-cell ELISA provided evidence that nirmatrelvir, previously shown to broadly inhibit coronavirus proteases, also prevents replication of authentic hCoVs. Importantly, the protocols described here can be easily adapted to other coronavirus strains and species as well as viruses of other families within a short time. This will facilitate future research on known and emerging (corona)viruses, support the identification of antivirals and increase the preparedness for future virus outbreaks.
Collapse
Affiliation(s)
- Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Core Facility Functional Peptidomics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany; Institute of Virology, Philipps University of Marburg, 35043, Marburg, Germany.
| |
Collapse
|
14
|
Groß R, Dias Loiola LM, Issmail L, Uhlig N, Eberlein V, Conzelmann C, Olari L, Rauch L, Lawrenz J, Weil T, Müller JA, Cardoso MB, Gilg A, Larsson O, Höglund U, Pålsson SA, Tvilum AS, Løvschall KB, Kristensen MM, Spetz A, Hontonnou F, Galloux M, Grunwald T, Zelikin AN, Münch J. Macromolecular Viral Entry Inhibitors as Broad-Spectrum First-Line Antivirals with Activity against SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201378. [PMID: 35543527 PMCID: PMC9284172 DOI: 10.1002/advs.202201378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Indexed: 05/03/2023]
Abstract
Inhibitors of viral cell entry based on poly(styrene sulfonate) and its core-shell nanoformulations based on gold nanoparticles are investigated against a panel of viruses, including clinical isolates of SARS-CoV-2. Macromolecular inhibitors are shown to exhibit the highly sought-after broad-spectrum antiviral activity, which covers most analyzed enveloped viruses and all of the variants of concern for SARS-CoV-2 tested. The inhibitory activity is quantified in vitro in appropriate cell culture models and for respiratory viral pathogens (respiratory syncytial virus and SARS-CoV-2) in mice. Results of this study comprise a significant step along the translational path of macromolecular inhibitors of virus cell entry, specifically against enveloped respiratory viruses.
Collapse
Affiliation(s)
- Rüdiger Groß
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lívia Mesquita Dias Loiola
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
- Brazilian Synchrotron Light LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Leila Issmail
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Nadja Uhlig
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Valentina Eberlein
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Carina Conzelmann
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lia‐Raluca Olari
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Lena Rauch
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Jan Lawrenz
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Tatjana Weil
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Janis A. Müller
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | - Mateus Borba Cardoso
- Brazilian Synchrotron Light LaboratoryBrazilian Center for Research in Energy and MaterialsCampinasSão Paulo13083‐970Brazil
| | - Andrea Gilg
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| | | | | | - Sandra Axberg Pålsson
- Department of Molecular BiosciencesThe Wenner‐Gren Institute Stockholm UniversityStockholm10691Sweden
| | - Anna Selch Tvilum
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Kaja Borup Løvschall
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Maria M. Kristensen
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Anna‐Lena Spetz
- Department of Molecular BiosciencesThe Wenner‐Gren Institute Stockholm UniversityStockholm10691Sweden
| | | | - Marie Galloux
- Université Paris‐SaclayINRAE, UVSQ, VIMJouy‐en‐Josas78352France
| | - Thomas Grunwald
- Fraunhofer Institute for Cell Therapy and Immunology IZILeipzig04103Germany
| | - Alexander N. Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience CentreAarhus UniversityAarhus8000Denmark
| | - Jan Münch
- Institute of Molecular VirologyUlm University Medical CenterUlm89081Germany
| |
Collapse
|
15
|
Mezger MC, Conzelmann C, Weil T, von Maltitz P, Albers DPJ, Münch J, Stamminger T, Schilling EM. Inhibitors of Activin Receptor-like Kinase 5 Interfere with SARS-CoV-2 S-Protein Processing and Spike-Mediated Cell Fusion via Attenuation of Furin Expression. Viruses 2022; 14:v14061308. [PMID: 35746781 PMCID: PMC9228453 DOI: 10.3390/v14061308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/18/2023] Open
Abstract
Screening of a protein kinase inhibitor library identified SB431542, targeting activin receptor-like kinase 5 (ALK5), as a compound interfering with SARS-CoV-2 replication. Since ALK5 is implicated in transforming growth factor β (TGF-β) signaling and regulation of the cellular endoprotease furin, we pursued this research to clarify the role of this protein kinase for SARS-CoV-2 infection. We show that TGF-β1 induces the expression of furin in a broad spectrum of cells including Huh-7 and Calu-3 that are permissive for SARS-CoV-2. The inhibition of ALK5 by incubation with SB431542 revealed a dose-dependent downregulation of both basal and TGF-β1 induced furin expression. Furthermore, we demonstrate that the ALK5 inhibitors SB431542 and Vactosertib negatively affect the proteolytic processing of the SARS-CoV-2 Spike protein and significantly reduce spike-mediated cell-cell fusion. This correlated with an inhibitory effect of ALK5 inhibition on the production of infectious SARS-CoV-2. Altogether, our study shows that interference with ALK5 signaling attenuates SARS-CoV-2 infectivity and cell-cell spread via downregulation of furin which is most pronounced upon TGF-β stimulation. Since a TGF-β dominated cytokine storm is a hallmark of severe COVID-19, ALK5 inhibitors undergoing clinical trials might represent a potential therapy option for COVID-19.
Collapse
Affiliation(s)
- Maja C. Mezger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Pascal von Maltitz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Dan P. J. Albers
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (C.C.); (T.W.); (P.v.M.); (D.P.J.A.); (J.M.)
| | - Thomas Stamminger
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
- Correspondence: ; Tel.: +49-731-50065100
| | - Eva-Maria Schilling
- Institute of Virology, Ulm University Medical Center, 89081 Ulm, Germany; (M.C.M.); (E.-M.S.)
| |
Collapse
|
16
|
Schöler L, Le-Trilling VTK, Dittmer U, Fiedler M, Trilling M. Establishment and clinical validation of an in-cell-ELISA-based assay for the rapid quantification of Rabies lyssavirus neutralizing antibodies. PLoS Negl Trop Dis 2022; 16:e0010425. [PMID: 35536867 PMCID: PMC9159627 DOI: 10.1371/journal.pntd.0010425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 06/01/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
Neutralizing antibodies (nAbs) prevent the entry of viruses into permissive cells. Since nAbs represent correlates of protection against the Rabies lyssavirus, the presence of sufficient nAbs indicates effective vaccination. Accordingly, Rabies lyssavirus-specific nAb titers need to be determined in routine diagnostics to identify individuals being at risk of Rabies lyssavirus infections due to insufficient immunity. The current gold standard for the quantification of Rabies lyssavirus-specific nAbs is the rapid fluorescent focus inhibition test (RFFIT). However, RFFITs are expensive and labor-intensive since multiple microplate wells must be evaluated one-by-one by trained personnel through microscopic inspection, which limits the number of samples that can be processed. To overcome this disadvantage, we established a novel assay for Rabies lyssavirus-specific nAbs relying on an in-cell-ELISA (icELISA)-based neutralization test (icNT). The icNT differs from the RFFIT in the readout phase, and can be automatically quantified in minutes using broadly available microplate readers. During the establishment, icNT parameters such as antibody concentrations, permeabilization procedures, blocking reagents, infectious doses, and the duration of infection were optimized. Afterwards, a dose-dependent detection of Rabies lyssavirus neutralization was demonstrated using the WHO Standard Rabies Immunoglobulin reference. A panel of 200 sera with known RFFIT titers revealed very good sensitivity and specificity of the icNT. Furthermore, the icNT showed very good intra- and inter-assay precision. By recognizing Rabies lyssavirus-specific antigens, the assay can be applied immediately to automatically quantify the concentration of Rabies lyssavirus nAbs in routine diagnostics or for various basic research questions such as screening for antiviral compounds.
Collapse
Affiliation(s)
- Lara Schöler
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Fiedler
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
17
|
New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. J Biol Inorg Chem 2022; 27:421-429. [PMID: 35332377 PMCID: PMC8948040 DOI: 10.1007/s00775-022-01937-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
In this work, a synthetic approach to prepare an example of new class of the derivatives of the closo-decaborate anion with amino acids detached from the boron cluster by pendant group has been proposed and implemented. Compound Na2[B10H9–O(CH2)4C(O)–His–OMe] was isolated and characterized. This compound has an inorganic hydrophobic core which is the 10-vertex boron cage and the –O(CH2)4C(O)–His–OMe organic substituent. It has been shown to possess strong antiviral activity in vitro against modern strains of A/H1N1 virus at 10 and 5 µg/mL. The compound has been found to be non-cytotoxic up to 160 µg/mL. At the same time, the compound has been found to be inactive against SARS-CoV-2, indicating specific activity against RNA virus replication. Molecular docking of the target derivative of the closo-decaborate anion with a model of the transmembrane region of the M2 protein has been performed and the mechanism of its antiviral action is discussed.
Collapse
|
18
|
Pi-Estopiñan F, Pérez MT, Fraga A, Bergado G, Díaz GD, Orosa I, Díaz M, Solozábal JA, Rodríguez LM, Garcia-Rivera D, Macías C, Jerez Y, Casadesús AV, Fernández-Marrero B, Bermúdez E, Plasencia CA, Sánchez B, Hernández T. A cell-based ELISA as surrogate of virus neutralization assay for RBD SARS-CoV-2 specific antibodies. Vaccine 2022; 40:1958-1967. [PMID: 35193792 PMCID: PMC8856731 DOI: 10.1016/j.vaccine.2022.02.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/23/2022]
Abstract
SARS-CoV-2, the cause of the COVID-19 pandemic, has provoked a global crisis and death of millions of people. Several serological assays to determine the quality of the immune response against SARS-CoV-2 and the efficacy of vaccines have been developed, among them the gold standard conventional virus neutralization assays. However, these tests are time consuming, require biosafety level 3 (BSL3), and are low throughput and expensive. This has motivated the development of alternative methods, including molecular inhibition assays. Herein, we present a safe cell-based ELISA-virus neutralization test (cbE-VNT) as a surrogate for the conventional viral neutralization assays that detects the inhibition of SARS-CoV-2 RBD binding to ACE2-bearing cells independently of species. Our test shows a very good correlation with the conventional and molecular neutralization assays and achieves 100% specificity and 95% sensitivity. cbE-VNT is cost-effective, fast and enables a large-scale serological evaluation that can be performed in a BSL2 laboratory, allowing its use in pre-clinical and clinical investigations.
Collapse
Affiliation(s)
- Franciscary Pi-Estopiñan
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - María Teresa Pérez
- National Laboratory of Civil Defense (NLCD), Jamaica Highway and National Highway, San José of Lajas, Mayabeque, Cuba
| | - Anitza Fraga
- National Laboratory of Civil Defense (NLCD), Jamaica Highway and National Highway, San José of Lajas, Mayabeque, Cuba
| | - Gretchen Bergado
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Geidy D Díaz
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Ivette Orosa
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Marianniz Díaz
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Joaquín Antonio Solozábal
- Quality Control Department, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | | | | | | | - Yanet Jerez
- Institute of Hematology and Immunology (IHI), Havana, Cuba
| | - Ana V Casadesús
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Briandy Fernández-Marrero
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Ernesto Bermúdez
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Claudia A Plasencia
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Belinda Sánchez
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba
| | - Tays Hernández
- Immunology and Immunotherapy Division, Center of Molecular Immunology (CIM), P.O. Box 16040, 216 St., Havana, Cuba.
| |
Collapse
|
19
|
Zapata-Cardona MI, Flórez-Álvarez L, Zapata-Builes W, Guerra-Sandoval AL, Guerra-Almonacid CM, Hincapié-García J, Rugeles MT, Hernandez JC. Atorvastatin Effectively Inhibits Ancestral and Two Emerging Variants of SARS-CoV-2 in vitro. Front Microbiol 2022; 13:721103. [PMID: 35369500 PMCID: PMC8972052 DOI: 10.3389/fmicb.2022.721103] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
This article evaluated the in vitro antiviral effect of atorvastatin (ATV) against SARS-CoV-2 and identified the interaction affinity between this compound and two SARS-CoV-2 proteins. The antiviral activity of atorvastatin against this virus was evaluated by three different treatment strategies [(i) pre-post treatment, (ii) pre-infection treatment, and (iii) post-infection treatment] using Vero E6 and Caco-2 cells. The interaction of atorvastatin with RdRp (RNA-dependent RNA polymerase) and 3CL protease (3-chymotrypsin-like protease) was evaluated by molecular docking. The CC50s (half-maximal cytotoxic concentrations) obtained for ATV were 50.3 and 64.5 μM in Vero E6 and Caco-2, respectively. This compound showed antiviral activity against SARS-CoV-2 D614G strain in Vero E6 with median effective concentrations (EC50s) of 15.4, 12.1, and 11.1 μM by pre-post, pre-infection, and post-infection treatments, respectively. ATV also inhibited Delta and Mu variants by pre-post treatment (EC50s of 16.8 and 21.1 μM, respectively). In addition, ATV showed an antiviral effect against the D614G strain independent of the cell line (EC50 of 7.4 μM in Caco-2). The interaction of atorvastatin with SARS-CoV-2 RdRp and 3CL protease yielded a binding affinity of -6.7 kcal/mol and -7.5 kcal/mol, respectively. Our study demonstrated the in vitro antiviral activity of atorvastatin against the ancestral SARS-CoV-2 D614G strain and two emerging variants (Delta and Mu), with an independent effect of the cell line. A favorable binding affinity between ATV and viral proteins by bioinformatics methods was found. Due to the extensive clinical experience of atorvastatin use, it could prove valuable in the treatment of COVID-19.
Collapse
Affiliation(s)
- María I. Zapata-Cardona
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | | | | | - Jaime Hincapié-García
- Grupo de investigación, Promoción y prevención farmacéutica, Facultad de ciencias farmacéuticas y alimentarias, Universidad de Antioquia UdeA, Medellín, Colombia
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| |
Collapse
|
20
|
Terada T, Morozumi T, Wada E, Sukegawa S. Two immune-based methods using immortalized porcine kidney macrophages for quantifying neutralizing activity against porcine reproductive and respiratory syndrome virus-2. J Virol Methods 2022; 303:114494. [PMID: 35181347 DOI: 10.1016/j.jviromet.2022.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes a serious infectious disease in pigs in farms worldwide. Neutralizing antibody titer is an effective index for evaluating immunity to PRRSV; however, PRRSV has different neutralizing cross-reactivity between strains. Therefore, quantitative measurement of neutralizing antibody titers against field PRRSV strains would be required to evaluate whether neutralizing antibodies in pigs could possess neutralizing activity against individual or multiple strains. Immune-based methods, such as image cytometry (ICM) and cell-based enzyme-linked immune sorbent assay (ELISA), are quantitative and can be used to evaluate many samples. Using immortalized porcine kidney macrophages (IPKMs), which are highly susceptible to infection from field PRRSV-2 strains compared with other cell lines, immune-based methods could enable the evaluation of the neutralizing activity of porcine serum against field strains of PRRSV-2 that are difficult to isolate in conventional cells. In summary, we adapted two methods, namely ICM and cell-based ELISA, to IPKMs for quantitative neutralizing antibody titer measurements. Two immune-based methods using IPKMs are adequate for quantifying neutralizing activity of porcine serum against PRRSV-2, including field strains.
Collapse
Affiliation(s)
- Takumi Terada
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| | - Takeya Morozumi
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan.
| | - Emi Wada
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| | - Shin Sukegawa
- Research & Development Center, NH Foods Ltd., 3-3 Midorigahara, Tsukuba, Ibaraki, 300-2646, Japan
| |
Collapse
|
21
|
Lawrenz J, Xie Q, Zech F, Weil T, Seidel A, Krnavek D, van der Hoek L, Münch J, Müller JA, Kirchhoff F. SARS-CoV-2 Vaccination boosts Neutralizing Activity against Seasonal Human Coronaviruses. Clin Infect Dis 2022; 75:e653-e661. [PMID: 35079775 PMCID: PMC8807272 DOI: 10.1093/cid/ciac057] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Most of the millions of people that are vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), have previously been infected by related circulating human coronaviruses (hCoVs) causing common colds and will experience further encounters with these viruses in the future. Whether COVID-19 vaccinations impact neutralization of seasonal coronaviruses is largely unknown. Methods We analyzed the capacity of sera derived from 24 individuals before and after heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination to neutralize genuine OC43, NL63, and 229E hCoVs, as well as viral pseudoparticles carrying the SARS-CoV-1, SARS-CoV-2, Middle East Respiratory Syndrome (MERS)-CoV, and hCoV-OC43, hCoV-NL63, and hCoV-229E spike proteins. Genuine hCoVs or spike containing pseudovirions were incubated with different concentrations of sera and neutralization efficiencies were determined by measuring viral RNA yields, intracellular viral nucleocapsid expression, or reporter gene expression in Huh-7 cells. Results All individuals showed strong preexisting immunity against hCoV-OC43. Neutralization of hCoV-NL63 was more variable and all sera showed only modest inhibitory activity against genuine hCoV-229E. SARS-CoV-2 vaccination resulted in efficient cross-neutralization of SARS-CoV-1 but not of MERS-CoV. On average, vaccination significantly increased the neutralizing activity against genuine hCoV-OC43, hCoV-NL63, and hCoV-229E. Conclusions Heterologous COVID-19 vaccination may confer some cross-protection against endemic seasonal coronaviruses.
Collapse
Affiliation(s)
- Jan Lawrenz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Qinya Xie
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniela Krnavek
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
22
|
Ilkhani H, Hedayat N, Farhad S. Novel approaches for rapid detection of COVID-19 during the pandemic: A review. Anal Biochem 2021; 634:114362. [PMID: 34478703 PMCID: PMC8406551 DOI: 10.1016/j.ab.2021.114362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 02/03/2023]
Abstract
The rapid spread of the SARS-CoV-2 virus that caused the COVID-19 disease, has highlighted our urgent need for sensitive, fast and accurate diagnostic technologies. In fact, one of the main challenges for flatting COVID-19 spread charts is the ability to accurately and rapidly identify asymptomatic cases that result in spreading the virus to close contacts. SARS-CoV-2 virus mutation is also relatively rapid, which makes the detection of COVID-19 diseases still crucial even after the vaccination. Conventional techniques, which are commercially available have focused on clinical manifestation, along with molecular and serological detection tools that can identify the SARS-CoV-2 virus however, owing to various disadvantages including low specificity and sensitivity, a quick, low cost and easy approach is needed for diagnosis of COVID-19. Scientists are now showing extensive interest in an effective portable and simple detection method to diagnose COVID-19. There are several novel methods and approaches that are considered viable advanced systems that can meet the demands. This study reviews the new approaches and sensing technologies that work on COVID-19 diagnosis for easy and successful detection of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hoda Ilkhani
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, NM, 87144, United States.
| | - Nader Hedayat
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH, 44325, United States
| | - Siamak Farhad
- Advanced Energy & Sensor Lab, Department of Mechanical Engineering, The University of Akron, Akron, OH, 44325, United States.
| |
Collapse
|
23
|
Hayashi K, Asai S, Umezawa K, Kakizoe H, Miyachi H, Morita M, Akaike T, Kuno H, Komatsu S, Watanabe T, Kawahara T. Virucidal effect of monogalactosyl diacylglyceride from a green microalga, Coccomyxa sp. KJ, against clinical isolates of SARS-CoV-2 as assessed by a plaque assay. J Clin Lab Anal 2021; 36:e24146. [PMID: 34837712 PMCID: PMC8761427 DOI: 10.1002/jcla.24146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and is capable of human-to-human transmission and rapid global spread. Thus, the establishment of high-quality viral detection and quantification methods, and the development of anti-SARS-CoV-2 agents are critical. METHODS Here, we present the rapid detection of infectious SARS-CoV-2 particles using a plaque assay with 0.5% agarose-ME (Medium Electroosmosis) as an overlay medium. RESULTS The plaques were capable of detecting the virus within 36-40 h post-infection. In addition, we showed that a monogalactosyl diacylglyceride isolated from a microalga (Coccomyxa sp. KJ) could inactivate the clinical isolates of SARS-CoV-2 in a time- and concentration-dependent manner. CONCLUSIONS These results would allow rapid quantification of the infectious virus titers and help develop more potent virucidal agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Kyoko Hayashi
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Satomi Asai
- Department of laboratory Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Kazuo Umezawa
- Department of Emergency and Critical Care, School of Medicine, Tokai University, Isehara, Japan
| | - Hidehumi Kakizoe
- Department of laboratory Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Hayato Miyachi
- Department of laboratory Medicine, School of Medicine, Tokai University, Isehara, Japan
| | - Masanobu Morita
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takaaki Akaike
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | - Takumi Watanabe
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Toshio Kawahara
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
24
|
Tripathi U, Nchioua R, Prata LGPL, Zhu Y, Gerdes EOW, Giorgadze N, Pirtskhalava T, Parker E, Xue A, Espindola-Netto JM, Stenger S, Robbins PD, Niedernhofer LJ, Dickinson SL, Allison DB, Kirchhoff F, Sparrer KMJ, Tchkonia T, Kirkland JL. SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging (Albany NY) 2021; 13:21838-21854. [PMID: 34531331 PMCID: PMC8507266 DOI: 10.18632/aging.203560] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Senescent cells, which arise due to damage-associated signals, are apoptosis-resistant and can express a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP). We recently reported that a component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface protein, S1, can amplify the SASP of senescent cultured human cells and that a related mouse β-coronavirus, mouse hepatitis virus (MHV), increases SASP factors and senescent cell burden in infected mice. Here, we show that SARS-CoV-2 induces senescence in human non-senescent cells and exacerbates the SASP in human senescent cells through Toll-like receptor-3 (TLR-3). TLR-3, which senses viral RNA, was increased in human senescent compared to non-senescent cells. Notably, genetically or pharmacologically inhibiting TLR-3 prevented senescence induction and SASP amplification by SARS-CoV-2 or Spike pseudotyped virus. While an artificial TLR-3 agonist alone was not sufficient to induce senescence, it amplified the SASP in senescent human cells. Consistent with these findings, lung p16INK4a+ senescent cell burden was higher in patients who died from acute SARS-CoV-2 infection than other causes. Our results suggest that induction of cellular senescence and SASP amplification through TLR-3 contribute to SARS-CoV-2 morbidity, indicating that clinical trials of senolytics and/or SASP/TLR-3 inhibitors for alleviating acute and long-term SARS-CoV-2 sequelae are warranted.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm 89081, Germany
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie L. Dickinson
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - David B. Allison
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
25
|
Brümmer LE, Katzenschlager S, Gaeddert M, Erdmann C, Schmitz S, Bota M, Grilli M, Larmann J, Weigand MA, Pollock NR, Macé A, Carmona S, Ongarello S, Sacks JA, Denkinger CM. Accuracy of novel antigen rapid diagnostics for SARS-CoV-2: A living systematic review and meta-analysis. PLoS Med 2021; 18:e1003735. [PMID: 34383750 PMCID: PMC8389849 DOI: 10.1371/journal.pmed.1003735] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/26/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. METHODS AND FINDINGS We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until 30 April 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcription polymerase chain reaction (RT-PCR) testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS-2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy datasets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity and specificity were 71.2% (95% CI 68.2% to 74.0%) and 98.9% (95% CI 98.6% to 99.1%), respectively. Sensitivity increased to 76.3% (95% CI 73.1% to 79.2%) if analysis was restricted to studies that followed the Ag-RDT manufacturers' instructions. LumiraDx showed the highest sensitivity, with 88.2% (95% CI 59.0% to 97.5%). Of instrument-free Ag-RDTs, Standard Q nasal performed best, with 80.2% sensitivity (95% CI 70.3% to 87.4%). Across all Ag-RDTs, sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values, i.e., <20 (96.5%, 95% CI 92.6% to 98.4%) and <25 (95.8%, 95% CI 92.3% to 97.8%), in comparison to those with Ct ≥ 25 (50.7%, 95% CI 35.6% to 65.8%) and ≥30 (20.9%, 95% CI 12.5% to 32.8%). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, 95% CI 76.3% to 89.2%) compared to testing after 1 week (61.5%, 95% CI 52.2% to 70.0%). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, 95% CI 70.4% to 79.9%), in comparison to other sample types (e.g., nasopharyngeal, 71.6%, 95% CI 68.1% to 74.9%), although CIs were overlapping. Concerns of bias were raised across all datasets, and financial support from the manufacturer was reported in 24.1% of datasets. Our analysis was limited by the included studies' heterogeneity in design and reporting. CONCLUSIONS In this study we found that Ag-RDTs detect the vast majority of SARS-CoV-2-infected persons within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data.
Collapse
Affiliation(s)
- Lukas E. Brümmer
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Mary Gaeddert
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Stephani Schmitz
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Bota
- Agaplesion Bethesda Hospital, Hamburg, Germany
| | - Maurizio Grilli
- Library, University Medical Center Mannheim, Mannheim, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nira R. Pollock
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | | | | | | | | | - Claudia M. Denkinger
- Division of Tropical Medicine, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Partner Site Heidelberg University Hospital, German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
26
|
Liao J, Ren J, Wei H, Lam RHW, Chua SL, Khoo BL. Label-free biosensor of phagocytosis for diagnosing bacterial infections. Biosens Bioelectron 2021; 191:113412. [PMID: 34153636 DOI: 10.1016/j.bios.2021.113412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023]
Abstract
Phagocytic cells recognize and phagocytose invading microbes for destruction. However, bacterial pathogens can remain hidden at low levels from conventional detection or replicate intracellularly after being phagocytosed by immune cells. Current phagocytosis-detection approaches involve flow cytometry or microscopic search for rare bacteria-internalized phagocytes among large populations of uninfected cells, which poses significant challenges in research and clinical settings. Hence it is imperative to develop a rapid, non-disruptive, and label-free phagocytosis detection approach. Using deformability assays and microscopic imaging, we have demonstrated for the first time that the presence of intracellular bacteria in phagocytic blood cells led to aberrant physical properties. Specifically, human monocytes with internalized bacteria of various species were stiffer and larger compared with uninfected monocytes. Taking advantage of these physical differences, a novel microfluidics-based biosensor platform was developed to passively sort, concentrate and quantify rare monocytes with internalized pathogens (MIP) from uninfected monocyte populations for phagocytosis detection. The clinical utility of the MIP platform was demonstrated by enriching and detecting bacteria-internalized monocytes from spiked human blood samples within 1.5 h. Patient-derived clinical isolates were used to validate the utility of the MIP platform further. This proof-of-concept presents a phagocytosis detection platform that could be used to rapidly diagnose microbial infections, especially in bloodstream infections (BSIs), thereby improving the clinical outcomes for point-of-care management.
Collapse
Affiliation(s)
- Junchen Liao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Jifeng Ren
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China; School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Huang Wei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China; Centre for Robotics and Automation, City University of Hong Kong, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China; Shenzhen Key Laboratory of Food Biological Safety Control, China.
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
27
|
Filardo S, Di Pietro M, Pasqualetti P, Manera M, Diaco F, Sessa R. In-cell western assay as a high-throughput approach for Chlamydia trachomatis quantification and susceptibility testing to antimicrobials. PLoS One 2021; 16:e0251075. [PMID: 33974662 PMCID: PMC8112659 DOI: 10.1371/journal.pone.0251075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
Chlamydia trachomatis, the leading cause of bacterial sexually transmitted diseases in developed countries, with around 127 million new cases per year, is mainly responsible for urethritis and cervicitis in women, and urethritis and epididymitis in men. Most C. trachomatis infections remain asymptomatic (>50%) and, hence, untreated, leading to severe reproductive complications in both women and men, like infertility. Therefore, the detection of C. trachomatis as well as the antimicrobial susceptibility testing becomes a priority, and, along the years, several methods have been recommended, like cell culture and direct immunofluorescence (DFA) on cell cultures. Herein, we described the application of In-Cell Western assay (ICW) via Odyssey CLx as a fast, more accessible, and high-throughput platform for the quantification of C. trachomatis and the screening of anti-chlamydial drugs. As a first step, we set up a standard curve by infecting cell monolayers with 2-fold serial dilutions of C. trachomatis Elementary Body (EB) suspension. Then, different unknown C. trachomatis EB suspensions were quantified and the chlamydial susceptibility testing to erythromycin was performed, using the DFA as comparison. Our results showed a very high concordance between these two assays, as evidenced by the enumeration of chlamydial IFUs as well as the determination of erythromycin Minimum Inhibitory Concentration (MIC). In conclusion, the ICW assay may be a promising candidate as an accurate and accessible methodology for C. trachomatis antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome “Sapienza”, Rome, Italy
- * E-mail:
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome “Sapienza”, Rome, Italy
| | - Patrizio Pasqualetti
- Department of Public Health and Infectious Diseases, Section of Health Statistics and Biometry, University of Rome “Sapienza”, Rome, Italy
| | - Martina Manera
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome “Sapienza”, Rome, Italy
| | - Fabiana Diaco
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome “Sapienza”, Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome “Sapienza”, Rome, Italy
| |
Collapse
|
28
|
Schütz D, Conzelmann C, Fois G, Groß R, Weil T, Wettstein L, Stenger S, Zelikin A, Hoffmann TK, Frick M, Müller JA, Münch J. Carrageenan-containing over-the-counter nasal and oral sprays inhibit SARS-CoV-2 infection of airway epithelial cultures. Am J Physiol Lung Cell Mol Physiol 2021; 320:L750-L756. [PMID: 33561380 PMCID: PMC8384564 DOI: 10.1152/ajplung.00552.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Pharmaceutical interventions are urgently needed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission. As SARS-CoV-2 infects and spreads via the nasopharyngeal airways, we analyzed the antiviral effect of selected nasal and oral sprays on virus infection in vitro. Two nose sprays showed virucidal activity but were cytotoxic precluding further analysis in cell culture. One nasal and one mouth spray suppressed SARS-CoV-2 infection of TMPRSS2-expressing Vero E6 cells and primary differentiated human airway epithelial cultures. The antiviral activity in both sprays could be attributed to polyanionic ι- and κ-carrageenans. Thus, application of carrageenan-containing nasal and mouth sprays may reduce the risk of acquiring SARS-CoV-2 infection and may limit viral spread, warranting further clinical evaluation.
Collapse
Affiliation(s)
- Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lukas Wettstein
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Steffen Stenger
- Institute for Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Alexander Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus, Denmark
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
29
|
Wouters E, Steenhuis M, Schrezenmeier H, Tiberghien P, Harvala H, Feys HB, van der Schoot E. Evaluation of SARS-CoV-2 antibody titers and potency for convalescent plasma donation: a brief commentary. Vox Sang 2020; 116:493-496. [PMID: 33368373 PMCID: PMC8246957 DOI: 10.1111/vox.13060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Elise Wouters
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen and University Hospital Ulm, Ulm, Germany
| | - Pierre Tiberghien
- Etablissement Français du Sang, La Plaine St-Denis, France.,UMR1098 RIGHT, INSERM, Etablissement Français du Sang, Université de Franche-Comté, Besançon, France
| | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Ellen van der Schoot
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
30
|
IMU-838, a Developmental DHODH Inhibitor in Phase II for Autoimmune Disease, Shows Anti-SARS-CoV-2 and Broad-Spectrum Antiviral Efficacy In Vitro. Viruses 2020; 12:v12121394. [PMID: 33291455 PMCID: PMC7762174 DOI: 10.3390/v12121394] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
The ongoing pandemic spread of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) demands skillful strategies for novel drug development, drug repurposing and cotreatments, in particular focusing on existing candidates of host-directed antivirals (HDAs). The developmental drug IMU-838, currently being investigated in a phase 2b trial in patients suffering from autoimmune diseases, represents an inhibitor of human dihydroorotate dehydrogenase (DHODH) with a recently proven antiviral activity in vitro and in vivo. Here, we established an analysis system for assessing the antiviral potency of IMU-838 and DHODH-directed back-up drugs in cultured cell-based infection models. By the use of SARS-CoV-2-specific immunofluorescence, Western blot, in-cell ELISA, viral yield reduction and RT-qPCR methods, we demonstrated the following: (i) IMU-838 and back-ups show anti-SARS-CoV-2 activity at several levels of viral replication, i.e., protein production, double-strand RNA synthesis, and release of infectious virus; (ii) antiviral efficacy in Vero cells was demonstrated in a micromolar range (IMU-838 half-maximal effective concentration, EC50, of 7.6 ± 5.8 µM); (iii) anti-SARS-CoV-2 activity was distinct from cytotoxic effects (half-cytotoxic concentration, CC50, >100 µM); (iv) the drug in vitro potency was confirmed using several Vero lineages and human cells; (v) combination with remdesivir showed enhanced anti-SARS-CoV-2 activity; (vi) vidofludimus, the active determinant of IMU-838, exerted a broad-spectrum activity against a selection of major human pathogenic viruses. These findings strongly suggest that developmental DHODH inhibitors represent promising candidates for use as anti-SARS-CoV-2 therapeutics.
Collapse
|
31
|
Khoury DS, Wheatley AK, Ramuta MD, Reynaldi A, Cromer D, Subbarao K, O'Connor DH, Kent SJ, Davenport MP. Measuring immunity to SARS-CoV-2 infection: comparing assays and animal models. Nat Rev Immunol 2020; 20:727-738. [PMID: 33139888 PMCID: PMC7605490 DOI: 10.1038/s41577-020-00471-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
The rapid scale-up of research on coronavirus disease 2019 (COVID-19) has spawned a large number of potential vaccines and immunotherapies, accompanied by a commensurately large number of in vitro assays and in vivo models to measure their effectiveness. These assays broadly have the same end-goal - to predict the clinical efficacy of prophylactic and therapeutic interventions in humans. However, the apparent potency of different interventions can vary considerably between assays and animal models, leading to very different predictions of clinical efficacy. Complete harmonization of experimental methods may be intractable at the current pace of research. However, here we analyse a selection of existing assays for measuring antibody-mediated virus neutralization and animal models of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and provide a framework for comparing results between studies and reconciling observed differences in the effects of interventions. Finally, we propose how we might optimize these assays for better comparison of results from in vitro and animal studies to accelerate progress.
Collapse
Affiliation(s)
- David S Khoury
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mitchell D Ramuta
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- ARC Centre for Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
32
|
Schütz D, Ruiz-Blanco YB, Münch J, Kirchhoff F, Sanchez-Garcia E, Müller JA. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv Drug Deliv Rev 2020; 167:47-65. [PMID: 33189768 PMCID: PMC7665879 DOI: 10.1016/j.addr.2020.11.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
To date, no effective vaccines or therapies are available against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pandemic agent of the coronavirus disease 2019 (COVID-19). Due to their safety, efficacy and specificity, peptide inhibitors hold great promise for the treatment of newly emerging viral pathogens. Based on the known structures of viral proteins and their cellular targets, antiviral peptides can be rationally designed and optimized. The resulting peptides may be highly specific for their respective targets and particular viral pathogens or exert broad antiviral activity. Here, we summarize the current status of peptides inhibiting SARS-CoV-2 entry and outline the strategies used to design peptides targeting the ACE2 receptor or the viral spike protein and its activating proteases furin, transmembrane serine protease 2 (TMPRSS2), or cathepsin L. In addition, we present approaches used against related viruses such as SARS-CoV-1 that might be implemented for inhibition of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
33
|
Krüger J, Groß R, Conzelmann C, Müller JA, Koepke L, Sparrer KMJ, Weil T, Schütz D, Seufferlein T, Barth TFE, Stenger S, Heller S, Münch J, Kleger A. Drug Inhibition of SARS-CoV-2 Replication in Human Pluripotent Stem Cell-Derived Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2020; 11:935-948. [PMID: 33186749 PMCID: PMC7655023 DOI: 10.1016/j.jcmgh.2020.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS The COVID-19 pandemic has spread worldwide and poses a severe health risk. While most patients present mild symptoms, descending pneumonia can lead to severe respiratory insufficiency. Up to 50% of patients show gastrointestinal symptoms like diarrhea or nausea, intriguingly associating with prolonged symptoms and increased severity. Thus, models to understand and validate drug efficiency in the gut of COVID-19 patients are of urgent need. METHODS Human intestinal organoids derived from pluripotent stem cells (PSC-HIOs) have led, due to their complexity in mimicking human intestinal architecture, to an unprecedented number of successful disease models including gastrointestinal infections. Here, we employed PSC-HIOs to dissect SARS-CoV-2 pathogenesis and its inhibition by remdesivir, one of the leading drugs investigated for treatment of COVID-19. RESULTS Immunostaining for viral entry receptor ACE2 and SARS-CoV-2 spike protein priming protease TMPRSS2 showed broad expression in the gastrointestinal tract with highest levels in the intestine, the latter faithfully recapitulated by PSC-HIOs. Organoids could be readily infected with SARS-CoV-2 followed by viral spread across entire PSC-HIOs, subsequently leading to organoid deterioration. However, SARS-CoV-2 spared goblet cells lacking ACE2 expression. Importantly, we challenged PSC-HIOs for drug testing capacity. Specifically, remdesivir effectively inhibited SARS-CoV-2 infection dose-dependently at low micromolar concentration and rescued PSC-HIO morphology. CONCLUSIONS Thus, PSC-HIOs are a valuable tool to study SARS-CoV-2 infection and to identify and validate drugs especially with potential action in the gut.
Collapse
Affiliation(s)
- Jana Krüger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | | | - Steffen Stenger
- Institute for Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Sandra Heller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|