1
|
Wu Y, Zhang Y, Ge L, He S, Zhang Y, Chen D, Nie Y, Zhu M, Pang Q. RTA408 alleviates lipopolysaccharide-induced acute lung injury via inhibiting Bach1-mediated ferroptosis. Int Immunopharmacol 2024; 142:113250. [PMID: 39340988 DOI: 10.1016/j.intimp.2024.113250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The approved traditional Asian medicine RTA408 (Omaveloxolone) has demonstrated potent anti-inflammatory properties in the treatment of Friedreich's ataxia. However, its effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains poorly understood. This study aims to evaluate the effect of RTA408 on LPS-induced ALI and elucidate its underlying mechanisms. In this study, in vivo experiments demonstrated that RTA408 significantly ameliorated LPS-induced mouse ALI, characterized by reduced pathological damage and neutrophil infiltration as well as decreased lung edema of murine lung tissues. Moreover, LPS administration induced ferroptosis in ALI mice, evidenced by increased MDA levels, reduced GSH and SOD activity, and decreased expression of ferroptosis repressors (GPX4 and SLC7A11), whereas RTA408 reversed these changes. Consistently, RTA408 reduced ferroptosis and improved cell damage in LPS-stimulated MLE-12 cells, as evidenced by decreased ROS and MDA levels, increased SOD, GSH activity and ferroptosis repressors expression. Meanwhile, the protective effective of RTA408 on LPS-induced oxidative damage was blocked by ferroptosis inhibitor ferrostatin-1 (Fer-1). Mechanistic studies demonstrated that RTA408 inhibited the expression and nuclear translocation of Bach1, and the anti-ferroptosis effect was diminished by Bach1 siRNA or Bach1 knockout (Bach1-/-) mice. Furthermore, Bach1-/- mice exhibited attenuated ALI induced by LPS compared to wild-type (WT) mice, and the protective effect of RTA408 on LPS-challenged ALI was not observed in Bach1-/- mice. In conclusion, our data suggested that RTA408 alleviates LPS-induced ALI by interfering Bach1-mediated ferroptosis and might be a novel candidate for LPS-induced ALI/ARDS therapy.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Longlong Ge
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yunjuan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Minmin Zhu
- Department of Anesthesiology and Pain Medicine, Jiangnan University Medical Center, Zhongshan Road 68, Wuxi 214002, Jiangsu Province, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Chen X, Dumbuya JS, Du J, Xue L, Zeng Q. Bovine pulmonary surfactant alleviates inflammation and epithelial cell apoptosis in the early phase of lipopolysaccharide-induced acute lung injury in rats. Biotechnol Genet Eng Rev 2024; 40:4361-4379. [PMID: 37154048 DOI: 10.1080/02648725.2023.2210452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
We investigate the impact of bovine pulmonary surfactant (PS) on LPS-induced ALI in vitro and in vivo to improve recognition and prevent mortality in sepsis-induced ALI. Primary alveolar type II (AT2) cells were treated with LPS alone or in combination with PS. Cell morphology observation, CCK-8 proliferation assay, flow cytometry apoptosis assay, and ELISA for inflammatory cytokine levels were performed at different time points after treatment. An LPS-induced ALI rat model was established and treated with vehicle or PS. Lung wet/dry weight ratio, histopathological changes, lung function parameters, and serum inflammatory cytokine levels were examined 6 h after PS treatment. Survival analysis by Kaplan-Meier method. RNA sequencing was conducted to identify LPS-induced differentially expressed genes in rat lungs. Proapoptotic gene expression in rat lungs was determined by Western blot. LPS significantly inhibited cell proliferation while promoting apoptosis of AT2 cells starting 2 h after treatment, accompanied by a significant increase in inflammatory cytokine production; PS reversed these effects. PS decreased the lung wet/dry ratio in septic rats, histological abnormalities, alterations in lung function parameters, and inflammatory cytokines production; while improving the overall survival of rats. LPS-induced differentially expressed genes were closely associated with apoptosis. PS attenuated LPS-induced upregulation of proapoptotic gene expression starting 2 h after treatment in AT2 cells while restoring lung ATPase activity in vivo. Bovine PS alleviates LPS-induced ALI in the early phase, possibly by suppressing inflammation and AT2 cell apoptosis, as a preemptive therapeutic agent for managing sepsis-induced ALI.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Du
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijun Xue
- Department of neonatology, Songgang People's Hospital, Shenzhen, China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Ren B, Su H, Bao C, Xu H, Xiao Y. Noncoding RNAs in chronic obstructive pulmonary disease: From pathogenesis to therapeutic targets. Noncoding RNA Res 2024; 9:1111-1119. [PMID: 39022682 PMCID: PMC11254503 DOI: 10.1016/j.ncrna.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent chronic respiratory disorder that is becoming the leading cause of morbidity and mortality on a global scale. There is an unmet need to investigate the underlying pathophysiological mechanisms and unlock novel therapeutic avenues for COPD. Recent research has shed light on the significant roles played by diverse noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), in orchestrating the development and progression of COPD. This review provides an overview of the regulatory roles of ncRNAs in COPD, elucidating their underlying mechanisms, and illuminating the potential prospects of RNA-based therapeutics in the management of COPD.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Hua Su
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Chang Bao
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hangdi Xu
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Ying Xiao
- Central Lab of Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| |
Collapse
|
4
|
Sheng Y, Zheng X, Li L, He H, Wu W, Lu Y. Ionic co-aggregates based intravenous drug delivery: Evaluation on kinetics and distribution of the drug payloads and nanocarriers. Int J Pharm 2024; 665:124657. [PMID: 39226987 DOI: 10.1016/j.ijpharm.2024.124657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Surfactants are crucial in formulating poorly soluble drugs but lead to serious side effects due to PEG chains. Novel supra-amphiphiles consisting of fatty acids and choline are developed, which spontaneously form ionic co-aggregates (ICAs) in water and exhibit strong solubilizing capacity. Paclitaxel (PTX) is adopted as a model drug here to evaluate the feasibility of choline oleate-based ICAs in the intravenous delivery of poorly soluble drugs by comparing the kinetics and distribution of payloads and nanocarriers. Choline oleate presents a maximum 10-fold enhancement in solubilizing capacity to PTX than Cremophor EL (CreEL), enabling a one-tenth use level in the formulation. Aggregation-caused quenching probes are utilized to evaluate the kinetics and biodistribution of ICAs or CreEL-based micelles (MCs). A huge gap is found between the pharmacokinetic and particokinetic curves of either nanocarrier, indicating fast leakage. ICAs lead to faster PTX leakage in blood circulation but higher PTX distribution to organs than MCs. MCs present a longer circulation in blood but a slower distribution to organs than ICAs. ICAs do not arise adverse reactions in rats following repeated injections, while MCs cause pathological changes in varying degrees. In conclusion, choline oleate-based ICAs provide an alternative to surfactants in formulating poorly soluble drugs.
Collapse
Affiliation(s)
- Yuze Sheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xianzi Zheng
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Li
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haisheng He
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| | - Yi Lu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
5
|
Xu R, Xia C, He X, Hu C, Li Y, Zhang Y, Chen Z. siRNA Nanoparticle Dry Powder Formulation with High Transfection Efficiency and Pulmonary Deposition for Acute Lung Injury Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54344-54358. [PMID: 39325628 DOI: 10.1021/acsami.4c04241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory syndrome, which was caused by diverse factors. The COVID-19 pandemic has resulted in a higher mortality rate of these conditions. Currently, effective treatments are lacking. Although siRNA nucleotide-based drugs are promising therapeutic approaches, their poor stability and inability to efficiently reach target cells limit their clinical translation. This study identified a peptide from known cell-penetrating peptides that can form an efficient anti-inflammatory complex with TNF-α siRNA, termed SAR6EW/TNF-α siRNA. This complex can effectively transport TNF-α siRNA into the cytoplasm and achieve potent gene silencing in vitro as well as in vivo. By using lactose and triarginine as coexcipients and optimizing the spray-drying process, a powder was produced with micrometer-scale spherical and porous structures, enhancing aerosol release and lung delivery efficiency. The dry powder formulation and process preserve the stability and integrity of the siRNA. When administered intratracheally to ALI model mice, the complex powder demonstrated specific pulmonary gene silencing activity and significantly reduced inflammation symptoms caused by ALI, suggesting a potential strategy for the clinical therapeutic approach of respiratory diseases.
Collapse
Affiliation(s)
- Rui Xu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenjie Xia
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiongxiong He
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Changhui Hu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yinjia Li
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufeng Zhang
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214400, China
| | - Zhipeng Chen
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Zhang L, Chen S, Zheng Z, Lin Y, Wang C, Gong Y, Qin A, Su J, Tang S. Artificial Neutrophil-Mediated CEBPA-saRNA Delivery to Ameliorate ALI/ARDS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51957-51969. [PMID: 39305228 DOI: 10.1021/acsami.4c09022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) still faces great challenges due to uncontrollable inflammation disorders, complicated causes of occurrence, and high mortality. Small-activating RNA (saRNA) has emerged as a novel and powerful gene-activating tool that may be useful in the treatment of ALI/ARDS. However, effective saRNA therapy is still challenged by the lack of effective and safe gene delivery vehicles. In this study, we develop a type of artificial neutrophil that is used to deliver saRNAs for ALI/ARDS treatment. The saRNA targeting CCAAT-enhancer binding protein α (CEBPA-saRNA) is complexed with H1 histone and further camouflaged with neutrophil membranes (NHR). Interestingly, we are the first to find that the H1 histone possesses the most effective binding capability to saRNA, compared to other subtypes. The prepared NHR shows excellent physicochemical properties, effective cellular uptake by the inflammatory M1 macrophages, and efficient activation of CEBPA, leading to significant M2 polarization. NHR shows an extended circulation lifetime and high-level accumulation in the inflamed lungs. The in vivo experiments indicate that NHR ameliorates ALI in a mouse model. This type of artificial neutrophil shows powerful inflammatory inhibition both in vitro and in vivo, which opens a new avenue for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Lingmin Zhang
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Sheng Chen
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - ZhouYikang Zheng
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinshan Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingjie Gong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianfen Su
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
| |
Collapse
|
7
|
Li J, Foged C. Evaluating the breadth of nucleic acid-based payloads delivered in lipid nanoparticles to establish fundamental differences in development. Expert Opin Drug Deliv 2024; 21:1441-1461. [PMID: 39387233 DOI: 10.1080/17425247.2024.2409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Nucleic acid (NA)-based therapeutics have shown great potential for downregulating or augmenting gene expression, and for promising applications, e.g., protein-replacement therapy and vaccination, a comprehensive understanding of the requirements for their targeted delivery to specific tissues or cells is needed. AREAS COVERED In this review, we discuss clinical applications of four representative types of NA-based therapeutics, i.e. antisense oligonucleotides, small interfering RNA, messenger RNA, and circular RNA, with a focus on the lipid nanoparticle (LNP) technology used for intracellular delivery. The in vivo fate of LNPs is discussed to improve the understanding of trafficking of nanomedicines at the systemic and cellular levels. In addition, NA-based vaccines are discussed, focusing on targeting antigen-presenting cells and immune activation. EXPERT OPINION Optimization of delivery systems for NA-based therapeutics is mainly focused on the standard requirements of prolonged systemic circulation and enhancing endosomal escape. Depending on the final destination in specific target tissues or cells, strategies should be adjusted to achieve the desired biodistribution of NA-based payloads. More studies relating to the pharmacokinetics of both cargo and carrier are encouraged, because their in vivo fates may differ, considering the possibility of premature cargo release before reaching the target.
Collapse
Affiliation(s)
- Jinjin Li
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
8
|
Xiong L, Liu Y, Wang Y, Zhao H, Song X, Fan W, Zhang L, Zhang Y. The protective effect of Lonicera japonica Thunb. against lipopolysaccharide-induced acute lung injury in mice: Modulation of inflammation, oxidative stress, and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118333. [PMID: 38750986 DOI: 10.1016/j.jep.2024.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various components of Lonicera japonica Thunb. (LJT) exhibit pharmacological activities, including anti-inflammatory and antioxidant effects. Nevertheless, the relationship between LJT and ferroptosis remains largely unexplored. AIM OF THE STUDY The purpose of this research was to look into the role of LJT in regulating LPS-induced ferroptosis in ALI and to compare the effects of different parts of LJT. MATERIALS AND METHODS We established a mice ALI model by treating with LPS. Administered mice with different doses of Lonicerae Japonicae Flos (LJF), Lonicera Japonica Leaves (LJL) and Lonicerae Caulis (LRC) extracts, respectively. The levels of IL-6, IL-1β, TNF-α, IL-4, IL-10, and PGE2 in bronchoalveolar lavage fluid (BALF) were measured using enzyme-linked immunosorbent assay. Furthermore, the concentrations of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), and total ferrous ions (Fe2+) in lung tissues were evaluated. Hematoxylin and eosin staining was conducted to examine the morphological structure of lung tissues. Transmission electron microscopy was used to investigate the ultrastructural morphology of mitochondria. Furthermore, the effects of LJT were evaluated via immunohistochemical staining, western blotting, and quantitative real-time polymerase chain reaction analyses. Finally, employing molecular docking and molecular dynamics research techniques, we aimed to identify crucial components in LJT that might inhibit ferroptosis by targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase 4 (GPX4). RESULTS We observed that pretreatment with LJT significantly mitigated LPS-induced lung injury and suppressed ferroptosis. This was supported by reduced accumulation of pro-inflammatory cytokines, ROS, MDA, and Fe2+, along with increased levels of anti-inflammatory cytokines, SOD, GSH, Nrf2, and GPX4 in the lung tissues of ALI mice. Luteolin-7-O-rutinoside, apigenin-7-O-rutinoside, and amentoflavone in LJT exhibit excellent docking effects with key targets of ferroptosis, Nrf2 and GPX4. CONCLUSIONS Pretreatment with LJT may alleviate LPS-induced ALI, possibly by suppressing ferroptosis. Our initial results indicate that LJT activates the Nrf2/GPX4 axis, providing protection against ferroptosis in ALI. This finding offers a promising therapeutic candidate for ALI treatment.
Collapse
Affiliation(s)
- Lewen Xiong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongwei Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaochen Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenjing Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Longfei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
9
|
Zhuang C, Kang M, Oh J, Lee M. Pulmonary delivery of cell membrane-derived nanovesicles carrying anti-miRNA155 oligonucleotides ameliorates LPS-induced acute lung injury. Regen Biomater 2024; 11:rbae092. [PMID: 39220743 PMCID: PMC11364520 DOI: 10.1093/rb/rbae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Acute lung injury (ALI) is a devastating inflammatory disease. MicroRNA155 (miR155) in alveolar macrophages and lung epithelial cells enhances inflammatory reactions by inhibiting the suppressor of cytokine signaling 1 (SOCS1) in ALI. Anti-miR155 oligonucleotide (AMO155) have been suggested as a potential therapeutic reagent for ALI. However, a safe and efficient carrier is required for delivery of AMO155 into the lungs for ALI therapy. In this study, cell membrane-derived nanovesicles (CMNVs) were produced from cell membranes of LA4 mouse lung epithelial cells and evaluated as a carrier of AMO155 into the lungs. For preparation of CMNVs, cell membranes were isolated from LA4 cells and CMNVs were produced by extrusion. Cholesterol-conjugated AMO155 (AMO155c) was loaded into CMNVs and extracellular vesicles (EVs) by sonication. The physical characterization indicated that CMNVs with AMO155c (AMO155c/CMNV) were membrane-structured vesicles with a size of ∼120 nm. The delivery efficiency and therapeutic efficacy of CMNVs were compared with those of EVs or polyethylenimine (25 kDa, PEI25k). The delivery efficiency of AMO155c by CMNVs was similar to that by EVs. As a result, the miR155 levels were reduced by AMO155c/CMNV and AMO155c/EV. AMO155c/CMNV were administered intratracheally into the ALI models. The SOCS1 levels were increased more efficiently by AMO155c/CMNV than by the others, suggesting that miR155 effectively was inhibited by AMO155c/CMNV. In addition, the inflammatory cytokines were reduced more effectively by AMO155c/CMNV than they were by AMO155c/EV and AMO155c/PEI25k, reducing inflammation reactions. The results suggest that CMNVs are a useful carrier of AMO155c in the treatment of ALI.
Collapse
Affiliation(s)
- Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Jihun Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04173, Republic of Korea
| |
Collapse
|
10
|
He H, Zhang W, Jiang L, Tong X, Zheng Y, Xia Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024; 14:980. [PMID: 39199368 PMCID: PMC11352357 DOI: 10.3390/biom14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is recognized as a syndrome of systemic inflammatory reaction induced by dysregulation of the body's immunity against infection. The multiple organ dysfunction associated with sepsis is a serious threat to the patient's life. Endothelial cell dysfunction has been extensively studied in sepsis. However, the role of macrophages in sepsis is not well understood and the intrinsic link between the two cells has not been elucidated. Macrophages are first-line cells of the immune response, whereas endothelial cells are a class of cells that are highly altered in function and morphology. In sepsis, various cytokines secreted by macrophages and endothelial cell dysfunction are inextricably linked. Therefore, investigating how macrophages affect endothelial cells could offer a theoretical foundation for the treatment of sepsis. This review links molecules (TNF-α, CCL2, ROS, VEGF, MMP-9, and NO) secreted by macrophages under inflammatory conditions to endothelial cell dysfunction (adhesion, permeability, and coagulability), refining the pathophysiologic mechanisms of sepsis. At the same time, multiple approaches (a variety of miRNA and medicines) regulating macrophage polarization are also summarized, providing new insights into reversing endothelial cell dysfunction and improving the outcome of sepsis treatment.
Collapse
Affiliation(s)
- Heng He
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
11
|
Yang F, Cheng MH, Pan HF, Gao J. Progranulin: A promising biomarker and therapeutic target for fibrotic diseases. Acta Pharm Sin B 2024; 14:3312-3326. [PMID: 39220875 PMCID: PMC11365408 DOI: 10.1016/j.apsb.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Progranulin (PGRN), a multifunctional growth factor-like protein expressed by a variety of cell types, serves an important function in the physiologic and pathologic processes of fibrotic diseases, including wound healing and the inflammatory response. PGRN was discovered to inhibit pro-inflammation effect by competing with tumor necrosis factor-alpha (TNF-α) binding to TNF receptors. Notably, excessive tissue repair in the development of inflammation causes tissue fibrosis. Previous investigations have indicated the significance of PGRN in regulating inflammatory responses. Recently, multiple studies have shown that PGRN was linked to fibrogenesis, and was considered to monitor the formation of fibrosis in multiple organs, including liver, cardiovascular, lung and skin. This paper is a comprehensive review summarizing our current knowledge of PGRN, from its discovery to the role in fibrosis. This is followed by an in-depth look at the characteristics of PGRN, consisting of its structure, basic function and intracellular signaling. Finally, we will discuss the potential of PGRN in the diagnosis and treatment of fibrosis.
Collapse
Affiliation(s)
- Fan Yang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
- Department of Ophthalmology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230022, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230022, China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200000, China
| |
Collapse
|
12
|
Vaidya A, Moore S, Chatterjee S, Guerrero E, Kim M, Farbiak L, Dilliard SA, Siegwart DJ. Expanding RNAi to Kidneys, Lungs, and Spleen via Selective ORgan Targeting (SORT) siRNA Lipid Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313791. [PMID: 38973655 DOI: 10.1002/adma.202313791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Inhibition of disease-causing mutations using RNA interference (RNAi) has resulted in clinically approved medicines with additional candidates in late stage trials. However, targetable tissues currently in preclinical development are limited to liver following systemic intravenous (IV) administration because predictable delivery of siRNA to non-liver tissues remains an unsolved challenge. Here, evidence of durable extrahepatic gene silencing enabled by siRNA Selective ORgan Targeting lipid nanoparticles (siRNA SORT LNPs) to the kidneys, lungs, and spleen is provided. LNPs excel at dose-dependent silencing of tissue-enriched endogenous targets resulting in 60%-80% maximal knockdown after a single IV injection and up to 88% downregulation of protein expression in mouse lungs after two doses. To examine knockdown potency and unbiased organ targeting, B6.129TdTom/EGFP mice that constitutively express the TdTomato transgene across all cell types are utilized to demonstrate 58%, 45%, and 15% reduction in TdTomato fluorescence in lungs, spleen, and kidneys, respectively. Finally, physiological relevance of siRNA SORT LNP-mediated gene silencing is established via acute suppression of endogenous Tie2 which induces lung-specific phenotypic alteration of vascular endothelial barrier. Due to plethora of extrahepatic diseases that may benefit from RNAi interventions, it is anticipated that the findings will expand preclinical landscape of therapeutic targets beyond the liver.
Collapse
Affiliation(s)
- Amogh Vaidya
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Stephen Moore
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Erick Guerrero
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Lukas Farbiak
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Sean A Dilliard
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| |
Collapse
|
13
|
Yan C, Lv H, Feng Y, Li Y, Zhao Z. Inhalable nanoparticles with enhanced cuproptosis and cGAS-STING activation for synergistic lung metastasis immunotherapy. Acta Pharm Sin B 2024; 14:3697-3710. [PMID: 39220876 PMCID: PMC11365430 DOI: 10.1016/j.apsb.2024.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 09/04/2024] Open
Abstract
Due to the insufficient Cu+ accumulation, Cu+ efflux mechanism, and highly immunosuppressive tumor microenvironment (TME) in lung metastasis, the cuproptosis efficacy is limited. Herein, an inhalable nanodevice (CLDCu) is constructed to successfully overcome the drawbacks of cuproptosis. CLDCu consists of a Cu2+-chitosan shell and low molecular weight heparin-tocopherol succinate (LMWH-TOS, LT) core with disulfiram (DSF) loading. The prepared CLDCu can be inhaled and accumulate in large amounts in lung lesions (63.6%) with 56.5 times higher than intravenous injection. Within tumor cells, the mild acidity triggers the co-release of DSF and Cu2+, thus generating bis(diethyldithiocarbamate)-copper (CuET) to block Cu+ efflux protein ATP7B and forming toxic Cu+, leading to enhanced cuproptosis. Meanwhile, the released chitosan cooperates with CLDCu-induced cuproptosis to activate stimulator of interferon genes (STING) pathway, which significantly potentiates dendritic cells (DCs) maturation, as wells as evokes innate and adaptive immunity. In lung metastatic mice model, CLDCu is found to induce cuproptosis and reverse the immunosuppressive TME by inhalation administration. Moreover, CLDCu combined with anti-programmed cell death protein ligand-1 antibody (aPD-L1) provokes stronger antitumor immunity. Therefore, nanomedicine that combines cuproptosis with STING activation is a novel strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huaiyou Lv
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Department of Pharmacy, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264001, China
| | - Yafei Feng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuhan Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheelloo College of Medicine, Shandong University, Jinan 250012, China
- Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Liang L, Peng W, Qin A, Zhang J, Chen R, Zhou D, Zhang X, Zhou N, Yu XY, Zhang L. Intracellularly Synthesized Artificial Exosome Treats Acute Lung Injury. ACS NANO 2024. [PMID: 39087239 DOI: 10.1021/acsnano.4c01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), induce high morbidity and mortality rates, which challenge the present approaches for the treatment of ALI/ARDS. The clinically used photosensitizer verteporfin (VER) exhibits great potential in the treatment of acute lung injury and acute respiratory distress syndrome (ALI/ARDS) by regulating macrophage polarization and reducing inflammation. Nevertheless, its hydrophobic characteristics, nonspecificity, and constrained bioavailability hinder its therapeutic efficacy. In this work, we developed a type of VER-cored artificial exosome (EVM), which was produced by using mesoporous silica nanoparticles (MSNs) to load VER, followed by the exocytosis of internalized VER-MSNs from mouse bone marrow-derived mesenchymal stem cells (mBMSCs) without further modification. Both in vitro and in vivo assessments confirmed the powerful anti-inflammation induced by EVM. EVM also showed significant higher accumulation to inflammatory lungs compared with healthy ones, which was beneficial to the treatment of ALI/ARDS. EVM improved pulmonary function, attenuated lung injury, and reduced mortality in ALI mice with high levels of biocompatibility, exhibiting a 5-fold higher survival rate than the control. This type of artificial exosome emitted near-infrared light in the presence of laser activation, which endowed EVM with trackable ability both in vitro and in vivo. Our work developed a type of clinically used photosensitizer-loaded artificial exosome with membrane integrity and traceability. To the best of our knowledge, this kind of intracellularly synthesized artificial exosome was developed and showed great potential in ALI/ARDS therapy.
Collapse
Affiliation(s)
- Lu Liang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Weijie Peng
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Aiping Qin
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Jiandong Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Rongqi Chen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Dazhi Zhou
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Xin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Na Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, P.R. China
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Lingmin Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA, and the State Key Laboratory of Respiratory Disease, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P.R. China
| |
Collapse
|
15
|
Silva AC, Costa MP, Zacaron TM, Ferreira KCB, Braz WR, Fabri RL, Frézard FJG, Pittella F, Tavares GD. The Role of Inhaled Chitosan-Based Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:969. [PMID: 39204314 PMCID: PMC11359377 DOI: 10.3390/pharmaceutics16080969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, largely due to the limited efficacy of anticancer drugs, which is primarily attributed to insufficient doses reaching the lungs. Additionally, patients undergoing treatment experience severe systemic adverse effects due to the distribution of anticancer drugs to non-targeted sites. In light of these challenges, there has been a growing interest in pulmonary administration of drugs for the treatment of lung cancer. This route allows drugs to be delivered directly to the lungs, resulting in high local concentrations that can enhance antitumor efficacy while mitigating systemic toxic effects. However, pulmonary administration poses the challenge of overcoming the mechanical, chemical, and immunological defenses of the respiratory tract that prevent the inhaled drug from properly penetrating the lungs. To overcome these drawbacks, the use of nanoparticles in inhaler formulations may be a promising strategy. Nanoparticles can assist in minimizing drug clearance, increasing penetration into the lung epithelium, and enhancing cellular uptake. They can also facilitate increased drug stability, promote controlled drug release, and delivery to target sites, such as the tumor environment. Among them, chitosan-based nanoparticles demonstrate advantages over other polymeric nanocarriers due to their unique biological properties, including antitumor activity and mucoadhesive capacity. These properties have the potential to enhance the efficacy of the drug when administered via the pulmonary route. In view of the above, this paper provides an overview of the research conducted on the delivery of anticancer drug-loaded chitosan-based nanoparticles incorporated into inhaled drug delivery devices for the treatment of lung cancer. Furthermore, the article addresses the use of emerging technologies, such as siRNA (small interfering RNA), in the context of lung cancer therapy. Particularly, recent studies employing chitosan-based nanoparticles for siRNA delivery via the pulmonary route are described.
Collapse
Affiliation(s)
- Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Kézia Cristine Barbosa Ferreira
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Wilson Rodrigues Braz
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Frédéric Jean Georges Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (A.C.S.); (M.P.C.); (T.M.Z.); (K.C.B.F.); (W.R.B.); (R.L.F.); (F.P.)
- Department of Pharmaceutical Science, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil
| |
Collapse
|
16
|
Zhu W, Zhang Q, Jin L, Lou S, Ye J, Cui Y, Xiong Y, Lin M, Liang G, Luo W, Zhuang Z. OTUD1 Deficiency Alleviates LPS-Induced Acute Lung Injury in Mice by Reducing Inflammatory Response. Inflammation 2024:10.1007/s10753-024-02074-7. [PMID: 39037666 DOI: 10.1007/s10753-024-02074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024]
Abstract
The ovarian tumor (OTU) family consists of deubiquitinating enzymes thought to play a crucial role in immunity. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) pose substantial clinical challenges due to severe respiratory complications and high mortality resulting from uncontrolled inflammation. Despite this, no study has explored the potential link between the OTU family and ALI/ARDS. Using publicly available high-throughput data, 14 OTUs were screened in a simulating bacteria- or LPS-induced ALI model. Subsequently, gene knockout mice and transcriptome sequencing were employed to explore the roles and mechanisms of the selected OTUs in ALI. Our screen identified OTUD1 in the OTU family as a deubiquitinase highly related to ALI. In the LPS-induced ALI model, deficiency of OTUD1 significantly ameliorated pulmonary edema, reduced permeability damage, and decreased lung immunocyte infiltration. Furthermore, RNA-seq analysis revealed that OTUD1 deficiency inhibited key pathways, including the IFN-γ/STAT1 and TNF-α/NF-κB axes, ultimately mitigating the severity of immune responses in ALI. In summary, our study highlights OTUD1 as a critical immunomodulatory factor in acute inflammation. These findings suggest that targeting OTUD1 could hold promise for the development of novel treatments against ALI/ARDS.
Collapse
Affiliation(s)
- Weiwei Zhu
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianhui Zhang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Leiming Jin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuaijie Lou
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiaxi Ye
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yaqian Cui
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yongqiang Xiong
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengsha Lin
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China
| | - Guang Liang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399, China.
| | - Wu Luo
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
- Department of Cardiology and Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zaishou Zhuang
- Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
17
|
Yu HP, Liu FC, Chung YK, Alalaiwe A, Sung CT, Fang JY. Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries. Theranostics 2024; 14:4411-4437. [PMID: 39113804 PMCID: PMC11303080 DOI: 10.7150/thno.98487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In recent years, gene therapy has been made possible with the success of nucleic acid drugs against sepsis and its related organ dysfunction. Therapeutics based on nucleic acids such as small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), and plasmid DNAs (pDNAs) guarantee to treat previously undruggable diseases. The advantage of nucleic acid-based therapy against sepsis lies in the development of nanocarriers, achieving targeted and controlled gene delivery for improved efficacy with minimal adverse effects. Entrapment into nanocarriers also ameliorates the poor cellular uptake of naked nucleic acids. In this study, we discuss the current state of the art in nanoparticles for nucleic acid delivery to treat hyperinflammation and apoptosis associated with sepsis. The optimized design of the nanoparticles through physicochemical property modification and ligand conjugation can target specific organs-such as lung, heart, kidney, and liver-to mitigate multiple sepsis-associated organ injuries. This review highlights the nanomaterials designed for fabricating the anti-sepsis nanosystems, their physicochemical characterization, the mechanisms of nucleic acid-based therapy in working against sepsis, and the potential for promoting the therapeutic efficiency of the nucleic acids. The current investigations associated with nanoparticulate nucleic acid application in sepsis management are summarized in this paper. Noteworthily, the potential application of nanotherapeutic nucleic acids allows for a novel strategy to treat sepsis. Further clinical studies are required to confirm the findings in cell- and animal-based experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for commercialization. It is expected that numerous anti-sepsis possibilities will be investigated for nucleic acid-based nanotherapeutics in the future.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yu-Kuo Chung
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Calvin T. Sung
- Department of Dermatology, University of California, Irvine, United States
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
18
|
Zou Y, Wang X, Chen P, Zheng Z, Li X, Chen Z, Guo M, Zhou Y, Sun C, Wang R, Zhu W, Zheng P, Cho WJ, Cho YC, Liang G, Tang Q. Fragment-Based Anti-inflammatory Agent Design and Target Identification: Discovery of AF-45 as an IRAK4 Inhibitor to Treat Ulcerative Colitis and Acute Lung Injury. J Med Chem 2024; 67:10687-10709. [PMID: 38913701 DOI: 10.1021/acs.jmedchem.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
UC and ALI are inflammatory diseases with limited treatment in the clinic. Herein, fragment-based anti-inflammatory agent designs were carried out deriving from cyclohexylamine/cyclobutylamine and several fragments from anti-inflammatory agents in our lab. AF-45 (IC50 = 0.53/0.60 μM on IL-6/TNF-α in THP-1 macrophages) was identified as the optimal molecule using ELISA and MTT assays from the 33 synthesized compounds. Through mechanistic studies and a systematic target search process, AF-45 was found to block the NF-κB/MAPK pathway and target IRAK4, a promising target for inflammation and autoimmune diseases. The selectivity of AF-45 targeting IRAK4 was validated by comparing its effects on other kinase/nonkinase proteins. In vivo, AF-45 exhibited a good therapeutic effect on UC and ALI, and favorable PK proprieties. Since there are currently no clinical or preclinical trials for IRAK4 inhibitors to treat UC and ALI, AF-45 provides a new lead compound or candidate targeting IRAK4 for the treatment of these diseases.
Collapse
Affiliation(s)
- Yu Zou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Xiemin Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Zhichao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Mi Guo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Chenhui Sun
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| | - Ran Wang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, China
| |
Collapse
|
19
|
Li Z, Liu J, Song J, Yin Z, Zhou F, Shen H, Wang G, Su J. Multifunctional hydrogel-based engineered extracellular vesicles delivery for complicated wound healing. Theranostics 2024; 14:4198-4217. [PMID: 39113809 PMCID: PMC11303081 DOI: 10.7150/thno.97317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
The utilization of extracellular vesicles (EVs) in wound healing has been well-documented. However, the direct administration of free EVs via subcutaneous injection at wound sites may result in the rapid dissipation of bioactive components and diminished therapeutic efficacy. Functionalized hydrogels provide effective protection, as well as ensure the sustained release and bioactivity of EVs during the wound healing process, making them an ideal candidate material for delivering EVs. In this review, we introduce the mechanisms by which EVs accelerate wound healing, and then elaborate on the construction strategies for engineered EVs. Subsequently, we discuss the synthesis strategies and application of hydrogels as delivery systems for the sustained release of EVs to enhance complicated wound healing. Furthermore, in the face of complicated wounds, functionalized hydrogels with specific wound microenvironment regulation capabilities, such as antimicrobial, anti-inflammatory, and immune regulation, used for loading engineered EVs, provide potential approaches to addressing these healing challenges. Ultimately, we deliberate on potential future trajectories and outlooks, offering a fresh viewpoint on the advancement of artificial intelligence (AI)-energized materials and 3D bio-printed multifunctional hydrogel-based engineered EVs delivery dressings for biomedical applications.
Collapse
Affiliation(s)
- Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jinlong Liu
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jian Song
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Fengjin Zhou
- Xi'an Honghui Hospital, Xi'an Orthopedic Research Institute, Shaanxi, China
| | - Hao Shen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
20
|
Liu Q, Zhu X, Guo S. From pancreas to lungs: The role of immune cells in severe acute pancreatitis and acute lung injury. Immun Inflamm Dis 2024; 12:e1351. [PMID: 39023414 PMCID: PMC11256889 DOI: 10.1002/iid3.1351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is a potentially lethal inflammatory pancreatitis condition that is usually linked to multiple organ failure. When it comes to SAP, the lung is the main organ that is frequently involved. Many SAP patients experience respiratory failure following an acute lung injury (ALI). Clinicians provide insufficient care for compounded ALI since the underlying pathophysiology is unknown. The mortality rate of SAP patients is severely impacted by it. OBJECTIVE The study aims to provide insight into immune cells, specifically their roles and modifications during SAP and ALI, through a comprehensive literature review. The emphasis is on immune cells as a therapeutic approach for treating SAP and ALI. FINDINGS Immune cells play an important role in the complicated pathophysiology ofSAP and ALI by maintaining the right balance of pro- and anti-inflammatory responses. Immunomodulatory drugs now in the market have low thepeutic efficacy because they selectively target one immune cell while ignoring immune cell interactions. Accurate management of dysregulated immune responses is necessary. A critical initial step is precisely characterizing the activity of the immune cells during SAP and ALI. CONCLUSION Given the increasing incidence of SAP, immunotherapy is emerging as a potential treatment option for these patients. Interactions among immune cells improve our understanding of the intricacy of concurrent ALI in SAP patients. Acquiring expertise in these domains will stimulate the development of innovative immunomodulation therapies that will improve the outlook for patients with SAP and ALI.
Collapse
Affiliation(s)
- Qi Liu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijingChina
| |
Collapse
|
21
|
Wang Z, Wu T, Hu H, Alabed AAA, Cui G, Sun L, Sun Z, Wang Y, Li P. Plasma exosomes carrying mmu-miR-146a-5p and Notch signalling pathway-mediated synaptic activity in schizophrenia. J Psychiatry Neurosci 2024; 49:E265-E281. [PMID: 39209459 PMCID: PMC11374447 DOI: 10.1503/jpn.230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/13/2024] [Accepted: 05/25/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Schizophrenia is characterized by a complex interplay of genetic and environmental factors, leading to alterations in various molecular pathways that may contribute to its pathogenesis. Recent studies have shown that exosomal microRNAs could play essential roles in various brain disorders; thus, we sought to explore the potential molecular mechanisms through which microRNAs in plasma exosomes are involved in schizophrenia. METHODS We obtained sequencing data sets (SUB12404730, SUB12422862, and SUB12421357) and transcriptome sequencing data sets (GSE111708, GSE108925, and GSE18981) from mouse models of schizophrenia using the Sequence Read Archive and the Gene Expression Omnibus databases, respectively. We performed differential expression analysis on mRNA to identify differentially expressed genes. We conducted Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to determine differentially expressed genes. Subsequently, we determined the intersection of differentially expressed microRNAs in plasma exosomes and in prefrontal cortex tissue. We retrieved downstream target genes of mmu-miR-146a-5p from TargetScan and used Cytoscape to visualize and map the microRNA-target gene regulatory network. We conducted in vivo experiments using MK-801-induced mouse schizophrenia models and in vitro experiments using cultured mouse neurons. The role of plasma exosomal miR-146a-5p in schizophrenia was validated using a cell counting kit, detection of lactate dehydrogenase, dual-luciferase assay, quantitative reverse transcription polymerase chain reaction, and Western blot analysis. RESULTS Differential genes were mainly enriched in synaptic regulation-related functions and pathways and were associated with neuronal degeneration. We found that mmu-miR-146a-5p was highly expressed in both prefrontal cortical tissue and plasma exosomes, which may be transferred to lobe cortical vertebral neurons, leading to the synergistic dysregulation of gene network functions and, therefore, promoting schizophrenia development. We found that mmu-miR-146a-5p may inhibit the Notch signalling pathway-mediated synaptic activity of mouse pyramidal neurons in the lobe cortex by targeting NOTCH1, which in turn could promote the onset and development of schizophrenia in mice. LIMITATIONS The study's findings are based on animal models and in vitro experiments, which may not fully replicate the complexity of human schizophrenia. CONCLUSION Our findings suggest that mmu-miR-146a-5p in plasma-derived exosomes may play an important role in the pathogenesis of schizophrenia. Our results provide new insights into the underlying molecular mechanisms of the disease.
Collapse
Affiliation(s)
- Zhichao Wang
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Tong Wu
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Houjia Hu
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Alabed Ali A Alabed
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Guangcheng Cui
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Lei Sun
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Zhenghai Sun
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Yuchen Wang
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| | - Ping Li
- From the Departments of Academic Research, Qiqihar Medical University, Qiqihar, PR China (Z. Wang); the School of Basic Medical Sciences, Nanchang University, Nanchang, PR China (Hu); the Community Medicine Department, Faculty of Medicine, Lincoln University College, Malaysia (Alabed); the Department of Psychology, Qiqihar Medical University, Qiqihar, PR China (Wu, Cui, L. Sun, Z. Sun)
| |
Collapse
|
22
|
Alwani S, Wasan EK, Badea I. Solid Lipid Nanoparticles for Pulmonary Delivery of Biopharmaceuticals: A Review of Opportunities, Challenges, and Delivery Applications. Mol Pharm 2024; 21:3084-3102. [PMID: 38828798 DOI: 10.1021/acs.molpharmaceut.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biopharmaceuticals such as nucleic acids, proteins, and peptides constitute a new array of treatment modalities for chronic ailments. Invasive routes remain the mainstay of administering biopharmaceuticals due to their labile nature in the biological environment. However, it is not preferred for long-term therapy due to the lack of patient adherence and clinical suitability. Therefore, alternative routes of administration are sought to utilize novel biopharmaceutical therapies to their utmost potential. Nanoparticle-mediated pulmonary delivery of biologics can facilitate both local and systemic disorders. Solid lipid nanoparticles (SLNs) afford many opportunities as pulmonary carriers due to their physicochemical stability and ability to incorporate both hydrophilic and hydrophobic moieties, thus allowing novel combinatorial drug/gene therapies. These applications include pulmonary infections, lung cancer, and cystic fibrosis, while systemic delivery of biomolecules, like insulin, is also attractive for the treatment of chronic ailments. This Review explores physiological and particle-associated factors affecting pulmonary delivery of biopharmaceuticals. It compares the advantages and limitations of SLNs as pulmonary nanocarriers along with design improvements underway to overcome these limitations. Current research illustrating various SLN designs to deliver proteins, peptides, plasmids, oligonucleotides, siRNA, and mRNA is also summarized.
Collapse
Affiliation(s)
- Saniya Alwani
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5 Saskatchewan, Canada
| |
Collapse
|
23
|
Liu Z, Gao J, Ban Y, Wan TT, Song W, Zhao W, Teng Y. Synergistic effect of paeoniflorin combined with luteolin in alleviating Lipopolysaccharides-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118022. [PMID: 38453101 DOI: 10.1016/j.jep.2024.118022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is an acute multifactorial infectious disease caused by trauma, pneumonia, shock and sepsis. Paeoniae Radix Rubra (Paeonia lactiflora Pall. or Paeonia veitchii Lynch, Chishao in Chinese, CS) and Salviae Miltiorrhizae Radix et Rhizoma (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese, DS) are common traditional Chinese medicines (TCMs). CS-DS herb pair has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, appearing in a variety of prescriptions. However, it is still unclear for the effect and active ingredients of the herb pair on ALI. AIM OF THE STUDY The study investigated the effect and active ingredients of CS-DS herb pair and demonstrated the synergistic effect and mechanisms of the active ingredients. MATERIALS AND METHODS Lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage cells and BALB/c mice were used to establish an ALI model to investigate the effect of CS-DS herb pair on ALI. Network pharmacology and molecular docking were used to analyze the active ingredients and potential mechanisms of the herb pair. The synergistic effects and mechanisms of active ingredients on ALI were validated by in vitro and in vivo experiments. RESULTS CS-DS herb pair had a synergistic effect on LPS-induced ALI. Based on the network pharmacology, the compounds paeoniflorin and luteolin were screened. Both paeoniflorin and luteolin had good affinity for NF-κB and MAPK by molecular docking. LPS stimulation of RAW264.7 cells resulted in a significant increase in ROS, NO, TNF-α, IL-6 and IL-1β, while the paeoniflorin combined with luteolin significantly reduced their expressions. In the LPS-induced ALI model, the combination also reduced the expression of inflammatory factors and oxidative stress levels. Furthermore, LPS activated the NF-κB and MAPK signaling pathways, whereas the combination decreased the expression of proteins in both pathways. CONCLUSION CS-DS herb pair alleviated LPS-induced ALI with the active ingredients paeoniflorin and luteolin, which suppressed inflammation and oxidative stress via regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhen Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| | - Junling Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Yuxuan Ban
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Ting Ting Wan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjuan Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Wanshun Zhao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China; National & Local United Engineering Laboratory of TCM Advanced Manufacturing Technology, Tasly Pharmaceutical Group Co. Ltd., Tianjin, China.
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
24
|
Long G, Zhang Q, Yang X, Sun H, Ji C. miR-141-3p attenuates inflammation and oxidative stress-induced pulmonary fibrosis in ARDS via the Keap1/Nrf2/ARE signaling pathway. Immunol Res 2024:10.1007/s12026-024-09503-7. [PMID: 38865000 DOI: 10.1007/s12026-024-09503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
The present research aimed to investigate the effects and mechanisms of microRNA (miR)-141-3p on pulmonary fibrosis of acute respiratory distress syndrome (ARDS). A rat ARDS model was established by the intratracheal drip of 10 mg/kg lipopolysaccharide (LPS). miR-141-3p and Kelch-like ECH-associated protein 1 (Keap1) expression was detected using RT-qPCR assay. Inflammatory factors in bronchoalveolar lavage fluid (BALF) and lung tissues were measured with enzyme-linked immunosorbent assay (ELISA). Lung fibrosis was evaluated using Masson's trichrome staining and hydroxyproline assay kits. Tissue oxidative stress marker levels were assessed by a commercial kit. Protein variations in the EMT pathway and Keap1/nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway were investigated by Western blot analysis. Targeting relationship verified by dual-luciferase reporter assay. The expression of miR-141-3p was significantly upregulated in LPS-induced ARDS rats, while Keap1 was downregulated. Overexpression of miR-141-3p decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, superoxide dismutase (SOD), and glutathione (GSH) while elevating malondialdehyde (MDA) expression in LPS-induced ARDS rats. Elevation of miR-141-3p reduced fibrosis scores, enhanced E-cadherin protein expression, and decreased vimentin and α-SMA protein expression in LPS-induced ARDS rats. This elevation of miR-141-3p also upregulated Nrf2, heme oxygenase-1 (HO-1), and NAD(P)H:quinone oxido-reductase-1 (NQO1) proteins levels. Moreover, Keap1 overexpression reversed the inhibitory effects of miR-141-3p on LPS-triggered inflammation, oxidative stress, and fibrosis. miR-141-3p may attenuate inflammation and oxidative stress-induced pulmonary fibrosis in ARDS via the Keap1/Nrf2/ARE signaling pathway. Our study provides new ideas for the treatment of ARDS.
Collapse
Affiliation(s)
- Guangwen Long
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China.
| | - Qian Zhang
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Xiulin Yang
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Hongpeng Sun
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| | - Chunling Ji
- Department of Emergency, Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Guiyang, 550002, Guizhou, China
| |
Collapse
|
25
|
Hui S, Kan W, Qin S, He P, Zhao J, Li H, Bai J, Wen J, Mou W, Hou M, Wei Z, Lin L, Xiao X, Xu G, Bai Z. Glycyrrhiza uralensis polysaccharides ameliorates cecal ligation and puncture-induced sepsis by inhibiting the cGAS-STING signaling pathway. Front Pharmacol 2024; 15:1374179. [PMID: 38904004 PMCID: PMC11188434 DOI: 10.3389/fphar.2024.1374179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Ethnopharmacological relevance: G. uralensis Fisch. (Glycyrrhiza uralensis) is an ancient and widely used traditional Chinese medicine with good efficacy in clearing heat and detoxifying action. Studies suggest that Glycyrrhiza Uralensis Polysaccharides (GUP), one of the major components of G. uralensis, has anti-inflammatory, anti-cancer and hepatoprotective effects., but its exact molecular mechanism has not been explored in depth. Aim of the study: Objectives of our research are about exploring the anti-inflammatory role of GUP and the mechanisms of its action. Materials and methods: ELISA kits, Western blotting, immunofluorescence, quantitative real-time PCR, immunoprecipitation and DMXAA-mediated STING activation mice models were performed to investigate the role of GUP on the cGAS-STING pathway. To determine the anti-inflammatory effects of GUP, cecal ligation and puncture (CLP) sepsis models were employed. Results: GUP could effectively inhibit the activation of the cGAS-STING signaling pathway accompany by a decrease the expression of type I interferon-related genes and inflammatory factors in BMDMs, THP-1, and human PBMCs. Mechanistically, GUP does not affect the oligomerization of STING, but affects the interaction of STING with TBK1 and TBK1 with IRF3. Significantly, GUP had great therapeutic effects on DMXAA-induced agonist experiments in vivo as well as CLP sepsis in mice. Conclusion: Our studies suggest that GUP is an effective inhibitor of the cGAS-STING pathway, which may be a potential medicine for the treatment of inflammatory diseases mediated by the cGAS-STING pathway.
Collapse
Affiliation(s)
- Siwen Hui
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Wen Kan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuanglin Qin
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Ping He
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Bai
- Department of Neurosurgery, General Hospital of Chinese People Liberty Army, Beijing, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenqing Mou
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manting Hou
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guang Xu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Sun N, Lei Q, Wu M, Gao S, Yang Z, Lv X, Wei R, Yan F, Cai L. Metal-organic framework-mediated siRNA delivery and sonodynamic therapy for precisely triggering ferroptosis and augmenting ICD in osteosarcoma. Mater Today Bio 2024; 26:101053. [PMID: 38654934 PMCID: PMC11035110 DOI: 10.1016/j.mtbio.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The complex genomics, immunosuppressive tumor microenvironment (TME), and chemotherapeutic resistance of osteosarcoma (OS) have resulted in limited therapeutic effects in the clinic. Ferroptosis is involved in tumor progression and is regulated mainly by glutathione peroxidase 4 (GPX4). Small interfering RNA (siRNA)-based RNA interference (RNAi) can precisely target any gene. However, achieving effective siRNA delivery is highly challenging. Here, we fabricated a TME-responsive metal-organic framework (MOF)-based biomimetic nanosystem (mFeP@si) with siGPX4 delivery and sonodynamic therapy (SDT) to treat OS by targeting ferroptosis. Under ultrasound (US) irradiation, mFeP@si achieves lysosomal escape via singlet oxygen (1O2)-mediated lysosomal membrane disruption and then accelerates ROS generation and glutathione (GSH) depletion. Meanwhile, siGPX4 silences GPX4 expression by binding to GPX4 mRNA and leads to the accumulation of toxic phospholipid hydroperoxides (PL-OOH), further magnifying the ROS storm and triggering ferroptosis. Notably, synergistic therapy remarkably enhances antitumor effects, improves the immunosuppressive TME by inducing potent immunogenic cell death (ICD), and increases the sensitivity of chemotherapy-resistant OS cells to cisplatin. Overall, this novel nanosystem, which targets ferroptosis by integrating RNAi and SDT, exhibits strong antitumor effects both in vitro and in vivo, providing new insights for treating OS.
Collapse
Affiliation(s)
- Ningxiang Sun
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Qingjian Lei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Shijie Gao
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Xuan Lv
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Renxiong Wei
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, Hubei, 430071, China
| |
Collapse
|
27
|
Zhao A, Guo C, Wang L, Chen S, Xu Q, Cheng J, Zhang J, Jiang J, Di J, Zhang H, Chen F, Su J, Jiang L, Liu L, Liu Y, Liu A. Xiebai San alleviates acute lung injury by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating multiple metabolisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155397. [PMID: 38547623 DOI: 10.1016/j.phymed.2024.155397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Acute lung injury (ALI) often leads to serious respiratory diseases with high incidence rates and mortality. For centuries, Xiebai San (XBS) has been a classical traditional Chinese medicine (TCM) about respiratory illness such as pneumonia in children. However, the related mechanism of XBS against ALI remains indistinct. PURPOSE To reveal specific targets of XBS in lipopolysaccharide (LPS)-induced ALI mice using integrated pharmacology. STUDY DESIGN The integrated method was to expound mechanism and targets of XBS inhibited ALI. METHODS The primary components in XBS were identified by ultra high performance liquid chromatography-quadrupole time of flight-mass spectrometry (UHPLC-QTOF-MS). The potential drug targets were established using network pharmacology. The anti-ALI effect of XBS was evaluated in mice. Additionally, therapeutic targets were screened by integrating metabolome and transcriptome and verified in lung tissue. RESULTS In total, 163 chemical components were identified in XBS, and a network of "3 drugs-18 components-86 targets" for XBS against ALI was constructed. In ALI mice, XBS alleviated lung inflammation by decreasing permeation and expression of neutrophils, tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid (BALF), serum, and lung tissue. Next, the transcriptome of lung tissue was analyzed and enriched, indicating the importance of mitogen-activated protein kinase (MAPK), Janus kinase-signal transducer and activator of transcription (JAK-STAT), and others, which was consistent with network pharmacology prediction. Also, western blotting and immunohistochemistry results showed that XBS was against ALI mainly by inhibiting extracellular signal regulated kinase (ERK) and signal transducer and activator of transcription 3 (Stat3) phosphorylation. In addition, the metabolome of lung tissue revealed that XBS mainly regulated pathways involved in arachidonic acid, glycerophospholipid, and tryptophan metabolisms. The expression levels of leukotriene, phosphatidylcholine, kynurenine, and others were also verified. CONCLUSION XBS alleviated inflammation of ALI by inhibiting the phosphorylation of the ERK/Stat3 pathway and regulating arachidonic acid, glycerophospholipid, and tryptophan metabolisms. This study will guide clinical precision medicine and promote modernization of XBS.
Collapse
Affiliation(s)
- Anyi Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Cong Guo
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sha Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingxia Xu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jintang Cheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinzhu Jiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jipeng Di
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Heng Zhang
- Shandong Xianhe Pharmaceutical Co., Ltd, Dongying, Shandong 257237, China
| | - Fangfang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiangmin Su
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liang Jiang
- Shandong Xianhe Pharmaceutical Co., Ltd, Dongying, Shandong 257237, China
| | - Li Liu
- Shandong Xianhe Pharmaceutical Co., Ltd, Dongying, Shandong 257237, China
| | - Yan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - An Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
28
|
Yuan J, Wang Y, Huang Y, Li S, Zhang X, Wu Z, Zhao W, Zhu J, Zhang J, Huang G, Yu P, Cheng X, Wang X, Liu X, Jia J. Investigating Novel Therapeutic Approaches for Idiopathic Short Stature: Targeting siRNA and Growth Hormone Delivery to the Growth Plate Using Exosome Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309559. [PMID: 38639394 PMCID: PMC11200009 DOI: 10.1002/advs.202309559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Idiopathic short stature (ISS) is a common childhood condition with largely unknown underlying causes. Recent research highlights the role of circulating exosomes in the pathogenesis of various disorders, but their connection to ISS remains unexplored. In the experiments, human chondrocytes are cocultured with plasma exosomes from ISS patients, leading to impaired chondrocyte growth and bone formation. Elevated levels of a specific long non-coding RNA (lncRNA), ISSRL, are identified as a distinguishing factor in ISS, boasting high specificity and sensitivity. Silencing ISSRL in ISS plasma exosomes reverses the inhibition of chondrocyte proliferation and bone formation. Conversely, overexpression of ISSRL in chondrocytes impedes their growth and bone formation, revealing its mechanism of action through the miR-877-3p/GZMB axis. Subsequently, exosomes (CT-Exo-siISSRL-oeGH) with precise cartilage-targeting abilities are engineered, loaded with customized siRNA for ISSRL and growth hormone. This innovative approach offers a therapeutic strategy to address ISS by rectifying abnormal non-coding RNA expression in growth plate cartilage and delivering growth hormone with precision to promote bone growth. This research provides valuable insights into ISS diagnosis and treatment, highlighting the potential of engineered exosomes.
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Yameng Wang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Yanzhe Huang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Shengqin Li
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Xiaowen Zhang
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Zhiwen Wu
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Wenrui Zhao
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Junchao Zhu
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Junqiu Zhang
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Guowen Huang
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Peng Yu
- Department of Endocrinology and MetabolismThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Xigao Cheng
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic SurgeryDepartment of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMA02114USA
| | - Xijuan Liu
- Department of PediatricsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
| | - Jingyu Jia
- Department of OrthopaedicsThe Second Affiliated Hospital of Nanchang UniversityNanchang330006P. R. China
- Institute of Orthopaedics of Jiangxi ProvinceNanchang330006P. R. China
| |
Collapse
|
29
|
Huang W, Fu G, Wang Y, Chen C, Luo Y, Yan Q, Liu Y, Mao C. Immunometabolic reprogramming of macrophages with inhalable CRISPR/Cas9 nanotherapeutics for acute lung injury intervention. Acta Biomater 2024; 181:308-316. [PMID: 38570107 DOI: 10.1016/j.actbio.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Acute lung injury (ALI) represents a critical respiratory condition typified by rapid-onset lung inflammation, contributing to elevated morbidity and mortality rates. Central to ALI pathogenesis lies macrophage dysfunction, characterized by an overabundance of pro-inflammatory cytokines and a shift in metabolic activity towards glycolysis. This study emphasizes the crucial function of glucose metabolism in immune cell function under inflammatory conditions and identifies hexokinase 2 (HK2) as a key regulator of macrophage metabolism and inflammation. Given the limitations of HK2 inhibitors, we propose the CRISPR/Cas9 system for precise HK2 downregulation. We developed an aerosolized core-shell liposomal nanoplatform (CSNs) complexed with CaP for efficient drug loading, targeting lung macrophages. Various CSNs were synthesized to encapsulate an mRNA based CRISPR/Cas9 system (mCas9/gHK2), and their gene editing efficiency and HK2 knockout were examined at both gene and protein levels in vitro and in vivo. The CSN-mCas9/gHK2 treatment demonstrated a significant reduction in glycolysis and inflammation in macrophages. In an LPS-induced ALI mouse model, inhaled CSN-mCas9/gHK2 mitigated the proinflammatory tumor microenvironment and reprogrammed glucose metabolism in the lung, suggesting a promising strategy for ALI prevention and treatment. This study highlights the potential of combining CRISPR/Cas9 gene editing with inhalation delivery systems for effective, localized pulmonary disease treatment, underscoring the importance of targeted gene modulation and metabolic reprogramming in managing ALI. STATEMENT OF SIGNIFICANCE: This study investigates an inhalable CRISPR/Cas9 gene editing system targeting pulmonary macrophages, with the aim of modulating glucose metabolism to alleviate Acute Lung Injury (ALI). The research highlights the role of immune cell metabolism in inflammation, as evidenced by changes in macrophage glucose metabolism and a notable reduction in pulmonary edema and inflammation. Additionally, observed alterations in macrophage polarization and cytokine levels in bronchoalveolar lavage fluid suggest potential therapeutic implications. These findings not only offer insights into possible ALI treatments but also contribute to the understanding of immune cell metabolism in inflammatory diseases, which could be relevant for various inflammatory and metabolic disorders.
Collapse
Affiliation(s)
- Wanling Huang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, PR China
| | - Gaohong Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yangeng Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Cheng Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yilan Luo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Qiaoqiao Yan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Yang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Chengqiong Mao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, PR China.
| |
Collapse
|
30
|
Mi Y, Liang Y, Liu Y, Bai Z, Li N, Tan S, Hou Y. Integrated network pharmacology and experimental validation-based approach to reveal the underlying mechanisms and key material basis of Jinhua Qinggan granules against acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117920. [PMID: 38373663 DOI: 10.1016/j.jep.2024.117920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinhua Qinggan granules (JHQG), the traditional Chinese formula come into the market in 2016, has been proved clinically effective against coronavirus disease. Acute lung injury (ALI) is a major complication of respiratory infection such as coronavirus and influenza virus, with a high clinical fatality rate. Macrophage activation-induced inflammatory response plays a crucial role in the pathogenesis of ALI. However, the participation of inflammatory response in the efficacy of JHQG and its material basis against ALI is still unknown. AIM OF THE STUDY The research aims to investigate the inflammatory response-involved efficacy of JHQG on ALI, explore the "ingredient-target-pathway" mechanisms, and searching for key material basis of JHQG by integrated network pharmacology and experimental validation-based approach. MATERIALS AND METHODS Lipopolysaccharide (LPS)-induced ALI mice was established to assess the protective impact of JHQG. Network pharmacology was utilized to identify potential targets of JHQG and investigate its action mechanisms related to inflammatory response in treating ALI. The therapeutic effect and mechanism of the primary active ingredient in JHQG was verified through high performance liquid chromatography (HPLC) and a combination of wet experiments. RESULTS JHQG remarkably alleviated lung damage in mice model via suppressing macrophage activation, and inhibiting pro-inflammatory mediator level, p-ERK and p-STAT3 expression, TLR4/NF-κB activation. Network pharmacology combined with HPLC found luteolin is the main effective component of JHQG, and it could interact with TLR4/MD2 complex, further exerting the anti-inflammatory property and the protective role against ALI. CONCLUSIONS In summary, our finding clarified the underlying mechanisms and material basis of JHQG therapy for ALI by integrated network pharmacology and experimental validation-based strategy.
Collapse
Affiliation(s)
- Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yusheng Liang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Zisong Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China; School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaowen Tan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
31
|
Wang H, Jiao Y, Ma S, Li Z, Gong J, Jiang Q, Shang Y, Li H, Li J, Li N, Zhao RC, Ding B. Nebulized Inhalation of Peptide-Modified DNA Origami To Alleviate Acute Lung Injury. NANO LETTERS 2024; 24:6102-6111. [PMID: 38739578 DOI: 10.1021/acs.nanolett.4c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Yunfei Jiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Shuaijing Ma
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Zhuoting Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jintao Gong
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center for Excellence in Tissue Engineering, Chinese Academy of Medical Science, State Key Laboratory of Common Mechanism Research for Major Disease, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100005, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
33
|
Chernikov IV, Bachkova IK, Sen’kova AV, Meschaninova MI, Savin IA, Vlassov VV, Zenkova MA, Chernolovskaya EL. Cholesterol-Modified Anti-Il6 siRNA Reduces the Severity of Acute Lung Injury in Mice. Cells 2024; 13:767. [PMID: 38727303 PMCID: PMC11083178 DOI: 10.3390/cells13090767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Small interfering RNA (siRNA) holds significant therapeutic potential by silencing target genes through RNA interference. Current clinical applications of siRNA have been primarily limited to liver diseases, while achievements in delivery methods are expanding their applications to various organs, including the lungs. Cholesterol-conjugated siRNA emerges as a promising delivery approach due to its low toxicity and high efficiency. This study focuses on developing a cholesterol-conjugated anti-Il6 siRNA and the evaluation of its potency for the potential treatment of inflammatory diseases using the example of acute lung injury (ALI). The biological activities of different Il6-targeted siRNAs containing chemical modifications were evaluated in J774 cells in vitro. The lead cholesterol-conjugated anti-Il6 siRNA after intranasal instillation demonstrated dose-dependent therapeutic effects in a mouse model of ALI induced by lipopolysaccharide (LPS). The treatment significantly reduced Il6 mRNA levels, inflammatory cell infiltration, and the severity of lung inflammation. IL6 silencing by cholesterol-conjugated siRNA proves to be a promising strategy for treating inflammatory diseases, with potential applications beyond the lungs.
Collapse
Affiliation(s)
- Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Irina K. Bachkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Innokenty A. Savin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Valentin V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| | - Elena L. Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (I.V.C.); (I.K.B.); (A.V.S.); (M.I.M.); (I.A.S.); (M.A.Z.)
| |
Collapse
|
34
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
35
|
Chen J, Zhou L, Li X, Wu X, Li Y, Si L, Deng Y. Protective effect of zerumbone on sepsis-induced acute lung injury through anti-inflammatory and antioxidative activity via NF-κB pathway inhibition and HO-1 activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2241-2255. [PMID: 37812239 DOI: 10.1007/s00210-023-02706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Sepsis is a systemic illness for which there are no effective preventive or therapeutic therapies. Zerumbone, a natural molecule, has anti-oxidative and anti-inflammatory properties that may help to prevent sepsis. In the present study, we have assessed the protective effect of zerumbone against sepsis-induced acute lung injury (ALI) and its underlying mechanisms. During the experiment, mice were divided into five groups: a sham group, a sepsis-induced ALI group, and three sepsis groups that are pre-treated with zerumbone at different concentrations. We found that zerumbone greatly decreased the sepsis-induced ALI using histological investigations. Also, zerumbone treatment reduced the sepsis-induced inflammatory cytokine concentrations as well as the number of infiltrating inflammatory cells in BALF compared to non-treated sepsis animals. The zerumbone-pretreated sepsis groups had reduced pulmonary myeloperoxidase (MPO) activity than the sepsis groups. Moreover, the mechanism underlying the protective action of zerumbone on sepsis is accomplished by the activation of antioxidant genes such as nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), superoxide dismutase (SOD), and heme oxygenase 1 (HO-1). The obtained results revealed that zerumbone inhibited the sepsis-induced ALI through its anti-inflammatory and antioxidative activity via inhibition of the NF-κB pathway and activation of HO-1 pathway. Our findings demonstrate that zerumbone pretreatment suppresses sepsis-induced ALI via antioxidative activities and anti-inflammatory, implying that zerumbone could be a viable preventive agent for sepsis-induced ALI.
Collapse
Affiliation(s)
- Jianjun Chen
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Liangliang Zhou
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xinxin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Xufeng Wu
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Yingbin Li
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China
| | - Linjie Si
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yijun Deng
- Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, China.
- Department of Emergency Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, China.
| |
Collapse
|
36
|
Sun L, Yue H, Fang H, Li R, Li S, Wang J, Tu P, Meng F, Yan W, Zhang J, Bignami E, Jeon K, Kidane B, Zhang P. The role and mechanism of PDZ binding kinase in hypobaric and hypoxic acute lung injury. J Thorac Dis 2024; 16:2082-2101. [PMID: 38617778 PMCID: PMC11009593 DOI: 10.21037/jtd-24-188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Background Acute lung injury (ALI) caused by hypobaric hypoxia (HH) is frequently observed in high-altitude areas, and it is one of the leading causes of death in high-altitude-related diseases due to its rapid onset and progression. However, the pathogenesis of HH-related ALI (HHALI) remains unclear, and effective treatment approaches are currently lacking. Methods A new mouse model of HHALI developed by our laboratory was used as the study subject (Chinese patent No. ZL 2021 1 1517241 X). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) expression levels of PDZ-binding kinase (PBK), sirtuin 1 (SIRT1), and PTEN-induced kinase 1 (PINK1) in mouse lung tissue. Hematoxylin and eosin staining was used to observe the main types of damage and damaged cells in lung tissue, and the lung injury score was used for quantification. The wet-dry (W/D) ratio was used to measure lung water content. Enzyme-linked immunosorbent assay was used to detect changes in inflammatory factors and oxidative stress markers in the lungs. Western blotting verified the expression of various mitochondrial autophagy-related proteins. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) method was used determined the health status of mitochondria based on changes in mitochondrial membrane potential. Transmission electron microscopy was used to directly observe the morphology of mitochondria. Multicolor immunofluorescence was used to observe the levels of mitochondrial autophagy markers. Other signaling pathways and molecular mechanisms that may play a role in epithelial cells were analyzed via through RNA sequencing. Results Low pressure and hypoxia caused pathological changes in mouse lung tissue, mainly ALI, leading to increased levels of inflammatory factors and intensified oxidative stress response in the lungs. Overexpression of PBK was found to alleviate HHALI, and activation of the p53 protein was shown to abrogate this therapeutic effect, while activation of SIRT1 protein reactivated this therapeutic effect. The therapeutic effect of PBK on HHALI is achieved via the activation of mitochondrial autophagy. Finally, RNA sequencing demonstrated that besides mitochondrial autophagy, PBK also exerts other functions in HHALI. Conclusions Overexpression of PBK inhibits the expression of p53 and activates SIRT1-PINK1 axis mediated mitochondrial autophagy to alleviate HHALI.
Collapse
Affiliation(s)
- Linao Sun
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoran Yue
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Fang
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Runze Li
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shicong Li
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianyao Wang
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Pengjie Tu
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Meng
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wang Yan
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinxia Zhang
- Xianrenchang (Tianjin) Medical Technology Co., Ltd., Tianjin, China
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Biniam Kidane
- Section of Thoracic Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
37
|
Watanabe K, Kato A, Adachi H, Noguchi A, Arai H, Ito M, Namba F, Takahashi T. Genetic Ablation of Pyruvate Dehydrogenase Kinase Isoform 4 Gene Enhances Recovery from Hyperoxic Lung Injury: Insights into Antioxidant and Inflammatory Mechanisms. Biomedicines 2024; 12:746. [PMID: 38672101 PMCID: PMC11047825 DOI: 10.3390/biomedicines12040746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Pyruvate dehydrogenase kinase isoform 4 (PDK4) plays a pivotal role in the regulation of cellular proliferation and apoptosis. The objective of this study was to examine whether the genetic depletion of the PDK4 gene attenuates hyperoxia-induced lung injury in neonatal mice. METHODS Neonatal PDK4-/- mice and wild-type (WT) mice were exposed to oxygen concentrations of 21% (normoxia) and 95% (hyperoxia) for the first 4 days of life. Pulmonary histological assessments were performed, and the mRNA levels of lung PDK4, monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-6 were assessed. The levels of inflammatory cytokines in lung tissue were quantified. RESULTS Following convalescence from neonatal hyperoxia, PDK4-/- mice exhibited improved lung alveolarization. Notably, PDK4-/- mice displayed significantly elevated MCP-1 protein levels in pulmonary tissues following 4 days of hyperoxic exposure, whereas WT mice showed increased IL-6 protein levels under similar conditions. Furthermore, neonatal PDK4-/- mice subjected to hyperoxia demonstrated markedly higher MCP-1 mRNA expression at 4 days of age compared to WT mice, while IL-6 mRNA expression remained unaffected in PDK4-/- mice. CONCLUSIONS Newborn PDK4-/- mice exhibited notable recovery from hyperoxia-induced lung injury, suggesting the potential protective role of PDK4 depletion in mitigating lung damage.
Collapse
Affiliation(s)
- Keisuke Watanabe
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Akie Kato
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Hiroyuki Adachi
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Atsuko Noguchi
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Hirokazu Arai
- Department of Neonatology, Akita Red Cross Hospital, Akita 010-1495, Japan;
| | - Masato Ito
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan;
| | - Tsutomu Takahashi
- Department of Pediatrics, Graduate School of Medicine, Akita University, Akita 010-8543, Japan; (K.W.); (A.K.); (H.A.); (A.N.); (T.T.)
| |
Collapse
|
38
|
Zhang W, Shen J, Liang J, Ge C, Zhou Y, Yin L, Ji Y. Pulmonary RNA interference against acute lung injury mediated by mucus- and cell-penetrating nanocomplexes. Acta Biomater 2024; 177:332-346. [PMID: 38290689 DOI: 10.1016/j.actbio.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Trans-mucosal delivery of anti-inflammatory siRNA into alveolar macrophages represents a promising modality for the treatment of acute lung injury (ALI). However, its therapeutic efficacy is often hurdled by the lack of effective carriers that can simultaneously overcome the mucosal barrier and cell membrane barrier. Herein, we developed mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes which enabled efficient intratracheal delivery of TNF-α siRNA (siTNF-α) to attenuate pulmonary inflammation against lipopolysaccharide (LPS)-induced ALI. P-G@Zn, a cationic helical polypeptide bearing both guanidine and zinc dipicolylamine (Zn-DPA) side charged groups, was designed to condense siTNF-α and promote macrophage internalization due to its helicity-dependent membrane activity. Coating of the polyplexes with charge-neutralizing carboxylated mannan (Man-COOH) greatly enhanced the mucus penetration potency due to shielding of the electrostatic adhesive interactions with the mucus, and it cooperatively enabled active targeting to alveolar macrophages to potentiate the intracellular delivery efficiency of siTNF-α. As such, intratracheally administered Man-COOH/P-G@Zn/siTNF-α polyplexes provoked notable TNF-α silencing by ∼75 % in inflamed lung tissues at 500 μg siRNA/kg, and demonstrated potent anti-inflammatory performance to treat ALI. This study provides an effective tool for the synchronized trans-mucosal delivery of siRNA into macrophages, and the unique properties of the polyplexes render remarkable potentials for anti-inflammatory therapy against ALI. STATEMENT OF SIGNIFICANCE: siRNA-mediated anti-inflammatory management of acute lung injury (ALI) is greatly challenged by the insufficient delivery across the mucus layer and cell membrane. To address such critical issue, mucus/cell membrane dual-penetrating, macrophage-targeting polyplexes are herein developed, which are comprised of an outer shell of carboxylated mannan (Man-COOH) and an inner nanocore formed by TNF-α siRNA (siTNF-α) and a cationic helical polypeptide P-G@Zn. Man-COOH coating endowed the polyplexes with high mucus-penetrating capability and macrophage-targeting ability, while P-G@Zn bearing both guanidine and zinc dipicolylamine afforded potent siTNF-α condensation capacity and high intracellular delivery efficiency with reduced cytotoxicity. Intratracheally administered polyplexes solicit pronounced TNF-α silencing and anti-inflammatory efficiencies in ALI mice. This study renders an effective example for overcoming the multiple barriers against trans-mucosal delivery of siRNA into macrophages, and holds profound potentials for gene therapy against ALI.
Collapse
Affiliation(s)
- Wenxin Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jialong Liang
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Yong Ji
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
39
|
Lin WT, Wu HH, Lee CW, Chen YF, Huang L, Hui-Chun Ho J, Kuang-Sheng Lee O. Modulation of experimental acute lung injury by exosomal miR-7704 from mesenchymal stromal cells acts through M2 macrophage polarization. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102102. [PMID: 38222299 PMCID: PMC10787251 DOI: 10.1016/j.omtn.2023.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Acute lung injury (ALI) is a life-threatening condition with limited treatment options. The pathogenesis of ALI involves macrophage-mediated disruption and subsequent repair of the alveolar barriers, which ultimately results in lung damage and regeneration, highlighting the pivotal role of macrophage polarization in ALI. Although exosomes derived from mesenchymal stromal cells have been established as influential modulators of macrophage polarization, the specific role of exosomal microRNAs (miRNAs) remains underexplored. This study aimed to elucidate the role of specific exosomal miRNAs in driving macrophage polarization, thereby providing a reference for developing novel therapeutic interventions for ALI. We found that miR-7704 is the most abundant and efficacious miRNA for promoting the switch to the M2 phenotype in macrophages. Mechanistically, we determined that miR-7704 stimulates M2 polarization by inhibiting the MyD88/STAT1 signaling pathway. Notably, intra-tracheal delivery of miR-7704 alone in a lipopolysaccharide-induced murine ALI model significantly drove M2 polarization in lung macrophages and remarkably restored pulmonary function, thus increasing survival. Our findings highlight miR-7704 as a valuable tool for treating ALI by driving the beneficial M2 polarization of macrophages. Our findings pave the way for deeper exploration into the therapeutic potential of exosomal miRNAs in inflammatory lung diseases.
Collapse
Affiliation(s)
- Wei-Ting Lin
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan, R.O.C
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Hao-Hsiang Wu
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Chien-Wei Lee
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan, R.O.C
| | - Yu-Fan Chen
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan, R.O.C
| | | | - Jennifer Hui-Chun Ho
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Medical Research, Eye Center, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Center for Translational Genomics & Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan, R.O.C
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
40
|
Li R, Hu X, Li W, Wu W, Xu J, Lin Y, Shi S, Dong C. Nebulized pH-Responsive Nanospray Combined with Pentoxifylline and Edaravone to Lungs for Efficient Treatments of Acute Respiratory Distress Syndrome. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8310-8320. [PMID: 38343060 DOI: 10.1021/acsami.3c15691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The COVID-19 pandemic has become an unprecedented global medical emergency, resulting in more than 5 million deaths. Acute respiratory distress syndrome (ARDS) caused by COVID-19, characterized by the release of a large number of pro-inflammatory cytokines and the production of excessive toxic ROS, is the most common serious complication leading to death. To develop new strategies for treating ARDS caused by COVID-19, a mouse model of ARDS was established by using lipopolysaccharide (LPS). Subsequently, we have constructed a novel nanospray with anti-inflammatory and antioxidant capacity by loading pentoxifylline (PTX) and edaravone (Eda) on zeolite imidazolate frameworks-8 (ZIF-8). This nanospray was endowed with synergetic therapy, which could kill two birds with one stone: (1) the loaded PTX played a powerful anti-inflammatory role by inhibiting the activation of inflammatory cells and the synthesis of pro-inflammatory cytokines; (2) Eda served as a free radical scavenger in ARDS. Furthermore, compared with the traditional intravenous administration, nanosprays can be administered directly and inhaled efficiently and reduce the risk of systemic adverse reactions greatly. This nanospray could not only coload two drugs efficiently but also realize acid-responsive release on local lung tissue. Importantly, ZIF8-EP nanospray showed an excellent therapeutic effect on ARDS in vitro and in vivo, which provided a new direction for the treatment of ARDS.
Collapse
Affiliation(s)
- Ruihao Li
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Xiaochun Hu
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Wenhui Li
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201100, P. R. China
| | - Wenjing Wu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jin Xu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Yun Lin
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuo Shi
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chunyan Dong
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
41
|
Zhao G, Xue L, Geisler HC, Xu J, Li X, Mitchell MJ, Vaughan AE. Precision treatment of viral pneumonia through macrophage-targeted lipid nanoparticle delivery. Proc Natl Acad Sci U S A 2024; 121:e2314747121. [PMID: 38315853 PMCID: PMC10873611 DOI: 10.1073/pnas.2314747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Hannah C. Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Xinyuan Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA19104
| | - Michael J. Mitchell
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19014
| | - Andrew E. Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
- Penn-Children’s Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
42
|
Wang W, Zhong Z, Huang Z, Hiew TN, Huang Y, Wu C, Pan X. Nanomedicines for targeted pulmonary delivery: receptor-mediated strategy and alternatives. NANOSCALE 2024; 16:2820-2833. [PMID: 38289362 DOI: 10.1039/d3nr05487j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary drug delivery of nanomedicines is promising for the treatment of lung diseases; however, their lack of specificity required for targeted delivery limit their applications. Recently, a variety of pulmonary delivery targeting nanomedicines (PDTNs) has been developed for enhancing drug accumulation in lung lesions and reducing systemic side effects. Furthermore, with the increasing profound understanding of the specific microenvironment of different local lung diseases, multiple targeting strategies have been employed to promote drug delivery efficiency, which can be divided into the receptor-mediated strategy and alternatives. In this review, the current publication trend on PDTNs is analyzed and discussed, revealing that the research in this area has been attracting much attention. According to the different unique microenvironments of lung lesions, the reported PDTNs based on the receptor-mediated strategy for lung cancer, lung infection, lung inflammation and pulmonary fibrosis are listed and summarized. In addition, several other well-established strategies for the design of these PDTNs, such as charge regulation, mucus delivery enhancement, stimulus-responsive drug delivery and magnetic force-driven targeting, are introduced and discussed. Besides, bottlenecks in the development of PDTNs are discussed. Finally, we highlight the challenges and opportunities in the development of PDTNs. We hope that this review will provide an overview of the available PDTNs for guiding the treatment of lung diseases.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
43
|
Fan W, Xu Z, Zhang J, Guan M, Zheng Y, Wang Y, Wu H, Su W, Li P. Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155256. [PMID: 38181527 DOI: 10.1016/j.phymed.2023.155256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alveolar macrophages are one of the momentous regulators in pulmonary inflammatory responses, which can secrete extracellular vesicles (EVs) packing miRNAs. Ferroptosis, an iron-dependent cell death, is associated with cigarette smoke-induced lung injury, and EVs have been reported to regulate ferroptosis by transporting intracellular iron. However, the regulatory mechanism of alveolar macrophage-derived EVs has not been clearly illuminated in smoking-related pulmonary ferroptosis. Despite the known anti-ferroptosis effects of naringenin in lung injury, whether naringenin controls EVs-mediated ferroptosis has not yet been explored. PURPOSE We explore the effects of EVs from cigarette smoke-stimulated alveolar macrophages in lung epithelial ferroptosis, and elucidate the EV miRNA-mediated pharmacological mechanism of naringenin. STUDY DESIGN AND METHODS Differential and ultracentrifugation were conducted to extract EVs from different alveolar macrophages treatment groups in vitro. Both intratracheal instilled mice and treated epithelial cells were used to investigate the roles of EVs from alveolar macrophages involved in ferroptosis. Small RNA sequencing analysis was performed to distinguish altered miRNAs in EVs. The ferroptotic effects of EV miRNAs were examined by applying dual-Luciferase reporter assay and miRNA inhibitor transfection experiment. RESULTS Here, we firstly reported that EVs from cigarette smoke extract-induced alveolar macrophages (CSE-EVs) provoked pulmonary epithelial ferroptosis. The ferroptosis inhibitor ferrostatin-1 treatment reversed these changes in vitro. Moreover, EVs from naringenin and CSE co-treated alveolar macrophages (CSE+Naringenin-EVs) markedly attenuated the lung epithelial ferroptosis compared with CSE-EVs. Notably, we identified miR-23a-3p as the most dramatically changed miRNA among Normal-EVs, CSE-EVs, and CSE+Naringenin-EVs. Further experimental investigation showed that ACSL4, a pro-ferroptotic gene leading to lipid peroxidation, was negatively regulated by miR-23a-3p. The inhibition of miR-23a-3p diminished the efficacy of CSE+Naringenin-EVs. CONCLUSION Our findings firstly provided evidence that naringenin elevated the EV miR-23a-3p level from CSE-induced alveolar macrophages, thereby inhibiting the mouse lung epithelial ferroptosis via targeting ACSL4, and further complemented the mechanism of cigarette-induced lung injury and the protection of naringenin in a paracrine manner. The administration of miR-23a-3p-enriched EVs has the potential to ameliorate pulmonary ferroptosis.
Collapse
Affiliation(s)
- Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyan Xu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minyi Guan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuying Zheng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
44
|
Wang H, Yuan Y, Qin L, Yue M, Xue J, Cui Z, Zhan X, Gai J, Zhang X, Guan J, Mao S. Tunable rigidity of PLGA shell-lipid core nanoparticles for enhanced pulmonary siRNA delivery in 2D and 3D lung cancer cell models. J Control Release 2024; 366:746-760. [PMID: 38237688 DOI: 10.1016/j.jconrel.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Faced with the threat of lung cancer-related deaths worldwide, small interfering RNA (siRNA) can silence tumor related messenger RNA (mRNA) to tackle the issue of drug resistance with enhanced anti-tumor effects. However, how to increase lung tumor targeting and penetration with enhanced gene silencing are the issues to be addressed. Thus, the objective of this study is to explore the feasibility of designing non-viral siRNA vectors for enhanced lung tumor therapy via inhalation. Here, shell-core based polymer-lipid hybrid nanoparticles (HNPs) were prepared via microfluidics by coating PLGA on siRNA-loaded cationic liposomes (Lipoplexes). Transmission electron microscopy and energy dispersive spectroscopy study demonstrated that HNP consists of a PLGA shell and a lipid core. Atomic force microscopy study indicated that the rigidity of HNPs could be well tuned by changing thickness of the PLGA shell. The designed HNPs were muco-inert with increased stability in mucus and BALF, good safety, enhanced mucus penetration and cellular uptake. Crucially, HNP1 with the thinnest PLGA shell exhibited superior transfection efficiency (84.83%) in A549 cells, which was comparable to that of lipoplexes and Lipofectamine 2000, and its tumor permeability was 1.88 times that of lipoplexes in A549-3T3 tumor spheroids. After internalization of the HNPs, not only endosomal escape but also lysosomal exocytosis was observed. The transfection efficiency of HNP1 (39.33%) was 2.26 times that of lipoplexes in A549-3T3 tumor spheroids. Moreover, HNPs exhibited excellent stability during nebulization via soft mist inhaler. In conclusion, our study reveals the great potential of HNP1 in siRNA delivery for lung cancer therapy via inhalation.
Collapse
Affiliation(s)
- Hezhi Wang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Yuan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Qin
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengmeng Yue
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingwen Xue
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhixiang Cui
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuanguang Zhan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiayi Gai
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
45
|
Yan J, Zhang H, Li G, Su J, Wei Y, Xu C. Lipid nanovehicles overcome barriers to systemic RNA delivery: Lipid components, fabrication methods, and rational design. Acta Pharm Sin B 2024; 14:579-601. [PMID: 38322344 PMCID: PMC10840434 DOI: 10.1016/j.apsb.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 02/08/2024] Open
Abstract
Lipid nanovehicles are currently the most advanced vehicles used for RNA delivery, as demonstrated by the approval of patisiran for amyloidosis therapy in 2018. To illuminate the unique superiority of lipid nanovehicles in RNA delivery, in this review, we first introduce various RNA therapeutics, describe systemic delivery barriers, and explain the lipid components and methods used for lipid nanovehicle preparation. Then, we emphasize crucial advances in lipid nanovehicle design for overcoming barriers to systemic RNA delivery. Finally, the current status and challenges of lipid nanovehicle-based RNA therapeutics in clinical applications are also discussed. Our objective is to provide a comprehensive overview showing how to utilize lipid nanovehicles to overcome multiple barriers to systemic RNA delivery, inspiring the development of more high-performance RNA lipid nanovesicles in the future.
Collapse
Affiliation(s)
- Jing Yan
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Can Xu
- Department of Gastroenterology, Changhai Hospital, Shanghai 200433, China
| |
Collapse
|
46
|
Wang T, Zhang Z, Deng Z, Zeng W, Gao Y, Hei Z, Yuan D. Mesenchymal stem cells alleviate sepsis-induced acute lung injury by blocking neutrophil extracellular traps formation and inhibiting ferroptosis in rats. PeerJ 2024; 12:e16748. [PMID: 38304189 PMCID: PMC10832623 DOI: 10.7717/peerj.16748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/12/2023] [Indexed: 02/03/2024] Open
Abstract
Acute lung injury (ALI) is one of the most serious complications of sepsis, characterized by high morbidity and mortality rates. Ferroptosis has recently been reported to play an essential role in sepsis-induced ALI. Excessive neutrophil extracellular traps (NETs) formation induces exacerbated inflammation and is crucial to the development of ALI. In this study, we explored the effects of ferroptosis and NETs and observed the therapeutic function of mesenchymal stem cells (MSCs) on sepsis-induced ALI. First, we produced a cecal ligation and puncture (CLP) model of sepsis in rats. Ferrostain-1 and DNase-1 were used to inhibit ferroptosis and NETs formation separately, to confirm their effects on sepsis-induced ALI. Next, U0126 was applied to suppress the MEK/ERK signaling pathway, which is considered to be vital to NETs formation. Finally, the therapeutic effect of MSCs was observed on CLP models. The results demonstrated that both ferrostain-1 and DNase-1 application could improve sepsis-induced ALI. DNase-1 inhibited ferroptosis significantly in lung tissues, showing that ferroptosis could be regulated by NETs formation. With the inhibition of the MEK/ERK signaling pathway by U0126, NETs formation and ferroptosis in lung tissues were both reduced, and sepsis-induced ALI was improved. MSCs also had a similar protective effect against sepsis-induced ALI, not only inhibiting MEK/ERK signaling pathway-mediated NETs formation, but also alleviating ferroptosis in lung tissues. We concluded that MSCs could protect against sepsis-induced ALI by suppressing NETs formation and ferroptosis in lung tissues. In this study, we found that NETs formation and ferroptosis were both potential therapeutic targets for the treatment of sepsis-induced ALI, and provided new evidence supporting the clinical application of MSCs in sepsis-induced ALI treatment.
Collapse
Affiliation(s)
- TieNan Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Zheng Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Zhizhao Deng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Weiqi Zeng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Yingxin Gao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, GuangZhou, GuangDong Province, China
| |
Collapse
|
47
|
Kandasamy G, Maity D. Inorganic nanocarriers for siRNA delivery for cancer treatments. Biomed Mater 2024; 19:022001. [PMID: 38181441 DOI: 10.1088/1748-605x/ad1baf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
RNA interference is one of the emerging methodologies utilized in the treatment of a wide variety of diseases including cancer. This method specifically uses therapeutic RNAs (TpRNAs) like small interfering RNAs (siRNAs) to regulate/silence the cancer-linked genes, thereby minimizing the distinct activities of the cancer cells while aiding in their apoptosis. But, many complications arise during the transport/delivery of these TpRNAs that include poor systemic circulation, instability/degradation inside the body environment, no targeting capacity and also low cellular internalization. These difficulties can be overcome by using nanocarriers to deliver the TpRNAs inside the cancer cells. The following are the various categories of nanocarriers-viral vectors (e.g. lentivirus and adenovirus) and non-viral nanocarriers (self-assembling nanocarriers and inorganic nanocarriers). Viral vectors suffer from disadvantages like high immunogenicity compared to the non-viral nanocarriers. Among non-viral nanocarriers, inorganic nanocarriers gained significant attention as their inherent properties (like magnetic properties) can aid in the effective cellular delivery of the TpRNAs. Most of the prior reports have discussed about the delivery of TpRNAs through self-assembling nanocarriers; however very few have reviewed about their delivery using the inorganic nanoparticles. Therefore, in this review, we have mainly focussed on the delivery of TpRNAs-i.e. siRNA, especially programmed death ligand-1 (PD-L1), survivin, B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor and other siRNAs using the inorganic nanoparticles-mainly magnetic, metal and silica nanoparticles. Moreover, we have also discussed about the combined delivery of these TpRNAs along with chemotherapeutic drugs (mainly doxorubicin) andin vitroandin vivotherapeutic effectiveness.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, School of Electrical and Communication, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India
| | - Dipak Maity
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843, United States of America
| |
Collapse
|
48
|
Chen X, Yang Y, Mai Q, Ye G, Liu Y, Liu J. Pillar arene Se nanozyme therapeutic systems with dual drive power effectively penetrated mucus layer combined therapy acute lung injury. Biomaterials 2024; 304:122384. [PMID: 38016334 DOI: 10.1016/j.biomaterials.2023.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
siRNA has demonstrated a promising paradigm for therapy of acute lung injury(ALI). However, the pulmonary mucus layer barrier powerfully hinders the therapeutic efficacy. Herein, we proposed to use dual drive power to enhance the mucus permeation of siRNA by constructing the neutral and targeted selenium nanozymes therapeutic system. The multifunctional selenium nanozymes (CWP-Se@Man) were synthesized by modifying with cationic water-soluble pillar arene (CWP) and mannose (Man). After loading CCR2-siRNA, the CWP-Se@Man reached electroneutrality that co-driven by electroneutrality and targeting, the mucus permeation capacity of CWP-Se@Man enhanced by ∼15 fold, thus effectively penetrate pulmonary mucus layer and deliver CCR2-siRNA into macrophages. Moreover, with optimizing the composition of CWP-Se@Man made of CWP (Slutsky, 2013) [5] or CWP (Ichikado et al., 2012) [6], the therapeutic system CWP (Ichikado et al., 2012) [6]-Se@Man showed better biological activities due to smaller size. In inflamed modes, the CWP-Se@Man nanotherapeutic systems loading CCR2-siRNA not only exerted pronounced anti-inflammatory effect through combining inhibit the chemotactic effect and ROS, but also effectively against ALI after blocking the circulatory effect of ROS and inflammatory cytokines. Therefore, this strategy of dual-driving force penetration mucus renders a unique approach for mediating trans-mucus nucleic acid delivery in lungs, and provide a promising treatment for the acute lung injury therapy.
Collapse
Affiliation(s)
- Xu Chen
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yonglan Yang
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Qiongmei Mai
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Gang Ye
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China.
| | - Jie Liu
- College of Chemistry and Materials Science, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
49
|
Wang X, Qin S, Ren Y, Feng B, Liu J, Yu K, Yu H, Liao Z, Mei H, Tan M. Gpnmb silencing protects against hyperoxia-induced acute lung injury by inhibition of mitochondrial-mediated apoptosis. Hum Exp Toxicol 2024; 43:9603271231222873. [PMID: 38166464 DOI: 10.1177/09603271231222873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Background: Hyperoxia-induced acute lung injury (HALI) is a complication to ventilation in patients with respiratory failure, which can lead to acute inflammatory lung injury and chronic lung disease. The aim of this study was to integrate bioinformatics analysis to identify key genes associated with HALI and validate their role in H2O2-induced cell injury model.Methods: Integrated bioinformatics analysis was performed to screen vital genes involved in hyperoxia-induced lung injury (HLI). CCK-8 and flow cytometry assays were performed to assess cell viability and apoptosis. Western blotting was performed to assess protein expression.Results: In this study, glycoprotein non-metastatic melanoma protein B (Gpnmb) was identified as a key gene in HLI by integrated bioinformatics analysis of 4 Gene Expression Omnibus (GEO) datasets (GSE97804, GSE51039, GSE76301 and GSE87350). Knockdown of Gpnmb increased cell viability and decreased apoptosis in H2O2-treated MLE-12 cells, suggesting that Gpnmb was a proapoptotic gene during HALI. Western blotting results showed that knockdown of Gpnmb reduced the expression of Bcl-2 associated X (BAX) and cleaved-caspase 3, and increased the expression of Bcl-2 in H2O2 treated MLE-12 cells. Furthermore, Gpnmb knockdown could significantly reduce reactive oxygen species (ROS) generation and improve the mitochondrial membrane potential.Conclusion: The present study showed that knockdown of Gpnmb may protect against HLI by repressing mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pediatrics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Banghai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Junya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenliang Liao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
50
|
Li YX, Bao YT, Hu JB. Engineering of targeting antioxidant polypeptide nanopolyplexes for the treatment of acute lung injury. Int J Biol Macromol 2024; 254:127872. [PMID: 37939759 DOI: 10.1016/j.ijbiomac.2023.127872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The pathogenesis of acute lung injury (ALI) involves various mechanisms, such as oxidative stress, inflammation, and epithelial cell apoptosis. However, current drug therapies face limitations due to issues like systemic distribution, drug degradation in vivo, and hydrophobicity. To address these challenges, we developed a pH-responsive nano-drug delivery system for delivering antioxidant peptides to treat ALI. In this study, we utilized low molecular weight chitosan (LMWC) and hyaluronic acid (HA) as carrier materials. LMWC carries a positive charge, while HA carries a negative charge. By stirring the two together, the electrostatic adsorption between LMWC and HA yielded aggregated drug carriers. To specifically target the antioxidant drug WNWAD to lung lesions and enhance therapeutic outcomes for ALI, we created a targeted drug delivery system known as HA/LMWC@WNWAD (NPs) through a 12-h stirring process. In our research, we characterized the particle size and drug release of NPs. Additionally, we assessed the targeting ability of NPs. Lastly, we evaluated the improvement of lung injury at the cellular and animal levels to investigate the therapeutic mechanism of this drug targeting delivery system.
Collapse
Affiliation(s)
- Yi-Xuan Li
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ya-Ting Bao
- College of Medical, Ningbo University, Ningbo 315211, China
| | - Jing-Bo Hu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|