1
|
El-Ashmawy NE, Al-Ashmawy GM, Hamada OB, Khedr NF. The role of ABCG2 in health and disease: Linking cancer therapy resistance and other disorders. Life Sci 2025; 360:123245. [PMID: 39561874 DOI: 10.1016/j.lfs.2024.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
All biological systems have adenosine triphosphate (ATP) binding cassette (ABC) transporters, one of the significant protein superfamilies involved in transport across membranes. ABC transporters have been implicated in the etiology of diseases like metabolic disorders, cancer, and Alzheimer's disease. ATP-binding cassette superfamily G member 2 (ABCG2), one of the ABC transporters, is necessary for the ATP-dependent efflux of several endogenous and exogenous substances. Consequently, it maintained cellular homeostasis and shielded tissue from xenobiotic substances. ABCG2 was initially identified in an Adriamycin-selected breast cancer cell line (MCF-7/AdrVp) and was linked to the emergence of multidrug resistance (MDR) in cancerous cells. Under many pathophysiological conditions, including inflammation, disease pathology, tissue injury, infection, and in response to xenobiotics and endogenous substances, the expression of ABCG2 undergoes alterations that result in modifications in its function and activity. Genetic variants in the ABCG2 transporter can potentially impact its expression and function, contributing to the development of many disorders. This review aimed to illustrate the impact of ABCG2 expression and its variants on oral drug bioavailability, MDR in specific cancer cells, explore the relationship between ABCG2 expression and other disorders such as gout, Alzheimer's disease, epilepsy, and erythropoietic protoporphyria, and demonstrate the influence of various synthetic and natural compounds in regulating ABCG2 expression.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; The British University in Egypt, Faculty of Pharmacy, Department of Pharmacology & Biochemistry, El Sherouk City, Cairo Postal Code: 11837, Egypt.
| | - Ghada M Al-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; Alsalam University in Egypt, Faculty of Pharmacy, Department of Biochemistry, Kafr El Zayat, Egypt.
| | - Omnia B Hamada
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| | - Naglaa F Khedr
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| |
Collapse
|
2
|
Huang S, Yao B, Guo Y, Zhang Y, Li H, Zhang Y, Liu S, Wang X. Human trophoblast organoids for improved prediction of placental ABC transporter-mediated drug transport. Toxicol Appl Pharmacol 2024; 492:117112. [PMID: 39326791 DOI: 10.1016/j.taap.2024.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
ATP-binding cassette (ABC) transporters, the important transmembrane efflux transporters, play an irreplaceable role in the placenta barrier. The disposition and drug-drug interaction of clinical drugs are also closely related to the functions of ABC transporters. The trophoblast is a unique feature of the placenta, which is crucial for normal placentation and maintenance during pregnancy. ABC transporters are abundantly expressed in placental syncytiotrophoblast, especially P-gp, BCRP, and MRPs. However, due to the lack of appropriate modeling systems, the molecular mechanisms of regulation between ABC transporters and trophoblast remains unclear. In this report, trophoblast organoids were cultured from human placental villi and developed into three-dimension structures with cavities. Trophoblast organoids exhibited transporter expression and localization comparable to that in villous tissue, indicating their physiological relevance for modeling drug transport. Moreover, fluorescent substrates can accumulate in organoids and be selectively inhibited by inhibitors, indicating the efflux function of ABC transporters (P-gp, BCRP, MRP1, and MRP2) in organoids. Two commonly used hypertension drugs and three antipsychotics were chosen to further validate this drug transport model and demonstrate varying degrees of inhibitory effects on ABC transporters. Overall, a new drug transport model mediated by ABC transporter has been successfully established based on human trophoblast organoids, which can be used to study drug transport in the placenta.
Collapse
Affiliation(s)
- Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Haichuan Li
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Yi Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory of Drug Metabolism Research and Evaluation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, China.
| |
Collapse
|
3
|
Gao Y, Wang P, Hu Z, Cui H, Chen X, Wang L, Zhao M, Qian R, Zhang L, Ye T, Zhu Y, Yao Y. Design, synthesis, and evaluation of a novel TRAIL-activated HDAC6 inhibitor for the treatment of pulmonary fibrosis. Bioorg Med Chem 2024; 113:117924. [PMID: 39321740 DOI: 10.1016/j.bmc.2024.117924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Pulmonary fibrosis (PF) is a common, severe, chronic, and progressive pulmonary interstitial disease characterized by rapid disease progression and high mortality. Despite the Food and Drug Administration (FDA)'s approval of two antifibrotic drugs, nintedanib and pirfenidone, effectively halting the progression of pulmonary fibrosis remains challenging. Histone deacetylase (HDAC) inhibitors have indeed emerged as an important class of antitumour drugs. However, their application in the treatment of fibrotic diseases is still relatively limited. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has the potential to inhibit fibrotic processes by inducing fibroblast apoptosis. In this study, we designed and synthesized a series of histone deacetylase 6 (HDAC6) inhibitors that activate TRAIL, among which compound 7e exhibited potent inhibitory activity against HDAC6, with an IC50 of 42.90 ± 4.96 nM and superior antiproliferative effects on fibroblasts. Therefore, we further investigated its anti-pulmonary fibrosis effect in mouse models of both idiopathic pulmonary fibrosis (IPF) and silicosis. Our results suggest that compound 7e is a promising candidate for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ying Gao
- West China Institute of Preventive and Medical Integration for Major Diseases, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Pengfeng Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zan Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Cui
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xuxi Chen
- West China Institute of Preventive and Medical Integration for Major Diseases, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Liqun Wang
- West China Institute of Preventive and Medical Integration for Major Diseases, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Manyu Zhao
- Department of Pulmonary and Critical Care Medicine, Precision Medicine Center, Frontiers Science Center for Disease-Related Molecular Network and West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Qian
- West China Institute of Preventive and Medical Integration for Major Diseases, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- West China Institute of Preventive and Medical Integration for Major Diseases, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yuqin Yao
- West China Institute of Preventive and Medical Integration for Major Diseases, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Gao L, Kaushik D, Ingalls K, Smith N, Kong R. A Phase 1 Study to Assess the Pharmacokinetics, Food Effect, Safety, and Tolerability of Sepiapterin in Healthy Japanese and Non-Japanese Participants. Pharmaceuticals (Basel) 2024; 17:1411. [PMID: 39598323 PMCID: PMC11597218 DOI: 10.3390/ph17111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Sepiapterin is a natural precursor of tetrahydrobiopterin (BH4), a key cofactor for phenylalanine hydroxylase. It is being developed for the treatment of patients with phenylketonuria. In this study, the ethnic differences in pharmacokinetics and safety of sepiapterin in Japanese and non-Japanese participants and food effects were evaluated. METHODS Healthy participants (n = 60) received a single oral dose of sepiapterin at either 20, 40, or 60 mg/kg with a low-fat diet. The Japanese participants received two doses at 40 mg/kg, either under fasted conditions or with a low-fat diet with a 3-day washout period in between. RESULTS Sepiapterin was well tolerated in all participants, with no serious adverse events. Sepiapterin was quickly absorbed (Tmax 1.4-4.5 h) and rapidly and extensively converted to BH4 (Tmax ~4 h). Exposures to sepiapterin were <1% of BH4. BH4 exposures were essentially dose-independent between 20 and 60 mg/kg. A low-fat diet increased BH4 exposures in Japanese participants by 1.7-fold compared with fasted conditions. CONCLUSIONS BH4 exposures (Cmax and AUC0-last) in Japanese participants were 10-30% higher than in non-Japanese participants, which is deemed not clinically relevant; no dose adjustment is warranted. The slightly higher BH4 exposures in Japanese participants are likely due to the higher frequency of ABCG2 c.421C>A mutation in the Japanese population.
Collapse
Affiliation(s)
- Lan Gao
- PTC Therapeutics, Warren, NJ 07059, USA; (D.K.); (K.I.); (N.S.); (R.K.)
| | | | | | | | | |
Collapse
|
5
|
Gao L, Kaushik D, Ingalls K, Milner S, Smith N, Kong R. Clinical Assessment of Breast Cancer Resistance Protein (BCRP)-Mediated Drug-Drug Interactions of Sepiapterin with Curcumin and Rosuvastatin in Healthy Volunteers. Drugs R D 2024; 24:477-487. [PMID: 39316278 PMCID: PMC11455768 DOI: 10.1007/s40268-024-00488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Sepiapterin, also known as PTC923 and CNSA-001, is a synthetic form of endogenous sepiapterin being developed as a novel oral treatment for phenylketonuria. Sepiapterin is a natural precursor of tetrahydrobiopterin (BH4) and, when orally administered, is converted to BH4 via the pterin salvage pathway. In vitro studies have demonstrated that both sepiapterin and BH4 are both substrates and inhibitors of the breast cancer resistance protein (BCRP) transporter. This phase I study investigated BCRP-mediated drug-drug interactions of sepiapterin as a victim and as a perpetrator. METHODS An open-label, fixed-sequence, four-period, crossover, single-dose study was conducted in adult male and female healthy volunteers (18-55 years of age). In a given treatment period, subjects received a single oral dose of sepiapterin (20 mg/kg), sepiapterin (20 mg/kg) plus curcumin (2 g), rosuvastatin (10 mg), or rosuvastatin (10 mg) plus sepiapterin (60 mg/kg). The pharmacokinetics of sepiapterin, its metabolite BH4, and rosuvastatin were studied, and geometric mean ratios of exposures in the presence and absence of the BCRP inhibitor curcumin or sepiapterin were estimated. The presence of the BCRP c.421C>A polymorphism was evaluated in all subjects. RESULTS A total of 29 subjects were enrolled and included in the safety analysis. Among them, 26 subjects were included in the pharmacokinetic and drug-drug interaction analyses. Following oral administration 20 mg/kg sepiapterin, sepiapterin was rapidly and extensively converted to BH4, and BH4 maximum observed concentration (415.0 ng/mL) was observed 4.95 h (time to maximum observed concentration) post-dose. Sepiapterin maximum observed concentration and area under the concentration-time curve from time 0 to time of the last quantifiable measurement or the last sample collection time (AUClast) were <1% of BH4 values. Coadministration of the BCRP inhibitor curcumin (2 g) increased BH4 maximum observed concentration, AUClast, and area under the concentration-time curve from time 0 extrapolated to infinity by 24%, 21%, and 20%, respectively. When sepiapterin was coadministered with the BCRP substrate rosuvastatin, there was no effect on the pharmacokinetics of rosuvastatin. BCRP c.421C/A carriers (n = 4) had higher plasma exposures of BH4 (1.39 × for AUClast) and rosuvastatin (1.61 × for AUClast) than c.421C/C carriers (n = 22). Greater increases in BH4 exposures (1.33 vs 1.18 for AUClast) were observed in c.421C/A carriers compared with c.421C/C carriers when sepiapterin was coadministered with curcumin. All treatments were well tolerated during the study. CONCLUSIONS Oral coadministration of the BCRP inhibitor curcumin slightly increased the plasma exposure of sepiapterin and its metabolite BH4 in healthy volunteers. This modest increase was deemed not clinically meaningful. Sepiapterin did not alter the pharmacokinetics of the BCRP substrate rosuvastatin.
Collapse
Affiliation(s)
- Lan Gao
- PTC Therapeutics, 500 Warren Corporate Center Dr, Warren, NJ, 07059, USA.
| | - Diksha Kaushik
- PTC Therapeutics, 500 Warren Corporate Center Dr, Warren, NJ, 07059, USA
| | - Kimberly Ingalls
- PTC Therapeutics, 500 Warren Corporate Center Dr, Warren, NJ, 07059, USA
| | - Sarah Milner
- PTC Therapeutics, 500 Warren Corporate Center Dr, Warren, NJ, 07059, USA
| | - Neil Smith
- PTC Therapeutics, 500 Warren Corporate Center Dr, Warren, NJ, 07059, USA
| | - Ronald Kong
- PTC Therapeutics, 500 Warren Corporate Center Dr, Warren, NJ, 07059, USA
| |
Collapse
|
6
|
Yadav M, Vaishkiar I, Sharma A, Shukla A, Mohan A, Girdhar M, Kumar A, Malik T, Mohan A. Oestrogen receptor positive breast cancer and its embedded mechanism: breast cancer resistance to conventional drugs and related therapies, a review. Open Biol 2024; 14:230272. [PMID: 38889771 DOI: 10.1098/rsob.230272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/14/2024] [Indexed: 06/20/2024] Open
Abstract
Traditional medication and alternative therapies have long been used to treat breast cancer. One of the main problems with current treatments is that there is an increase in drug resistance in the cancer cells owing to genetic differences such as mutational changes, epigenetic changes and miRNA (microRNA) alterations such as miR-1246, miR-298, miR-27b and miR-33a, along with epigenetic modifications, such as Histone3 acetylation and CCCTC-Binding Factor (CTCF) hypermethylation for drug resistance in breast cancer cell lines. Certain forms of conventional drug resistance have been linked to genetic changes in genes such as ABCB1, AKT, S100A8/A9, TAGLN2 and NPM. This review aims to explore the current approaches to counter breast cancer, the action mechanism, along with novel therapeutic methods endowing potential drug resistance. The investigation of novel therapeutic approaches sheds light on the phenomenon of drug resistance including genetic variations that impact distinct forms of oestrogen receptor (ER) cancer, genetic changes, epigenetics-reported resistance and their identification in patients. Long-term effective therapy for breast cancer includes selective oestrogen receptor modulators, selective oestrogen receptor degraders and genetic variations, such as mutations in nuclear genes, epigenetic modifications and miRNA alterations in target proteins. Novel research addressing combinational therapies including maytansine, photodynamic therapy, guajadiol, talazoparib, COX2 inhibitors and miRNA 1246 inhibitors have been developed to improve patient survival rates.
Collapse
Affiliation(s)
- Manu Yadav
- Division of Genetics, ICAR- Indian Agricultural Research Institute , Pusa, New Delhi, India
| | - Ishita Vaishkiar
- Amity Institute of Biotechnology (AIB) University, Amity University Noida , Noida, India
| | - Ananya Sharma
- Department: Botany and Microbiology, Hemwati Nandan Bahuguna Garhwal University , Srinagar, India
| | - Akanksha Shukla
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, Punjab, India
| | - Aradhana Mohan
- Department of Biomedical Engineering, University of Michigan , Ann Arbor, MI, USA
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University , Phagwara, Punjab, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology , New Delhi, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University , Jimma, Oromia 378, Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, Punjab, India
| |
Collapse
|
7
|
Mughis H, Lye P, Imperio GE, Bloise E, Matthews SG. Hypoxia modulates P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) drug transporters in brain endothelial cells of the developing human blood-brain barrier. Heliyon 2024; 10:e30207. [PMID: 38737275 PMCID: PMC11088273 DOI: 10.1016/j.heliyon.2024.e30207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024] Open
Abstract
P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.
Collapse
Affiliation(s)
- Hafsah Mughis
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Phetcharawan Lye
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Guinever E. Imperio
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Departmento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Stephen G. Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Sinai Health System, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Obstetrics & Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
van der Pol KH, Nijenhuis M, Soree B, de Boer-Veger NJ, Buunk AM, Guchelaar HJ, Risselada A, van Schaik RHN, Swen JJ, Touw D, van der Weide J, van Westrhenen R, Deneer VHM, Houwink EJF, Rongen GA. Dutch pharmacogenetics working group guideline for the gene-drug interaction of ABCG2, HLA-B and Allopurinol, and MTHFR, folic acid and methotrexate. Eur J Hum Genet 2024; 32:155-162. [PMID: 36056234 PMCID: PMC10853275 DOI: 10.1038/s41431-022-01180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
The Dutch Pharmacogenetics Working Group (DPWG) aims to facilitate PGx implementation by developing evidence-based pharmacogenetics guidelines to optimize pharmacotherapy. This guideline describes the gene-drug interaction of ABCG2 with allopurinol, HLA-B with allopurinol, MTHFR with folic acid, and MTHFR with methotrexate, relevant for the treatment of gout, cancer, and rheumatoid arthritis. A systematic review was performed based on which pharmacotherapeutic recommendations were developed. Allopurinol is less effective in patients with the ABCG2 p.(Gln141Lys) variant. In HLA-B*58:01 carriers, the risk of severe cutaneous adverse events associated with allopurinol is strongly increased. The DPWG recommends using a higher allopurinol dose in patients with the ABCG2 p.(Gln141Lys) variant. For HLA-B*58:01 positive patients the DPWG recommends choosing an alternative (for instance febuxostat). The DPWG indicates that another option would be to precede treatment with allopurinol tolerance induction. Genotyping of ABCG2 in patients starting on allopurinol was judged to be 'potentially beneficial' for drug effectiveness, meaning genotyping can be considered on an individual patient basis. Genotyping for HLA-B*58:01 in patients starting on allopurinol was judged to be 'beneficial' for drug safety, meaning it is advised to consider genotyping the patient before (or directly after) drug therapy has been initiated. For MTHFR-folic acid there is evidence for a gene-drug interaction, but there is insufficient evidence for a clinical effect that makes therapy adjustment useful. Finally, for MTHFR-methotrexate there is insufficient evidence for a gene-drug interaction.
Collapse
Affiliation(s)
- Karel H van der Pol
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marga Nijenhuis
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands.
| | - Bianca Soree
- Royal Dutch Pharmacists Association (KNMP), The Hague, The Netherlands
| | | | | | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arne Risselada
- Department of Clinical Pharmacy, Wilhelmina Hospital, Assen, The Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan Touw
- University of Groningen, Groningen Research Institute of Pharmacy, Department of PharmacoTherapy, -Epidemiology and -Economy, Groningen, The Netherlands
| | - Jan van der Weide
- Department of Clinical Chemistry, St. Jansdal Hospital, Harderwijk, The Netherlands
| | - Roos van Westrhenen
- Parnassia Psychiatric Institute/PsyQ, Amsterdam, The Netherlands
- Department of Psychiatry & Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vera H M Deneer
- Department of Clinical Pharmacy, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elisa J F Houwink
- Department of Public Health and Primary Care (PHEG), Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu CS, Kesharwani SS, Dey S, Jain V. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res 2023; 54:271-292. [PMID: 36791960 DOI: 10.1016/j.jare.2023.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous, aggressive phenotype of breast cancer with associated chemoresistance. The development of chemo- or radioresistance could be attributed to diverse tumor microenvironments, overexpression of membrane proteins (transporters), epigenetic changes, and alteration of the cell signaling pathways/genes associated with the development of cancer stem cells (CSCs). AIM OF REVIEW Due to the diverse and heterogeneous nature of TNBC, therapeutic response to the existing modalities offers limited scope and thus results in reccurance after therapy. To establish landmark therapeutic efficacy, a number of novel therapeutic modalities have been proposed. In addition, reversal of the resistance that developed during treatment may be altered by employing appropriate therapeutic modalities. This review aims to discuss the plethora of investigations carried out, which will help readers understand and make an appropriate choice of therapy directed toward complete elimination of TNBC. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript addresses the major contributory factors from the tumor microenvironment that are responsible for the development of chemoresistance and poor prognosis. The associated cellular events and molecular mechanism-based therapeutic interventions have been explained in detail. Inhibition of ABC transporters, cell signaling pathways associated with CSCs, and epigenetic modification offers promising results in this regard. TNBC progression, invasion, metastasis and recurrence can also be inhibited by blocking multiple cell signaling pathways, targeting specific receptors/epigenetic targets, disrupting bioenergetics and generating reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - C Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | | | - Surajit Dey
- Roseman University of Health Sciences, College of Pharmacy, Henderson, NV, USA
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India.
| |
Collapse
|
10
|
Yu ZZ, Xu BQ, Wang YY, Zhang PW, Shu YB, Shi Z. GSK2606414 Sensitizes ABCG2-Overexpressing Multidrug-Resistant Colorectal Cancer Cells to Chemotherapeutic Drugs. Biomedicines 2023; 11:3103. [PMID: 38002103 PMCID: PMC10669325 DOI: 10.3390/biomedicines11113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer is a common malignant tumor. A major factor in the high mortality rate of colorectal cancer is the emergence of multidrug resistance (MDR). Overexpression of the ABCG2 gene in cancer cells directly leads to MDR. Finding new inhibitors of ABCG2 may be an effective way to overcome drug resistance. We found that the compound GSK2606414 enhanced the sensitivity of the ABCG2 substrate to the chemotherapeutic drugs mitoxantrone and doxorubicin in ABCG2-overexpressing multidrug-resistant colorectal cancer cells by increasing their intracellular accumulation without affecting the protein expression of ABCG2. Molecular docking experiments predicted that GSK2606414 could stably bind in the drug-binding pocket of ABCG2. In conclusion, GSK2606414 can sensitize ABCG2-overexpressed multidrug-resistant colorectal cancer cells to chemotherapy drugs and can be used as a potential inhibitor of ABCG2.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; (Z.-Z.Y.); (B.-Q.X.); (Y.-Y.W.); (P.-W.Z.); (Y.-B.S.)
| |
Collapse
|
11
|
Khalili E, Afgar A, Rajabpour A, Aghaee-Bakhtiari SH, Jamialahmadi K, Teimoori-Toolabi L. MiR-548c-3p through suppressing Tyms and Abcg2 increases the sensitivity of colorectal cancer cells to 5-fluorouracil. Heliyon 2023; 9:e21775. [PMID: 38045156 PMCID: PMC10692789 DOI: 10.1016/j.heliyon.2023.e21775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Background Colorectal cancer, is one of most prevalent the cancer in the world. 5-Fluorouracil is a standard chemotherapeutic drug while the acquisition of resistance to 5-Fluorouracil is one of the problems during treatment. In this study, we aimed to find the miRNAs that modulate the expression of Tyms and Abcg2 as resistance-inducing genes in the resistant cell lines to 5-Fluorouracil. Methods 5-Fluorouracil-resistant HCT116 and SW480 cell lines were generated by consecutive treatment of cells with 5-Fluorouracil. This resistance induction was validated by MTT assays. The expression of the Tyms and Abcg2 gene and miR-548c-3p were studied by quantitative real-time PCR in the cell lines. Results We hypothesized that miR-548c-3p is targeting Tyms and Abcg2 simultaneously. Increased expression Tyms gene in the two most resistant cell lines derived from HCT116 and all resistant cell lines derived from SW480 except one were seen. Increased expression of Abcg2 was observed in the most resistant HCT116-derived cell line and all resistant cell lines, derived from SW480. In all resistant cell lines, the expression of miR-548c-3p was decreased. Conclusion It can be concluded downregulation of miR548c-3p is in line with Tyms and Abcg2 overexpression in resistant cell lines to 5-Fluorouracil.
Collapse
Affiliation(s)
- Elham Khalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Rajabpour
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| |
Collapse
|
12
|
Nasyrova RF, Shnayder NA, Osipova SM, Khasanova AK, Efremov IS, Al-Zamil M, Petrova MM, Narodova EA, Garganeeva NP, Shipulin GA. Genetic Predictors of Antipsychotic Efflux Impairment via Blood-Brain Barrier: Role of Transport Proteins. Genes (Basel) 2023; 14:genes14051085. [PMID: 37239445 DOI: 10.3390/genes14051085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Antipsychotic (AP)-induced adverse drug reactions (ADRs) are a current problem of biological and clinical psychiatry. Despite the development of new generations of APs, the problem of AP-induced ADRs has not been solved and continues to be actively studied. One of the important mechanisms for the development of AP-induced ADRs is a genetically-determined impairment of AP efflux across the blood-brain barrier (BBB). We present a narrative review of publications in databases (PubMed, Springer, Scopus, Web of Science E-Library) and online resources: The Human Protein Atlas; GeneCards: The Human Gene Database; US National Library of Medicine; SNPedia; OMIM Online Mendelian Inheritance in Man; The PharmGKB. The role of 15 transport proteins involved in the efflux of drugs and other xenobiotics across cell membranes (P-gp, TAP1, TAP2, MDR3, BSEP, MRP1, MRP2, MRP3, MRP4, MRP5, MRP6, MRP7, MRP8, MRP9, BCRP) was analyzed. The important role of three transporter proteins (P-gp, BCRP, MRP1) in the efflux of APs through the BBB was shown, as well as the association of the functional activity and expression of these transport proteins with low-functional and non-functional single nucleotide variants (SNVs)/polymorphisms of the ABCB1, ABCG2, ABCC1 genes, encoding these transport proteins, respectively, in patients with schizophrenia spectrum disorders (SSDs). The authors propose a new pharmacogenetic panel "Transporter protein (PT)-Antipsychotic (AP) Pharmacogenetic test (PGx)" (PTAP-PGx), which allows the evaluation of the cumulative contribution of the studied genetic biomarkers of the impairment of AP efflux through the BBB. The authors also propose a riskometer for PTAP-PGx and a decision-making algorithm for psychiatrists. Conclusions: Understanding the role of the transportation of impaired APs across the BBB and the use of genetic biomarkers for its disruption may make it possible to reduce the frequency and severity of AP-induced ADRs, since this risk can be partially modified by the personalized selection of APs and their dosing rates, taking into account the genetic predisposition of the patient with SSD.
Collapse
Affiliation(s)
- Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, Samara 443016, Russia
| | - Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Sofia M Osipova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, Saint-Petersburg 192019, Russia
| | - Aiperi K Khasanova
- Department of Psychiatry, Russian Medical Academy for Continual Professional Education, Moscow 125993, Russia
| | - Ilya S Efremov
- Department of Psychiatry and Addiction, Bashkir State Medical University, Ufa 450008, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, Moscow 117198, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, Tomsk 634050, Russia
| | - German A Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks Management, Moscow 119121, Russia
| |
Collapse
|
13
|
Uehara S, Higuchi Y, Yoneda N, Ito R, Takahashi T, Murayama N, Yamazaki H, Murai K, Hikita H, Takehara T, Suemizu H. HepaSH cells: Experimental human hepatocytes with lesser inter-individual variation and more sustainable availability than primary human hepatocytes. Biochem Biophys Res Commun 2023; 663:132-141. [PMID: 37121123 DOI: 10.1016/j.bbrc.2023.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
Primary human hepatocytes (PHHs) have been commonly used as the gold standard in many drug metabolism studies, regardless of having large inter-individual variation. These inter-individual variations in PHHs arise primarily from genetic polymorphisms, as well as from donor health conditions and storage conditions prior to cell processing. To equalize the effects of the latter two factors, PHHs were transplanted to quality-controlled mice providing human hepatocyte proliferation niches, and engrafted livers were generated. Cells that were harvested from engrafted livers, call this as experimental human hepatocytes (EHH; termed HepaSH cells), were stably and reproducibly produced from 1014 chimeric mice produced by using 17 different PHHs. Expression levels of acute phase reactant (APR) genes as indicators of a systemic reaction to the environmental/inflammatory insults of liver donors varied widely among PHHs. In contrast to PHHs, the expression of APR genes in HepaSH cells was found to converge within a narrower range than in donor PHHs. Further, large individual differences in the expression levels of drug metabolism-related genes (28 genes) observed in PHHs were greatly reduced among HepaSH cells produced in a unified in vivo environment, and none deviated from the range of gene expression levels in the PHHs. The HepaSH cells displayed a similar level of drug-metabolizing enzyme activity and gene expression as the average PHHs but retained their characteristics for drug-metabolizing enzyme gene polymorphisms. Furthermore, long-term 2D culture was possible and HBV infection was confirmed. These results suggest that the stably and reproducibly providable HepaSH cells with lesser inter-individual differences in drug-metabolizing properties, may have a potential to substitution for PHH as practical standardized human hepatocytes in drug discovery research.
Collapse
Affiliation(s)
- Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan
| | - Yuichiro Higuchi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan
| | - Ryoji Ito
- Human Disease Model Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan
| | - Takeshi Takahashi
- Immunology Laboratory, Department of Basic Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki, 210-0821, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, 194-8543, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Kawasaki, 210-0821, Japan.
| |
Collapse
|
14
|
Damiani D, Tiribelli M. ABCG2 in Acute Myeloid Leukemia: Old and New Perspectives. Int J Mol Sci 2023; 24:ijms24087147. [PMID: 37108308 PMCID: PMC10138346 DOI: 10.3390/ijms24087147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Despite recent advances, prognosis of acute myeloid leukemia (AML) remains unsatisfactory due to poor response to therapy or relapse. Among causes of resistance, over-expression of multidrug resistance (MDR) proteins represents a pivotal mechanism. ABCG2 is an efflux transporter responsible for inducing MDR in leukemic cells; through its ability to extrude many antineoplastic drugs, it leads to AML resistance and/or relapse, even if conflicting data have been reported to date. Moreover, ABCG2 may be co-expressed with other MDR-related proteins and is finely regulated by epigenetic mechanisms. Here, we review the main issues regarding ABCG2 activity and regulation in the AML clinical scenario, focusing on its expression and the role of polymorphisms, as well as on the potential ways to inhibit its function to counteract drug resistance to, eventually, improve outcomes in AML patients.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, P.le Santa Maria della Misericordia, 5, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, Udine Hospital, P.le Santa Maria della Misericordia, 5, 33100 Udine, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| |
Collapse
|
15
|
Zhang Y, Wei M, Zhang F, Guo J. High-accuracy gastric cancer cell viability evaluation based on multi-impedance spectrum characteristics. Heliyon 2023; 9:e14966. [PMID: 37095913 PMCID: PMC10121400 DOI: 10.1016/j.heliyon.2023.e14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing attention to precision medicine is widely paid to greatly rise the cure rate of cancer. Improving the stability and accuracy of cancer cell viability evaluation is one of the keys for precision medicine, as excess dosage of anti-cancer drugs not only kills the cancer cells, but also does harm to normal cells. Electrochemical impedance sensing (EIS) method is well known as a label-free, non-invasive approach for real-time, online monitoring of cell viability. However, the existing EIS methods using single-frequency impedances cannot reflect the comprehensive information of cellular impedance spectroscopy (CIS), ultimately leading to a poor stability and low accuracy of cancer cell viability evaluation. In this paper, we proposed a multi-frequency approach for improving the stability and accuracy of cancer cell viability evaluation based on multi-physical properties of CIS, including cell adhesion state and cell membrane capacitance. The results show that the mean relative error of multi-frequency method is reduced by 50% compared with single-frequency method, while the maximum relative error of the former is 7∼fold smaller than that of the latter. The accuracy of cancer cell viability evaluation is up to 99.6%.
Collapse
|
16
|
Single-Nucleotide Polymorphisms as Biomarkers of Antipsychotic-Induced Akathisia: Systematic Review. Genes (Basel) 2023; 14:genes14030616. [PMID: 36980888 PMCID: PMC10048266 DOI: 10.3390/genes14030616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Antipsychotic-induced akathisia (AIA) is a movement disorder characterized by a subjective feeling of inner restlessness or nervousness with an irresistible urge to move, resulting in repetitive movements of the limbs and torso, while taking antipsychotics (APs). In recent years, there have been some associative genetic studies of the predisposition to the development of AIA. Objective: The goal of our study was to review the results of associative genetic and genome-wide studies and to systematize and update the knowledge on the genetic predictors of AIA in patients with schizophrenia (Sch). Methods: We searched full-text publications in PubMed, Web of Science, Springer, Google Scholar, and e-Library databases from 1977 to 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) quality scale was used for the critical selection of the studies. Results: We identified 37 articles, of which 3 were included in the review. Thus, the C allele of rs1800498 (59414 C>T) and the A allele of rs1800497 (17316 G>A) (TaqIA) from the DRD2 gene as well as the TT genotype rs13212041 (77461407 C>T) from the HTR1B gene were found to be associated with AIA. Conclusions: Uncovering the genetic biomarkers of AIA may provide a key to developing a strategy for the personalized prevention and treatment of this adverse neurological drug reaction of APs in patients with Sch in real clinical practice.
Collapse
|
17
|
Ryczek N, Łyś A, Makałowska I. The Functional Meaning of 5'UTR in Protein-Coding Genes. Int J Mol Sci 2023; 24:2976. [PMID: 36769304 PMCID: PMC9917990 DOI: 10.3390/ijms24032976] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5' untranslated region (5'UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, and structural components involved in the regulation of mRNA stability, pre-mRNA splicing, and translation initiation. Activation of the alternative, more upstream transcription start site leads to an extension of 5'UTR. One of the consequences of 5'UTRs extension may be head-to-head gene overlap. This review describes elements in 5'UTR of protein-coding transcripts and the functional significance of protein-coding genes 5' overlap with implications for transcription, translation, and disease.
Collapse
Affiliation(s)
| | | | - Izabela Makałowska
- Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznań, Uniwersytetu Ponańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
18
|
Benkerroum N, Ismail A. Human Breast Milk Contamination with Aflatoxins, Impact on Children's Health, and Possible Control Means: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16792. [PMID: 36554670 PMCID: PMC9779431 DOI: 10.3390/ijerph192416792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Aflatoxins are natural toxicants produced mainly by species of the Aspergillus genus, which contaminate virtually all feeds and foods. Apart from their deleterious health effects on humans and animals, they can be secreted unmodified or carried over into the milk of lactating females, thereby posing health risks to suckling babies. Aflatoxin M1 (AFM1) is the major and most toxic aflatoxin type after aflatoxin B1 (AFB1). It contaminates human breast milk upon direct ingestion from dairy products or by carry-over from the parent molecule (AFB1), which is hydroxylated in the liver and possibly in the mammary glands by cytochrome oxidase enzymes and then excreted into breast milk as AFM1 during lactation via the mammary alveolar epithelial cells. This puts suckling infants and children fed on this milk at a high risk, especially that their detoxifying activities are still weak at this age essentially due to immature liver as the main organ responsible for the detoxification of xenobiotics. The occurrence of AFM1 at toxic levels in human breast milk and associated health conditions in nursing children is well documented, with developing countries being the most affected. Different studies have demonstrated that contamination of human breast milk with AFM1 represents a real public health issue, which should be promptly and properly addressed to reduce its incidence. To this end, different actions have been suggested, including a wider and proper implementation of regulatory measures, not only for breast milk but also for foods and feeds as the upstream sources for breast milk contamination with AFM1. The promotion of awareness of lactating mothers through the organization of training sessions and mass media disclosures before and after parturition is of a paramount importance for the success of any action. This is especially relevant that there are no possible control measures to ensure compliance of lactating mothers to specific regulatory measures, which can yet be appropriate for the expansion of breast milk banks in industrialized countries and emergence of breast milk sellers. This review attempted to revisit the public health issues raised by mother milk contamination with AFM1, which remains undermined despite the numerous relevant publications highlighting the needs to tackle its incidence as a protective measure for the children physical and mental health.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Expertise Aliments Santé, Food Health Consultancy, 7450 Dollier Str., Montréal, QC H1S 2J6, Canada
| | - Amir Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan
| |
Collapse
|
19
|
Ahmadzai H, Tee LBG, Crowe A. Are active efflux transporters contributing to infant drug exposure via breastmilk? A longitudinal study. Basic Clin Pharmacol Toxicol 2022; 131:487-499. [PMID: 36130042 PMCID: PMC9827846 DOI: 10.1111/bcpt.13794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Although most drugs are considered safe and compatible with breastfeeding, cases of toxic drug exposure have been reported. Active efflux transporters have been implicated as a mechanism in the transfer of drugs from mother to baby via breastmilk. Using breastmilk as a source of human mammary epithelial cells, this novel longitudinal study investigated the expression of four active transporters, namely, MDR1, MRP1, MRP2 and BCRP in the lactating human breast. BCRP gene was found to be strongly overexpressed with levels peaking at 5 months postpartum, potentially indicating a time where a breastfed infant may be at risk of inadvertent exposure to BCRP substrates. Serum albumin, a major component of human breastmilk was increasingly downregulated as lactation progresses. Xanthine oxidase/dehydrogenase, an enzyme in breastmilk attributed to a reduced risk of gastroenteritis caused by Escherichia coli and Salmonella enteritides, was downregulated. Lysozyme and fatty acid synthase are progressively upregulated. This study also shows that breastmilk-derived epithelial cells, when propagated in culture, exhibit characteristics significantly different to those derived directly from breastmilk. This serves to warn that in vitro studies are not a true representation of in vivo processes in the lactating breast; hence, application of in vitro data should be conducted with caution.
Collapse
Affiliation(s)
- Hilai Ahmadzai
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia,Pharmacy DepartmentSir Charles Gairdner HospitalNedlandsWestern AustraliaAustralia
| | - Lisa B. G. Tee
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| | - Andrew Crowe
- Curtin Medical SchoolCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
20
|
Grigoreva TA, Sagaidak AV, Novikova DS, Tribulovich VG. Implication of ABC transporters in non-proliferative diseases. Eur J Pharmacol 2022; 935:175327. [DOI: 10.1016/j.ejphar.2022.175327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
|
21
|
Chicken xenobiotic receptor upregulates the BCRP/ABCG2 transporter. Poult Sci 2022; 102:102278. [PMID: 36402040 PMCID: PMC9673116 DOI: 10.1016/j.psj.2022.102278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The transporter breast cancer resistance protein (BCRP, encoded by ABCG2) influences the bioavailability and elimination of numerous substrate drugs during clinical therapy. The xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) reportedly regulate functional expression of BCRP in mammalian species. However, it is unknown whether chicken xenobiotic receptor (CXR) regulates the expression and activity of BCRP. This study aimed to investigate the role of CXR in regulation of BCRP in chicken using in vitro and in vivo models. CXR was expressed in the main drug-metabolizing tissues of chickens, and its expression correlated well with that of the prototypical target genes CYP2H1 and ABCG2. BCRP expression was upregulated, and transporter activity was increased, in chicken primary hepatocytes exposed to the CXR agonist metyrapone. Using RNA interference and ectopic expression techniques to manipulate the cellular CXR status, we confirmed that ABCG2 gene regulation depended on CXR. In vivo experiments showed that metyrapone induced BCRP in the liver, kidney, duodenum, and jejunum of chickens. Coadministration of metyrapone significantly changed the pharmacokinetic behavior of orally administered florfenicol (substrate of chicken BCRP), with a lower Cmax (4.62 vs. 7.35 µg/mL, P < 0.01) and AUC0-t (15.83 vs. 24.18 h·mg/L, P < 0.01) as well as a higher Tmax (0.96 vs. 0.79 h, P < 0.05) and Cl/F (0.13 vs. 0.08 L/h/kg, P < 0.05). Together, our data suggest that CXR is involved in regulation of BCRP, and consequently, coadministration of a CXR agonist can affect the pharmacokinetic behavior of an orally administered BCRP substrate.
Collapse
|
22
|
Genetic Variants of ABC and SLC Transporter Genes and Chronic Myeloid Leukaemia: Impact on Susceptibility and Prognosis. Int J Mol Sci 2022; 23:ijms23179815. [PMID: 36077209 PMCID: PMC9456284 DOI: 10.3390/ijms23179815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Solute carrier (SLC) and ATP-binding cassette (ABC) transporters comprise a variety of proteins expressed on cell membranes responsible for intrusion or extrusion of substrates, respectively, including nutrients, xenobiotics, and chemotherapeutic agents. These transporters mediate the cellular disposition of tyrosine kinase inhibitors (TKIs), and their genetic variants could affect its function, potentially predisposing patients to chronic myeloid leukaemia (CML) and modulating treatment response. We explored the impact of genetic variability (single nucleotide variants—SNVs) of drug transporter genes (ABCB1, ABCG2, SLC22A1, and SLC22A5) on CML susceptibility, drug response, and BCR-ABL1 mutation status. We genotyped 10 SNVs by tetra-primers-AMRS-PCR in 198 CML patients and 404 controls, and assessed their role in CML susceptibility and prognosis. We identified five SNVs associated with CML predisposition, with some variants increasing disease risk, including TT genotype ABCB1 (rs1045642), and others showing a protective effect (GG genotype SLC22A5 rs274558). We also observed different haplotypes and genotypic profiles associated with CML predisposition. Relating to drug response impact, we found that CML patients with the CC genotype (rs2231142 ABCG2) had an increased risk of TKI resistance (six-fold). Additionally, CML patients carrying the CG genotype (rs683369 SLC22A1) presented a 4.54-fold higher risk of BCR-ABL1 mutations. Our results suggest that drug transporters’ SNVs might be involved in CML susceptibility and TKI response, and predict the risk of BCR-ABL1 mutations, highlighting the impact that SNVs could have in therapeutic selection.
Collapse
|
23
|
Pharmacokinetic Interactions between Canagliflozin and Sorafenib or Lenvatinib in Rats. Molecules 2022; 27:molecules27175419. [PMID: 36080187 PMCID: PMC9457773 DOI: 10.3390/molecules27175419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and type 2 diabetes mellitus (T2DM) are common clinical conditions, and T2DM is an independent risk factor for HCC. Sorafenib and lenvatinib, two multi-targeted tyrosine kinase inhibitors, are first-line therapies for advanced HCC, while canagliflozin, a sodium-glucose co-transporter 2 inhibitor, is widely used in the treatment of T2DM. Here, we developed an ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of canagliflozin, sorafenib, and lenvatinib, and investigated the pharmacokinetic drug interactions between canagliflozin and sorafenib or lenvatinib in rats. The animals were randomly divided into five groups. Groups I–III were gavage administrated with sorafenib, lenvatinib, and canagliflozin, respectively. Group IV received sorafenib and canagliflozin; while Group V received lenvatinib and canagliflozin. The area under the plasma concentration-time curves (AUC) and maximum plasma concentrations (Cmax) of canagliflozin increased by 37.6% and 32.8%, respectively, while the apparent volume of distribution (Vz/F) and apparent clearance (CLz/F) of canagliflozin significantly decreased (30.6% and 28.6%, respectively) in the presence of sorafenib. Canagliflozin caused a significant increase in AUC and Cmax of lenvatinib by 28.9% and 36.2%, respectively, and a significant decrease in Vz/F and CLz/F of lenvatinib by 52.9% and 22.7%, respectively. In conclusion, drug interactions exist between canagliflozin and sorafenib or lenvatinib, and these findings provide a reference for the use of these drugs in patients with HCC and T2DM.
Collapse
|
24
|
Lye P, Bloise E, Imperio GE, Chitayat D, Matthews SG. Functional Expression of Multidrug-Resistance (MDR) Transporters in Developing Human Fetal Brain Endothelial Cells. Cells 2022; 11:2259. [PMID: 35883702 PMCID: PMC9323234 DOI: 10.3390/cells11142259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/20/2022] Open
Abstract
There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/metabolism
- Brain/metabolism
- Drug Resistance, Multiple
- Endothelial Cells/metabolism
- Female
- Humans
- Neoplasm Proteins/metabolism
- Pregnancy
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Guinever E. Imperio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for SickKids, University Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen G. Matthews
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
25
|
Yan Y, Li H, Yao H, Cheng X. Nanodelivery Systems Delivering Hypoxia-Inducible Factor-1 Alpha Short Interfering RNA and Antisense Oligonucleotide for Cancer Treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.932976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-inducible factor (HIF), which plays a crucial role in oxygen homeostasis, contributes to immunosuppression, tumor angiogenesis, multidrug resistance, photodynamic therapy resistance, and metastasis. HIF as a therapeutic target has attracted scientists’ strong academic research interests. Short interfering RNA (siRNA) and antisense oligonucleotide (ASO) are the more promising and broadly utilized methods for oligonucleotide-based therapy. Their physicochemical characteristics such as hydrophilicity, negative charge, and high molecular weight make them impossible to cross the cell membrane. Moreover, siRNA and ASO are subjected to a rapid deterioration in circulation and cannot translocate into nuclear. Delivery of siRNA and ASO to specific gene targets should be realized without off-target gene silencing and affecting the healthy cells. Nanoparticles as vectors for delivery of siRNA and ASO possess great advantages and flourish in academic research. In this review, we summarized and analyzed regulation mechanisms of HIF under hypoxia, the significant role of HIF in promoting tumor progression, and recent academic research on nanoparticle-based delivery of HIF siRNA and ASO for cancer immunotherapy, antiangiogenesis, reversal of multidrug resistance and radioresistance, potentiating photodynamic therapy, inhibiting tumor metastasis and proliferation, and enhancing apoptosis are reviewed in this thesis. Furthermore, we hope to provide some rewarding suggestions and enlightenments for targeting HIF gene therapy.
Collapse
|
26
|
Beavers DP, Hsieh KL, Kitzman DW, Kritchevsky SB, Messier SP, Neiberg RH, Nicklas BJ, Rejeski WJ, Beavers KM. Estimating heterogeneity of physical function treatment response to caloric restriction among older adults with obesity. PLoS One 2022; 17:e0267779. [PMID: 35511858 PMCID: PMC9070937 DOI: 10.1371/journal.pone.0267779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
Clinical trials conventionally test aggregate mean differences and assume homogeneous variances across treatment groups. However, significant response heterogeneity may exist. The purpose of this study was to model treatment response variability using gait speed change among older adults participating in caloric restriction (CR) trials. Eight randomized controlled trials (RCTs) with five- or six-month assessments were pooled, including 749 participants randomized to CR and 594 participants randomized to non-CR (NoCR). Statistical models compared means and variances by CR assignment and exercise assignment or select subgroups, testing for treatment differences and interactions for mean changes and standard deviations. Continuous equivalents of dichotomized variables were also fit. Models used a Bayesian framework, and posterior estimates were presented as means and 95% Bayesian credible intervals (BCI). At baseline, participants were 67.7 (SD = 5.4) years, 69.8% female, and 79.2% white, with a BMI of 33.9 (4.4) kg/m2. CR participants reduced body mass [CR: -7.7 (5.8) kg vs. NoCR: -0.9 (3.5) kg] and increased gait speed [CR: +0.10 (0.16) m/s vs. NoCR: +0.07 (0.15) m/s] more than NoCR participants. There were no treatment differences in gait speed change standard deviations [CR–NoCR: -0.002 m/s (95% BCI: -0.013, 0.009)]. Significant mean interactions between CR and exercise assignment [0.037 m/s (95% BCI: 0.004, 0.070)], BMI [0.034 m/s (95% BCI: 0.003, 0.066)], and IL-6 [0.041 m/s (95% BCI: 0.009, 0.073)] were observed, while variance interactions were observed between CR and exercise assignment [-0.458 m/s (95% BCI: -0.783, -0.138)], age [-0.557 m/s (95% BCI: -0.900, -0.221)], and gait speed [-0.530 m/s (95% BCI: -1.018, -0.062)] subgroups. Caloric restriction plus exercise yielded the greatest gait speed benefit among older adults with obesity. High BMI and IL-6 subgroups also improved gait speed in response to CR. Results provide a novel statistical framework for identifying treatment heterogeneity in RCTs.
Collapse
Affiliation(s)
- Daniel P. Beavers
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
- * E-mail:
| | - Katherine L. Hsieh
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Dalane W. Kitzman
- Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Stephen B. Kritchevsky
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Stephen P. Messier
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, United States of America
| | - Rebecca H. Neiberg
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Barbara J. Nicklas
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - W. Jack Rejeski
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, United States of America
| | - Kristen M. Beavers
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, United States of America
| |
Collapse
|
27
|
Megías-Vericat JE, Martínez-Cuadrón D, Solana-Altabella A, Poveda JL, Montesinos P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics 2022; 14:pharmaceutics14040878. [PMID: 35456712 PMCID: PMC9030330 DOI: 10.3390/pharmaceutics14040878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022] Open
Abstract
Antineoplastic uptake by blast cells in acute myeloid leukemia (AML) could be influenced by influx and efflux transporters, especially solute carriers (SLCs) and ATP-binding cassette family (ABC) pumps. Genetic variability in SLC and ABC could produce interindividual differences in clinical outcomes. A systematic review was performed to evaluate the influence of SLC and ABC polymorphisms and their combinations on efficacy and safety in AML cohorts. Anthracycline intake was especially influenced by SLCO1B1 polymorphisms, associated with lower hepatic uptake, showing higher survival rates and toxicity in AML studies. The variant alleles of ABCB1 were related to anthracycline intracellular accumulation, increasing complete remission, survival and toxicity. Similar findings have been suggested with ABCC1 and ABCG2 polymorphisms. Polymorphisms of SLC29A1, responsible for cytarabine uptake, demonstrated significant associations with survival and response in Asian populations. Promising results were observed with SLC and ABC combinations regarding anthracycline toxicities. Knowledge of the role of transporter pharmacogenetics could explain the differences observed in drug disposition in the blast. Further studies including novel targeted therapies should be performed to determine the influence of genetic variability to individualize chemotherapy schemes.
Collapse
Affiliation(s)
- Juan Eduardo Megías-Vericat
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
| | - David Martínez-Cuadrón
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Antonio Solana-Altabella
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
- Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - José Luis Poveda
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Correspondence: ; Tel.: +34-961-245876
| |
Collapse
|
28
|
Gataa Allami ZZ, Abdulkadhim Dragh M. Identification of Some Breast Cancer Related Genes by RAPD Technique in Maysan Province, Iraq. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.01.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is a heterogeneous disease regarding its morphology, invasive behavior, metastatic capacity, hormone receptor expression and clinical outcome. Many risk factors for breast cancer, including genetic factors, account for 25-30% of the incidence. About 15-30% of breast cancer is heritable due to known familiar highly penetrates genes and the others are sporadic; It is worthy to state that this study was the first in the world to include amplified genes as a PCR template to determine the relationship between their polymorphism and breast cancer incidence using, RAPD of amplified genes. The study was designed first to evaluate the association of ABCG2 gene polymorphism beside miRNA-152 and ER-a using the RAPD technique with breast cancer incidence in Maysan province women, and second to use those genes as indicators for breast cancer prediction and diagnosis. The study included 100 patients with breast cancer and 30 control healthy women, and then all samples were amplified by conventional PCR by specific F and R primer for (ABCG2, ER-α, miRNA-152) genes and then the best (20 PCR product) from which was chosen as the template for PCR RAPD PCR technique. The results revealed there are significant differences (P < 0.05) in the unique band of ABCG2 at marker OPAA 11, OPU 15, OPAA 17, significant differences (P < 0.05) in the total band of ER- α at marker OPAA11, significant differences in the polymorphic band of ER- α at marker OPU 15, significant differences in the unique band of ER- α at marker OPAA11, OPU 15, and significant differences (P < 0.05) in the bands that had been size (50-60) bp, (140 - 150) bp, (170-180 ) bp of miRNA-152 at marker OPAA 17, OPD 18 between breast cancer patients and control. Our study proved the relationship between genetic polymorphism of breast cancer-related genes (ABCG2, ER-α, miRNA-152) and a higher incidence of cancer; The current study recommends employing these results for future prediction and diagnosis of breast cancers.
Collapse
|
29
|
Comprehensive pharmacogenomics characterization of temozolomide response in gliomas. Eur J Pharmacol 2021; 912:174580. [PMID: 34678239 DOI: 10.1016/j.ejphar.2021.174580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/11/2023]
Abstract
Recent developments in pharmacogenomics have created opportunities for predicting temozolomide response in gliomas. Temozolomide is the main first-line alkylating chemotherapeutic drug together with radiotherapy as standard treatments of high-risk gliomas after surgery. However, there are great individual differences in temozolomide response. Besides the heterogeneity of gliomas, pharmacogenomics relevant genetic polymorphisms can not only affect pharmacokinetics of temozolomide but also change anti-tumor effects of temozolomide. This review will summarize pharmacogenomic studies of temozolomide in gliomas which can lay the foundation to personalized chemotherapy.
Collapse
|
30
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
31
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
32
|
Hadj Bachir E, Poiraud C, Paget S, Stoup N, El Moghrabi S, Duchêne B, Jouy N, Bongiovanni A, Tardivel M, Weiswald LB, Vandepeutte M, Beugniez C, Escande F, Leteurtre E, Poulain L, Lagadec C, Pigny P, Jonckheere N, Renaud F, Truant S, Van Seuningen I, Vincent A. A new pancreatic adenocarcinoma-derived organoid model of acquired chemoresistance to FOLFIRINOX: First insight of the underlying mechanisms. Biol Cell 2021; 114:32-55. [PMID: 34561874 DOI: 10.1111/boc.202100003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND INFORMATION Although improvements have been made in the management of pancreatic adenocarcinoma (PDAC) during the past 20 years, the prognosis of this deadly disease remains poor with an overall 5-year survival under 10%. Treatment with FOLFIRINOX, a combined regimen of 5-fluorouracil, irinotecan (SN-38) and oxaliplatin, is nonetheless associated with an excellent initial tumour response and its use has allowed numerous patients to go through surgery while their tumour was initially considered unresectable. These discrepancies between initial tumour response and very low long-term survival are the consequences of rapidly acquired chemoresistance and represent a major therapeutic frontier. To our knowledge, a model of resistance to the combined three drugs has never been described due to the difficulty of modelling the FOLFIRINOX protocol both in vitro and in vivo. Patient-derived tumour organoids (PDO) are the missing link that has long been lacking in the wide range of epithelial cancer models between 2D adherent cultures and in vivo xenografts. In this work we sought to set up a model of PDO with resistance to FOLFIRINOX regimen that we could compare to the paired naive PDO. RESULTS We first extrapolated physiological concentrations of the three drugs using previous pharmacodynamics studies and bi-compartmental elimination models of oxaliplatin and SN-38. We then treated PaTa-1818x naive PDAC organoids with six cycles of 72 h-FOLFIRINOX treatment followed by 96 h interruption. Thereafter, we systematically compared treated organoids to PaTa-1818x naive organoids in terms of growth, proliferation, viability and expression of genes involved in cancer stemness and aggressiveness. CONCLUSIONS We reproductively obtained resistant organoids FoxR that significantly showed less sensitivity to FOLFORINOX treatment than the PaTa-1818x naive organoids from which they were derived. Our resistant model is representative of the sequential steps of chemoresistance observed in patients in terms of growth arrest (proliferation blockade), residual disease (cell quiescence/dormancy) and relapse. SIGNIFICANCE To our knowledge, this is the first genuine in vitro model of resistance to the three drugs in combined therapy. This new PDO model will be a great asset for the discovery of acquired chemoresistance mechanisms, knowledge that is mandatory before offering new therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Elsa Hadj Bachir
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Charles Poiraud
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - Sonia Paget
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Nicolas Stoup
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Soumaya El Moghrabi
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Belinda Duchêne
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Nathalie Jouy
- UMS 2014 - US 41 - PLBS - Plateformes Lilloises en Biologie & Santé, BioImaging Center Lille (BICeL), Univ. Lille, Lille, France
| | - Antonino Bongiovanni
- UMS 2014 - US 41 - PLBS - Plateformes Lilloises en Biologie & Santé, BioImaging Center Lille (BICeL), Univ. Lille, Lille, France
| | - Meryem Tardivel
- UMS 2014 - US 41 - PLBS - Plateformes Lilloises en Biologie & Santé, BioImaging Center Lille (BICeL), Univ. Lille, Lille, France
| | - Louis-Bastien Weiswald
- UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", Normandie Univ, Caen, France.,Cancer Centre F. Baclesse, UNICANCER, Caen, France
| | - Marie Vandepeutte
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - César Beugniez
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - Fabienne Escande
- Department of Biochemistry and Molecular Biology, CHU Lille, Hormonology Metabolism Nutrition Oncology, Lille, France
| | - Emmanuelle Leteurtre
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France.,Department of Pathology, CHU Lille, Univ. Lille, Lille, France
| | -
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Laurent Poulain
- UNICAEN, Inserm U1086 ANTICIPE "Interdisciplinary Research Unit for Cancer Prevention and Treatment", Normandie Univ, Caen, France.,Cancer Centre F. Baclesse, UNICANCER, Caen, France
| | - Chann Lagadec
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Pascal Pigny
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Nicolas Jonckheere
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Florence Renaud
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France.,Department of Pathology, CHU Lille, Univ. Lille, Lille, France
| | - Stephanie Truant
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France.,Department of Digestive Surgery and Transplantation, CHU Lille, Lille, France
| | - Isabelle Van Seuningen
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| | - Audrey Vincent
- CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Univ. Lille, Lille, France
| |
Collapse
|
33
|
Zhang Y, Huang S, Zhong W, Chen W, Yao B, Wang X. 3D organoids derived from the small intestine: An emerging tool for drug transport research. Acta Pharm Sin B 2021; 11:1697-1707. [PMID: 34386316 PMCID: PMC8343122 DOI: 10.1016/j.apsb.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Small intestine in vitro models play a crucial role in drug transport research. Although conventional 2D cell culture models, such as Caco-2 monolayer, possess many advantages, they should be interpreted with caution because they have relatively poor physiologically reproducible phenotypes and functions. With the development of 3D culture technology, pluripotent stem cells (PSCs) and adult somatic stem cells (ASCs) show remarkable self-organization characteristics, which leads to the development of intestinal organoids. Based on previous studies, this paper reviews the application of intestinal 3D organoids in drug transport mediated by P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2). The advantages and limitations of this model are also discussed. Although there are still many challenges, intestinal 3D organoid model has the potential to be an excellent tool for drug transport research.
Collapse
Key Words
- 3D organoid
- ASCs, adult somatic stem cells
- BCRP, breast cancer resistance protein
- BMP, bone morphogenetic protein
- CDF, 5(6)-carboxy-2′,7′-dichlorofluorescein
- Caco-2 cell monolayer
- DDI, drug–drug interactions
- Drug transporter
- EGF, epidermal growth factor
- ER, efflux ratio
- ESCs, embryonic stem cells
- FGF, fibroblast growth factor
- Lgr5+, leucine-rich-repeat-containing G-protein-coupled receptor 5 positive
- MCT, monocarboxylate transporter protein
- MRP2, multidrug resistance protein 2
- NBD, nucleotide-binding domain
- OATP, organic anion transporting polypeptide
- OCT, organic cation transporter
- OCTN, carnitine/organic cation transporter
- P-glycoprotein
- P-gp, P-glycoprotein
- PEPT, peptide transporter protein
- PMAT, plasma membrane monoamine transporter
- PSCs, pluripotent stem cells
- Papp, apparent permeability coefficient
- Rh123, rhodamine 123
- SLC, solute carrier
- Small intestine
- TEER, transepithelial electrical resistance
- TMDs, transmembrane domains
- cMOAT, canalicular multispecific organic anion transporter
- iPSCs, induced pluripotent stem cells
Collapse
Affiliation(s)
- Yuanjin Zhang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiguo Zhong
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Wenxia Chen
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author. Tel.: +86 21 2420 6564; fax: +86 21 5434 4922.
| |
Collapse
|
34
|
Narayanan S, Wu ZX, Wang JQ, Ma H, Acharekar N, Koya J, Yoganathan S, Fang S, Chen ZS, Pan Y. The Spleen Tyrosine Kinase Inhibitor, Entospletinib (GS-9973) Restores Chemosensitivity in Lung Cancer Cells by Modulating ABCG2-mediated Multidrug Resistance. Int J Biol Sci 2021; 17:2652-2665. [PMID: 34326700 PMCID: PMC8315011 DOI: 10.7150/ijbs.61229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are important in managing lymphoid malignancies by targeting B-cell receptor signaling pathways. Entospletinib (GS-9973) is an oral, selective inhibitor of spleen tyrosine kinase (Syk), currently in the phase II clinical trials for the treatment of chronic lymphocytic leukemia. Syk is abundantly present in the cells of hematopoietic lineage that mediates cell proliferation, differentiation, and adhesion. In this current study, we evaluated the efficacy of GS-9973 to overcome multidrug resistance (MDR) due to the overexpression of the ABCG2 transporter in the non-small cell lung cancer (NSCLC) cell line, NCI-H460/MX20. In vitro, 3 μM of GS-9973 reversed the drug resistance of NCI-H460/MX20 cell line to mitoxantrone or doxorubicin. GS-9973, at 3 μM reverses ABCG2-mediated MDR by blocking ABCG2 efflux activity and downregulating ABCG2 expression at the protein level but did not alter the ABCG2 mRNA expression and subcellular localization of the ABCG2 protein compared to drug-resistant cells incubated with the vehicle. GS-9973 produced a moderate concentration-dependent increase in the ATPase activity of ABCG2 (EC50 = 0.42 µM) and molecular docking data indicated that GS-9973 had a high affinity (-10.226 kcal/mol) for the substrate-binding site of ABCG2. Finally, HPLC analysis proved that the intracellular concentration of GS-9973 is not significantly different in both parental and resistant cell lines. In conclusion, our study suggests that in vitro, GS-9973 in combination with certain anticancer drugs, represent a strategy to overcome ABCG2-mediated MDR cancers.
Collapse
Affiliation(s)
- Silpa Narayanan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Hansu Ma
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yihang Pan
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| |
Collapse
|
35
|
El Biali M, Karch R, Philippe C, Haslacher H, Tournier N, Hacker M, Zeitlinger M, Schmidl D, Langer O, Bauer M. ABCB1 and ABCG2 Together Limit the Distribution of ABCB1/ABCG2 Substrates to the Human Retina and the ABCG2 Single Nucleotide Polymorphism Q141K (c.421C> A) May Lead to Increased Drug Exposure. Front Pharmacol 2021; 12:698966. [PMID: 34220523 PMCID: PMC8242189 DOI: 10.3389/fphar.2021.698966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
The widely expressed and poly-specific ABC transporters breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1) are co-localized at the blood-brain barrier (BBB) and have shown to limit the brain distribution of several clinically used ABCB1/ABCG2 substrate drugs. It is currently not known to which extent these transporters, which are also expressed at the blood-retinal barrier (BRB), may limit drug distribution to the human eye and whether the ABCG2 reduced-function single-nucleotide polymorphism (SNP) Q141K (c.421C > A) has an impact on retinal drug distribution. Ten healthy male volunteers (five subjects with the c.421CC and c.421CA genotype, respectively) underwent two consecutive positron emission tomography (PET) scans after intravenous injection of the model ABCB1/ABCG2 substrate [11C]tariquidar. The second PET scan was performed with concurrent intravenous infusion of unlabelled tariquidar to inhibit ABCB1 in order to specifically reveal ABCG2 function.In response to ABCB1 inhibition with unlabelled tariquidar, ABCG2 c.421C > A genotype carriers showed significant increases (as compared to the baseline scan) in retinal radiotracer influx K 1 (+62 ± 57%, p = 0.043) and volume of distribution V T (+86 ± 131%, p = 0.043), but no significant changes were observed in subjects with the c.421C > C genotype. Our results provide the first evidence that ABCB1 and ABCG2 may together limit the distribution of systemically administered ABCB1/ABCG2 substrate drugs to the human retina. Functional redundancy between ABCB1 and ABCG2 appears to be compromised in carriers of the c.421C > A SNP who may therefore be more susceptible to transporter-mediated drug-drug interactions at the BRB than non-carriers.
Collapse
Affiliation(s)
- Myriam El Biali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Rudolf Karch
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, VIE, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, VIE, Austria
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| |
Collapse
|
36
|
Wang Z, Zhang Z, Li Y, Sun L, Peng D, Du D, Zhang X, Han L, Zhao L, Lu L, Du H, Yuan S, Zhan M. Preclinical efficacy against acute myeloid leukaemia of SH1573, a novel mutant IDH2 inhibitor approved for clinical trials in China. Acta Pharm Sin B 2021; 11:1526-1540. [PMID: 34221866 PMCID: PMC8245910 DOI: 10.1016/j.apsb.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults, with increasing incidence with age and a generally poor prognosis. Almost 20% of AML patients express mutant isocitrate dehydrogenase 2 (mIDH2), which leads to the accumulation of the carcinogenic metabolite 2-hydroxyglutarate (2-HG), resulting in poor prognosis. Thus, global institutions have been working to develop mIDH2 inhibitors. SH1573 is a novel mIDH2 inhibitor that we independently designed and synthesised. We have conducted a comprehensive study on its pharmacodynamics, pharmacokinetics and safety. First, SH1573 exhibited a strong selective inhibition of mIDH2 R140Q protein, which could effectively reduce the production of 2-HG in cell lines, serum and tumors of an animal model. It could also promote the differentiation of mutant AML cell lines and granulocytes in PDX models. Then, it was confirmed that SH1573 possessed characteristics of high bioavailability, good metabolic stability and wide tissue distribution. Finally, toxicological data showed that SH1573 had no effects on the respiratory system, cardiovascular system and nervous system, and was genetically safe. This research successfully promoted the approval of SH1573 for clinical trials (CTR20200247). All experiments demonstrated that, as a potential drug against mIDH2 R140Q acute myeloid leukaemia, SH1573 was effective and safe.
Collapse
Key Words
- 2-HG, 2-hydroxyglutaric acid
- 2-Hydroxyglutarate
- ADME, absorption, distribution, metabolism and excretion
- AG-221, enasidenib
- AML, acute myeloid leukemia
- AUC, area under the cure
- Acute myeloid leukaemia
- BCRP, breast cancer resistance protein
- CDX, cell-line-derived xenograft
- CYP, cytochrome P450
- Differentiation
- EPO, erythropoietin
- IC50, half maximal inhibitory concentration
- LC–MS/MS, liquid chromatography–tandem mass spectrometry
- MDR1, multidrug resistance protein 1
- Mutant isocitrate dehydrogenase 2 (mIDH2)
- OAT, organic anion transporter
- OATP, organic anion transporting polypeptide
- OCT, organ cation transporter
- PD, pharamacodynamics
- PDX, patient-derived tumor xenograft
- PK, pharmacokinetics
- Papp, apparent permeability coefficient
- Preclinical efficacy
- SH1573
- Tumor metabolism
- mIDH2 inhibitor
- mIDH2, mutant isocitrate dehydrogenase
- α-KG, α-ketoglutaric acid
Collapse
Affiliation(s)
- Zhiqiang Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Zhibo Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Li Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Dezhen Peng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
| | - Xian Zhang
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Luwei Han
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Liwen Zhao
- Sanhome Pharmaceutical Co., Ltd., Nanjing 210000, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Hongzhi Du
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Corresponding authors.
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210003, China
- Corresponding authors.
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
- Corresponding authors.
| |
Collapse
|
37
|
Dong Y, Gong L, Lu X, Ye M, Lin Y, Xie S, Zhang J, Zhou F, Tang L, Zou W, Liu M. Changes of Transporters and Drug-metabolizing Enzymes in Nephrotic Syndrome. Curr Drug Metab 2021; 21:368-378. [PMID: 32394830 DOI: 10.2174/1389200221666200512113731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Drug-metabolizing enzymes and transporters play key roles in drug disposition and drug interactions. The alterations of their expression will influence drug pharmacokinetics and pharmacodynamics. However, the changes in the expression of enzymes and transporters in the disease state are still unclear. OBJECTIVE Our study was to investigate the changes in the expression of main enzymes and drug transporters distributed in Adriamycin nephropathy rat liver, kidney, and intestine. METHODS An intravenous injection with a single dose of Adriamycin (6mg/kg) was made to establish Adriamycin nephropathy (AN) model and normal groups were injected with normal saline. Serum was collected for lipid metabolism, renal, and hepatic function measurement. The real-time PCR and western blot were applied to determine the mRNA and protein expression of drug enzymes and transporters. RESULTS In the kidney, a greater expression of Mdr1, Mrp2, Mrp4 Oat2 and Oct2 mRNA was found in AN rats as compared with control rats. In the liver, the expression of Bcrp mRNA was more doubled or tripled than control groups and downregulation of Mdr1, Mrp2, Mrp4 and Bsep gene expression was found in AN rats. Besides, we observed a downward trend of Cyp1a2, Cyp3a4 and Cyp2c9 mRNA levels in AN groups. In the duodenum, the expression of Mdr1 and Mrp3 mRNA level was decreased, while Bcrp and Mrp2 mRNA were increased. CONCLUSION The changes in drug-metabolizing enzymes and transporters expression in AN rats were clarified, which may be beneficial for understanding the altered pharmacokinetics and pharmacodynamics of clinical drugs and reduce unexpected clinical findings for nephropathy patients.
Collapse
Affiliation(s)
- Yaqian Dong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Linna Gong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xianyuan Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Mingguang Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yu Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shuting Xie
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Jiaxing Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Wei Zou
- NHC Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Menghua Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
38
|
Pleiotropic Roles of ABC Transporters in Breast Cancer. Int J Mol Sci 2021; 22:ijms22063199. [PMID: 33801148 PMCID: PMC8004140 DOI: 10.3390/ijms22063199] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Chemotherapeutics are the mainstay treatment for metastatic breast cancers. However, the chemotherapeutic failure caused by multidrug resistance (MDR) remains a pivotal obstacle to effective chemotherapies of breast cancer. Although in vitro evidence suggests that the overexpression of ATP-Binding Cassette (ABC) transporters confers resistance to cytotoxic and molecularly targeted chemotherapies by reducing the intracellular accumulation of active moieties, the clinical trials that target ABCB1 to reverse drug resistance have been disappointing. Nevertheless, studies indicate that ABC transporters may contribute to breast cancer development and metastasis independent of their efflux function. A broader and more clarified understanding of the functions and roles of ABC transporters in breast cancer biology will potentially contribute to stratifying patients for precision regimens and promote the development of novel therapies. Herein, we summarise the current knowledge relating to the mechanisms, functions and regulations of ABC transporters, with a focus on the roles of ABC transporters in breast cancer chemoresistance, progression and metastasis.
Collapse
|
39
|
Clinical utility of ABCB1 and ABCG2 genotyping for assessing the clinical and pathological response to FAC therapy in Mexican breast cancer patients. Cancer Chemother Pharmacol 2021; 87:843-853. [PMID: 33740100 DOI: 10.1007/s00280-021-04244-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Resistance to neoadjuvant chemotherapy with 5-fluorouracil, doxorubicin, and cyclophosphamide (FAC) in some patients with locally advanced breast cancer remains one of the main obstacles to first-line treatment. We investigated clinical and pathological responses to FAC neoadjuvant chemotherapy in Mexican women with breast cancer and their possible association with SNPs present in ABC transporters as predictors of chemoresistance. MATERIALS A total of 102 patients undergoing FAC neoadjuvant chemotherapy were included in the study. SNP analysis was performed by RT-PCR from genomic DNA. Two SNPs were analyzed: ABCB1 rs1045642 (3435 C > T) and ABCG2 rs2231142 (421 G > T). RESULTS In clinical response evaluation, significant associations were found between the ABCB1 C3435T genotype and breast cancer chemoresistant and chemosensitive patients (p < 0.05). In the early clinical response, patients with genotype C/C or C/T were more likely to be chemosensitive to neoadjuvant therapy than patients with genotype T/T (OR = 4.055; p = 0.0064). Association analysis between the ABCB1 gene polymorphism and the pathologic response to FAC chemotherapy showed that the C/C + C/T genotype was a protective factor against chemoresistance (OR = 3.714; p = 0.0104). Polymorphisms in ABCG2 indicated a lack of association with resistance to chemotherapy (p = 0.2586) evaluating the clinical or pathological response rate to FAC neoadjuvant chemotherapy. CONCLUSION The early clinical response and its association with SNPs in the ABCB1 transporter are preserved until the pathological response to neoadjuvant chemotherapy; therefore, it could be used as a predictor of chemoresistance in locally advanced breast cancer patients of the Mexican population.
Collapse
|
40
|
Medically Important Alterations in Transport Function and Trafficking of ABCG2. Int J Mol Sci 2021; 22:ijms22062786. [PMID: 33801813 PMCID: PMC8001156 DOI: 10.3390/ijms22062786] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Several polymorphisms and mutations in the human ABCG2 multidrug transporter result in reduced plasma membrane expression and/or diminished transport function. Since ABCG2 plays a pivotal role in uric acid clearance, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body; thus, genetic alterations in ABCG2 may modify the absorption, distribution, excretion of potentially toxic endo- and exogenous substances. In turn, this can lead either to altered therapy responses or to drug-related toxic reactions. This paper reviews the various types of mutations and polymorphisms in ABCG2, as well as the ways how altered cellular processing, trafficking, and transport activity of the protein can contribute to phenotypic manifestations. In addition, the various methods used for the identification of the impairments in ABCG2 variants and the different approaches to correct these defects are overviewed.
Collapse
|
41
|
Vasconcelos FC, de Souza PS, Hancio T, de Faria FCC, Maia RC. Update on drug transporter proteins in acute myeloid leukemia: Pathological implication and clinical setting. Crit Rev Oncol Hematol 2021; 160:103281. [PMID: 33667660 DOI: 10.1016/j.critrevonc.2021.103281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological neoplasia causing death worldwide. The long-term overall survival is unsatisfactory due to many factors including older age, genetic heterogeneity and molecular characteristics comprising additional mutations, and resistance to chemotherapeutic drugs. The expression of ABCB1/P-glycoprotein, ABCC1/MRP1, ABCG2/BCRP and LRP transporter proteins is considered the major reason for multidrug resistance (MDR) in AML, however conflicting data have been reported. Here, we review the main issues about drug transporter proteins in AML clinical scenario, and highlight the clinicopathological significance of MDR phenotype associated with ABCB1 polymorphisms and FLT3 mutation.
Collapse
Affiliation(s)
- Flavia Cunha Vasconcelos
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Bioativos, Polo Novo Cavaleiros/IMCT, Campus Professor Aloisio Teixeira (UFRJ/Macaé), Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | - Thaís Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Stricto Sensu em Oncologia, INCA, RJ, Brazil
| | - Fernanda Costas Casal de Faria
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
42
|
Wang L, Sun C, Li X, Mao C, Qian J, Wang J, Wu J, Li Q, Bai C, Han B, Gao Z, Xu J, Yin J, Liu Z, Lu D, Jin L, Wang H. A pharmacogenetics study of platinum-based chemotherapy in lung cancer: ABCG2 polymorphism and its genetic interaction with SLC31A1 are associated with response and survival. J Cancer 2021; 12:1270-1283. [PMID: 33531973 PMCID: PMC7847637 DOI: 10.7150/jca.51621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: The expression and function of platinum transporters affect drug tissue concentration and therapeutic effects. We had previously characterized functional variant of platinum intake transporter SLC31A1 gene. We aimed to investigate the association of platinum efflux transporter gene ABCG2 polymorphism and combined ABCG2 and SLC31A1 polymorphisms with clinical outcomes of NSCLC patients receiving platinum-based chemotherapy. Methods: We genotyped thirteen tagging and functional SNPs of ABCG2 in 1004 patients, and assessed their association with response, toxicity and survival using unconditional logistic regression and Cox proportional hazards regression analyses respectively. Results: Nonsynonymous rs2231142 (odds ratio [OR] 2.07; 95 % confidence interval [CI] 1.26-3.63), rs1871744 (OR 0.60; 95 % CI 0.42-0.87) and their haplotype and diplotype were associated with objective response. Rs4148157 was associated with shorter overall survival (Log-rank P = 0.002; hazard ratio [HR] 1.22; 95 % CI 1.05-1.42). Furthermore, the combined SLC31A1 rs2233914 and ABCG2 rs1871744 genotype was significantly associated with poor response (OR 0.31; 95 % CI 0.17-0.56; P interaction = 0.003). And the combined genotypes of the functional rs10759637 of SLC31A1 and the nonsynonymous rs2231142 (Log-rank P = 5.20×10-5; HR 1.47; 95 % CI 1.19-1.81; P interaction = 0.007) or linked rs4148157 of ABCG2 were significantly associated with poor survival. Conclusion: This study reveals divergent association of ABCG2 polymorphism with response and survival of NSCLC patients receiving platinum-based chemotherapy, demonstrates the combined effects of functional variants of ABCG2 and SLC31A1 on clinical outcomes, and highlights pharmacogenetic relevance of platinum transporter genes interaction.
Collapse
Affiliation(s)
- Liyan Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital and Pudong Medical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Chang Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiangnan Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenxue Mao
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenomics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Ji Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Department of Respiratory and Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Baohui Han
- Department of Pneumology, Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Gao
- Department of Pneumology, Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jibin Xu
- Department of Cardiothoracic Surgery, Changzheng Hospital of the Second Military Medical University, Shanghai, China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenomics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital; Hunan Key Laboratory of Pharmacogenomics, Institute of Clinical Pharmacology, Central South University, Changsha, China
| | - Daru Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Haijian Wang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital and Pudong Medical Center, Shanghai Medical College, Fudan University, Shanghai, China.,Ministry of Education Key Laboratory of Contemporary Anthropology and Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Ya K, Methaneethorn J, Tran QB, Trakulsrichai S, Wananukul W, Lohitnavy M. Development of a Physiologically Based Pharmacokinetic Model of Mitragynine, Psychoactive Alkaloid in Kratom ( Mitragyna Speciosa Korth.), In Rats and Humans. J Psychoactive Drugs 2020; 53:127-139. [PMID: 34003732 DOI: 10.1080/02791072.2020.1849877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Mitragynine is a major psychoactive alkaloid in leaves of kratom (Mitragyna speciosa Korth.). To understand its disposition in organs, this study aimed to develop a physiologically based pharmacokinetic (PBPK) model that predicts mitragynine concentrations in plasma and organ of interests in rats and humans. The PBPK model consisted of six organ compartments (i.e. lung, brain, liver, fat, slowly perfused tissues, and rapidly perfused tissue). From systematic searching, three pharmacokinetic studies of mitragynine (two studies in rats and 1 study in humans) were retrieved from the literature. Berkeley Madonna Software (version 8.3.18) was used for model development and model simulation. The developed PBPK model consisted of biologically relevant features following involvement of (i) breast cancer-resistant protein (BCRP) in brain, (ii) a hepatic cytochrome P450 3A4 (CYP3A4)-mediated metabolism in the liver, and (iii) a diffusion-limited transport in fat. The simulations adequately describe simulated and observed data in the two species with different dosing regimens. PBPK models of mitragynine in rats and humans were successfully developed. The models may be used to guide optimal mitragynine dosing regimens.
Collapse
Affiliation(s)
- Kimheang Ya
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Janthima Methaneethorn
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Quoc Ba Tran
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Satariya Trakulsrichai
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand.,Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Winai Wananukul
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand.,Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Salaya, Thailand
| | - Manupat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
44
|
Sarkadi B, Homolya L, Hegedűs T. The ABCG2/BCRP transporter and its variants - from structure to pathology. FEBS Lett 2020; 594:4012-4034. [PMID: 33015850 DOI: 10.1002/1873-3468.13947] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
The ABCG2 protein has a key role in the transport of a wide range of structurally dissimilar endo- and xenobiotics in the human body, especially in the tissue barriers and the metabolizing or secreting organs. The human ABCG2 gene harbors a high number of polymorphisms and mutations, which may significantly modulate its expression and function. Recent high-resolution structural data, complemented with molecular dynamic simulations, may significantly help to understand intramolecular movements and substrate handling, as well as the effects of mutations on the membrane transporter function of ABCG2. As reviewed here, structural alterations may result not only in direct alterations in drug binding and transporter activity, but also in improper folding or problems in the carefully regulated process of trafficking, including vesicular transport, endocytosis, recycling, and degradation. Here, we also review the clinical importance of altered ABCG2 expression and function in general drug metabolism, cancer multidrug resistance, and impaired uric acid excretion, leading to gout.
Collapse
Affiliation(s)
- Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
45
|
Jing W, Zhang X, Chen R, Ye X, Zhou M, Li W, Yan W, Xuyun X, Peng J. KD025, an anti-adipocyte differentiation drug, enhances the efficacy of conventional chemotherapeutic drugs in ABCG2-overexpressing leukemia cells. Oncol Lett 2020; 20:309. [PMID: 33093918 PMCID: PMC7573885 DOI: 10.3892/ol.2020.12172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023] Open
Abstract
Most patients with advanced leukemia eventually die from multidrug resistance (MDR). Chemotherapy-resistant leukemia cells may lead to treatment failure and disease relapse. Overexpression of ATP-binding cassette subfamily G member 2 (ABCG2) leads to MDR, which serves as a potential biomarker and target of therapeutic intervention for leukemia cells. Targeting ABCG2 is a potential strategy for selective therapy and eradicate MDR cells, thus improving malignant leukemia treatment. KD025 (SLx-2119) is a novel Rho-associated protein kinase 2-selective inhibitor, which has been shown to inhibit adipogenesis in human adipose-derived stem cells and restore impaired immune homeostasis in autoimmunity therapy. The present study demonstrated that KD025 improved the efficacy of antineoplastic drugs in ABCG2-overexpressing leukemia cells and primary leukemia blast cells derived from patients with leukemia. Moreover, KD025 significantly inhibited the efflux of [3H]-mitoxantrone and hence accumulated higher levels of [3H]-mitoxantrone in HL60/ABCG2 cells. However, mechanistic research indicated that KD025 did not alter the protein levels and subcellular locations of ABCG2. KD025 may restrain the efflux activity of ABCG2 by obstructing ATPase activity. Taken together, KD025 can sensitize conventional antineoplastic drugs in ABCG2-overexpressing leukemia cells by blocking the pump function of ABCG2 protein. The present findings may provide a novel and useful combinational therapeutic strategy of KD025 and antineoplastic drugs for leukemia patients with ABCG2-mediated MDR.
Collapse
Affiliation(s)
- Wen Jing
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Xuerong Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Ruixia Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Xijiu Ye
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Mao Zhou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Weixing Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Wenchan Yan
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiuxiu Xuyun
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Jun Peng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
46
|
Megías-Vericat JE, Martínez-Cuadrón D, Solana-Altabella A, Montesinos P. Precision medicine in acute myeloid leukemia: where are we now and what does the future hold? Expert Rev Hematol 2020; 13:1057-1065. [PMID: 32869672 DOI: 10.1080/17474086.2020.1818559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Precision medicine has revolutionized the diagnostic and therapeutic management of acute myeloid leukemia (AML), from standardized schemes based on chemotherapy to tailored approaches according to molecular and genetic profile and targeted therapy. AREAS COVERED The main topics of precision medicine in AML were reviewed in MEDLINE, EMBASE, and Cochrane Central Register databases, and future directions in this therapeutic area were addressed. This review included targeted therapies, drug-sensitivity tests and predictive biomarkers, and genetic studies employing pharmacogenetic and deep sequencing strategies. EXPERT OPINION Precision medicine has opened the door to personalized therapy for specific AML patient populations with promising results. Several targeted therapies have been approved or are being tested for specific mutations (i.e. FLT3, IDH, BCL-2, TP53), obtaining improvements in clinical outcomes and less toxicity as compared with intensive treatment, allowing potential combination therapy. Ongoing trials and real data will establish the role of these molecules in monotherapy or combined in different AML settings (front-line, relapsed/refractory, or post-transplant). Experience in drug-sensitivity predictors and pharmacogenetic biomarkers is encouraging and could be useful tools in the next years, but we need a better understanding of AML biology and pathogenesis as well as confirmatory studies to demonstrate the utility in clinical practice.
Collapse
Affiliation(s)
| | - David Martínez-Cuadrón
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe , Valencia, Spain.,CIBERONC, Instituto de Salud Carlos III , Madrid, Spain
| | - Antonio Solana-Altabella
- Servicio de Farmacia, Área del Medicamento, Hospital Universitari i Politècnic La Fe , Valencia, Spain
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia, Hospital Universitari i Politècnic La Fe , Valencia, Spain.,CIBERONC, Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
47
|
Deng Y, Chen S, Zhang M, Li C, He J, Tan Y. AMPKα2 Overexpression Reduces Cardiomyocyte Ischemia-Reperfusion Injury Through Normalization of Mitochondrial Dynamics. Front Cell Dev Biol 2020; 8:833. [PMID: 32984328 PMCID: PMC7481335 DOI: 10.3389/fcell.2020.00833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiac ischemia-reperfusion (I/R) injury is associated with mitochondrial dysfunction. Recent studies have reported that mitochondrial function is determined by mitochondrial dynamics. Here, we hypothesized that AMPKα2 functions as an upstream mediator that sustains mitochondrial dynamics in cardiac I/R injury and cardiomyocyte hypoxia-reoxygenation (H/R) in vitro. To test this, we analyzed cardiomyocyte viability and survival along with mitochondrial dynamics and function using western blots, qPCR, immunofluorescence, and ELISA. Our results indicated that both AMPKα2 transcription and translation were reduced by H/R injury in cardiomyocytes. Decreased AMPKα2 levels were associated with cardiomyocyte dysfunction and apoptosis. Adenovirus-mediated AMPKα2 overexpression dramatically inhibited H/R-mediated cardiomyocyte damage, possibly by increasing mitochondrial membrane potential, inhibiting cardiomyocyte oxidative stress, attenuating intracellular calcium overload, and inhibiting mitochondrial apoptosis. At the molecular level, AMPKα2 overexpression alleviated abnormal mitochondrial division and improved mitochondrial fusion through activation of the Sirt3/PGC1α pathway. This suggests AMPKα2 contributes to maintaining normal mitochondrial dynamics. Indeed, induction of mitochondrial dynamics disorder abolished the cardioprotective effects afforded by AMPKα2 overexpression. Thus, cardiac I/R-related mitochondrial dynamics disorder can be reversed by AMPKα2 overexpression in a manner dependent on the activation of Sirt3/PGC1α signaling.
Collapse
Affiliation(s)
- Yuanyan Deng
- Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Sainan Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingming Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Li
- Department of Cardiology, Foshan Hospital Affiliated with Southern Medical University (The Second People's Hospital of Foshan), Foshan, China
| | - Jing He
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Tan
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
He ZX, Zhao TQ, Gong YP, Zhang X, Ma LY, Liu HM. Pyrimidine: A promising scaffold for optimization to develop the inhibitors of ABC transporters. Eur J Med Chem 2020; 200:112458. [PMID: 32497962 DOI: 10.1016/j.ejmech.2020.112458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
The multidrug resistance (MDR) phenomenon in cancer cells is the major obstacle leading to failure of chemotherapy accompanied by the feature of intractable and recurrence of cancers. As significant contributors that cause MDR, ABC superfamily proteins can transport the chemotherapeutic drugs out of the tumor cells by the energy of adenosine triphosphate (ATP) hydrolysis, thereby reducing their intracellular accumulation. The ABC transports like ABCB1, ABCC1 and ABCG2 have been extensively studied to develop modulators for overcoming MDR. To date, no reversal agents have been successfully marketed for clinical application, and little information about the ABC proteins bound to specific inhibitors is known, which make the design of MDR inhibitors with potency, selectivity and low toxicity a major challenge. In recent years, it has been increasingly recognized that pyrimidine-based derivatives have the potential for reversing ABC-mediated MDR. In this review, we summarized the pyrimidine-based inhibitors of ABC transporters, and mainly focused on their structure optimizations, development strategies and structure-activity relationship studies in hope of providing a reference for medicinal chemists to develop new modulators of MDR with highly potency and fewer side effects.
Collapse
Affiliation(s)
- Zhang-Xu He
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Tao-Qian Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yun-Peng Gong
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
49
|
Guo QR, Wang H, Yan YD, Liu Y, Su CY, Chen HB, Yan YY, Adhikari R, Wu Q, Zhang JY. The Role of Exosomal microRNA in Cancer Drug Resistance. Front Oncol 2020; 10:472. [PMID: 32318350 PMCID: PMC7154138 DOI: 10.3389/fonc.2020.00472] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes affect the initiation and progression of cancers. In the tumor microenvironment, not only cancer cells, but also fibroblasts and immunocytes secrete exosomes. Exosomes act as a communicator between cells by transferring different cargos and microRNAs (miRNAs). Drug resistance is one of the critical factors affecting therapeutic effect in the course of cancer treatment. The currently known mechanisms of drug resistance include drug efflux, alterations in drug metabolism, DNA damage repair, alterations of energy programming, cancer stem cells and epigenetic changes. Many studies have shown that miRNA carried by exosomes is closely associated with the development of drug resistance mediated by the above-mentioned mechanisms. This review article will discuss how exosomal miRNAs regulate the drug resistance.
Collapse
Affiliation(s)
- Qiao-ru Guo
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying-da Yan
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chao-yue Su
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hu-biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yan-yan Yan
- Collaborative Innovation Center for Cancer, Institute of Respiratory and Occupational Diseases, Medical College, Shanxi Datong University, Datong, China
| | - Rameshwar Adhikari
- Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur, Nepal
| | - Qiang Wu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Jian-ye Zhang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
50
|
Tolentino-Hernández SJ, Cruz-Antonio L, Pérez-Urizar J, Cabrera-Fuentes HA, Castañeda-Hernández G. Oral Ciprofloxacin Pharmacokinetics in Healthy Mexican Volunteers and Other Populations: Is There Interethnic Variability? Arch Med Res 2020; 51:268-277. [PMID: 32143939 DOI: 10.1016/j.arcmed.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/15/2019] [Accepted: 02/24/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND There is evidence that the pharmacokinetics of certain drugs in Mexicans may differ with respect to other ethnic groups. On the other hand, there is controversy about the existence of interethnic variability in the pharmacokinetics of ciprofloxacin. AIM OF THE STUDY To study oral ciprofloxacin pharmacokinetics in Mexicans at various dose levels and make comparisons with other populations in order to gain insight on interethnic variability. METHODS Healthy Mexican volunteers received oral ciprofloxacin as 250 mg and 500 mg immediate-release tablets or a 1,000 mg extended-release formulation. Plasma concentration against time curves were constructed, and pharmacokinetic parameters were compared with those reported for other populations. RESULTS Ciprofloxacin pharmacokinetics in Mexicans was linear and no significant differences between males and females were detected. When several populations were compared, it appeared that bioavailability in Mexicans was similar to that of Caucasians, being lower than that of Asians. These variations were attenuated when data were normalized by body weight. CONCLUSIONS Ciprofloxacin pharmacokinetics exhibit interethnic variability, Asians exhibiting an increased bioavailability with regard to Mexicans and Caucasians. Data suggest that these differences are due to body weight.
Collapse
Affiliation(s)
- Suset J Tolentino-Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Leticia Cruz-Antonio
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Pérez-Urizar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Héctor A Cabrera-Fuentes
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation; Tecnológico de Monterrey, Centro de Biotecnología-FEMSA, Monterrey, México
| | - Gilberto Castañeda-Hernández
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| |
Collapse
|