1
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
2
|
Zhang S, Huang Y, Han C, Wang F, Chen M, Yang Z, Yang S, Wang C. Central SGLT2 mediate sympathoexcitation in hypertensive heart failure via attenuating subfornical organ endothelial cGAS ubiquitination to amplify neuroinflammation: Molecular mechanism behind sympatholytic effect of Empagliflozin. Int Immunopharmacol 2025; 145:113711. [PMID: 39647283 DOI: 10.1016/j.intimp.2024.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Sodium/glucose co-transporter 2 (SGLT2) inhibitors have transformed heart failure (HF) treatment, offering sympatholytic effects whose mechanisms are not fully understood. Our previous studies identified Cyclic GMP-AMP synthase (cGAS)-derived neuroinflammation in the Subfornical organ (SFO) as a promoter of sympathoexcitation, worsening myocardial remodeling in HF. This research explored the role of central SGLT2 in inducing endothelial cGAS-driven neuroinflammation in the SFO during HF and assessed the impact of SGLT2 inhibitors on this process. METHODS Hypertensive HF was induced in mice via Angiotensin II infusion for four weeks. SGLT2 expression and localization in the SFO were determined through immunoblotting and double-immunofluorescence staining. AAV9-TIE-shRNA (SGLT2) facilitated targeted SGLT2 knockdown in SFO endothelial cells (ECs), with subsequent analyses via immunoblotting, staining, and co-immunoprecipitation to investigate interactions with cGAS, mitochondrial alterations, and pro-inflammatory pathway activation. Renal sympathetic nerve activity and heart rate variability were measured to assess sympathetic output, alongside evaluations of cardiac function in HF mice. RESULTS In HF model mice, SGLT2 levels are markedly raised in SFO ECs, disrupting mitochondrial function and elevating oxidative stress. SGLT2 knockdown preserved mitochondrial integrity and function, reduced inflammation, and highlighted the influence of SGLT2 on mitochondrial health. SGLT2's interaction with cGAS prevented its ubiquitination and degradation, amplifying neuroinflammation and HF progression. Conversely, Empagliflozin counteracted these effects, suggesting that targeting the SGLT2-cGAS interaction as a novel HF treatment avenue. CONCLUSION This study revealed that SGLT2 directly reduced cGAS degradation in brain ECs, enhancing neuroinflammation in the SFO, and promoting sympathoexcitation and myocardial remodeling. The significance of the central SGLT2-cGAS interaction in cardiovascular disease mechanisms is emphasized.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Yijun Huang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Chengzhi Han
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Fanshun Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Maoxiang Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Zhaohua Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shouguo Yang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
3
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
4
|
Hu J, Tian M. The cGAS-STING pathway in ischemia-reperfusion injury in acute cerebral infarction: a new therapeutic opportunities? Front Neurol 2024; 15:1471287. [PMID: 39741707 PMCID: PMC11685085 DOI: 10.3389/fneur.2024.1471287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
The innate immune response is the body's first line of defense against external pathogens and endogenous damage signals. The cGAS-STING pathway is a crucial component of the innate immune response, playing a key role in initiating antiviral and anti-infective immune responses by recognizing cytosolic DNA. Acute cerebral infarction is one of the leading causes of death and disability worldwide, with the primary treatment approach being the restoration of blood flow to ischemic brain tissue. However, reperfusion injury remains a significant challenge during treatment. The overactivation of the cGAS-STING pathway and its association with ischemia-reperfusion injury have been confirmed in numerous studies. This article will systematically elucidate the mechanisms of the cGAS-STING pathway, its role in ischemia-reperfusion injury in acute cerebral infarction, the current research status of cGAS-STING inhibitors, and the application of nanomaterials in this context, evaluating the therapeutic potential of this pathway.
Collapse
Affiliation(s)
- Jun Hu
- Department of Rehabilitation Medicine, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Wang Y, Xue P, Gao L, Wang X, Zhou S, Wu X, Guo C. Improved bioavailability of polydatin and its protective effect against cisplatin induced nephrotoxicity through self-assembled fucoidan and carboxymethyl chitosan delivery system. Int J Biol Macromol 2024; 287:138577. [PMID: 39657878 DOI: 10.1016/j.ijbiomac.2024.138577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Cisplatin induced acute kidney injury (AKI) is clinically prevalent, with a complex pathogenesis and a lack of effective therapeutic drugs. Polydatin (Po) has excellent biological activity, but its low solubility and bioavailability limit its application. In this study, fucoidan (Fu) and carboxymethyl chitosan (Cs) self-assembled into nanoparticles through electrostatic interactions/hydrogen bonding and loaded Po (Fu/Cs Po NPs). In vitro studies found that Fu/Cs Po NPs protected human renal tubular epithelial (HK-2) cells from cisplatin induced damage and accumulation of reactive oxygen species (ROS). Mechanistic studies showed that Fu/Cs Po NPs inhibited cisplatin induced DNA damage and activation of cyclic guanosine monophosphate synthase (cGAS) and intron gene stimulator (STING) pathways. In vivo studies showed that Fu/Cs Po NPs treatment alleviated cisplatin induced AKI symptoms, including elevated blood urea nitrogen (BUN) and serum creatinine (SCr), as well as pathological damage to kidney tissues. In vivo mechanism studies also showed that Fu/Cs Po NPs treatment inhibited cisplatin induced DNA damage and activation of the cGAS-STING pathway. The pharmacokinetic and tissue distribution results demonstrated that the Fu/Cs delivery system enhanced the bioavailability and kidney accumulation of Po in vivo. In summary, our study provided potential drugs for the treatment of cisplatin induced AKI.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pengyu Xue
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liang Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuefei Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shilin Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Zhou HL, Wang BB, Fan XL, Zhang XM, Song Y. Carvacrol acetate activated Nrf2 modulates mitophagy for the treatment of neurocyte oxidative stress induced by chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117484. [PMID: 39644575 DOI: 10.1016/j.ecoenv.2024.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study explored the protective effect and potential mechanism of carvacrol acetate (CAA) on the oxidation of chlorpyrifos (CPF). A model of oxidative stimulus damage was established in Sprague-Dawley rats by subcutaneous injection of the CPF poison. PC12 cells were used to construct an oxidative injury model using CPF, and the protective effects and mechanism of action of CAA against CPF-induced oxidative damage were explored in vitro. The key role of Nuclear factor erythroid-2-related factor 2 (Nrf2) in alleviating CPF-induced damage via CAA was further confirmed by administering Nrf2 inhibitors to PC12 cells. Administration of CAA significantly enhanced the locomotor ability of the rats, alleviated neuronal pathological alterations, and increased the number of Nissl bodies, while increasing autophagic bodies. In vitro, CAA promoted cell survival and augmented the mitochondrial membrane potential. It decreased both intra- and extracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), while markedly elevating mitochondrial DNA (mtDNA) copy number. Moreover, PC12 cells treated with Nrf2 inhibitors failed to exhibit any improvement in survival rate when treated with CAA after a toxic insult. Furthermore, ROS and MDA levels were not significantly reduced, SOD enzyme activity did not increase, and mitochondrial membrane potential and mtDNA copy number did not improve. Western blot analysis showed that the expression of Tfam, Beclin1, and LC3II/LC3I proteins in the CAA group decreased significantly after Nrf2 inhibition. These findings suggest that CAA modulates mitochondrial function and autophagy by regulating the Nrf2 signalling pathway to mitigate the toxic damage. Finally, the effect of the autophagy inhibitor, 3-MA, on PC12 cells suggests that CAA promotes mitophagy by participating in the Nrf2 pathway, thereby preventing CPF-induced oxidative stress damage.
Collapse
Affiliation(s)
- Hong-Ling Zhou
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Bei-Bei Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xu-Li Fan
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Jinhua People's Hospital, Jinhua, Zhejiang 2321000, China.
| | - Xiao-Min Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; First People's Hospital of Linping District, Hangzhou, Zhejiang 311103, China.
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Hangzhou King's Bio-pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang 310007, China.
| |
Collapse
|
7
|
Li S, Wan J, Peng Z, Huang Q, He B. New insights of DsbA-L in the pathogenesis of metabolic diseases. Mol Cell Biochem 2024; 479:3293-3303. [PMID: 38430301 DOI: 10.1007/s11010-024-04964-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/10/2024] [Indexed: 03/03/2024]
Abstract
Metabolic diseases, such as obesity, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD), are abnormal conditions that result from disturbances of metabolism. With the improvement of living conditions, the morbidity and mortality rates of metabolic diseases are steadily rising, posing a significant threat to human health worldwide. Therefore, identifying novel effective targets for metabolic diseases is crucial. Accumulating evidence has indicated that disulfide bond A oxidoreductase-like protein (DsbA-L) delays the development of metabolic diseases. However, the underlying mechanisms of DsbA-L in metabolic diseases remain unclear. In this review, we will discuss the roles of DsbA-L in the pathogenesis of metabolic diseases, including obesity, diabetes mellitus, and NAFLD, and highlight the potential mechanisms. These findings suggest that DsbA-L might provide a novel therapeutic strategy for metabolic diseases.
Collapse
Affiliation(s)
- Siqi Li
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinfa Wan
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Zhenyu Peng
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Emergency Medicine and Difficult Diseases Institute, Central South University, Changsha, 410011, China
| | - Qiong Huang
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Baimei He
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
8
|
Mi K, Wang X, Ma C, Tan Y, Zhao G, Cao X, Yuan H. NLRX1 attenuates endoplasmic reticulum stress via STING in cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119852. [PMID: 39357547 DOI: 10.1016/j.bbamcr.2024.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Endoplasmic reticulum stress-induced cell apoptosis is a pivotal mechanism underlying the progression of cardiac hypertrophy. NLRX1, a member of the NOD-like receptor family, modulates various cellular processes, including STING, NF-κB, MAPK pathways, reactive oxygen species production, essential metabolic pathways, autophagy and cell death. Emerging evidence suggests that NLRX1 may offer protection against diverse cardiac diseases. However, the impacts and mechanisms of NLRX1 on endoplasmic reticulum stress in cardiac hypertrophy remains largely unexplored. In our study, we observed that the NLRX1 and phosphorylated STING (p-STING) were highly expressed in both hypertrophic mouse heart and cellular model of cardiac hypertrophy. Whereas over-expression of NLRX1 mitigated the expression levels of p-STING, as well as the endoplasmic reticulum stress markers, including transcription activating factor 4 (ATF4), C/EBP homologous protein (CHOP) and the ratios of phosphorylated PERK to PERK, phosphorylated IRE1 to IRE1 and phosphorylated eIF2α to eIF2α in an Angiotensin II (Ang II)-induced cellular model of cardiac hypertrophy. Importantly, the protective effects of NLRX1 were attenuated upon pretreatment with the STING agonist, DMXAA. Our findings provide the evidence that NLRX1 attenuates the PERK-eIF2α-ATF4-CHOP axis of endoplasmic reticulum stress response via inhibition of p-STING in Ang II-treated cardiomyocytes, thereby ameliorating the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xiaoyan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Chao Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yinghua Tan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| |
Collapse
|
9
|
Shi Y, Bao L, Li Y, Ou D, Li J, Liu X, Deng N, Deng C, Huang X, Zhang W, Ding H. Multi-omics combined to investigate potential druggable therapeutic targets for stroke: A systematic Mendelian randomization study and transcriptome verification. J Affect Disord 2024; 366:196-209. [PMID: 39214372 DOI: 10.1016/j.jad.2024.08.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Stroke is a highly prevalent and disabling disease whose disease mechanisms are not fully understood. The discovery of disease-associated proteins with genetic evidence of pathogenicity provides an opportunity to identify new therapeutic targets. METHOD We examined the observed and causal associations of thousands of plasma and inflammatory proteins that were measured using affinity-based proteomic assays. First, we pooled >3000 relevant proteins using a fixed-effects meta-analysis of 2 population-based studies involving 48,383 participants, then investigated the causal effects of stroke and its subtype-associated proteins by forward Mendelian randomization using cis-protein quantitative locus genetic tools identified from genome-wide association studies of these >48,000 individuals. To improve the accuracy of causal estimation, we implemented a systematic Mendelian randomization model that accounts for cascading imbalances between instruments and tested the robustness of causal estimation through multi-method analyses. To further validate the hypothesis that ginsenoside Rg1 monomer acts on the five protein targets screened for drug-targeted regulation, we conducted a comparative analysis of the mRNA (gene) expression levels of a limited number of genes in the brain tissues of different groups of SD rats. The druggability of the candidate proteins was investigated and the mechanism of action and potential targeting side effects were explored by Phenome-wide MR. RESULTS Six circulating proteins were identified to have a significant genetic association with stroke (PFDR < 0.05). For example, in patients with cardioembolic stroke, higher genetically predicted APRT was associated with a lower risk of cardioembolic stroke (ORivw [95 % CI] = 0.641 [0.517, 0.795]; P = 5.25 × 10-5, ORSMR [95 % CI] = 0.572, [0.397, 0.825], PSMR = 0.003). Mediation analyses suggested that atrial fibrillation, angina pectoris, and heart failure may mediate the association of CD40L, LIFR, and UPA with stroke. Molecular docking revealed promising interactions between the identified proteins and glycosides. Transcriptomic sequencing in animal models indicated that ginsenoside Rg1 may act through APRT, IL15RA, and VSIR pathways, with APRT showing significant variability in mRNA sequencing expression. Phenome-wide MR of the six target proteins showed an overwhelming predominance of PFDR > 0.05, indicating less toxicity. CONCLUSIONS The present study provides genetic evidence to support the potential efficacy of targeting the three druggable protein targets for the treatment of stroke. This is achieved by triangulating population genomic and proteomic data. Furthermore, the study validates the pathway mechanisms by which APRT, IL15RA, and VSIR dock ginsenoside Rg1 in animal models. This will help to prioritize stroke drug development.
Collapse
Affiliation(s)
- Yiming Shi
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Le Bao
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Yanling Li
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Dian Ou
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Jiating Li
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Xiaodan Liu
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Nujiao Deng
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Changqing Deng
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Xiaoping Huang
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
| | - Wei Zhang
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
| | - Huang Ding
- Hunan University of Chinese Medicine, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China.
| |
Collapse
|
10
|
Li A, Feng Z, Fu S, Ma Z, Zhang H, Zhao Z. Dissecting causal relationships between immune cells, blood metabolites, and aortic dissection: A mediation Mendelian randomization study. IJC HEART & VASCULATURE 2024; 55:101530. [PMID: 39483148 PMCID: PMC11525623 DOI: 10.1016/j.ijcha.2024.101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Background There exists a robust correlation between the infiltration of immune cells and the pathogenesis of aortic dissection (AD). Moreover, blood metabolites serve as immunomodulatory agents within the organism, influencing the immune system's response and potentially playing a role in the development of AD. Nevertheless, the intricate genetic causal nexus between specific immune cells, blood metabolites, and AD remains partially elucidated. Objectives This study aims to elucidate the causal relationships between specific immune cell types and the risk of developing AD, mediated by blood metabolites, using Mendelian Randomization (MR) methods. Methods We undertook a comprehensive investigation of 731 immune cell types through the analysis of published genome-wide association studies (GWAS). Our methodology hinged on the application of two-sample Mendelian randomization (MR) and mediator MR analyses, prioritizing blood metabolites as potential intermediary factors and AD as the principal outcome of interest. The primary statistical method employed was inverse variance-weighted estimation, complemented by a variety of sensitivity analyses to reinforce our conclusions. The entirety of our statistical analyses was executed on the R software platform. Results Our analyses elucidated that three immune cell types exhibited a positive correlation with the incidence of AD, whereas two immune cell types were inversely associated with AD risk. Significantly, our mediation Mendelian randomization (MR) findings identified Benzoate as a pivotal mediator in the influence of CD19 on IgD - CD38br cells on AD, with a mediation proportion of 5.38 %. Additionally, N-acetylproline was determined to mediate the effect of CD24 on IgD- CD38- cells on AD, accounting for a mediation proportion of 13.70 %. Furthermore, Carnitine C5:1 was found to mediate the effect of CD28 on secreting T regulatory (Treg) cells on AD, with a mediation proportion of 17.80 %. Conclusions These findings offer a nuanced understanding of the pathophysiological mechanisms underlying AD, thereby advancing the precision medicine paradigm in the clinical management of AD.Abbreviations: AD: aortic dissection; AA: aortic aneurysm; GWAS: genome-wide association study; MR: Mendelian randomization; TSMR: two-step Mendelian randomization; Treg: secreting T regulatory cell; VSMC: vascular smooth muscle cell; MMP: matrix metalloproteinase; ROS: reactive oxygen species; IV: instrumental variable; SNP: single-nucleotide polymorphism; IVW: inverse variance weighted; LDSC: linkage disequilibrium score regression; OR: odds ratio; CI: confidence interval; LD: linkage disequilibrium; AC: absolute cell; MFI: median fluorescence intensity; MP: morphological parameter; RC: relative cell; CLSA: Canadian Longitudinal Study of Aging; Lp(a): Lipoprotein a; OxPL: oxidised phospholipid; NMDAR: N-methyl-d-aspartate glutamate receptor; STROBE-MR: Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization.
Collapse
Affiliation(s)
- Ao Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China(Anhui Provincial Hospital), Anhui, Hefei 230001, China
| | - ZiAn Feng
- Graduate School, University of Science and Technology of China, Anhui, Hefei 230001, China
| | - ShiHao Fu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China(Anhui Provincial Hospital), Anhui, Hefei 230001, China
| | - ZhenXiao Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China(Anhui Provincial Hospital), Anhui, Hefei 230001, China
| | - HaiYang Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China(Anhui Provincial Hospital), Anhui, Hefei 230001, China
| | - ZhiWei Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China(Anhui Provincial Hospital), Anhui, Hefei 230001, China
| |
Collapse
|
11
|
Watson WD, Arvidsson PM, Miller JJJ, Lewis AJ, Rider OJ. A Mitochondrial Basis for Heart Failure Progression. Cardiovasc Drugs Ther 2024; 38:1161-1171. [PMID: 38878138 PMCID: PMC11680631 DOI: 10.1007/s10557-024-07582-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 12/29/2024]
Abstract
In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.
Collapse
Affiliation(s)
- William D Watson
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK.
| | - Per M Arvidsson
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Jack J J Miller
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andrew J Lewis
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Oliver J Rider
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Xu Z, Ma Z, Zhao X, Zhang B. Aerobic exercise mitigates high-fat diet-induced cardiac dysfunction, pyroptosis, and inflammation by inhibiting STING-NLRP3 signaling pathway. Mol Cell Biochem 2024; 479:3459-3470. [PMID: 38388792 DOI: 10.1007/s11010-024-04950-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Obesity has been identified as an independent risk factor for cardiovascular disease. Recent reports have highlighted the significance of stimulator of interferon genes (STING)-NOD-like receptor protein 3 (NLRP3) signaling pathway mediated pyroptosis, and inflammation in cardiovascular disease. Previous studies have demonstrated that exercise training effectively prevents cardiac pyroptosis and inflammation in high-fat diet (HFD)-fed mice. However, it is currently unknown whether exercise reduces pyroptosis and inflammation in obese hearts by targeting the STING-NLRP3 signaling pathway. We investigated the impact of an 8-week aerobic exercise regimen on cardiac function, pyroptosis, inflammation, and the STING-NLRP3 signaling pathway in HFD-induced obese mice. Additionally, to explore the underlying mechanism of STING in exercise-mediated cardioprotection, we administered intraperitoneal injections of the STING agonist diABZI to the mice. Furthermore, to investigate the role of the STING-NLRP3 signaling pathway in HFD-induced cardiac dysfunction, we administered adeno-associated virus 9 (AAV9) encoding shRNA targeting STING (shRNA-STING) via tail vein injection to knockdown STING expression specifically in mouse hearts. After one week of AAV9 injection, we intraperitoneally injected nigericin as an NLRP3 agonist. We first found that aerobic exercise effectively suppressed HFD-mediated upregulation of STING and NLRP3 in the hearts. Moreover, we demonstrated that the protective effect of aerobic exercise in HFD-induced cardiac dysfunction, pyroptosis, and inflammation was impaired by stimulating the STING pathway using diABZI. Additionally, activation of the NLRP3 with nigericin abolished the ameliorative effect of STING deficiency in HFD-induced cardiac dysfunction, pyroptosis, and inflammation. Based on these findings, we concluded that 8-week aerobic exercise alleviates HFD-induced cardiac dysfunction, pyroptosis, and inflammation by targeting STING-NLRP3 signaling pathway. Inhibition of STING-NLRP3 signaling pathway may serve as a promising therapeutic strategy against obesity-induced cardiomyopathy.
Collapse
Affiliation(s)
- Zujie Xu
- College of Physical Education, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China.
| | - Zheying Ma
- College of Physical Education, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China
| | - Xiaoqin Zhao
- College of Physical Education, Taiyuan University of Technology, Taiyuan Shanxi, 030024, China
| | - Bing Zhang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Su J, Cheng F, Yuan W. Unraveling the cGAS/STING signaling mechanism: impact on glycerolipid metabolism and diseases. Front Med (Lausanne) 2024; 11:1512916. [PMID: 39669992 PMCID: PMC11634591 DOI: 10.3389/fmed.2024.1512916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) and its downstream effector, the stimulator of interferon genes (STING), are crucial components of the innate immune response, traditionally recognized for their role in detecting cytosolic DNA from pathogens and damaged host cells. However, recent research indicates that the cGAS-STING pathway also significantly impacts metabolic processes, particularly glycerolipid metabolism. Glycerolipids are essential for energy storage and cellular membrane integrity, and their dysregulation is linked to metabolic disorders such as obesity, insulin resistance, and non-alcoholic fatty liver disease (NAFLD). Both cGAS and STING are expressed in various metabolic tissues, suggesting a potential role in lipid homeostasis. Chronic activation of the cGAS-STING pathway may promote inflammatory states that exacerbate insulin resistance and lipid accumulation, forming a feedback loop of metabolic dysfunction. This review explores the emerging relationship between cGAS/STING signaling and glycerolipid metabolism, discussing the mechanisms through which this pathway influences lipid regulation and the potential for therapeutic interventions. By integrating insights from immunology and metabolism, we aim to provide a comprehensive understanding of how the cGAS-STING axis may serve as a novel target for addressing metabolic disorders and enhancing metabolic health outcomes.
Collapse
Affiliation(s)
- Jie Su
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- The British Heart Foundation Centre of Excellence, St Thomas’ Hospital, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, The Rayne Institute, London, United Kingdom
| | - Fuyu Cheng
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- School of Engineering and Material Sciences, Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
| | - Wei Yuan
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Kalinkovich A, Livshits G. The cross-talk between the cGAS-STING signaling pathway and chronic inflammation in the development of musculoskeletal disorders. Ageing Res Rev 2024; 104:102602. [PMID: 39612990 DOI: 10.1016/j.arr.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Musculoskeletal disorders (MSDs) comprise diverse conditions affecting bones, joints, and muscles, leading to pain and loss of function, and are one of the most prevalent and major global health concerns. One of the hallmarks of MSDs is DNA damage. Once accumulated in the cytoplasm, the damaged DNA is sensed by the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, which triggers the induction of type I interferons and inflammatory cytokines. Thus, this pathway connects the musculoskeletal and immune systems. Inhibitors of cGAS or STING have shown promising therapeutic effects in the pre-clinical models of several MSDs. Systemic, chronic, low-grade inflammation (SCLGI) underlies the development and maintenance of many MSDs. Failure to resolve SCLGI has been hypothesized to play a critical role in the development of chronic diseases, suggesting that the successful resolution of SCLGI will result in the alleviation of their related symptomatology. The process of inflammation resolution is feasible by specialized pro-resolving mediators (SPMs), which are enzymatically generated from dietary essential polyunsaturated fatty acids (PUFAs). The supplementation of SPMs or their stable, small-molecule mimetics and receptor agonists has revealed beneficial effects in inflammation-related animal models, including arthropathies, osteoporosis, and muscle dystrophy, suggesting a translational potential in MSDs. In this review, we substantiate the hypothesis that the use of cGAS-STING signaling pathway inhibitors together with SCLG-resolving compounds may serve as a promising new therapeutic approach for MSDs.
Collapse
Affiliation(s)
- Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel; Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel.
| |
Collapse
|
15
|
Soh LJ, Lee SY, Roebuck MM, Wong PF. Unravelling the interplay between ER stress, UPR and the cGAS-STING pathway: Implications for osteoarthritis pathogenesis and treatment strategy. Life Sci 2024; 357:123112. [PMID: 39378929 DOI: 10.1016/j.lfs.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Osteoarthritis (OA) is a debilitating chronic degenerative disease affecting the whole joint organ leading to pain and disability. Cellular stress and injuries trigger inflammation and the onset of pathophysiological changes ensue after irreparable damage and inability to resolve inflammation, impeding the completion of the healing process. Extracellular matrix (ECM) degradation leads to dysregulated joint tissue metabolism. The reparative effort induces the proliferation of hypertrophic chondrocytes and matrix protein synthesis. Aberrant protein synthesis leads to endoplasmic reticulum (ER) stress and chondrocyte apoptosis with consequent cartilage matrix loss. These events in a vicious cycle perpetuate inflammation, hindering the restoration of normal tissue homeostasis. Recent evidence suggests that inflammatory responses and chondrocyte apoptosis could be caused by the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling axis in response to DNA damage. It has been reported that there is a crosstalk between ER stress and cGAS-STING signalling in cellular senescence and other diseases. Based on recent evidence, this review discusses the role of ER stress, Unfolded Protein Response (UPR) and cGAS-STING pathway in mediating inflammatory responses in OA.
Collapse
Affiliation(s)
- Li-Jen Soh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siam-Yee Lee
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Margaret M Roebuck
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
16
|
Thangavelu L, Imran M, Alsharari SH, Abdulaziz AM, Alawlaqi AM, Kamal M, Rekha MM, Kaur M, Soothwal P, Arora I, Kumar MR, Chauhan AS. Exploring hypoxia-induced ncRNAs as biomarkers and therapeutic targets in lung cancer. Pathol Res Pract 2024; 263:155613. [PMID: 39383737 DOI: 10.1016/j.prp.2024.155613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/11/2024]
Abstract
Lung cancer is a deadly disease, causing nearly 20 % of all cancer deaths globally. A key factor in lung cancer's development and resistance to treatment is hypoxia, a condition where tumor cells experience low oxygen levels. In this low-oxygen environment, special molecules called non-coding RNAs (ncRNAs) become critical players. NcRNAs, including lncRNAs, miRNAs, circRNAs, and siRNAs, control how genes function and how cells behave. Some ncRNAs, like HIF1A-AS2 and HOTAIR, are linked to the aggressive spread of lung cancer, making them potential targets for therapy. Others, like certain miRNAs, show promise as early detection tools due to their influence on tumor blood vessel formation and metabolism. This complex interplay between hypoxia and ncRNAs is crucial for understanding lung cancer. For example, circRNAs can control the activity of miRNAs, impacting how tumors respond to low oxygen. Additionally, siRNAs offer a potential strategy to overcome treatment resistance caused by hypoxia. By studying the intricate relationship between hypoxia and ncRNAs, scientists hope to uncover new biomarkers for lung cancer. This knowledge will pave the way for developing more effective and targeted treatments for this devastating disease.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | | | - Akrm M Abdulaziz
- Department of Clinical Pharmacy, King Khalid Hospital, Najran 66262, Saudi Arabia
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Isha Arora
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India.
| |
Collapse
|
17
|
Liu Y, Huang Y, Wei H, Liang X, Luo J. The role of post-translational modifications of cGAS in γδ T cells. Mol Immunol 2024; 175:146-154. [PMID: 39437619 DOI: 10.1016/j.molimm.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) senses DNA in a sequence-independent manner, triggering cGAMP synthesis, which activates stimulator of interferon genes (STING) and the subsequent expression of type I interferons, tumour necrosis factor alpha (TNF-α) and other proinflammatory factors in two downstream pathways. However, the function of the cGASSTING pathway in γδ T cells remains unclear. The γδ T-cell population differs from the innate-like lymphocyte population, particularly with respect to tissue distribution, indicating the unique potential of γδ T cells in treating infections and cancers. On the basis of accumulating evidence, cGAS activity is modulated by protein posttranslational modifications (PTMs), including phosphorylation, O-GlcNAcylation, acetylation, ubiquitylation and methylation, which affect multiple cGAS functions. Thus, here, we summarize recent research on PTMs of the cGAS protein that modulate γδ T-cell function. An understanding of cGAS features and modulation mechanisms may facilitate the design of therapies for γδ T-cell-related immune diseases and cancer.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yue Huang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Geriatrics, Institute of Gerontology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinjun Liang
- Department of Medical Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Liao Y, Li P, Hang Q, Chong Y, Long W, Wei X, Sun D, Liu Y. NLRX1 and STING alleviate renal ischemia-reperfusion injury by regulating LC3 lipidation during mitophagy. Exp Cell Res 2024; 443:114323. [PMID: 39505095 DOI: 10.1016/j.yexcr.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Mitophagy significantly influences renal ischemia/reperfusion (I/R) injury and recovery. NLRX1 is recognized for its regulatory role in governing mitochondrial damage, autophagy, and the expression of pro-inflammatory factors. Despite the acknowledged involvement of NLRX1 in these crucial cellular processes, its specific function in renal I/R injury remains unclear. We detected the expression of NLRX1, the cGAS-STING pathway, and autophagy-related proteins using Western Blot analysis. RT-qPCR was utilized to measure the expression of NLRX1 mRNA and cytokines, and changes in mitochondrial DNA (mtDNA) within the cytoplasm. Immunofluorescence was applied to observe alterations in DNA distribution within the cytoplasm. The EtBr drug, which depletes mtDNA, and the Mdivi-1 mitophagy inhibitor, were used to verify the promotion of mitophagy by NLRX1. The results demonstrated that NLRX1 was downregulated after hypoxic/reoxygenation (H/R) injury, and there was an increase in cytoplasmic DNA. NLRX1 overexpression not only reduced IL-1β and IL-6 levels, but also decreased mtDNA in the cytoplasm. Additionally, NLRX1 further increases mitochondrial LC3 lipidation after H/R injury, and this effect is inhibited by Mdivi-1 drugs. The activation of the cGAS-STING pathway after H/R injury is inhibited by EtBr drugs and NLRX1. Co-immunoprecipitation results showed that NLRX1 could bind to STING. Moreover, inhibiting STING reversed NLRX1-induced mitochondrial LC3 lipidation. Our study reveals that NLRX1 can bind to STING to promote mitophagy and inhibits inflammation caused by mtDNA/cGAS/STING signaling.
Collapse
Affiliation(s)
- Yinping Liao
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pei Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Hang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chong
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Long
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingji Wei
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ya Liu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
19
|
Tian M, Li F, Pei H, Liu X, Nie H. The role of the cGAS-STING pathway in chronic pulmonary inflammatory diseases. Front Med (Lausanne) 2024; 11:1436091. [PMID: 39540037 PMCID: PMC11557406 DOI: 10.3389/fmed.2024.1436091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
The innate immune system plays a vital role in the inflammatory process, serving as a crucial mechanism for the body to respond to infection, cellular stress, and tissue damage. The cGAS-STING signaling pathway is pivotal in the onset and progression of various autoimmune diseases and chronic inflammation. By recognizing cytoplasmic DNA, this pathway initiates and regulates inflammation and antiviral responses within the innate immune system. Consequently, the regulation of the cGAS-STING pathway has become a prominent area of interest in the treatment of many diseases. Chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis, are characterized by persistent or recurrent lung inflammation and tissue damage, leading to diminished respiratory function. This paper explores the mechanism of action of the cGAS-STING signaling pathway in these diseases, examines the development of STING inhibitors and nanomaterial applications, and discusses the potential clinical application prospects of targeting the cGAS-STING pathway in chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fengyuan Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Haiping Pei
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing, China
| |
Collapse
|
20
|
Wan X, Zhang H, Tian J, Liu L, An Z, Zhao X, Zhang L, Yang X, Ge C, Song X. The cGAS-STING/PERK-eIF2α: Individual or Potentially Collaborative Signaling Transduction in Cardiovascular Diseases. Int J Biol Sci 2024; 20:5868-5887. [PMID: 39664570 PMCID: PMC11628330 DOI: 10.7150/ijbs.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/19/2024] [Indexed: 12/13/2024] Open
Abstract
Over the past several decades, a canonical pathway called the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) mediating type I interferon (IFN) release via TANK-binding kinase 1(TBK1) / IFN regulatory factor 3 (IRF3) pathway has been widely investigated and characterized. Unexpectedly, recent studies show that the cGAS-STING noncanonically activates the protein kinase RNA-like ER kinase (PERK)-eukaryotic initiation factor 2α (eIF2α), an essential branch of unfolded protein response (UPR), even before the activation of the TBK1/IRF3 signaling. Additionally, we found that the PERK could regulate the STING signaling besides being modulated by upstream cGAS-STING. However, earlier evidence solely focused on the unidirectional regulation of STING and PERK, lacking their functional crosstalk. Hence, we postulate that there is a complex relationship between the cGAS-STING and PERK-eIF2α pathways and that, through convergent downstream signaling, they may collaboratively contribute to the pathophysiology of cardiovascular diseases (CVDs) via the cGAS-STING/PERK-eIF2α signaling axis. This study provides a novel pathway for the development of CVDs and paves the foundation for potential therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xueyao Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing 100029, P.R. China
| |
Collapse
|
21
|
Kumari D, Kaur S, Dandekar MP. Intricate Role of the Cyclic Guanosine Monophosphate Adenosine Monophosphate Synthase-Stimulator of Interferon Genes (cGAS-STING) Pathway in Traumatic Brain Injury-Generated Neuroinflammation and Neuronal Death. ACS Pharmacol Transl Sci 2024; 7:2936-2950. [PMID: 39416963 PMCID: PMC11475349 DOI: 10.1021/acsptsci.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
The secondary insult in the aftermath of traumatic brain injury (TBI) causes detrimental and self-perpetuating alteration in cells, resulting in aberrant function and the death of neuronal cells. The secondary insult is mainly driven by activation of the neuroinflammatory pathway. Among several classical pathways, the cGAS-STING pathway, a primary neuroinflammatory route, encompasses the cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and downstream signaling adaptor. Recently, the cGAS-STING research domain has gained exponential attention. The aberrant stimulation of cGAS-STING machinery and corresponding neuroinflammation have also been reported after TBI. In addition to the critical contribution to neuroinflammation, the cGAS-STING signaling also provokes neuronal cell death through various cell death mechanisms. This review highlights the structural and molecular mechanisms of the cGAS-STING machinery associated with TBI. We also focus on the intricate relationship and framework between cGAS-STING signaling and cell death mechanisms (autophagy, apoptosis, pyroptosis, ferroptosis, and necroptosis) in the aftermath of TBI. We suggest that the targeting of cGAS-STING signaling may open new therapeutic strategies to combat neuroinflammation and neurodegeneration in TBI.
Collapse
Affiliation(s)
- Deepali Kumari
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Simranjit Kaur
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| | - Manoj P. Dandekar
- Department of Biological
Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana 500037, India
| |
Collapse
|
22
|
Chen Q, Peng B, Lin L, Chen J, Jiang Z, Luo Y, Huang L, Li J, Peng Y, Wu J, Li W, Zhuang K, Liang M. Chondroitin Sulfate-Modified Hydroxyapatite for Caspase-1 Activated Induced Pyroptosis through Ca Overload/ER Stress/STING/IRF3 Pathway in Colorectal Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403201. [PMID: 39016938 DOI: 10.1002/smll.202403201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Indexed: 07/18/2024]
Abstract
Immune checkpoint inhibitors, are the fourth most common therapeutic tool after surgery, chemotherapy, and radiotherapy for colorectal cancer (CRC). However, only a small proportion (≈5%) of CRC patients, those with "hot" (immuno-activated) tumors, benefit from the therapy. Pyroptosis, an innovative form of programmed cell death, is a potentially effective means to mediate a "cold" to "hot" transformation of the tumor microenvironment (TME). Calcium-releasing hydroxyapatite (HAP) nanoparticles (NPs) trigger calcium overload and pyroptosis in tumor cells. However, current limitations of these nanomedicines, such as poor tumor-targeting capabilities and insufficient calcium (Ca) ion release, limit their application. In this study, chondroitin sulfate (CS) is used to target tumors via binding to CD44 receptors and kaempferol (KAE) is used as a Ca homeostasis disruptor to construct CS-HAP@KAE NPs that function as pyroptosis inducers in CRC cells. CS-HAP@KAE NPs bind to the tumor cell membrane, HAP released Ca in response to the acidic environment of the TME, and kaempferol (KAE) enhances the influx of extracellular Ca, resulting in intracellular Ca overload and pyroptosis. This is associated with excessive endoplasmic reticulum stress triggered activation of the stimulator of interferon genes/interferon regulatory factor 3 pathway, ultimately transforming the TME from "cold" to "hot".
Collapse
Affiliation(s)
- Qing Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Peng
- Department of Oncology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China
| | - Lifan Lin
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiawen Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhaojun Jiang
- Department of Oncology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China
| | - Yuanwei Luo
- Department of Oncology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China
| | - Liyong Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Jin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Yuping Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Jiaming Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Wei Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, 421000, China
| | - Kangmin Zhuang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Min Liang
- Department of Oncology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, China
| |
Collapse
|
23
|
Wang MM, Zhao Y, Liu J, Fan RR, Tang YQ, Guo ZY, Li T. The role of the cGAS-STING signaling pathway in viral infections, inflammatory and autoimmune diseases. Acta Pharmacol Sin 2024; 45:1997-2010. [PMID: 38822084 PMCID: PMC11420349 DOI: 10.1038/s41401-023-01185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/18/2023] [Indexed: 06/02/2024] Open
Abstract
Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Ming-Ming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Rong-Rong Fan
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden
| | - Yan-Qing Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Zheng-Yang Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China.
| |
Collapse
|
24
|
Ng M, Gao AS, Phu TA, Vu NK, Raffai RL. M2 Macrophage Exosomes Reverse Cardiac Functional Decline in Mice with Diet-Induced Myocardial Infarction by Suppressing Type 1 Interferon Signaling in Myeloid Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612924. [PMID: 39345592 PMCID: PMC11429744 DOI: 10.1101/2024.09.13.612924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Effective treatment strategies to alleviate heart failure that develops as a consequence of myocardial infarction (MI) remain an unmet need in cardiovascular medicine. In this study, we uncovered that exosomes produced by human THP-1 macrophages cultured with the cytokine IL-4 (THP1-IL4-exo), reverse cardiac functional decline in mice that develop MI as a consequence of diet-induced occlusive coronary atherosclerosis. Therapeutic benefits of THP1-IL4-exo stem from their ability to reprogram circulating Ly-6Chi monocytes into an M2-like phenotype and suppress Type 1 Interferon signaling in myeloid cells within the bone marrow, the circulation, and cardiac tissue. Collectively, these benefits suppress myelopoiesis, myeloid cell recruitment to cardiac tissue, and preserve populations of resident cardiac macrophages that together mitigate cardiac inflammation, adverse ventricular remodeling, and heart failure. Our findings introduce THP1-IL4-exo, one form of M2-macrophage exosomes, as novel therapeutics to preserve cardiac function subsequent to MI.
Collapse
Affiliation(s)
- Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Alex S Gao
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Tuan Anh Phu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Ngan K Vu
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Robert L Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Ren H, Zhang J, Jiang Y, Hao S, You J, Yin Z. C-di-GMP@ZIF-8 nanocomposite injectable hydrogel based on modified chitosan and hyaluronic acid for infected wound healing by activating STING signaling. Int J Biol Macromol 2024; 280:135660. [PMID: 39284469 DOI: 10.1016/j.ijbiomac.2024.135660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
The treatment of infected wounds relies on antibiotics; however, increasing drug resistance has made therapeutic processes more difficult. Activating self-innate immune abilities may provide a promising alternative to treat wounds with bacterial infections. In this work, we constructed an immunogenic injectable hydrogel crosslinked by the Schiff base reaction of carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (AHA) and encapsulated with stimulator of interferon genes (STING) agonist c-di-GMP loaded ZIF-8 nanoparticles (c-di-GMP@ZIF-8). Nanocubic ZIF-8 was screened as the most efficient intracellular drug delivery vector from five differently-shaped morphologies. The NOCC/AHA hydrogel released c-di-GMP@ZIF-8 more quickly (43 %) in acidic environment (pH = 5.5) of infected wounds compared with 34 % in non-infected wound environment (pH = 7.4) at 96 h due to pH-responsive degradation performance. The released c-di-GMP@ZIF-8 was found to activate the STING signaling of macrophages and enhance the secretion of IFN-β, CCL2, and CXCL12 5.8-7.6 times compared with phosphate buffer saline control, which effectively inhibited S. aureus growth and promoted fibroblast migration. In rat models with infected wounds, the c-di-GMP@ZIF-8 nanocomposite hydrogels improved infected wound healing by promoting granulation tissue regeneration, alleviating S. aureus-induced inflammation, and improving angiogenesis. Altogether, this study demonstrated a feasible strategy using STING-targeted and pH-responsive hydrogels for infected wound management.
Collapse
Affiliation(s)
- Huajian Ren
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China.
| | - Jinpeng Zhang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Yungang Jiang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Shuai Hao
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Jiongming You
- Department of Orthopedic, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou 325000, Zhejiang, China.
| | - Zhenglu Yin
- Yangzhou Second People's Hospital (North District Hospital of Northern Jiangsu People's Hospital) Affiliated to Nanjing University, Yangzhou 225007, Jiangsu, China.
| |
Collapse
|
26
|
Li H, Wang PF, Luo W, Fu D, Shen WY, Zhang YL, Zhao S, Dai RP. CD36-mediated ferroptosis destabilizes CD4 + T cell homeostasis in acute Stanford type-A aortic dissection. Cell Death Dis 2024; 15:669. [PMID: 39266539 PMCID: PMC11392947 DOI: 10.1038/s41419-024-07022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024]
Abstract
Acute type A aortic dissection (ATAAD) is a lethal pathological process within the aorta with high mortality and morbidity. T lymphocytes are perturbed and implicated in the clinical outcome of ATAAD, but the exact characteristics of T cell phenotype and its underlying mechanisms in ATAAD remain poorly understood. Here we report that CD4+ T cells from ATAAD patients presented with a hypofunctional phenotype that was correlated with poor outcomes. Whole transcriptome profiles showed that ferroptosis and lipid binding pathways were enriched in CD4+ T cells. Inhibiting ferroptosis or reducing intrinsic reactive oxygen species limited CD4+ T cell dysfunction. Mechanistically, CD36 was elevated in CD4+ T cells, whose blockade effectively alleviated palmitic acid-induced ferroptosis and CD4+ T cell hypofunction. Therefore, targeting the CD36-ferroptosis pathway to restore the functions of CD4+ T cells is a promising therapeutic strategy to improve clinical outcomes in ATAAD patients.
Collapse
Affiliation(s)
- Hui Li
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University, ChangSha, China
- Anesthesiology Research Institute of Central South University, ChangSha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University, ChangSha, China
- Anesthesiology Research Institute of Central South University, ChangSha, China
| | - Wei Luo
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University, ChangSha, China
- Anesthesiology Research Institute of Central South University, ChangSha, China
| | - Di Fu
- Department of Anesthesiology, XiangYa Hospital, Central South University, ChangSha, China
| | - Wei-Yun Shen
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University, ChangSha, China
- Anesthesiology Research Institute of Central South University, ChangSha, China
| | - Yan-Ling Zhang
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University, ChangSha, China
- Anesthesiology Research Institute of Central South University, ChangSha, China
| | - Shuai Zhao
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University, ChangSha, China.
- Anesthesiology Research Institute of Central South University, ChangSha, China.
| | - Ru-Ping Dai
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University, ChangSha, China.
- Anesthesiology Research Institute of Central South University, ChangSha, China.
| |
Collapse
|
27
|
Wang X, He J, Sun M, Wang S, Qu J, Shi H, Rao B. High-dose vitamin C as a metabolic treatment of cancer: a new dimension in the era of adjuvant and intensive therapy. Clin Transl Oncol 2024:10.1007/s12094-024-03553-x. [PMID: 39259387 DOI: 10.1007/s12094-024-03553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 09/13/2024]
Abstract
The anti-cancer mechanism of High-dose Vitamin C (HDVC) is mainly to participate in the Fenton reaction, hydroxylation reaction, and epigenetic modification, which leads to the energy crisis, metabolic collapse, and severe peroxidation stress that results in the proliferation inhibition or death of cancer cells. However, the mainstream view is that HDVC does not significantly improve cancer treatment outcomes. In clinical work and scientific research, we found that some drugs or therapies can significantly improve the anti-cancer effects of HDVC, such as PD-1 inhibitors that can increase the anti-cancer effects of cancerous HDVC by nearly three times. Here, the adjuvant and intensive therapy and synergistic mechanisms including HDVC combined application of chemoradiotherapies multi-vitamins, targeted drugs, immunotherapies, and oncolytic virus are discussed in detail. Adjuvant and intensive therapy of HDVC can significantly improve the therapeutic effect of HDVC in the metabolic treatment of cancer, but more clinical evidence is needed to support its clinical application.
Collapse
Affiliation(s)
- Xin Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jia He
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Minmin Sun
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiwan Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hanping Shi
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Center of Metabolism and Nutrition of Cancer, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China.
- Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.
| |
Collapse
|
28
|
Sha HX, Liu YB, Qiu YL, Zhong WJ, Yang NSY, Zhang CY, Duan JX, Xiong JB, Guan CX, Zhou Y. Neutrophil extracellular traps trigger alveolar epithelial cell necroptosis through the cGAS-STING pathway during acute lung injury in mice. Int J Biol Sci 2024; 20:4713-4730. [PMID: 39309425 PMCID: PMC11414388 DOI: 10.7150/ijbs.99456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024] Open
Abstract
Extensive loss of alveolar epithelial cells (AECs) undergoing necroptosis is a crucial mechanism of acute lung injury (ALI), but its triggering mechanism needs to be thoroughly investigated. Neutrophil extracellular traps (NETs) play a significant role in ALI. However, the effect of NETs on AECs' death has not been clarified. Our study found that intratracheal instillation of NETs disrupted lung tissue structure, suggesting that NETs could induce ALI in mice. Moreover, we observed that NETs could trigger necroptosis of AECs in vivo and in vitro. The phosphorylation levels of RIPK3 and MLKL were increased in MLE12 cells after NETs treatment (P < 0.05). Mechanistically, NETs taken up by AECs through endocytosis activated the cGAS-STING pathway and triggered AECs necroptosis. The expression of cGAS, STING, TBK1 and IRF3 were increased in MLE12 cells treated with NETs (P < 0.05). Furthermore, the cGAS inhibitor RU.521 inhibited NETs-triggered AECs necroptosis and alleviated the pulmonary damage induced by NETs in mice. In conclusion, our study demonstrates that NETs taken up by AECs via endocytosis can activate the cGAS-STING pathway and trigger AECs necroptosis to promote ALI in mice. Our findings indicate that targeting the NETs/cGAS-STING/necroptosis pathway in AECs is an effective strategy for treating ALI.
Collapse
Affiliation(s)
- Han-Xi Sha
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Yan-Ling Qiu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Jia-Xi Duan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| |
Collapse
|
29
|
Huang X, Liu Y, Rong X, Zhao Y, Feng D, Wang J, Xing W. IFIT3 mediates TBK1 phosphorylation to promote activation of pDCs and exacerbate systemic sclerosis in mice. Clin Transl Med 2024; 14:e1800. [PMID: 39305055 PMCID: PMC11415598 DOI: 10.1002/ctm2.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE To assess the impact of the IFIT3/TBK1 signalling pathway in activating plasmacytoid dendritic cells (pDCs) and its role in the development of SSc. METHODS Utilized single-cell RNA sequencing (scRNA-seq) and high-throughput transcriptome RNA sequencing to reveal the differential abundance of pDCs and the role of the key gene IFIT3 in SSc. Conducted in vitro cell experiments to evaluate the effect of IFIT3/TBK1 signalling pathway intervention on pDC activation cytokine release and fibroblast function. Constructed an IFIT3-/- mouse model using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing to assess the potential benefits of intervening in the IFIT3/TBK1 signalling pathway on skin and lung fibrosis in the SSc mouse model. RESULTS The IFIT3/TBK1 signalling pathway plays a crucial role in activating pDCs, with IFIT3 acting as an upstream regulator of TBK1. Intervention in the IFIT3/TBK1 signalling pathway can inhibit pDC activation cytokine release and impact fibroblast function. The IFIT3-/- mouse model shows potential benefits of targeting the IFIT3/TBK1 signalling pathway in reducing skin and lung fibrosis in the SSc mouse model. CONCLUSION This study provides new insights into potential therapeutic targets for SSc, highlighting the critical role of the IFIT3/TBK1 signalling pathway in SSc development. HIGHLIGHTS This study elucidates the pivotal role of plasmacytoid dendritic cells (pDCs) in systemic sclerosis (SSc). This study identified the key regulatory gene involved in systemic sclerosis (SSc) as IFIT3. This study has found that IFIT3 functions as an upstream regulatory factor, activating TBK1. This study provides Evidence of the regulatory effects of the IFIT3/TBK1 pathway on plasmacytoid dendritic cells (pDCs). This study validated the therapeutic potential using the IFIT3-/- mouse model.
Collapse
Affiliation(s)
- Xiangyang Huang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yi Liu
- Department of Communication Sciences & DisordersMGH Institute of Health ProfessionsBostonMassachusettsUSA
| | - Xia Rong
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Yiheng Zhao
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Dan Feng
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Jun Wang
- Department of Rheumatology and ImmunologyWest China School of Public Health and West China Fourth Hospital, Sichuan UniversityChengduChina
| | - Wanhong Xing
- Department of Cardiothoracic SurgeryThe Sixth People's Hospital of ChengduChengduSichuanChina
| |
Collapse
|
30
|
Deng L, Cao C, Cai Z, Wang Z, Leng B, Chen Z, Kong F, Zhou Z, He J, Nie X, Bian JS. STING Contributes to Pulmonary Hypertension by Targeting IFN and BMPR2 Signaling through Regulating of F2RL3. Am J Respir Cell Mol Biol 2024; 71:356-371. [PMID: 38864771 DOI: 10.1165/rcmb.2023-0308oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/12/2024] [Indexed: 06/13/2024] Open
Abstract
Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling. Endothelial injury and inflammation are the key triggers of disease initiation. Recent findings suggest that STING (stimulator of IFN genes) activation plays a critical role in endothelial dysfunction and IFN signaling. Here, we investigated the involvement of STING in the pathogenesis of PH. Patients with PH and rodent PH model samples, a Sugen 5416/hypoxia PH model, and pulmonary artery endothelial cells (PAECs) were used to evaluate the hypothesis. We found that the cyclic guanosine monophosphate-AMP synthase-STING signaling pathway was activated in lung tissues from rodent PH models and patients with PH and in TNF-α-induced PAECs in vitro. Specifically, STING expression was significantly elevated in the endothelial cells in PH disease settings. In the Sugen 5416/hypoxia mouse model, genetic knockout or pharmacological inhibition of STING prevented the progression of PH. Functionally, knockdown of STING reduced the proliferation and migration of PAECs. Mechanistically, STING transcriptionally regulates its binding partner F2RL3 (F2R-like thrombin or trypsin receptor 3) through the STING-NF-κB axis, which activated IFN signaling and repressed BMPR2 (bone morphogenetic protein receptor 2) signaling both in vitro and in vivo. Further analysis revealed that F2RL3 expression was increased in PH settings and identified negative feedback regulation of F2RL3/BMPR2 signaling. Accordingly, a positive correlation of expression amounts between STING and F2RL3/IFN-stimulated genes was observed in vivo. Our findings suggest that STING activation in PAECs plays a critical role in the pathobiology of PH. Targeting STING may be a promising therapeutic strategy for preventing the development of PH.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chengrui Cao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zongye Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziping Wang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Bin Leng
- Department of Food Science and Technology, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China; and
| | - Zhen Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fanhao Kong
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiyue Zhou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun He
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaowei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
31
|
Zheng ZH, Wang JJ, Lin JG, Ye WL, Zou JM, Liang LY, Yang PL, Qiu WL, Li YY, Yang SJ, Zhao M, Zhou Q, Li CZ, Li M, Li ZM, Zhang DM, Liu PQ, Liu ZP. Cytosolic DNA initiates a vicious circle of aging-related endothelial inflammation and mitochondrial dysfunction via STING: the inhibitory effect of Cilostazol. Acta Pharmacol Sin 2024; 45:1879-1897. [PMID: 38689095 PMCID: PMC11336235 DOI: 10.1038/s41401-024-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Endothelial senescence, aging-related inflammation, and mitochondrial dysfunction are prominent features of vascular aging and contribute to the development of aging-associated vascular disease. Accumulating evidence indicates that DNA damage occurs in aging vascular cells, especially in endothelial cells (ECs). However, the mechanism of EC senescence has not been completely elucidated, and so far, there is no specific drug in the clinic to treat EC senescence and vascular aging. Here we show that various aging stimuli induce nuclear DNA and mitochondrial damage in ECs, thus facilitating the release of cytoplasmic free DNA (cfDNA), which activates the DNA-sensing adapter protein STING. STING activation led to a senescence-associated secretory phenotype (SASP), thereby releasing pro-aging cytokines and cfDNA to further exacerbate mitochondrial damage and EC senescence, thus forming a vicious circle, all of which can be suppressed by STING knockdown or inhibition. Using next-generation RNA sequencing, we demonstrate that STING activation stimulates, whereas STING inhibition disrupts pathways associated with cell senescence and SASP. In vivo studies unravel that endothelial-specific Sting deficiency alleviates aging-related endothelial inflammation and mitochondrial dysfunction and prevents the development of atherosclerosis in mice. By screening FDA-approved vasoprotective drugs, we identified Cilostazol as a new STING inhibitor that attenuates aging-related endothelial inflammation both in vitro and in vivo. We demonstrated that Cilostazol significantly inhibited STING translocation from the ER to the Golgi apparatus during STING activation by targeting S162 and S243 residues of STING. These results disclose the deleterious effects of a cfDNA-STING-SASP-cfDNA vicious circle on EC senescence and atherogenesis and suggest that the STING pathway is a promising therapeutic target for vascular aging-related diseases. A proposed model illustrates the central role of STING in mediating a vicious circle of cfDNA-STING-SASP-cfDNA to aggravate age-related endothelial inflammation and mitochondrial damage.
Collapse
Affiliation(s)
- Zhi-Hua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jiao-Jiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiu-Guo Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei-le Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jia-Mi Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Li-Yin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping-Lian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wan-Lu Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, 510006, China
| | - Yuan-Yuan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Man Zhao
- School of Pharmaceutical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Qing Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou, 510006, China
| | - Cheng-Zhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510006, China
| | - Min Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuo-Ming Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dong-Mei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Pei-Qing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhi-Ping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
32
|
Guo Y, Zhang H, Zhao N, Peng Y, Shen D, Chen Y, Zhang X, Tang CE, Chai J. STING-mediated IL-6 Inhibits OATP1B1 Expression via the TCF4 Signaling Pathway in Cholestasis. J Clin Transl Hepatol 2024; 12:701-712. [PMID: 39130625 PMCID: PMC11310758 DOI: 10.14218/jcth.2024.00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims Organic anion-transporting polypeptides (OATPs) play a crucial role in the transport of bile acids and bilirubin. In our previous study, interleukin 6 (IL-6) reduced OATP1B3 levels in cholestatic disease. However, it remains unclear whether IL-6 inhibits OATP1B1 expression in cholestatic diseases. This study aimed to investigate whether IL-6 can inhibit OATP1B1 expression and explore the underlying mechanisms. Methods The effect of stimulator of interferon genes (STING) signaling on inflammatory factors was investigated in a cholestatic mouse model using RT-qPCR and enzyme-linked immunosorbent assay. To assess the impact of inflammatory factors on OATP1B1 expression in hepatocellular carcinoma, we analyzed OATP1B1 expression by RT-qPCR and Western Blot after treating PLC/PRF/5 cells with TNF-α, IL-1β, and IL-6. To elucidate the mechanism by which IL-6 inhibits OATP1B1 expression, we examined the expression of the OATP1B1 regulator TCF4 in PLC/PRF/5 and HepG2 cells using RT-qPCR and Western Blot. The interaction mechanism between β-catenin/TCF4 and OATP1B1 was investigated by knocking down β-catenin/TCF4 through siRNA transfection. Results The STING inhibitor decreased inflammatory factor levels in the cholestatic mouse model, with IL-6 exhibiting the most potent inhibitory effect on OATP1B1. IL-6 downregulated β-catenin/TCF4, leading to decreased OATP1B1 expression. Knocking-down β-catenin/TCF4 counteracted the β-catenin/TCF4-mediated repression of OATP1B1. Conclusions STING-mediated IL-6 up-regulation may inhibit OATP1B1, leading to reduced transport of bile acids and bilirubin by OATP1B1. This may contribute to altered pharmacokinetics in patients with diseases associated with increased IL-6 production.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongjia Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Nan Zhao
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying Peng
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongya Shen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yubin Chen
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| | - Can-E Tang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Center for Metabolic Associated Fatty Liver Disease, The First Affiliated Hospital (Southwest Hospital) to Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
33
|
Huang D, Bai F, Hu T, Li J, Wang G, Wu C. Salvia miltiorrhiza bge. f. alba ameliorates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease via the STING pathway. Am J Transl Res 2024; 16:3678-3689. [PMID: 39262750 PMCID: PMC11384384 DOI: 10.62347/xuno9933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To elucidate the functional role and underlying mechanism of Salvia miltiorrhiza bge. f. alba (SMBFA) in patients with type 2 diabetes mellitus (T2DM) accompanied by non-alcoholic fatty liver disease (NAFLD). METHODS A retrospective analysis was conducted on 90 patients with T2DM-NAFLD who met the inclusion criteria. The control group was comprised of 45 patients treated with Fenofibrate, while the observation group consisted of 45 patients who received SMBFA in addition to the control treatment. An in vivo mouse model of T2DM-NAFLD was established using a high-fat diet combined with streptozotocin. Serum levels of fasting plasma glucose (FPG), 2-hour postprandial glucose (2h PG), hemoglobin A1c (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR), total cholesterol (TC), and triglyceride (TG) were measured in both patients and mice using an automated biochemical analyzer. Liver indices and function were also evaluated. ELISA assays were performed to quantify inflammatory cytokine levels. Western blotting was utilized to assess the protein levels related to the stimulator of interferon genes (STING)-interferon regulatory factor 3 (IRF3) pathway. RESULTS After treatment, significant reductions in blood glucose indices, HOMA-IR, lipid metabolism markers, liver function indices, and inflammatory cytokines were observed in both groups of T2DM-NAFLD patients. Notably, the decreases were more pronounced in the observation group compared to the control group. Similarly, in T2DM-NAFLD mouse models, the levels of these parameters were significantly lower in the observation group than in the normal control (NC) group. Additionally, SMBFA suppressed the elevated levels of STING, p-IRF3, and p-TANK-binding kinase 1 in the T2DM-NAFLD mice. CONCLUSION SMBFA exhibits the potential to regulate glucose and lipid metabolism, inhibit insulin resistance, and protect liver function by modulating the STING signaling pathway.
Collapse
Affiliation(s)
- Donghui Huang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| | - Fuyan Bai
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| | - Tingting Hu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| | - Jing Li
- Department of Pediatrics, The Secondary TCM Hospital of Tai'an City Tai'an 271000, Shandong, China
| | - Guoning Wang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| | - Chengsheng Wu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Tai'an 271000, Shandong, China
| |
Collapse
|
34
|
Liang L, Zeng J, Liu R, Zheng Z, Lyu D, Zhang X, Wen M, Li M, Xiao H, Sun X, Li M, Huang H. Polydatin attenuates diabetic renal inflammatory fibrosis via the inhibition of STING pathway. Biochem Pharmacol 2024; 226:116373. [PMID: 38885772 DOI: 10.1016/j.bcp.2024.116373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Diabetic nephropathy (DN) is a complication of diabetes and is mainly characterized by renal fibrosis, which could be attributed to chronic kidney inflammation. Stimulator of interferon genes (STING), a linker between immunity and metabolism, could ameliorate various metabolic and inflammatory diseases. However, the regulatory role of STING in DN remains largely unexplored. In this study, knockdown of STING decreased extracellular matrix (ECM), pro-inflammatory, and fibrotic factors in high glucose (HG)-induced glomerular mesangial cells (GMCs), whereas overexpression of STING triggered the inflammatory fibrosis process, suggesting that STING was a potential target for DN. Polydatin (PD) is a glucoside of resveratrol and has been reported to ameliorate DN by inhibiting inflammatory responses. Nevertheless, whether PD improved DN via STING remains unclear. Here, transcriptomic profiling implied that the STING/NF-κB pathway might be an important target for PD. We further found that PD decreased the protein expression of STING, and subsequently suppressed the activation of downstream targets including TBK1 phosphorylation and NF-κB nuclear translocation, and eventually inhibited the production of ECM, pro-inflammatory and fibrotic factors in HG-induced GMCs. Notably, results of molecular docking, molecular dynamic simulations, surface plasmon resonance, cellular thermal shift assay and Co-immunoprecipitation assay indicated that PD directly bound to STING and restored the declined proteasome-mediated degradation of STING induced by HG. In diabetic mice, PD also inhibited the STING pathway and improved the pathological changes of renal inflammatory fibrosis. Our study elucidated the regulatory role of STING in DN, and the novel mechanism of PD treating DN via inhibiting STING expression.
Collapse
Affiliation(s)
- Liyin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Renbin Liu
- Bao'an Center Hospital of Shenzhen, Shenzhen 518100, China
| | - Zhihua Zheng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongxin Lyu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuting Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minghui Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaohong Sun
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen 518026, China.
| | - Min Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Heqing Huang
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou 510801, China.
| |
Collapse
|
35
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
36
|
Qian C, Zhu W, Wang J, Wang Z, Tang W, Liu X, Jin B, Xu Y, Zhang Y, Liang G, Wang Y. Cyclic-di-GMP induces inflammation and acute lung injury through direct binding to MD2. Clin Transl Med 2024; 14:e1744. [PMID: 39166890 PMCID: PMC11337466 DOI: 10.1002/ctm2.1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Severe bacterial infections can trigger acute lung injury (ALI) and acute respiratory distress syndrome, with bacterial pathogen-associated molecular patterns (PAMPs) exacerbating the inflammatory response, particularly in COVID-19 patients. Cyclic-di-GMP (CDG), one of the PAMPs, is synthesized by various Gram-positve and Gram-negative bacteria. Previous studies mainly focused on the inflammatory responses triggered by intracellular bacteria-released CDG. However, how extracellular CDG, which is released by bacterial autolysis or rupture, activates the inflammatory response remains unclear. METHODS The interaction between extracellular CDG and myeloid differentiation protein 2 (MD2) was investigated using in vivo and in vitro models. MD2 blockade was achieved using specific inhibitor and genetic knockout mice. Site-directed mutagenesis, co-immunoprecipitation, SPR and Bis-ANS displacement assays were used to identify the potential binding sites of MD2 on CDG. RESULTS Our data show that extracellular CDG directly interacts with MD2, leading to activation of the TLR4 signalling pathway and lung injury. Specific inhibitors or genetic knockout of MD2 in mice significantly alleviated CDG-induced lung injury. Moreover, isoleucine residues at positions 80 and 94, along with phenylalanine at position 121, are essential for the binding of MD2 to CDG. CONCLUSION These results reveal that extracellular CDG induces lung injury through direct interaction with MD2 and activation of the TLR4 signalling pathway, providing valuable insights into bacteria-induced ALI mechanisms and new therapeutic approaches for the treatment of bacterial co-infection in COVID-19 patients.
Collapse
Affiliation(s)
- Chenchen Qian
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weiwei Zhu
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Jiong Wang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhe Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Weiyang Tang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Xin Liu
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Bo Jin
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yong Xu
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yuyang Zhang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Guang Liang
- Chemical Biology Research CenterSchool of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yi Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
37
|
Chen Q, Wang Y, Wang J, Ouyang X, Zhong J, Huang Y, Huang Z, Zheng B, Peng L, Tang X, Li S. Lipotoxicity Induces Cardiomyocyte Ferroptosis via Activating the STING Pathway. Antioxid Redox Signal 2024. [PMID: 39001814 DOI: 10.1089/ars.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Affiliation(s)
- Qian Chen
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yina Wang
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiafu Wang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaolan Ouyang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junlin Zhong
- Department of Ultrasonography, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Huang
- Zhongshan School of Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuoshan Huang
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Benrong Zheng
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Long Peng
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xixiang Tang
- VIP medical service center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suhua Li
- Department of Cardiovascular Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Zou J, Zheng Z, Ye W, Jin M, Yang P, Little PJ, Wang J, Liu Z. Targeting the smooth muscle cell KEAP1-Nrf2-STING axis with pterostilbene attenuates abdominal aortic aneurysm. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155696. [PMID: 38763007 DOI: 10.1016/j.phymed.2024.155696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a life-threatening aortic disease, and to date, there are currently no effective pharmacological treatments to address this condition. Activation of cytosolic DNA sensing adaptor stimulator of interferon genes (STING) signaling is a crucial mechanism in AAA formation. PURPOSE This study investigated pterostilbene (Pt), a naturally occurring polyphenol and resveratrol analogue, as a STING inhibitor for preventing AAA. METHODS We evaluated the effect of Pt on AAA formation in angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE-/-) mice. We used histological analysis, MMP activity measurement, western blot, and immunohistochemistry to detect AAA formation and development. We applied RNA sequencing, molecular docking, cellular thermal shift assay (CETSA) and functional studies to dissect the molecular mechanism of Pt-regulating KEAP1-Nrf2-STING signaling. We conditionally knocked down Nrf2 in vascular smooth muscle cells (VSMCs) in vivo to investigate its role in Pt-mediated protective effects on AAA. RESULTS Pt effectively blocked the formation of AAA in AngII-infused ApoE-/- mice. Whole transcriptome sequencing analysis revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) and STING pathway in VSMCs were linked to the anti-AAA effects of pterostilbene. Mechanistically, Pt upregulated Nrf2 target genes (e.g., HO-1 and NQO1) through activation of the KEAP1/Nrf2 signaling, which restricted the immunostimulatory axis of mtDNA-STING-TBK1-NF-κB, thereby alleviating VSMC inflammation and preserving the VSMC contractile phenotype. Subsequently, molecular docking and CETSA revealed a binding mode between Pt and KEAP1/Nrf2. Intriguingly, the inhibitory effect of Pt on STING signaling and the protective role of Pt in AAA were largely abrogated by VSMC-specific Nrf2 knockdown in mice. CONCLUSION Collectively, naturally derived Pt shows promising efficacy for the treatment of AAA by targeting the KEAP1-Nrf2-STING axis in VSMCs.
Collapse
Affiliation(s)
- Jiami Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weile Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mei Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Guangzhou Xinhua University, Guangzhou 510520, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
39
|
Cao X, Zhao M, Wang X, Lin J, Yang M, Zhong L, Liang L, Yue Y, Du J, Li J, Zhou T, Yu J, Liang Y, Shi R, Luo R, Shen X, Chen Y, Wang Y, Shu Z. Multi-metabolomics and intestine microbiome analysis: YZC extract ameliorates septic-ALI by modulating intestine microbiota to reduce TMAO/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155345. [PMID: 38810555 DOI: 10.1016/j.phymed.2024.155345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Sepsis causes inflammation in response to infection, often leading to acute lung injury (ALI). Yazhicao (Commelina communis L., YZC) is widely distributed in the global tropics and has good anti-respiratory inflammatory activity; however, the protection of YZC against septic-ALI has not been established. PURPOSE The role of YZC in septic-ALI will be investigated in this study. METHODS AND RESULTS In this study, YZC was shown to inhibit excessive inflammation and alleviate septic-ALI. Network pharmacology predicts that Quercetin, Acacetin and Diosmetin have the potential to serve as the pharmacological substance basis of YZC in alleviating septic-ALI. The metabolomics results indicated that YZC could improve the metabolic disorders caused by septic-ALI, which were mostly concerned with energy metabolism and amino acid metabolism, with Trimethylamine (TMA)/Trimethylamine N-oxide (TMAO) being potential small molecule metabolic markers for the clinical diagnosis and treatment of septic-ALI. YZC inhibits the initiation and progression of septic-ALI by controlling the TMA/TMAO metabolites. Our results also suggest that YZC protects the intestinal barrier from damage. Furthermore, our research indicated that YZC reduces TMAO synthesis by inhibiting TMA production through remodeling the intestine microbiota. We investigated the mechanism of YZC-mediated protection against septic-ALI and showed that YZC reduced the expression of proteins associated with NLRP3 inflammatory vesicles in the lung by inhibiting the expression of NF-κB. CONCLUSION These results show that YZC inhibits the NF-κB/NLRP3 signaling pathway by regulating metabolic and intestinal flora disorders in septic-ALI mice to reduce TMAO synthesis. This study presents a theoretical groundwork for the advancement of novel medications and clinical use of YZC to enhance septic-ALI and furnishes a theoretical rationale for regulating intestinal microbiota as a therapeutic instrument to treat sepsis and septic-ALI.
Collapse
Affiliation(s)
- Xia Cao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mantong Zhao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazi Lin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengru Yang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyang Zhong
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lanyuan Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiming Yue
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieyong Du
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianhua Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiamin Yu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yefang Liang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ruixiang Shi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rongfeng Luo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuejuan Shen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Pharmacy, Meizhou People's Hospital, No. 38 Huangtang Road, Meizhou 514000, China.
| | - Yi Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zunpeng Shu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
40
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Zuo B, Fan X, Xu D, Zhao L, Zhang B, Li X. Deciphering the mitochondria-inflammation axis: Insights and therapeutic strategies for heart failure. Int Immunopharmacol 2024; 139:112697. [PMID: 39024750 DOI: 10.1016/j.intimp.2024.112697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Heart failure (HF) is a clinical syndrome resulting from left ventricular systolic and diastolic dysfunction, leading to significant morbidity and mortality worldwide. Despite improvements in medical treatment, the prognosis of HF patients remains unsatisfactory, with high rehospitalization rates and substantial economic burdens. The heart, a high-energy-consuming organ, relies heavily on ATP production through oxidative phosphorylation in mitochondria. Mitochondrial dysfunction, characterized by impaired energy production, oxidative stress, and disrupted calcium homeostasis, plays a crucial role in HF pathogenesis. Additionally, inflammation contributes significantly to HF progression, with elevated levels of circulating inflammatory cytokines observed in patients. The interplay between mitochondrial dysfunction and inflammation involves shared risk factors, signaling pathways, and potential therapeutic targets. This review comprehensively explores the mechanisms linking mitochondrial dysfunction and inflammation in HF, including the roles of mitochondrial reactive oxygen species (ROS), calcium dysregulation, and mitochondrial DNA (mtDNA) release in triggering inflammatory responses. Understanding these complex interactions offers insights into novel therapeutic approaches for improving mitochondrial function and relieving oxidative stress and inflammation. Targeted interventions that address the mitochondria-inflammation axis hold promise for enhancing cardiac function and outcomes in HF patients.
Collapse
Affiliation(s)
- Baile Zuo
- Molecular Immunology and Immunotherapy Laboratory, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu Fan
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Dawei Xu
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Liping Zhao
- Department of Pathology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Bi Zhang
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China; Department of Clinical Laboratory, Heping Branch, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
42
|
Tian M, Zhang S, Tan F. The cGAS/STING Pathway-A New Potential Biotherapeutic Target for Gastric Cancer? J Pers Med 2024; 14:736. [PMID: 39063990 PMCID: PMC11277918 DOI: 10.3390/jpm14070736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer ranks among the top five deadliest tumors worldwide, both in terms of prevalence and mortality rates. Despite mainstream treatments, the efficacy in treating gastric cancer remains suboptimal, underscoring the urgency for novel therapeutic approaches. The elucidation of tumor immunosuppressive microenvironments has shifted focus towards cancer biotherapeutics, which leverage the patient's immune system or biologics to target tumor cells. Biotherapy has emerged as a promising alternative for tumors resistant to traditional chemotherapy, radiation, and immunotherapy. Central to this paradigm is the cGAS-STING pathway, a pivotal component of the innate immune system. This pathway recognizes aberrant DNA, such as that from viral infections or tumor cells, and triggers an immune response, thereby reshaping the immunosuppressive tumor microenvironment into an immune-stimulating milieu. In the context of gastric cancer, harnessing the cGAS-STING pathway holds significant potential for biotherapeutic interventions. This review provides a comprehensive overview of the latest research on cGAS-STING in gastric cancer, including insights from clinical trials involving STING agonists. Furthermore, it assesses the prospects of targeting the cGAS-STING pathway as a novel biotherapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Mengxiang Tian
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410017, China; (M.T.); (F.T.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410017, China
| | - Shuai Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410017, China; (M.T.); (F.T.)
| | - Fengbo Tan
- Department of General Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410017, China; (M.T.); (F.T.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410017, China
| |
Collapse
|
43
|
Shan W, Cui J, Song Y, Yan D, Feng L, Jian Y, Yi W, Sun Y. Itaconate as a key player in cardiovascular immunometabolism. Free Radic Biol Med 2024; 219:64-75. [PMID: 38604314 DOI: 10.1016/j.freeradbiomed.2024.04.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, resulting in a major health burden. Thus, an urgent need exists for exploring effective therapeutic targets to block progression of CVDs and improve patient prognoses. Immune and inflammatory responses are involved in the development of atherosclerosis, ischemic myocardial damage responses and repair, calcification, and stenosis of the aortic valve. These responses can involve both large and small blood vessels throughout the body, leading to increased blood pressure and end-organ damage. While exploring potential avenues for therapeutic intervention in CVDs, researchers have begun to focus on immune metabolism, where metabolic changes that occur in immune cells in response to exogenous or endogenous stimuli can influence immune cell effector responses and local immune signaling. Itaconate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, is related to pathophysiological processes, including cellular metabolism, oxidative stress, and inflammatory immune responses. The expression of immune response gene 1 (IRG1) is upregulated in activated macrophages, and this gene encodes an enzyme that catalyzes the production of itaconate from the TCA cycle intermediate, cis-aconitate. Itaconate and its derivatives have exerted cardioprotective effects through immune modulation in various disease models, such as ischemic heart disease, valvular heart disease, vascular disease, heart transplantation, and chemotherapy drug-induced cardiotoxicity, implying their therapeutic potential in CVDs. In this review, we delve into the associated signaling pathways through which itaconate exerts immunomodulatory effects, summarize its specific roles in CVDs, and explore emerging immunological therapeutic strategies for managing CVDs.
Collapse
Affiliation(s)
- Wenju Shan
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Cui
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yujie Song
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dongxu Yan
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Linqi Feng
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuhong Jian
- Department of General Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| | - Yang Sun
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
44
|
Wang Q, Lv H, Ainiwan M, Yesitayi G, Abudesimu A, Siti D, Aizitiaili A, Ma X. Untargeted metabolomics identifies indole-3-propionic acid to relieve Ang II-induced endothelial dysfunction in aortic dissection. Mol Cell Biochem 2024; 479:1767-1786. [PMID: 38485805 DOI: 10.1007/s11010-024-04961-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 07/18/2024]
Abstract
Indole-3-propionic acid (IPA), a gut microbiota-derived metabolite of tryptophan, has been proven to fulfill an essential function in cardiovascular disease (CVD) and nerve regeneration disease. However, the role of IPA in aortic dissection (AD) has not been revealed. We aimed to investigate the role of IPA in the pathogenesis of AD and the underlying mechanisms of IPA in endothelial dysfunction. Untargeted metabolomics has been employed to screen the plasma metabolic profile of AD patients in comparison with healthy individuals. Network pharmacology provides insights into the potential molecular mechanisms underlying IPA. 3-aminopropionitrile fumarate (BAPN) and angiotensin II (Ang II) were administered to induce AD in mice, while human umbilical vein endothelial cells (HUVECs) were employed for in vitro validation of the signaling pathways predicted by network pharmacology. A total of 224 potentially differential plasma metabolites were identified in the AD patients, with 110 up-regulated metabolites and 114 down-regulated metabolites. IPA was the most significantly decreased metabolite involved in tryptophan metabolism. Bcl2, caspase3, and AKT1 were predicted as the target genes of IPA by network pharmacology and molecular docking. IPA suppressed Ang II-induced apoptosis, intracellular ROS generation, inflammation, and endothelial tight junction (TJ) loss. Animal experiments demonstrated that administration of IPA alleviated the occurrence and severity of AD in mice. Taken together, we identified a previously unexplored association between tryptophan metabolite IPA and AD, providing a novel perspective on the underlying mechanism through which IPA mitigates endothelial dysfunction to protect against AD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Hui Lv
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Mierxiati Ainiwan
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Gulinazi Yesitayi
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Asiya Abudesimu
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Dilixiati Siti
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Aliya Aizitiaili
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China
| | - Xiang Ma
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University, Ürümqi, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China.
| |
Collapse
|
45
|
Liu H, Xue Q, Yang F, Cao W, Liu P, Liu X, Zhu Z, Zheng H. Foot-and-mouth disease virus VP1 degrades YTHDF2 through autophagy to regulate IRF3 activity for viral replication. Autophagy 2024; 20:1597-1615. [PMID: 38516932 PMCID: PMC11210904 DOI: 10.1080/15548627.2024.2330105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/23/2024] Open
Abstract
Many viruses, including foot-and-mouth disease virus (FMDV), can promote the degradation of host proteins through macroautophagy/autophagy, thereby promoting viral replication. However, the regulatory mechanism between autophagy and innate immune responses is not fully understood during FMDV infection. Here, we found that the host GTPBP4/NOG1 (GTP binding protein 4) is a negative regulator of innate immune responses. GTPBP4 deficiency promotes the antiviral innate immune response, resulting in the ability of GTPBP4 to promote FMDV replication. Meanwhile, GTPBP4-deficient mice are more resistant to FMDV infection. To antagonize the host's antiviral immunity, FMDV structural protein VP1 promotes the expression of GTPBP4, and the 209th site of VP1 is responsible for this effect. Mechanically, FMDV VP1 promotes autophagy during virus infection and interacts with and degrades YTHDF2 (YTH N6-methyladenosine RNA binding protein F2) in an AKT-MTOR-dependent autophagy pathway, resulting in an increase in GTPBP4 mRNA and protein levels. Increased GTPBP4 inhibits IRF3 binding to the Ifnb/Ifn-β promoter, suppressing FMDV-induced type I interferon production. In conclusion, our study revealed an underlying mechanism of how VP1 negatively regulates innate immunity through the autophagy pathway, which would contribute to understanding the negative regulation of host innate immune responses and the function of GTPBP4 and YTHDF2 during FMDV infection.Abbreviation: 3-MA:3-methyladenine; ACTB: actin beta; ATG: autophagy related; ChIP:chromatin immunoprecipitation; CQ: chloroquine; DAPI:4',6-diamidino-2-phenylindole; dpi: days post-infection; EV71:enterovirus 71; FMDV: foot-and-mouth disease virus; GTPBP4/NOG1: GTPbinding protein 4; HIF1A: hypoxia inducible factor 1 subunit alpha;hpt:hours post-transfection; IFNB/IFN-β:interferon beta; IRF3: interferon regulatory factor 3; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MAVS: mitochondriaantiviral signaling protein; MOI: multiplicity of infection; MTOR:mechanistic target of rapamycin kinase; m6A: N(6)-methyladenosine;qPCR:quantitativePCR; SIRT3:sirtuin 3; SQSTM1/p62: sequestosome 1; STING1: stimulator ofinterferon response cGAMP interactor 1; siRNA: small interfering RNA;TBK1: TANK binding kinase 1; TCID50:50% tissue culture infectious doses; ULK1: unc-51 like autophagyactivating kinase 1; UTR: untranslated region; WT: wild type; YTHDF2:YTH N6-methyladenosine RNA binding protein F2.
Collapse
Affiliation(s)
- Huisheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao Xue
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weijun Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengfei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
46
|
Wang J, Yao N, Chen Y, Li X, Jiang Z. Research progress of cGAS-STING signaling pathway in intestinal diseases. Int Immunopharmacol 2024; 135:112271. [PMID: 38762923 DOI: 10.1016/j.intimp.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal has drawn much consideration due to its sensitivity to DNA in innate immune mechanisms. Activation of the cGAS-STIN signaling pathway induces the production of interferon and inflammatory cytokines, resulting in immune responses, or inflammatory diseases. The intestinal tract is a vital organ for the body's nutrition absorption, recent studies have had various points of view on the job of cGAS-STING pathway in various intestinal sicknesses. Therefore, understanding its role and mechanism in the intestinal environment can help to develop new strategies for the treatment of intestinal diseases. This article examines the mechanism of the cGAS-STING pathway and its function in inflammatory bowel disease, intestinal cancer, and long-injury ischemia-reperfusion, lists the current medications that target it for the treatment of intestinal diseases, and discusses the impact of intestinal flora on this signaling pathway, to offer a theoretical and scientific foundation for upcoming targeted therapies for intestinal disorders via the cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiamin Wang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Naiqi Yao
- Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Yonghu Chen
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China
| | - Xuezheng Li
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China
| | - Zhe Jiang
- College of Pharmacy, Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanji, Jilin 133002, China; Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133000, China.
| |
Collapse
|
47
|
Zhu X, Yu G, Lv Y, Yang N, Zhao Y, Li F, Zhao J, Chen Z, Lai Y, Chen L, Wang X, Xiao J, Cai Y, Feng Y, Ding J, Gao W, Zhou K, Xu H. Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps. BURNS & TRAUMA 2024; 12:tkae035. [PMID: 38855574 PMCID: PMC11162832 DOI: 10.1093/burnst/tkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Background Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression. Methods A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps. Results NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206. Conclusions NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.
Collapse
Affiliation(s)
- Xuwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Ya Lv
- The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou 325000, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Science of Zhejiang Chinese Medical University, NO. 548 Binwen Road, Binjiang District, Hangzhou 310000, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, 325000, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, 325000, China
| | | | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| |
Collapse
|
48
|
Shi W, Xu G, Gao Y, Yang H, Liu T, Zhao J, Li H, Wei Z, Hou X, Chen Y, Wen J, Li C, Zhao J, Zhang P, Wang Z, Xiao X, Bai Z. Compound Danshen Dripping Pill effectively alleviates cGAS-STING-triggered diseases by disrupting STING-TBK1 interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155404. [PMID: 38507852 DOI: 10.1016/j.phymed.2024.155404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon (IFN) genes (STING) pathway is critical in the innate immune system and can be mobilized by cytosolic DNA. The various inflammatory and autoimmune diseases progression is highly correlated with aberrant cGAS-STING pathway activation. While some cGAS-STING pathway inhibitor were identified, there are no drugs that can be applied to the clinic. Compound Danshen Dripping Pill (CDDP) has been successfully used in clinic around the world, but the most common application is limited to cardiovascular disease. Therefore, the purpose of the present investigation was to examine whether CDDP inhibits the cGAS-STING pathway and could be used as a therapeutic agent for multiple cGAS-STING-triggered diseases. METHODS BMDMs, THP1 cells or Trex1-/- BMDMs were stimulated with various cGAS-STING-agonists after pretreatment with CDDP to detect the function of CDDP on IFN-β and ISGs productionn. Next, we detect the influence on IRF3 and P65 nuclear translocation, STING oligomerization and STING-TBK1-IRF3 complex formation of CDDP. Additionally, the DMXAA-mediated activation mice model of cGAS-STING pathway was used to study the effects of CDDP. Trex1-/- mice model and HFD-mediated obesity model were established to clarify the efficacy of CDDP on inflammatory and autoimmune diseases. RESULTS CDDP efficacy suppressed the IRF3 phosphorylation or the generation of IFN-β, ISGs, IL-6 and TNF-α. Mechanistically, CDDP did not influence the STING oligomerization and IRF3-TBK1 and STING-IRF3 interaction, but remarkably eliminated the STING-TBK1 interaction, ultimately blocking the downstream responses. In addition, we also clarified that CDDP could suppress cGAS-STING pathway activation triggered by DMXAA, in vivo. Consistently, CDDP could alleviate multi-organ inflammatory responses in Trex1-/- mice model and attenuate the inflammatory disorders, incleding obesity-induced insulin resistance. CONCLUSION CDDP is a specifically cGAS-STING pathway inhibitor. Furthermore, we provide novel mechanism for CDDP and discovered a clinical agent for the therapy of cGAS-STING-triggered inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Wei Shi
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guang Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijie Yang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziying Wei
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jincai Wen
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chengwei Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ping Zhang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhongxia Wang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China; National Key Laboratory of Kidney Diseases, China.
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, the Fifth Medical Centre, General Hospital of PLA, Beijing, China; National Key Laboratory of Kidney Diseases, China.
| |
Collapse
|
49
|
He X, Wen S, Tang X, Wen Z, Zhang R, Li S, Gao R, Wang J, Zhu Y, Fang D, Li T, Peng R, Zhang Z, Wen S, Zhou L, Ai H, Lu Y, Zhang S, Shi G, Chen Y. Glucagon-like peptide-1 receptor agonists rescued diabetic vascular endothelial damage through suppression of aberrant STING signaling. Acta Pharm Sin B 2024; 14:2613-2630. [PMID: 38828140 PMCID: PMC11143538 DOI: 10.1016/j.apsb.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 06/05/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) protect against diabetic cardiovascular diseases and nephropathy. However, their activity in diabetic retinopathy (DR) remains unclear. Our retrospective cohort study involving 1626 T2DM patients revealed superior efficacy of GLP-1 RAs in controlling DR compared to other glucose-lowering medications, suggesting their advantage in DR treatment. By single-cell RNA-sequencing analysis and immunostaining, we observed a high expression of GLP-1R in retinal endothelial cells, which was down-regulated under diabetic conditions. Treatment of GLP-1 RAs significantly restored the receptor expression, resulting in an improvement in retinal degeneration, vascular tortuosity, avascular vessels, and vascular integrity in diabetic mice. GO and GSEA analyses further implicated enhanced mitochondrial gene translation and mitochondrial functions by GLP-1 RAs. Additionally, the treatment attenuated STING signaling activation in retinal endothelial cells, which is typically activated by leaked mitochondrial DNA. Expression of STING mRNA was positively correlated to the levels of angiogenic and inflammatory factors in the endothelial cells of human fibrovascular membranes. Further investigation revealed that the cAMP-responsive element binding protein played a role in the GLP-1R signaling pathway on suppression of STING signaling. This study demonstrates a novel role of GLP-1 RAs in the protection of diabetic retinal vasculature by inhibiting STING-elicited inflammatory signals.
Collapse
Affiliation(s)
- Xuemin He
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Siying Wen
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xixiang Tang
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- VIP Medical Service Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zheyao Wen
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Rui Zhang
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shasha Li
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Rong Gao
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jin Wang
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanhua Zhu
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dong Fang
- Department of Fundus, Shenzhen Eye Hospital of Jinan University, Shenzhen 518048, China
| | - Ting Li
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ruiping Peng
- Department of Ophthalmology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhaotian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shiyi Wen
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Li Zhou
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Clinical Immunology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Heying Ai
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yan Lu
- Department of Clinical Immunology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shaochong Zhang
- Department of Fundus, Shenzhen Eye Hospital of Jinan University, Shenzhen 518048, China
| | - Guojun Shi
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanming Chen
- Department of Endocrinology and Metabolic Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
50
|
Yu L, Gao F, Li Y, Su D, Han L, Li Y, Zhang X, Feng Z. Role of pattern recognition receptors in the development of MASLD and potential therapeutic applications. Biomed Pharmacother 2024; 175:116724. [PMID: 38761424 DOI: 10.1016/j.biopha.2024.116724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become one of the most prevalent liver diseases worldwide, and its occurrence is strongly associated with obesity, insulin resistance (IR), genetics, and metabolic stress. Ranging from simple fatty liver to metabolic dysfunction-associated steatohepatitis (MASH), even to severe complications such as liver fibrosis and advanced cirrhosis or hepatocellular carcinoma, the underlying mechanisms of MASLD progression are complex and involve multiple cellular mediators and related signaling pathways. Pattern recognition receptors (PRRs) from the innate immune system, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-like receptors (RLRs), and DNA receptors, have been demonstrated to potentially contribute to the pathogenesis for MASLD. Their signaling pathways can induce inflammation, mediate oxidative stress, and affect the gut microbiota balance, ultimately resulting in hepatic steatosis, inflammatory injury and fibrosis. Here we review the available literature regarding the involvement of PRR-associated signals in the pathogenic and clinical features of MASLD, in vitro and in animal models of MASLD. We also discuss the emerging targets from PRRs for drug developments that involved agent therapies intended to arrest or reverse disease progression, thus enabling the refinement of therapeutic targets that can accelerate drug development.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Feifei Gao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Yaoxin Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Dan Su
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Liping Han
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yueming Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Xuehan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan 453000, P.R.China.
| |
Collapse
|