1
|
Ryu YA, Choi CY, Kang JC, Kim JH. Effects on lethal concentration 50 % hematological parameters and plasma components of Starry flounder, Platichthys stellatus exposed to hexavalent chromium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104610. [PMID: 39672525 DOI: 10.1016/j.etap.2024.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Starry flounders (Platichthys stellatus, mean weight 105 ± 14 g, mean total length 20.2 ± 0.7 cm) were exposed to hexavalent chromium concentrations of 0, 5, 10, 20, 40, and 80 mg Cr6 +/L for 96 hours. The half-lethal concentration (LC50) of P. stellatus induced by acute exposure to waterborne hexavalent chromium for 96 hours was found to be 58.84 mg Cr6+/L. In hematological parameters, red blood cell counts (RBCs), hemoglobin and hematocrit were significantly increased (P < 0.05). Major plasma components also changed significantly due to exposure to waterborne hexavalent chromium. Calcium in plasma inorganic components significantly increased, and glucose and cholesterol in plasma organic components also showed significant increases (P < 0.05). Plasma enzyme components such as AST, ALT and ALP were significantly increased (P < 0.05) at high levels of waterborne hexavalent chromium exposure. The results of this study suggest that acute exposure to waterborne hexavalent chromium in P. stellatus affects survival rates, hematological properties and plasma components.
Collapse
Affiliation(s)
- Yun-A Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea.
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
2
|
Kron NS, Young BD, Drown MK, McDonald MD. Long-read de novo genome assembly of Gulf toadfish (Opsanus beta). BMC Genomics 2024; 25:871. [PMID: 39289604 PMCID: PMC11409776 DOI: 10.1186/s12864-024-10747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND The family Batrachoididae are a group of ecologically important teleost fishes with unique life histories, behavior, and physiology that has made them popular model organisms. Batrachoididae remain understudied in the realm of genomics, with only four reference genome assemblies available for the family, with three being highly fragmented and not up to current assembly standards. Among these is the Gulf toadfish, Opsanus beta, a model organism for serotonin physiology which has recently been bred in captivity. RESULTS Here we present a new, de novo genome and transcriptome assemblies for the Gulf toadfish using PacBio long read technology. The genome size of the final assembly is 2.1 gigabases, which is among the largest teleost genomes. This new assembly improves significantly upon the currently available reference for Opsanus beta with a final scaffold count of 62, of which 23 are chromosome scale, an N50 of 98,402,768, and a BUSCO completeness score of 97.3%. Annotation with ab initio and transcriptome-based methods generated 41,076 gene models. The genome is highly repetitive, with ~ 70% of the genome composed of simple repeats and transposable elements. Satellite DNA analysis identified potential telomeric and centromeric regions. CONCLUSIONS This improved assembly represents a valuable resource for future research using this important model organism and to teleost genomics more broadly.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Benjamin D Young
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80302, USA
| | - Melissa K Drown
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
3
|
Phinrub W, Sookying S, Srisuttha P, Sutthi N, Panase P. Exploring the Nutritional Potential of Spent Coffee Grounds as a Substitute for Rice Bran in Feeds for Nile tilapia, Oreochromis niloticus: An Evaluation of Growth Performance and Biological Indices. AQUACULTURE NUTRITION 2024; 2024:4858465. [PMID: 39555543 PMCID: PMC10998722 DOI: 10.1155/2024/4858465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 11/19/2024]
Abstract
This study aimed to assess the viability of replacing rice bran with spent coffee grounds (SCG) in the diets of Oreochromis niloticus (average body weight, 48.8 ± 0.42 g). The fish were randomly allocated into four sets of three groups each and placed in net cages (1 m × 2 m × 0.5 m) at a density of 30 fish per cage. They were fed diets with four different replacement levels: 0%, 5%, 10%, and 15% of SCG over a period of 90 days. Growth and serum biochemical indices were monitored three times at 30, 60, and 90 days. During the experiment, there were no significant differences (P > 0.05) observed in growth indices, including weight gain (WG), daily WG, specific growth rate, feed conversion rate, protein efficiency ratio, and survival rate among the groups at 30, 60, and 90 days. Serum biochemical indices, such as aspartate aminotransferase and alanine aminotransferase, showed a similar trend with significant differences observed only on day 30, while the lowest and highest levels were found in the control and 15% SCG replacement groups, respectively. For total cholesterol, a significantly different result was found only on day 30. However, these differences were not sustained in subsequent assessments. Conversely, serum glucose, total protein, albumin, and globulin remained unaffected by SCG replacement throughout the experiment. The findings indicate that replacing rice bran with up to 15% SCG did not adversely impact the growth performance or key serum biochemical indices of Nile tilapia. To the researchers' knowledge, these findings are the first in the field to substitute SCG for rice bran, opening a new avenue for further research.
Collapse
Affiliation(s)
- Wikit Phinrub
- Department of Aquaculture and Fishery Products Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Trang Campus, Trang 92150, Thailand
- Unit of Excellence “Physiology and Sustainable Production of Terrestrial and Aquatic Animals” Division of Fisheries, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
| | - Sontaya Sookying
- Unit of Excellence “Physiology and Sustainable Production of Terrestrial and Aquatic Animals” Division of Fisheries, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
- Division of Pharmacy and Technology, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Phanit Srisuttha
- Division of Applied Thai Traditional Medicine, School of Public Health, University of Phayao, Phayao 56000, Thailand
| | - Nantaporn Sutthi
- Unit of Excellence “Physiology and Sustainable Production of Terrestrial and Aquatic Animals” Division of Fisheries, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Paiboon Panase
- Unit of Excellence “Physiology and Sustainable Production of Terrestrial and Aquatic Animals” Division of Fisheries, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
- Division of Fisheries, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
4
|
Bielmyer-Fraser GK, Franks B, Somerville R, Hueter R, Newton AL, Fischer C. Tissue metal concentrations and antioxidant enzyme activity in western north Atlantic white sharks (Carcharodon carcharias). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106641. [PMID: 37506482 DOI: 10.1016/j.aquatox.2023.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Anthropogenic practices have increased metal contamination in marine ecosystems. Most sharks have long lifespans, occupy an important ecological position at the top of marine food webs, and can accumulate metals. However, reference levels of metal contaminants in the tissues of sharks, particularly, apex predators such as the white shark (Carcharodon carcharias), are lacking. In this study, concentrations of copper (Cu), cadmium (Cd), nickel (Ni), lead (Pb), silver (Ag), and zinc (Zn) were measured in the muscle tissue of white (n = 42) and tiger (Galeocerdo cuvier; n = 3) sharks. Metal exposure in various species, including sharks, has been correlated with increased oxidative stress. Therefore, the main objectives of this study were to assess metal accumulation and antioxidant enzyme activity (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) in the muscle tissue of the population of white sharks and tiger sharks inhabiting the Western North Atlantic. The measured parameters were qualitatively compared between species. The small sample size of tiger sharks (collected from only one site) limited statistical analyses, therefore, white sharks were the primary focus of this study. Differences in tissue metal (Cu, Cd, Ni, and Zn) concentrations and antioxidant enzyme activities were detected based on collection site, with significant positive correlations between Cd and enzymes, SOD and CAT, and Zn and enzymes, SOD and GPx in C. carcharias. Differences in Ni concentration were detected based on sex, with females having higher Ni levels. Additionally, plasma osmolality was not correlated with tissue metal concentrations; however, osmolality decreased with increasing length in C. carcharias. This study is the first to report baseline levels of Cu, Zn, Cd, Ni, Ag, and Pb in muscle of North Atlantic white sharks and provides new insights into oxidative stress responses of these sensitive species to metal contaminants.
Collapse
Affiliation(s)
| | - Bryan Franks
- Jacksonville University, 2800 University Blvd. North, Jacksonville, FL 32211, USA
| | - Rachel Somerville
- Jacksonville University, 2800 University Blvd. North, Jacksonville, FL 32211, USA
| | | | | | | |
Collapse
|
5
|
Özçelik S, Canli M. Combined effects of metals (Cr6+, Hg2+, Ni2+, Zn2+) and calcium on the serum biochemistry and food quality of the Nile fish (Oreochromis niloticus). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Miranda LA, Somoza GM. Effects of Anthropic Pollutants Identified in Pampas Lakes on the Development and Reproduction of Pejerrey Fish Odontesthes bonariensis. Front Physiol 2022; 13:939986. [PMID: 35899023 PMCID: PMC9310068 DOI: 10.3389/fphys.2022.939986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Anthropic activities can seriously affect the health of the organisms inhabiting them, and the observation of any alteration in the reproduction of fish could be associated with the presence of endocrine disruptors. In this manuscript we have collected information on the adverse effects of pollutants (heavy metals, environmental steroids, and agrochemicals), present in Chascomús lake, Argentina, either at environmentally relevant and pharmacological concentrations on reproduction, embryonic development, and larval survival of pejerrey fish Odontesthes bonariensis. During development, it has been reported that 17β-estradiol (E2) feminized and reduced larval survival, while 17α-ethinyl-estradiol (EE2) not only feminized but also affected both embryo and larval survival. In adult male fish, treatments with EE2 and E2 + EE2 were able to increase mRNA abundance of gnrh3 and cyp19a1b and decreased those of gonadotropin receptors (fshr and lhcgr). Heavy metals such as cadmium, chromium, and copper negatively affected sperm quality, diminishing the motility. Also, a decrease in the percentage of hatching rate and larval survival was also observed with the same metals, highlighting zinc as the most detrimental metal. Furthermore, all these metals altered the expression of hypothalamic and pituitary genes related to reproduction in male pejerrey (gnrh1,2,3; cyp19a1b; fshb; lhb; fshr and, lhcgr). Moreover, in all cases pyknotic cells, corresponding to the degeneration of the germ cells, were observed in the testes of exposed fish. For agrochemicals, exposure of male pejerrey to environmental concentrations of glyphosate did not cause alterations on the endocrine reproductive axis. However, male pejerrey with gonadal abnormalities such as the presence of intersex (testis-ova) gonads were found in other Pampa´s lakes with high concentrations of atrazine and glyphosate associated with soybean and corn crops near their coasts. These types of studies demonstrate that pejerrey, an endemic species with economic importance inhabiting the Pampas shallow lakes, can be used as a sentinel species. It should be noted that increased pollution of aquatic ecosystems and the effects on the reproduction of organisms can lead to a decline in fish populations worldwide. Which, added to overfishing and other external factors such as global warming, could cause an eventual extinction of an emblematic species.
Collapse
Affiliation(s)
- Leandro A. Miranda
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
- *Correspondence: Leandro A. Miranda,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), San Martín, Argentina
| |
Collapse
|
7
|
Borges VD, Zebral YD, Costa PG, da Silva Fonseca J, Klein RD, Bianchini A. Metal Accumulation and Ion Regulation in the Fish Hyphessobrycon luetkenii Living in a Site Chronically Contaminated by Copper: Insights from Translocation Experiments. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:62-71. [PMID: 34664084 DOI: 10.1007/s00244-021-00895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Fish living in the João Dias creek (southern Brazil) have to deal with trace-metal contamination in the long-term basis, as this aquatic environment has been historically impacted by copper mining activities. In order to survive in this harsh environment, the local biota had to develop adaptations related to pollution tolerance. The aim of this study was to test if biochemical mechanisms related to osmoregulation were among these adaptations, using translocation experiments. Water ionic and trace-metal compositions were measured in a nonmetal impacted site (NMIS) and in a metal impacted site (MIS) of this creek. Also, whole-body metal accumulation, ion concentration and branchial enzyme activity (Na,K-ATPase and carbonic anhydrase) were evaluated in Hyphessobrycon luetkenii. In both NMIS and MIS, fish were collected and immediately stored, kept caged or translocated from sites. The result shows that waterborne Cu was 3.4-fold higher at the MIS. Accordingly, animals that had contact with this site showed elevated whole-body Cu levels. Moreover, both translocated groups showed elevated Na,K-ATPase activity. Additionally, fish translocated from the NMIS to the MIS showed lower carbonic anhydrase activity. These findings indicate that H. luetkenii chronically or acutely exposed to naturally elevated waterborne Cu showed a rapid Cu bioaccumulation but was unable to readily excrete it. Moreover, classic Cu osmoregulatory toxicity related to Na,K-ATPase inhibition was not observed. Conversely, impacts in ammonia excretion related to carbonic anhydrase inhibition may have occurred.
Collapse
Affiliation(s)
- Vinícius Dias Borges
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Roberta Daniele Klein
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
8
|
Samim AR, Vaseem H. Assessment of the potential threat of nickel(II) oxide nanoparticles to fish Heteropneustes fossilis associated with the changes in haematological, biochemical and enzymological parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54630-54646. [PMID: 34018108 DOI: 10.1007/s11356-021-14451-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The present study has been conducted to evaluate the potential threat of NiO nanoparticles (NiO NPs) on an edible fish Heteropneustes fossilis. Fishes selected for the study were exposed to four concentrations of NiO NPs (12, 24, 36 and 48 mg/l) for the period of 14 days, and various haematological, biochemical and enzymological changes in the exposed fishes were examined. Results revealed that maximum fluctuations were seen in 48-mg/l-exposed fishes when compared with the control in terms of the haematological parameters (RBC count, WBC count, Hb content, Ht% and O2 carrying capacity of blood), enzymatic activities (AST, ALP, ALT and LDH) and biochemical parameters (level of cholesterol, triglycerides, glucose, total protein, albumin, globulin, bilirubin and creatinine). However, 12 mg/l treatment to the fishes showed its least impact on aforesaid parameters. Furthermore, Ni accumulation and changes in cortisol level in the blood were also noticed in all the treated fishes. Structural changes, such as membrane and nuclear disintegration, micronucleus, deformed and vacuolated cells, and enucleation were also observed in RBCs of NiO NP-treated fishes. Conclusively, our study provides useful information and insight for the possible ecotoxicity of NiO NPs on aquatic organisms and emphasizes upon the importance of treatment of effluents containing nanoparticles before their release into the aquatic system.
Collapse
Affiliation(s)
- Abdur Rouf Samim
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Huma Vaseem
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
9
|
Luzio A, Parra S, Costa B, Santos D, Álvaro AR, Monteiro SM. Copper impair autophagy on zebrafish (Danio rerio) gill epithelium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103674. [PMID: 34029728 DOI: 10.1016/j.etap.2021.103674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is an essential element for organism's metabolism, being controversially listed as a priority pollutant. Importantly, the toxicity of Cu has been linked to several cell death pathways. Thus, this study aimed to assess if macroautophagic pathways are triggered by Cu in zebrafish gill, the main target of waterborne pollutants. The electron microscopy findings indicated that Cu induced profound impacts on zebrafish gill structure and functions, being this tissue a biomarker sensitive enough to indicate early toxic effects. The findings also support a clear impairment of autophagy, througth the absence of phagossomes and the significant down-regulation mRNA transcript levels of microtubule-associated protein light chain 3 (LC3). The reduction of LC3 levels was often associated to an increase of apoptotic activation, indicating that the inhibition of macroautophagy triggers apoptosis in zebrafish gills. This study highlighted that the autophagic down-regulation might be affected through the activation of other cell death signaling pathway.
Collapse
Affiliation(s)
- A Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal.
| | - S Parra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - B Costa
- Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - D Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal
| | - A R Álvaro
- Center for Neuroscience and Cell Biology, University of Coimbra (CNBC-UC), 3004-504, Coimbra, Portugal
| | - S M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro -Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal; Department of Biology and Environment, Life Sciences and Environment School, University of Trás-os-Montes e Alto Douro, Apt. 1013, 5000-801, Vila Real, Portugal.
| |
Collapse
|
10
|
Abstract
Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| | - Christina Pasparakis
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| |
Collapse
|
11
|
Gárriz Á, Miranda LA. Effects of metals on sperm quality, fertilization and hatching rates, and embryo and larval survival of pejerrey fish (Odontesthes bonariensis). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1072-1082. [PMID: 32617729 PMCID: PMC7332474 DOI: 10.1007/s10646-020-02245-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 05/05/2023]
Abstract
Some species of fish have been used as bioindicators of aquatic environmental pollution all over the world. Pejerrey (Odontesthes bonariensis) was selected for the current study due to its sensitivity to pollutants and because is one of the emblematic fish species that inhabits shallow lakes of the Pampa region (Argentina). Recently, in Chascomús lake were recorded concentrations of Cd, Cr, Cu and Zn with values above the Argentine National Guidelines for the Protection of the Aquatic life. Regarding this, the aim of the present study was to investigate the effects of environmental concentrations of these metals on the sperm quality, fertilization and hatching rates, and embryo and larval survival of pejerrey. Also, the same endpoints were analyzed with concentrations ten times higher to simulate a polluted worst-case scenario. The results showed that the presence of some metals in aquatic environments reduced pejerrey sperm motility (in ~50%) and velocity (in ~30%). These results were obtained using a computer assisted sperm analyzer enforcing the application of this analysis as a tool or bioindicator of aquatic pollution. In addition, fertilization rate was diminished (in ~40%) for all treatments. Besides, the hatching rate, and embryo and larval survival were drastically affected being zero for the highest metal concentrations assessed. All together these results, showed that even lower metal concentrations can negatively affect different reproductive parameters of one of the most emblematic fish species of the Argentinean water bodies.
Collapse
Affiliation(s)
- Ángela Gárriz
- Laboratorio de Ictiofisiología y Acuicultura, Instituto Tecnológico de Chascomús (INTECH; CONICET-UNSAM), Avenida Intendente Marino Km 8.200 (B7130IWA), Chascomus, Buenos Aires, Argentina
| | - Leandro A Miranda
- Laboratorio de Ictiofisiología y Acuicultura, Instituto Tecnológico de Chascomús (INTECH; CONICET-UNSAM), Avenida Intendente Marino Km 8.200 (B7130IWA), Chascomus, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Luja-Mondragón M, Gómez-Oliván LM, SanJuan-Reyes N, Islas-Flores H, Orozco-Hernández JM, Heredia-García G, Galar-Martínez M, Dublán-García O. Alterations to embryonic development and teratogenic effects induced by a hospital effluent on Cyprinus carpio oocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:751-764. [PMID: 30743961 DOI: 10.1016/j.scitotenv.2019.01.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Hospital functioning generates a great quantity of contaminants, among which organic materials, heavy metals, and diverse pharmaceuticals are noteworthy that can affect organisms if they are not properly removed from the effluents. The hospital effluent evaluated in the present study came from IMSS (Instituto Mexicano del Seguro Social) Clinic 221 in downtown Toluca, State of Mexico, a secondary care facility. The contaminants identified in hospitals have been associated with deleterious effects on aquatic organisms; however, it is necessary to continue with more studies in order to be able to regulate the production of said contaminants which are generally dumped into the city sewage system. The present study had the purpose of evaluating the alterations to embryonic development and teratogenic effects on oocytes Cyprinus carpio after exposure to different proportions of hospital effluent. For said purpose, the physicochemical properties of the effluent were determined. Concentrations of the main microcontaminants were also determined. An embryolethality study out and the determination of the main alterations to embryonic development and teratogenic effects produced, due to exposure of C. carpio at different proportions of the effluent, were carried out. The results showed that the physicochemical properties were within the values permitted by Mexican regulation; however, the presence of contaminants such as NaClO, metals, anti-biotics, anti-diabetics, non-steroidal anti-inflammatory drugs, hormones and beta-blockers, was detected. Lethal concentration 50 was 5.65% and the effective concentration for malformations was 3.85%, with a teratogenic index of 1.46. The main teratogenic alterations were yolk deformation, scoliosis, modified chorda structure, tail malformation, fin deformity and mouth hyperplasia. A high rate of hatching delay was observed. The results suggest that the hospital effluent under study is capable of inducing embryotoxicity and teratogenicity in oocytes of C. carpio.
Collapse
Affiliation(s)
- Marlenne Luja-Mondragón
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico.
| | - Nely SanJuan-Reyes
- Aquatic Toxicology Laboratory, Pharmacy Department, National Institute of Biological Sciences, National Polytechnic Institute, Adolfo López Mateos Professional Unit, Wilfrido Massieu Ave., Gustavo A. Madero District, Mexico City 07738, Mexico
| | - Hariz Islas-Flores
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - José Manuel Orozco-Hernández
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Gerardo Heredia-García
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| | - Marcela Galar-Martínez
- Aquatic Toxicology Laboratory, Pharmacy Department, National Institute of Biological Sciences, National Polytechnic Institute, Adolfo López Mateos Professional Unit, Wilfrido Massieu Ave., Gustavo A. Madero District, Mexico City 07738, Mexico
| | - Octavio Dublán-García
- Environmental Toxicology Laboratory, School of Chemistry, Autonomous University of the State of Mexico, Intersection of Paseo Colón and Paseo Tollocan, Residencial Colón neighborhood, 50120 Toluca, State of Mexico, Mexico
| |
Collapse
|
13
|
Canli EG, Dogan A, Canli M. Serum biomarker levels alter following nanoparticle (Al 2O 3, CuO, TiO 2) exposures in freshwater fish (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:181-187. [PMID: 30053707 DOI: 10.1016/j.etap.2018.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Nanoparticles (NPs) are used in diverse field of technology and consequently are released to the environment, most ending up in water bodies. Because NPs have potential to cause adverse effects on the metabolisms of animals, the present study was carried out to help understanding their effects on fish metabolism. In this study, freshwater fish (Oreochromis niloticus) were exposed to aluminum oxide (Al2O3) (40 nm), copper oxide (CuO) (40 nm) and titanium dioxide (TiO2) (21 nm) NPs in differing concentrations (0, 1, 5, 25 mg/L) for 14 d. Following the exposures, the levels of glucose, cholesterol, triglyceride, blood urea nitrogen (BUN), creatinine, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), Na+, K+, triiodothyronine (T3), thyroxine (T4) and cortisol in the serum of fish were measured. The results of this study showed that there were significant alterations in the levels of some serum parameters. The levels of glucose, triglyceride, BUN, creatinine, K+, cortisol and T4 in the serum were changed following NP exposures, though there was no statistical difference in the levels of cholesterol, ALT, AST, ALP, Na+ and T3. Most striking data were obtained in the levels of BUN and creatinine, as their levels increased nearly 10 folds. Transmission electron microscope (TEM) images showed NP accumulation in tissues of fish even at the lowest exposure concentration. This study emphasized that NPs are not innocent compounds and can have hazardous effects when taken in substantial levels, suggesting there must be some criteria and limits in their usage and discharge to the environment. Nevertheless, more studies are needed to understand better their toxicities in different classes of animals.
Collapse
Affiliation(s)
- Esin G Canli
- Çukurova University, Faculty of Science and Letters, Department of Biology, 01330, Balcali, Adana, Turkey
| | - Alper Dogan
- Çukurova University, Faculty of Science and Letters, Department of Biology, 01330, Balcali, Adana, Turkey
| | - Mustafa Canli
- Çukurova University, Faculty of Science and Letters, Department of Biology, 01330, Balcali, Adana, Turkey.
| |
Collapse
|
14
|
DeForest DK, Gensemer RW, Gorsuch JW, Meyer JS, Santore RC, Shephard BK, Zodrow JM. Effects of copper on olfactory, behavioral, and other sublethal responses of saltwater organisms: Are estimated chronic limits using the biotic ligand model protective? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1515-1522. [PMID: 29442368 DOI: 10.1002/etc.4112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/23/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
There is concern over whether regulatory criteria for copper (Cu) are protective against chemosensory and behavioral impairment in aquatic organisms. We compiled Cu toxicity data for these and other sublethal endpoints in 35 tests with saltwater organisms and compared the Cu toxicity thresholds with biotic ligand model (BLM)-based estimated chronic limits (ECL values, which are 20% effect concentrations [EC20s] for the embryo-larval life stage of the blue mussel [Mytilus edulis], a saltwater species sensitive to Cu that has historically been used to derive saltwater Cu criteria). Only 8 of the 35 tests had sufficient toxicity and chemistry data to support unequivocal conclusions (i.e., a Cu EC20 or no-observed-effect concentration could be derived, and Cu and dissolved organic carbon [DOC] concentrations were measured [or DOC concentrations could be inferred from the test-water source]). The BLM-based ECL values would have been protective (i.e., the ECL was lower than the toxicity threshold) in 7 of those 8 tests. In the remaining 27 tests, this meta-analysis was limited by several factors, including 1) the Cu toxicity threshold was a "less than" value in 19 tests because only a lowest-observed-effect concentration could be calculated and 2) Cu and/or DOC concentrations often were not measured. In 2 of those 27 tests, the ECL would not have been protective if based only on a conservatively high upper-bound DOC estimate. To facilitate future evaluations of the protectiveness of aquatic life criteria for metals, we urge researchers to measure and report exposure-water chemistry and test-metal concentrations that bracket regulatory criteria. Environ Toxicol Chem 2018;37:1515-1522. © 2018 SETAC.
Collapse
Affiliation(s)
| | | | - Joseph W Gorsuch
- Gorsuch Environmental Management Services, Webster, New York, USA
| | | | | | | | | |
Collapse
|
15
|
Black MN, Henry EF, Adams OA, Bennett JCF, MacCormack TJ. Environmentally relevant concentrations of amine-functionalized copper nanoparticles exhibit different mechanisms of bioactivity in Fundulus Heteroclitus in fresh and brackish water. Nanotoxicology 2017; 11:1070-1085. [DOI: 10.1080/17435390.2017.1395097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Merryl N. Black
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Elenor F. Henry
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Olivia A. Adams
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | | | - Tyson James MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| |
Collapse
|
16
|
Zhao J, Wu P, Jiang W, Liu Y, Jiang J, Zhang Y, Zhou X, Feng L. Preventive and reparative effects of isoleucine against copper-induced oxidative damage in primary fish enterocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1021-1032. [PMID: 28130733 DOI: 10.1007/s10695-017-0349-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
The present study aimed to assess the possible preventive and reparative effects of isoleucine (Ile) against copper (Cu)-induced oxidative stress in fish enterocytes in vitro. In experiment 1, enterocytes were preincubated with increasing concentrations of Ile (0, 50, 120, 190, 260, and 330 mg L-1) for 72 h followed by exposure to 6 mg L-1 Cu for 24 h. In experiment 2, the enterocytes were pretreated with 6 mg L-1 Cu for 24 h and then treated with 0-330 mg L-1 Ile for 72 h to investigate its potential reparative role. The results of experiment 1 showed that Cu exposure increased lactate dehydrogenase (LDH) activity and malondialdehyde and protein carbonyl (PC) content; these changes were completely suppressed by pretreatment with Ile at optimum concentrations (P < 0.05). Moreover, Ile pretreatment prevented the decrease in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in the enterocytes exposed to Cu (P < 0.05). Additionally, cells exposed to Cu exhibited adaptive increases in glutathione-S-transferase (GST) activity. In experiment 2, the LDH activity and protein oxidation induced by Cu were completely reversed by Ile posttreatment. Meanwhile, the Cu-induced decrease in SOD, GPx, and GST activity was completely reversed by subsequent Ile treatment, but the reduced glutathione content was not restored. Collectively, these results indicate that Ile suppresses Cu-induced oxidative damage via preventive and reparative pathways in primary enterocytes and thus protects the structural integrity of enterocytes in fish.
Collapse
Affiliation(s)
- Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| |
Collapse
|
17
|
Canli EG, Atli G, Canli M. Responses of the Antioxidant and Osmoregulation Systems of Fish Erythrocyte Following Copper Exposures in Differing Calcium Levels. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:601-608. [PMID: 27714403 DOI: 10.1007/s00128-016-1931-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Freshwater fish Oreochromis niloticus were exposed to Cu in differing Ca2+ levels (15, 30 and 90 mg/L), using acute (0.3 µM, 3 d) and chronic (0.03 µM, 30 d) exposure protocols and enzyme activities related to the antioxidant (catalase, CAT, EC 1.11.1.6; superoxide dismutase, SOD, EC 1.15.1.1; glutathione peroxidase, GPx, EC 1.11.1.9) and osmoregulation (Total, Na+/K+-ATPase, EC 3.6.3.9, Mg2+-ATPase, EC 3.6.3.2) systems in the erythrocytes were measured. Activities of antioxidant enzymes generally decreased significantly following either Ca2+ alone or Ca2++Cu combinations in both acute and chronic exposures. Na+/K+-ATPase activity significantly decreased in chronic exposures, though there was no clear trend in acute exposures. Mg2+-ATPase activity increased significantly in acute exposures, but not in chronic ones. There were more significant alterations in acute exposure compared to chronic ones. There was no clear trend regarding Cu toxicity and its relationship with Ca2+, which may possibly be prompted by the compensatory mechanisms of the enzymes. It may be concluded that freshwater fish erythrocytes may face different degrees of more physiological stress from different waters.
Collapse
Affiliation(s)
- E G Canli
- Department of Biology, Faculty of Sciences and Letters, University of Cukurova, 01330, Adana, Turkey
| | - G Atli
- Department of Biology, Faculty of Sciences and Letters, University of Cukurova, 01330, Adana, Turkey
| | - M Canli
- Department of Biology, Faculty of Sciences and Letters, University of Cukurova, 01330, Adana, Turkey.
| |
Collapse
|
18
|
Pinho GLL, Martins CMG, Barber I. Copper accumulation by stickleback nests containing spiggin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13554-13559. [PMID: 27164885 DOI: 10.1007/s11356-016-6784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
The three-spined stickleback is a ubiquitous fish of marine, brackish and freshwater ecosystems across the Northern hemisphere that presents intermediate sensitivity to copper. Male sticklebacks display a range of elaborate reproductive behaviours that include nest construction. To build the nests, each male binds nesting material together using an endogenous glycoprotein nesting glue, known as 'spiggin'. Spiggin is a cysteine-rich protein and, therefore, potentially binds heavy metals present in the environment. The aim of this study was to investigate the capacity of stickleback nests to accumulate copper from environmental sources. Newly built nests, constructed by male fish from polyester threads in laboratory aquaria, were immersed in copper solutions ranging in concentration from 21.1-626.6 μg Cu L(-1). Bundles of polyester threads from aquaria without male fish were also immersed in the same copper solutions. After immersion, nests presented higher amounts of copper than the thread bundles, indicating a higher capacity of nests to bind this metal. A significant, positive correlation between the concentration of copper in the exposure solution and in the exposed nests was identified, but there was no such relationship for thread bundles. Since both spiggin synthesis and male courtship behaviour are under the control of circulating androgens, we predicted that males with high courtship scores would produce and secrete high levels of the spiggin protein. In the present study, nests built by high courtship score males accumulated more copper than those built by low courtship score males. Considering the potential of spiggin to bind metals, the positive relationship between fish courtship and spiggin secretion seems to explain the higher amount of copper on the nests from the fish showing high behaviour scores. Further work is now needed to determine the consequences of the copper binding potential of spiggin in stickleback nests for the health and survival of developing embryos.
Collapse
Affiliation(s)
- G L L Pinho
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - C M G Martins
- Instituto de Ciências Biológicas, FURG, Rio Grande, Brazil
| | - I Barber
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
19
|
Jiang WD, Qu B, Feng L, Jiang J, Kuang SY, Wu P, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella). PLoS One 2016; 11:e0157001. [PMID: 27280406 PMCID: PMC4900568 DOI: 10.1371/journal.pone.0157001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/22/2016] [Indexed: 01/14/2023] Open
Abstract
Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Biao Qu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
20
|
Rodrigues E, Feijó-Oliveira M, Suda CNK, Vani GS, Donatti L, Rodrigues E, Lavrado HP. Metabolic responses of the Antarctic fishes Notothenia rossii and Notothenia coriiceps to sewage pollution. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1205-20. [PMID: 26031510 DOI: 10.1007/s10695-015-0080-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 05/21/2015] [Indexed: 05/20/2023]
Abstract
The present study aimed to assess the sewage effects of the Brazilian Antarctic Station Comandante Ferraz, Admiralty Bay, King George Island, on the hepatic metabolism (energetic, antioxidant, and arginase levels) and levels of plasma constituents of two Antarctic fish species Notothenia rossii and N. coriiceps. The bioassays were conducted under controlled temperature (0 °C) and salinity (35 psu), exposing the fish for 96 h, to sewage effluent diluted in seawater to 0.5 % (v/v). Liver homogenates were tested for the specific activities of the enzymes glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GPase), hexokinase, citrate synthase, lactate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, superoxide dismutase, glutathione reductase, catalase, and arginase. Plasma levels of glucose, triacylglycerides, cholesterol, total protein, albumin, chloride, magnesium, calcium, and inorganic phosphate were also determined. In N. rossii, the decrease in citrate synthase and the increase in G6Pase and GPase suggested that the sewage effluent activated glycogenolysis and hepatic gluconeogenesis, whereas is N. coriiceps, only G6Pase levels were increased. In N. rossii, sewage effluent induced hypertriglyceridemia without modulating glucose plasma levels, in contrast to N. coriiceps, which developed hypoglycemia without elevating plasma triglyceride levels. The decrease in glutathione reductase levels in N. coriiceps and in superoxide dismutase and catalase in N. rossii suggest that these two species are susceptible to oxidative stress stemming from the production of reactive oxygen species. An increase in magnesium in N. rossii and a decrease in N. coriiceps showed that sewage effluent compromised the control of plasma levels of this cation. Although phylogenetically close, both species of Antarctic fish exhibited different metabolic responses to the sewage effluent, with N. coriiceps showing greater susceptibility to the toxic effects of the pollutants. The present study suggests that the biochemical responses of these two species are potential indicators of metabolic changes caused by sewage effluents.
Collapse
Affiliation(s)
- Edson Rodrigues
- Institute of Basic Bioscience, University of Taubaté, Av. Tiradentes, 500 - Centro, Taubaté, 12.030-180, SP, Brazil.
| | - Mariana Feijó-Oliveira
- Institute of Basic Bioscience, University of Taubaté, Av. Tiradentes, 500 - Centro, Taubaté, 12.030-180, SP, Brazil
| | - Cecília Nohome Kawagoe Suda
- Institute of Basic Bioscience, University of Taubaté, Av. Tiradentes, 500 - Centro, Taubaté, 12.030-180, SP, Brazil
| | - Gannabathula Sree Vani
- Institute of Basic Bioscience, University of Taubaté, Av. Tiradentes, 500 - Centro, Taubaté, 12.030-180, SP, Brazil
| | - Lucélia Donatti
- Departamento of Cell Biology, Federal University of Paraná, Centro Politécnico s/No, Curitiba, 81.530-130, PR, Brazil
| | - Edson Rodrigues
- Institute of Basic Bioscience, University of Taubaté, Av. Tiradentes, 500 - Centro, Taubaté, 12.030-180, SP, Brazil.
| | - Helena Passeri Lavrado
- Departamento of Marine Biology, Federal University of Rio de Janeiro, 373 - CCS - Bloco A - sala 89, Rio de Janeiro, 21.941-902, RJ, Brazil
| |
Collapse
|
21
|
Changes of hematological parameters and plasma constituents in the olive flounder Paralichthys olivaceus exposed to TBT. ACTA ACUST UNITED AC 2015. [DOI: 10.7847/jfp.2015.28.2.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Ransberry VE, Morash AJ, Blewett TA, Wood CM, McClelland GB. Oxidative stress and metabolic responses to copper in freshwater- and seawater-acclimated killifish, Fundulus heteroclitus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:242-252. [PMID: 25731683 DOI: 10.1016/j.aquatox.2015.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
In freshwater (FW), many of the main mechanisms of copper (Cu) toxicity have been characterized; however, toxicity mechanisms in seawater (SW) are less well understood. We investigated the effects of salinity on Cu-induced oxidative stress and metabolic responses in adult killifish, Fundulus heteroclitus. We exposed FW and SW-acclimated killifish to either low Cu (LC, 50 μg/L) or high Cu (HC, 200 μg/L) for 96 h and compared them to controls (CTRL) under the same salinities without added Cu. Cu exerted minimal influence on tissue ion levels in either FW or SW. Salinity generally protected against Cu bioaccumulation in the gills and liver, but not in the carcass. Hematocrit (Hct) and hemoglobin (Hb) levels were increased by LC and HC in both FW and SW, and blood lactate was reduced in FW-killifish exposed to LC and HC. Rates of oxygen consumption were similar across treatments. Salinity reduced Cu load in gill, liver and intestine at LC but only in the gills at HC. In general, Cu increased gill, liver, and intestine catalase (CAT) activity, while superoxide dismutase (SOD) either decreased or remained unchanged depending on tissue-type. These changes did not directly correlate with levels of protein carbonyls, used as an index of oxidative stress. Cu-induced changes in carbohydrate metabolic enzymes were low across tissues and the effect of salinity was variable. Thus, while salinity clearly protects against Cu bioaccumulation in some tissues, it is unclear whether salinity protects against Cu-induced oxidative stress and metabolic responses.
Collapse
Affiliation(s)
| | - Andrea J Morash
- CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart, TAS 7001, Australia
| | - Tamzin A Blewett
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Zoology, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
23
|
Canli EG, Canli M. Low water conductivity increases the effects of copper on the serum parameters in fish (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:606-613. [PMID: 25682007 DOI: 10.1016/j.etap.2014.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 06/04/2023]
Abstract
The conductivity is largely determined by ion levels in water, predominant ion being Ca(2+) in the freshwaters. For this reason, the effects of copper were evaluated as a matter of conductivity of exposure media in the present study. Thus, freshwater fish Oreochromis niloticus were exposed to copper in differing conductivities (77, 163 and 330 μS/cm), using acute (0.3 μM, 3 d) and chronic (0.03 μM, 30 d) exposure protocols. Following the exposure serum parameters of fish were measured. Data showed that there was no significant alteration (P>0.05) in serum parameters of control fish. However, activities of ALP, ALT and AST decreased significantly at the lower conductivities in chronic copper exposure, but not in acute ones. Protein levels did not differ significantly in any of the exposure conditions. However, Cu exposure at the lowest conductivity sharply increased the levels of glucose in the acute exposure, while there was no significant difference in the chronic exposure. Cholesterol levels decreased only at the lower conductivities in chronic exposure, but increased in acute exposure. Similarly, triglyceride levels increased in acute exposures and decreased in chronic exposures at the lowest conductivity. There was no change in Na(+) levels, while there was an increase in K(+) levels and a decrease in Ca(2+) level at the lowest conductivity of acute exposures. However, Cl(-) levels generally decreased at the higher conductivities of chronic exposures. There was a strong negative relationship between significant altered serum parameters and water conductivity. In conclusion, this study showed that copper exposure of fish at lower conductivities caused more toxicities, indicating the protective effect of calcium ions against copper toxicity. Data suggest that conductivity of water may be used in the evaluation of metal data from different waters with different chemical characteristics.
Collapse
Affiliation(s)
- Esin G Canli
- University of Cukurova, Faculty of Sciences and Letters, Department of Biology, 01330 Adana, Turkey
| | - Mustafa Canli
- University of Cukurova, Faculty of Sciences and Letters, Department of Biology, 01330 Adana, Turkey.
| |
Collapse
|
24
|
Omar WA, Saleh YS, Marie MAS. Integrating multiple fish biomarkers and risk assessment as indicators of metal pollution along the Red Sea coast of Hodeida, Yemen Republic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:221-231. [PMID: 25261609 DOI: 10.1016/j.ecoenv.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/25/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The marine environment of the Red Sea coast of Yemen Republic is subjected to increasing anthropogenic activities. The present field study assesses the impacts of metal pollutants on two common marine fish species; Pomadasys hasta and Lutjanus russellii collected from a reference site in comparison to two polluted sites along the Red Sea coast of Hodeida, Yemen Republic. Concentrations of heavy metals (Fe, Cu, Zn, Cd and Pb) in fish vital organs, metal pollution index (MPI), indicative biochemical parameters of liver functions (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) and kidney functions (urea and creatinine) as well as histopathological changes in gills, liver and kidney of both fish species are integrated as biomarkers of metal pollution. These biomarkers showed species-specific and/or site-specific response. The hazard index (HI) was used as an indicator of human health risks associated with fish consumption. The detected low HI values in most cases doesn't neglect the fact that the cumulative risk effects for metals together give an alarming sign and that the health of fish consumers is endangered around polluted sites. The levels of ALT, AST and urea in plasma of both fish species collected from the polluted sites showed significant increase in comparison to those of reference site. Histopathological alterations and evident damage were observed in tissues of fish collected from the polluted sites. The investigated set of biomarkers proved to be efficient and reliable in biomonitoring the pollution status along different pollution gradients.
Collapse
Affiliation(s)
- Wael A Omar
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt; Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia.
| | - Yousef S Saleh
- Department of Biology, Faculty of Science, Taiz University, Taiz, Yemen Republic
| | | |
Collapse
|
25
|
Zimmer AM, Brauner CJ, Wood CM. Exposure to waterborne Cu inhibits cutaneous Na⁺ uptake in post-hatch larval rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:151-158. [PMID: 24680751 DOI: 10.1016/j.aquatox.2014.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/24/2014] [Accepted: 03/02/2014] [Indexed: 06/03/2023]
Abstract
In freshwater rainbow trout (Oncorhynchus mykiss), two common responses to acute waterborne copper (Cu) exposure are reductions in ammonia excretion and Na(+) uptake at the gills, with the latter representing the likely lethal mechanism of action for Cu in adult fish. Larval fish, however, lack a functional gill following hatch and rely predominantly on cutaneous exchange, yet represent the most Cu-sensitive life stage. It is not known if Cu toxicity in larval fish occurs via the skin or gills. The present study utilized divided chambers to assess cutaneous and branchial Cu toxicity over larval development, using disruptions in ammonia excretion (Jamm) and Na(+) uptake (Jin(Na)) as toxicological endpoints. Early in development (early; 3 days post-hatch; dph), approximately 95% of Jamm and 78% of Jin(Na) occurred cutaneously, while in the late developmental stage (late; 25 dph), the gills were the dominant site of exchange (83 and 87% of Jamm and Jin(Na), respectively). Exposure to 50 μg/l Cu led to a 49% inhibition of Jamm in the late developmental stage only, while in the early and middle developmental (mid; 17 dph) stages, Cu had no effect on Jamm. Jin(Na), however, was significantly inhibited by Cu exposure at the early (53% reduction) and late (47% reduction) stages. Inhibition at the early stage of development was mediated by a reduction in cutaneous uptake, representing the first evidence of cutaneous metal toxicity in an intact aquatic organism. The inhibitions of both Jamm and Jin(Na) in the late developmental stage occurred via a reduction in branchial exchange only. The differential responses of the skin and gills to Cu exposure suggest that the mechanisms of Jamm and Jin(Na) and/or Cu toxicity differ between these tissues. Exposure to 20μg/l Cu revealed that Jamm is the more Cu-sensitive process. The results presented here have important implications in predicting metal toxicity in larval fish. The Biotic Ligand Model (BLM) is currently used to predict metal toxicity in aquatic organisms. However, for rainbow trout this is based on gill binding constants from juvenile fish. This may not be appropriate for post-hatch larval fish where the skin is the site of toxic action of Cu. Determining Cu binding constants and lethal accumulation concentrations for both skin and gills in larval fish may aid in developing a larval fish-specific BLM. Overall, the changing site of toxic action and physiology of developing larval fish present an interesting and exciting avenue for future research.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1; Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1; Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| |
Collapse
|
26
|
Zizza M, Canonaco M, Facciolo RM. ORX Neuroreceptor System and HSP90 Are Linked to Recovery Strategies Against Copper Toxicity in Thalassoma pavo. Toxicol Sci 2013; 137:135-46. [DOI: 10.1093/toxsci/kft229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Alquezar R, Anastasi A. The use of the cyanobacteria, Cyanobium sp., as a suitable organism for toxicity testing by flow cytometry. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:684-690. [PMID: 23503852 DOI: 10.1007/s00128-013-0977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 03/06/2013] [Indexed: 06/01/2023]
Abstract
Cyanobacteria are commonly found in a number of temperate and tropical bioregions, and provide important roles in fuelling many nutrient poor freshwater and marine ecosystems. Although cyanobacteria commonly occur in these environments, little is known about the use of cyanobacteria as suitable organisms for toxicity studies. Here, we propose the use of the unicellular cyanobacteria Cyanobium sp., as a potential species for tropical toxicity testing using flow cytometry. Cyanobium sp. was isolated from a composite sample of sea water in Halifax Bay, North Queensland, Australia. After careful isolation, cleaning and purification, Cyanobium sp. was used to determine the toxicity of copper, cobalt, and nickel at pH 8, and ammonia at pH 7 and 8. EC₁₀/₅₀ values were calculated using growth inhibition data determined via flow cytometry, which was found to provide rapid, accurate results, with the ability to define multiple endpoints. Cyanobium sp. was particularly sensitive to copper, cobalt and nickel, however, thrived at elevated concentrations of ammonia, irrespective of pH value. The results indicate that Cyanobium sp. is a useful test organism for tropical marine metal toxicity studies, however, is unsuitable for nutrient studies, particularly ammonia.
Collapse
Affiliation(s)
- Ralph Alquezar
- Centre for Environmental Management, Central Queensland University, Bryan Jordan Drive, PO Box 1319, Gladstone, QLD 4680, Australia.
| | | |
Collapse
|
28
|
Jiang WD, Liu Y, Jiang J, Hu K, Li SH, Feng L, Zhou XQ. In vitro interceptive and reparative effects of myo-inositol against copper-induced oxidative damage and antioxidant system disturbance in primary cultured fish enterocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 132-133:100-110. [PMID: 23474319 DOI: 10.1016/j.aquatox.2013.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/07/2013] [Accepted: 02/09/2013] [Indexed: 06/01/2023]
Abstract
Copper (Cu) is essential for normal cellular processes in most eukaryotic organisms but is toxic in excess. Our previous study reported that a nutrient antioxidant, myo-inositol (MI), can protect fish from Cu-induced oxidative injury; however, the mechanisms involved are not fully understood. Therefore, the present study aimed to analyze potential pathways. First, to investigate the hypothesis that MI protects enterocytes against Cu toxicity via the intercept pathway, enterocytes were treated with different concentrations of MI (0-75mg/L medium) in the presence of 6mg/L of Cu for 24h (Experiment 1). Next, we investigated the potential reparative role of MI after a Cu challenge (Experiment 2). The results of Experiment 1 indicated that cells exposed to Cu alone for 24h exhibited increases in lactate dehydrogenase release (LDH), malondialdehyde (MDA) formation and protein oxidation (P<0.05). Notably, a dose-dependent inhibitory effect on LDH release was observed with all doses of MI. Moreover, co-treatment with MI completely inhibited Cu-induced protein carbonyl (PC) formation. However, Cu-induced lipid peroxidation was not altered by MI co-treatment. Additionally, Cu exposure suppressed total-superoxide dismutase (T-SOD), CuZnSOD and catalase (CAT) activities, and these changes were completely blocked by co-treatment with sufficient MI concentrations. In contrast, cells exposed to Cu exhibited adaptive increases in reduced glutathione (GSH) content and the activities of anti-hydroxyl radical (AHR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR). Interestingly, the Cu-stimulated increases in these antioxidants were blocked by co-treatment with sufficient MI concentrations. The results of Experiment 2 indicated that cell injury (LDH release), lipid peroxidation (MDA formation) and protein oxidation induced by Cu were reversed by subsequent MI treatment. Meanwhile, Cu-induced decreases in alkaline phosphatase (AKP), anti-superoxide anion (ASA), T-SOD and CuZnSOD activities were completely restored by subsequent MI treatment, while the reduced CAT activity was partially restored. However, MI rescues partially restored the adaptive increase in GPx activity induced by Cu, whereas the adaptive increase in reduced GSH content was completely reversed by 75mg/L of MI. However, subsequent MI treatments did not alter the induction of GST activity by Cu. In conclusion, we demonstrated for the first time that MI not only protected enterocytes from Cu-induced oxidative damage but also increased the repair activity in primary enterocytes after challenge with Cu. Moreover, MI-mediated increases in antioxidant enzyme activities contributed to lipid and protein oxidant repair.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Lorin-Nebel C, Felten V, Blondeau-Bidet E, Grousset E, Amilhat E, Simon G, Biagianti S, Charmantier G. Individual and combined effects of copper and parasitism on osmoregulation in the European eel Anguilla anguilla. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 130-131:41-50. [PMID: 23340332 DOI: 10.1016/j.aquatox.2012.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
The European eel (Anguilla anguilla), a catadromous species, breeds in the sea and migrates to estuarine, lagoon or freshwater habitats for growth and development. Yellow eels, exposed to low or fluctuating salinities, are also exposed to multiple other stressors as pollution, over-fishing and parasitism, which contribute to the dramatic decrease of eel populations in several European countries. The objective of this study was to evaluate the single and combined effects of waterborne copper and experimental infestation of eels with the nematode Anguillicoloides crassus after a salinity challenge from nearly isotonic (18ppt) to hypo- (5ppt) and hypertonic (29ppt) conditions, in order to investigate the osmoregulatory capacity of eels exposed to these stressors. In a nearly isotonic condition (18ppt), blood osmolality remained constant over the 6 weeks contamination to Cu(2+) and Anguillicoloides crassus. In fish exposed to a salinity challenge of 29ppt for 2 weeks, no significant effect was recorded in blood osmolality, Na(+)/K(+)-ATPase (NKA) activity, Na(+) and Cl(-) concentrations. After 2 weeks at 5ppt however, a significant blood osmolality decrease was detected in fish exposed to Anguillicoloides crassus infestation with or without Cu(2+) addition. This decrease may originate from lower Cl(-) levels measured in eels exposed to both stressors. Blood Na(+) levels remained relatively stable in all tested animals, but gill NKA activities were lower in eels exposed to combined stress. No apparent branchial lesions were detected following the different treatments and immunolocalization of NKA revealed well-differentiated ionocytes. Thus, the 5ppt challenge in eels exposed to copper and Anguillicoloides crassus seems to clearly enhance iono/osmoregulatory disturbances. Funded by ANR CES/CIEL 2008-12.
Collapse
Affiliation(s)
- Catherine Lorin-Nebel
- Equipe Adaptation Ecophysiologique et Ontogenèse, UMR 5119 EcoSym (UM2, UM1, CNRS, IRD, IFREMER), Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Luzio A, Monteiro SM, Fontaínhas-Fernandes AA, Pinto-Carnide O, Matos M, Coimbra AM. Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:183-189. [PMID: 23314331 DOI: 10.1016/j.aquatox.2012.12.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
Copper (Cu) is an essential micronutrient that, when present in high concentrations, becomes toxic to aquatic organisms. It is known that Cu toxicity may induce apoptotic cell death. However, the precise mechanism and the pathways that are activated, in fish, are still unclear. Thus, this study aimed to assess which apoptotic pathways are triggered by Cu, in zebrafish (Danio rerio) gill, the main target of waterborne pollutants. Fish where exposed to 12.5 and 100 μg/L of Cu during 6, 12, 24 and 48 h. Fish gills were collected to TUNEL assay and mRNA expression analysis of selected genes by real time PCR. An approach to different apoptosis pathways was done selecting p53, caspase-8, caspase-9 and apoptosis inducing factor (AIF) genes. The higher incidence of TUNEL-positive cells, in gill epithelia of the exposed fish, proved that Cu induced apoptosis. The results suggest that different apoptosis pathways are triggered by Cu at different time points of the exposure period, as the increase in transcripts was sequential, instead of simultaneous. Apoptosis seems to be initiated via intrinsic pathway (caspase-9), through p53 activation; then followed by the extrinsic pathway (caspase-8) and finally by the caspase-independent pathway (AIF). A possible model for Cu-induce apoptosis pathways is proposed.
Collapse
Affiliation(s)
- Ana Luzio
- Centro de Investigação de Tecnologias Agro-Ambientais e Biológicas (CITAB), Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal.
| | | | | | | | | | | |
Collapse
|
31
|
Jorge MB, Loro VL, Bianchini A, Wood CM, Gillis PL. Mortality, bioaccumulation and physiological responses in juvenile freshwater mussels (Lampsilis siliquoidea) chronically exposed to copper. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013. [PMID: 23183413 DOI: 10.1016/j.aquatox.2012.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Several studies have indicated that the early life stages of freshwater mussels are among the most sensitive aquatic organisms to inorganic chemicals, including copper. However, little is known about the toxic mode of action and sub-lethal effects of copper exposure in this group of imperiled animals. In this study, the physiological effects of long-term copper exposure (survival, growth, copper bioaccumulation, whole-body ion content, oxygen consumption, filtration rate, ATPase activities, and biomarkers of oxidative stress) were evaluated in juvenile (6 month old) mussels (Lampsilis siliquoidea). The mussels' recovery capacity and their ability to withstand further acute copper challenge were also evaluated in secondary experiments following the 28 day exposure by assessing survival, copper bioaccumulation and whole-body ion content. Mussels chronically exposed to 2 and 12 μg Cu/L showed significantly higher mortality than those held under control conditions (mortality 20.9, 69.9 and 12.5%, respectively), indicating that juvenile L. siliquoidea is underprotected by the U.S. Environmental Protection Agency (USEPA) biotic ligand model (BLM)-derived chronic water quality criteria (WQC) (2.18 μg Cu/L) and the hardness-derived USEPA WQC (12.16 μg Cu/L). Soft tissue copper burden increased equally for both copper exposures, suggesting that chronic toxicity is not associated with copper bioaccumulation. Several physiological disturbances were also observed during chronic copper exposure. Most relevant was a decrease in whole-body sodium content paralleled by an inhibition of Na(+) K(+)-ATPase activity, indicating a metal-induced ionoregulatory disturbance. Filtration and oxygen consumption rates were also affected. Redox parameters (reactive oxygen production, antioxidant capacity against peroxyl radicals, glutathione-S-transferase (GST) activity, and glutathione (GSH) concentration) did not show clear responses, but membrane damage as lipid peroxidation (LPO) was observed in both copper exposures. Mussels previously held in control conditions or pre-exposed to 2 μg dissolved Cu/L were able to maintain their ionic homeostasis and did not experience mortality after the 4-d recovery period. In contrast, those previously exposed to 12 μg dissolved Cu/L exhibited 50% mortality indicating that they had already reached a 'point of no return'. Pre-exposure to copper did not influence mussel response to the copper challenge test. As observed for the chronic exposure, mortality of mussels held in the absence of copper and submitted to the challenge test was also associated with an ionoregulatory disturbance. These results indicate that ionoregulatory disruption in freshwater mussels chronically exposed to copper is the main mechanism of toxicity and that redox parameters do not appear to be useful as indicators of sub-lethal copper toxicity in these animals.
Collapse
Affiliation(s)
- Marianna B Jorge
- Instituto de Ciências Biológicas, Universidade Federal de Rio Grande, Campus Carreiros, Brazil.
| | | | | | | | | |
Collapse
|
32
|
Lauer MM, de Oliveira CB, Yano NLI, Bianchini A. Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:140-7. [PMID: 22892099 DOI: 10.1016/j.cbpc.2012.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 11/27/2022]
Abstract
The estuarine crab Neohelice granulata was exposed (96 h) to a sublethal copper concentration under two different physiological conditions (hyperosmoregulating crabs: 2 ppt salinity, 1 mg Cu/L; isosmotic crabs: 30 ppt salinity, 5 mg Cu/L). After exposure, gills (anterior and posterior) were dissected and activities of enzymes involved in glycolysis (hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase), Krebs cycle (citrate synthase), and mitochondrial electron transport chain (cytochrome c oxidase) were analyzed. Membrane potential of mitochondria isolated from anterior and posterior gill cells was also evaluated. In anterior gills of crabs acclimated to 2 ppt salinity, copper exposure inhibited hexokinase, phosphofructokinase, pyruvate kinase, and citrate synthase activity, increased lactate dehydrogenase activity, and reduced the mitochondrial membrane potential. In posterior gills, copper inhibited hexokinase and pyruvate kinase activity, and increased citrate synthase activity. In anterior gills of crabs acclimated to 30 ppt salinity, copper exposure inhibited phosphofructokinase and citrate synthase activity, and increased hexokinase activity. In posterior gills, copper inhibited phosphofructokinase and pyruvate kinase activity, and increased hexokinase and lactate dehydrogenase activity. Copper did not affect cytochrome c oxidase activity in either anterior or posterior gills of crabs acclimated to 2 and 30 ppt salinity. These findings indicate that exposure to a sublethal copper concentration affects the activity of enzymes involved in glycolysis and Krebs cycle, especially in anterior (respiratory) gills of hyperosmoregulating crabs. Changes observed indicate a switch from aerobic to anaerobic metabolism, characterizing a situation of functional hypoxia. In this case, reduced mitochondrial membrane potential would suggest a decrease in ATP production. Although gills of isosmotic crabs were also affected by copper exposure, changes observed suggest no impact in the overall tissue ATP production. Also, findings suggest that copper exposure would stimulate the pentose phosphate pathway to support the antioxidant system requirements. Although N. granulata is very tolerant to copper, acute exposure to this metal can disrupt the energy balance by affecting biochemical systems involved in carbohydrate metabolism.
Collapse
Affiliation(s)
- Mariana Machado Lauer
- Programa de Pós-Graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.203-900, Rio Grande, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
33
|
Zimmer AM, Barcarolli IF, Wood CM, Bianchini A. Waterborne copper exposure inhibits ammonia excretion and branchial carbonic anhydrase activity in euryhaline guppies acclimated to both fresh water and sea water. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:172-180. [PMID: 22819806 DOI: 10.1016/j.aquatox.2012.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/03/2012] [Accepted: 06/21/2012] [Indexed: 06/01/2023]
Abstract
Inhibition of ammonia excretion (J(amm)) is a common response to Cu exposure in freshwater (FW) and seawater (SW) organisms. To determine the mechanism of this response, a euryhaline species of guppy (Poecilia vivipara) was exposed to 20 μg Cu/l in FW (0 ppt) and SW (25 ppt) for 96 h. In both salinities, Cu transiently inhibited ammonia excretion (J(amm)) followed by a full recovery by the end of the 96 h exposure. The activities of Na(+)/K(+)-ATPase, H(+)-ATPase, and carbonic anhydrase (CA) were examined in the gills at 12 and 96 h of Cu exposure. In both salinity acclimations, CA activity was significantly inhibited following 12h of Cu exposure in P. vivipara, marking the first in vivo evidence of Cu-induced inhibition of CA in fish. Moreover, the inhibition and recovery of this enzyme were correlated with the inhibition and recovery of J(amm) in both salinity acclimations. The blockade of CA potentially acts as a common mechanism of J(amm) inhibition in FW and SW. There were no significant effects on Na(+)/K(+)-ATPase or H(+)-ATPase activity at either time point or salinity. However, H(+)-ATPase activity was upregulated at 96 h relative to the 12h time point, potentially involving this enzyme in re-establishing J(amm).
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | | | | | | |
Collapse
|
34
|
Carvalho ESM, Gregório SF, Power DM, Canário AVM, Fuentes J. Water absorption and bicarbonate secretion in the intestine of the sea bream are regulated by transmembrane and soluble adenylyl cyclase stimulation. J Comp Physiol B 2012; 182:1069-80. [PMID: 22752677 DOI: 10.1007/s00360-012-0685-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/04/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
In the marine fish intestine luminal, HCO₃⁻ can remove divalent ions (calcium and magnesium) by precipitation in the form of carbonate aggregates. The process of epithelial HCO₃⁻ secretion is under endocrine control, therefore, in this study we aimed to characterize the involvement of transmembrane (tmACs) and soluble (sACs) adenylyl cyclases on the regulation of bicarbonate secretion (BCS) and water absorption in the intestine of the sea bream (Sparus aurata). We observed that all sections of sea bream intestine are able to secrete bicarbonate as measured by pH-Stat in Ussing chambers. In addition, gut sac preparations reveal net water absorption in all segments of the intestine, with significantly higher absorption rates in the anterior intestine that in the rectum. BCS and water absorption are positively correlated in all regions of the sea bream intestinal tract. Furthermore, stimulation of tmACs (10 μM FK + 500 μM IBMX) causes a significant decrease in BCS, bulk water absorption and short circuit current (Isc) in a region dependent manner. In turn, stimulation of sACs with elevated HCO₃⁻ results in a significant increase in BCS, and bulk water absorption in the anterior intestine, an action completely reversed by the sAC inhibitor KH7 (200 μM). Overall, the results reveal a functional relationship between BCS and water absorption in marine fish intestine and modulation by tmACs and sAC. In light of the present observations, it is hypothesized that the endocrine effects on intestinal BCS and water absorption mediated by tmACs are locally and reciprocally modulated by the action of sACs in the fish enterocyte, thus fine-tuning the process of carbonate aggregate production in the intestinal lumen.
Collapse
Affiliation(s)
- Edison S M Carvalho
- Centre of Marine Sciences (CCMar), CIMAR-Laboratório Associado, Universidade do Algarve, Faro, Portugal
| | | | | | | | | |
Collapse
|
35
|
Dang F, Wang WX, Rainbow PS. Unifying prolonged copper exposure, accumulation, and toxicity from food and water in a marine fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3465-3471. [PMID: 22372853 DOI: 10.1021/es203951z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The link between metal exposure and toxicity is complicated by numerous factors such as exposure route. Here, we exposed a marine fish (juvenile blackhead seabream Acanthopagrus schlegelii schlegelii) to copper either in a commercial fish diet or in seawater. Copper concentrations in intestine/liver were correlated linearly with influx rate, but appeared to be less influenced by uptake pathway (waterborne or dietary exposure). Influx rate best predicted Cu accumulation in the intestine and liver. However, despite being a good predictor of mortality within each pathway, influx rate was not a good predictor of mortality across both exposure pathways, as waterborne Cu caused considerably higher mortality than dietary Cu at a given influx rate. We show that the use of gill Cu accumulation irrespective of the exposure route as a model for observed fish mortality provided a clear relationship between accumulation and toxicity. Investigation of gill Cu accumulation may shed light on the different accumulation strategies from the two exposure pathways. This correlation offers potential for the use of branchial Cu concentration as an indicator of long-term Cu toxicity, allowing for differences in the relative importance of the uptake pathways in different field situations.
Collapse
Affiliation(s)
- Fei Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | |
Collapse
|
36
|
de Polo A, Scrimshaw MD. Challenges for the development of a biotic ligand model predicting copper toxicity in estuaries and seas. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:230-238. [PMID: 22105377 DOI: 10.1002/etc.1705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An effort is ongoing to develop a biotic ligand model (BLM) that predicts copper (Cu) toxicity in estuarine and marine environments. At present, the BLM accounts for the effects of water chemistry on Cu speciation, but it does not consider the influence of water chemistry on the physiology of the organisms. We discuss how chemistry affects Cu toxicity not only by controlling its speciation, but also by affecting the osmoregulatory physiology of the organism, which varies according to salinity. In an attempt to understand the mechanisms of Cu toxicity and predict its impacts, we explore the hypothesis that the common factor linking the main toxic effects of Cu is the enzyme carbonic anhydrase (CA), because it is a Cu target with multiple functions and salinity-dependent expression and activity. According to this hypothesis, the site of action of Cu in marine fish may be not only the gill, but also the intestine, because in this tissue CA plays an important role in ion transport and water adsorption. Therefore, the BLM of Cu toxicity to marine fish should also consider the intestine as a biotic ligand. Finally, we underline the need to incorporate the osmotic gradient into the BLM calculations to account for the influence of physiology on Cu toxicity.
Collapse
Affiliation(s)
- Anna de Polo
- Institute for Environment, Brunel University, Uxbridge, United Kingdom
| | | |
Collapse
|
37
|
Jung D, Sato JD, Shaw JR, Stanton BA. Expression of aquaporin 3 in gills of the Atlantic killifish (Fundulus heteroclitus): Effects of seawater acclimation. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:320-6. [PMID: 22193757 DOI: 10.1016/j.cbpa.2011.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 01/22/2023]
Abstract
Estuarine fish, such as the Atlantic killifish (Fundulus heteroclitus), are constantly and rapidly exposed to changes in salinity. Although ion transport in killifish gills during acclimation to increased salinity has been studied extensively, no studies have examined the role of aquaglyceroporin 3 (AQP3), a water, glycerol, urea, and ammonia transporter, during acclimation to increased salinity in this sentinel environmental model organism. The goal of this study was to test the hypothesis that transfer from freshwater to seawater decreases AQP3 gene and protein expression in the gill of killifish. Transfer from freshwater to seawater decreased AQP3 mRNA in the gill after 1 day, but had no effect on total gill AQP3 protein abundance as determined by western blot. Quantitative confocal immunocytochemistry confirmed western blot studies that transfer from freshwater to seawater did not change total AQP3 abundance in the gill; however, immunocytochemistry revealed that the amount of AQP3 in pillar cells of secondary lamellae decreased in seawater fish, whereas the amount of AQP3 in mitochondrion rich cells (MRC) in primary filaments of the gill increased in seawater fish. This response of AQP3 expression is unique to killifish compared to other teleosts. Although the role of AQP3 in the gill of killifish has not been completely elucidated, these results suggest that AQP3 may play an important role in the ability of killifish to acclimate to increased salinity.
Collapse
Affiliation(s)
- Dawoon Jung
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
38
|
Jiang WD, Wu P, Kuang SY, Liu Y, Jiang J, Hu K, Li SH, Tang L, Feng L, Zhou XQ. Myo-inositol prevents copper-induced oxidative damage and changes in antioxidant capacity in various organs and the enterocytes of juvenile Jian carp (Cyprinus carpio var. Jian). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:543-551. [PMID: 21924699 DOI: 10.1016/j.aquatox.2011.08.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/10/2011] [Accepted: 08/23/2011] [Indexed: 05/31/2023]
Abstract
Although oxidative stress has been demonstrated to be involved in copper (Cu)-induced toxicity, information regarding the effect of antioxidants on Cu toxicity is still scarce. This study assessed the possible protective effects of myo-inositol (MI) against subsequent Cu exposure in juvenile Jian carp (Cyprinus carpio var. Jian) in vivo and in their enterocytes in vitro. First, oxidative stress was established by exposing fish to different concentrations of Cu (0-7.2 mg Cu/L water) for 4 days. Next, the protective effects of MI (administered as a dietary supplement for 60 days) against subsequent Cu exposure (0.6 mg Cu/L water for 4 days) were studied in fish. The third trial determined the effects of Cu exposure (0-6.0 mg Cu/L of medium for 24h) on enterocytes in vitro. Finally, enterocytes were pre-incubated with graded levels of MI (0-75 mg MI/L of medium) for 72 h and exposed to 6.0 mg Cu/L of medium for 24h. The results indicated that ≥ 0.6 mg Cu/L water could induce oxidative stress in fish (P<0.05). Cu exposure significantly induced increases in lipid peroxidation and protein oxidation in the gill, hepatopancreas and intestine in fish. However, these oxidative effects were prevented by MI pre-supplementation. MI also prevented the toxic effects of Cu on anti-superoxide anion (ASA), anti-hydroxyl radical (AHR), superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and glutathione (GSH) content in these organs. In vitro, enterocytes exposed to Cu displayed a dose-dependent injury. Moreover, cell viability, protein retention (PR), alkaline phosphatase, total-SOD (T-SOD) and Cu/ZnSOD activities were all depressed by Cu (P<0.05). Interestingly, the final experiment showed that MI pre-supplementation could block the toxic effects of Cu on the antioxidant system, and thus protect enterocytes from Cu-induced oxidative damage. All of these results indicated that the induction of key antioxidant defenses by MI pre-supplementation, including SOD, CAT, GPx, GST and GSH, may play an important role in the protection of fish against oxidative stress.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lopes TM, Barcarolli IF, de Oliveira CB, de Souza MM, Bianchini A. Effect of copper on ion content in isolated mantle cells of the marine clam Mesodesma mactroides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1582-1585. [PMID: 21425322 DOI: 10.1002/etc.528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/05/2010] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
The effect of copper on ion content (Na(+), K(+), Ca(2+), and Cl(-)) was evaluated in isolated mantle gills of the marine clam Mesodesma mactroides. Clams were collected at the Mar Grosso Beach (São José do Norte, Rio Grande do Sul [RS], southern Brazil), cryoanesthetized, and had their mantles dissected. Mantle cells were isolated and incubated in a calcium-free phosphate solution without (control) or with Cu (CuCl(2)). Cells were exposed to Cu for 1 h (5 µM) or 3 h (2.5 and 5 µM). In cells incubated with 2.5 µM Cu, a significant decrease in intracellular Cl(-) content was observed. However, in cells incubated with 5.0 µM Cu, significant reductions in Na(+), K(+), and Cl(-) intracellular content were observed. Given the mechanisms involved in ion transport in mantle cells of the marine clam M. mactroides, the findings described here suggest that Cu exposure inhibits carbonic anhydrase and Na(+)/K(+) -ATPase activity. Also, it can be suggested that Cu is competing with Na(+) for the same mechanisms of ion transport in the cell membrane, such as the Na(+) channels and the Na(+)/K(+)/2Cl(-) cotransporter. Results from the present study also clearly indicate that processes involved in cellular anion regulation are more sensitive to Cu exposure than those associated with the cellular cation regulation. Characterization of sites for Cu accumulation and toxicity in aquatic animals is important for derivation of metal binding constants at the biotic ligand. Also, identification of the mechanism of metal toxicity is needed for modeling metal accumulation in the biotic ligand and its consequent toxicity. Therefore, the findings reported here are extremely valuable for the development of a biotic ligand model version for marine and estuarine waters.
Collapse
Affiliation(s)
- Thaís Martins Lopes
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
40
|
Lopes TM, Barcarolli IF, de Oliveira CB, de Souza MM, Bianchini A. Mechanisms of copper accumulation in isolated mantle cells of the marine clam Mesodesma mactroides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:1586-1592. [PMID: 21425321 DOI: 10.1002/etc.527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/18/2010] [Accepted: 03/01/2011] [Indexed: 05/30/2023]
Abstract
In vivo copper accumulation was determined in tissues (mantle, gills, digestive gland, and hemolymph) following exposure to Cu (5 µM) for up to 96 h. Mantle was the tissue that accumulated the most Cu, followed by gill, digestive gland, and hemolymph. Therefore, in vitro Cu accumulation was evaluated in isolated mantle cells exposed to 0.5, 1.0, 2.5, and 5.0 µM Cu for 1 and 3 h. After both exposure times, no change in cell viability was observed. However, a significant Cu accumulation was observed in cells exposed to 2.5 and 5.0 µM Cu. Cell exposure to 2.5 µM Cu for 1 h did not affect the ionic (Na(+), K(+), Ca(2+), and Cl(-)) content of isolated mantle cells, characterizing an "ideal" noneffect concentration for the study of the involvement of different ion-transporting proteins (Na(+), K(+), and Cl(-) channels; Na(+)/K(+) 2Cl(-) and Na(+)/Cl(-) cotransporters; Na(+)/Ca(2+), Cl(-)/HCO3-, and Na(+)/H(+) exchangers; Na(+)/K(+) -ATPase; V-ATPase; and carbonic anhydrase) in Cu accumulation. Isolated cells were pre-exposed (30 min) to specific blockers or inhibitors of the ion-transporting proteins and then exposed (1 h) to Cu (2.5 µM) in the presence of the drug. A significant increase of 29.1 and 24.3% in Cu accumulation was observed after cell incubation with acetozalamide (carbonic anhydrase inhibitor) and NPPB (Cl(-) channels blocker), respectively. On the other hand, a significant decrease (48.2%) in Cu accumulation was observed after incubation with furosemide (Na(+) /K(+)/2Cl(-) blocker). Taken together, these findings indicate the mantle as an important route of Cu entry in M. mactroides, pointing to the cotransporter Na(+)/K(+)/2Cl(-) as a major mechanism of Cu accumulation in mantle cells of the clam.
Collapse
Affiliation(s)
- Thaís Martins Lopes
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Moorhead JA, Zeng C. Development of Captive Breeding Techniques for Marine Ornamental Fish: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/10641262.2010.516035] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Lee JA, Marsden ID, Glover CN. The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:65-72. [PMID: 20434226 DOI: 10.1016/j.aquatox.2010.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/29/2010] [Accepted: 04/02/2010] [Indexed: 05/29/2023]
Abstract
Copper is an important ionoregulatory toxicant in freshwater, but its effects in marine and brackish water systems are less well characterised. The effect of salinity on short-term copper accumulation and sublethal toxicity in two estuarine animals was investigated. The osmoregulating crab Hemigrapsus crenulatus accumulated copper in a concentration-dependent, but salinity-independent manner. Branchial copper accumulation correlated positively with branchial sodium accumulation. Sublethal effects of copper were most prevalent in 125% seawater, with a significant increase in haemolymph chloride noted after 96h at exposure levels of 510 microg Cu(II) L(-1). The osmoconforming gastropod, Scutus breviculus, was highly sensitive to copper exposure, a characteristic recognised previously in related species. Toxicity, as determined by a behavioural index, was present at all salinities and was positively correlated with branchial copper accumulation. At 100% seawater, increased branchial sodium accumulation, decreased haemolymph chloride and decreased haemolymph osmolarity were observed after 48h exposure to 221 microg Cu(II) L(-1), suggesting a mechanism of toxicity related to ionoregulation. However, these effects were likely secondary to a general effect on gill barrier function, and possibly mediated by mucus secretion. Significant impacts of copper on haemocyanin were also noted in both animals, highlighting a potentially novel mechanism of copper toxicity to animals utilising this respiratory pigment. Overall these findings indicate that physiology, as opposed to water chemistry, exerts the greatest influence over copper toxicity. An understanding of the physiological limits of marine and estuarine organisms may be critical for calibration of predictive models of metal toxicity in waters of high and fluctuating salinities.
Collapse
Affiliation(s)
- Jacqueline A Lee
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | | | | |
Collapse
|
44
|
Jezierska B, Ługowska K, Witeska M. The effects of heavy metals on embryonic development of fish (a review). FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:625-40. [PMID: 19020985 DOI: 10.1007/s10695-008-9284-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/20/2008] [Indexed: 05/06/2023]
Abstract
Early developmental stages of fish are particularly sensitive to water pollution. Heavy metals may affect various developmental processes during the embryonic period, which results in a reduction of offspring quantity and quality. Waterborne metals may accumulate in the gonads of spawners and adversely affect gamete production and viability, or exert direct toxic influence upon developing embryos. The egg shell does not fully protect the embryo against metal penetration, particularly during the swelling phase; thus, metals may accumulate in the egg. The results depend on metal concentration and range from developmental disturbances to death of the embryo. Metals disturb various processes of fish embryonic development and affect the development rate. Early stages just after fertilization are particularly sensitive to metal intoxication, when most disturbances and the highest embryonic mortality occur. Waterborne metals also promote developmental anomalies during organogenesis, including body malformations. Heavy metals often induce a delay in the hatching process, premature hatching, deformations and death of newly hatched larvae. All these disturbances result in reduced numbers and poor quality of the larvae, which show small body size, high frequency of malformations and reduced viability.
Collapse
Affiliation(s)
- Barbara Jezierska
- Department of Animal Physiology, University of Podlasie, Prusa 12, 08110, Siedlce, Poland
| | | | | |
Collapse
|
45
|
Grosell M, Blanchard J, Brix KV, Gerdes R. Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 84:162-72. [PMID: 17643507 DOI: 10.1016/j.aquatox.2007.03.026] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/08/2007] [Accepted: 03/12/2007] [Indexed: 05/16/2023]
Abstract
The present paper presents original data and a review of the copper (Cu) toxicity literature for estuarine and marine environments. For the first time, acute Cu toxicity across the full salinity range was determined. Killifish, Fundulus heteroclitus, eggs were hatched in freshwater (FW), 2.5, 5, 10, 15, 22 and 35 ppt (seawater, SW) and juveniles were allowed to acclimate for 7 days prior to acute toxicity testing. Sensitivity was highest in FW (96 h LC50: 18 microg/l), followed by SW (96 h LC50: 294 microg/l) with fish at intermediate salinities being the most tolerant (96 h LC50 > 963 microg/l at 10 ppt). This approximately 50-fold, non-linear variation in sensitivity could not be accounted for by Cu speciation or competition among cations but can be explained by physiology. The relative Na(+) gradient from the blood plasma to the water is greatest in FW followed by SW and is smallest at 10 ppt. Regression of Cu toxicity versus the equilibrium potential for Na(+), which reflects the relative Na(+) gradient, revealed that 93% of the variation can be attributed to Na(+) gradients and thus osmoregulatory physiology. Examination of the existing literature on acute Cu toxicity in SW (defined as >25 ppt) confirmed that early life stages generally are most sensitive but this pattern may be attributable to size rather than developmental stage. Regardless of developmental stage and phylogeny, size clearly matters for Cu sensitivity. The existing literature on the influence of salinity on acute Cu toxicity as well as studies of mechanisms of Cu toxicity in fish and invertebrates are reviewed.
Collapse
Affiliation(s)
- M Grosell
- Marine Biology and Fisheries, RSMAS, University of Miami, Miami, FL 33149-1098, USA.
| | | | | | | |
Collapse
|
46
|
De Boeck G, Hattink J, Franklin NM, Bucking CP, Wood S, Walsh PJ, Wood CM. Copper toxicity in the spiny dogfish (Squalus acanthias): urea loss contributes to the osmoregulatory disturbance. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 84:133-41. [PMID: 17640748 DOI: 10.1016/j.aquatox.2007.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 04/23/2007] [Accepted: 04/23/2007] [Indexed: 05/16/2023]
Abstract
Previous research showed that the spiny dogfish, Squalus acanthias, is much more sensitive to silver exposure than typical marine teleosts. The aim of the present study was to investigate if spiny dogfish were equally sensitive to copper exposure and whether the toxic mechanisms were the same. We exposed cannulated and non-cannulated spiny dogfish to measured concentrations of Cu (nominally 0, 500, 1000 and 1500 microg L(-1) Cu) for 72-96 h. All Cu exposures induced acidosis and lactate accumulation of either a temporary (500 microg L(-1)) or more persistent nature (1000 and 1500 microg L(-1)). At the two highest Cu concentrations, gill Na(+)/K(+)-ATPase activities were reduced by 45% (1000 microg L(-1)) and 62% (1500 microg L(-1)), and plasma Na(+) and Cl(-) concentrations increased by approximately 50 mM each. At the same time urea excretion doubled and plasma urea dropped by approximately 100 mM. Together with plasma urea, plasma TMAO levels dropped proportionally, indicating that the general impermeability of the gills was compromised. Overall plasma osmolarity did not change. Cu accumulation was limited with significant increases in plasma Cu and elevated gill and kidney Cu burdens at 1000 and 1500 microg L(-1). We conclude that Cu, like Ag, exerts toxic effect on Na(+)/K(+)-ATPase activities in the shark similar to those of teleosts, but there is an additional toxic action on elasmobranch urea retention capacities. With a 96 h LC(50) in the 800-1000 microg L(-1) range, overall sensitivity of spiny dogfish for Cu is, in contrast with its sensitivity to Ag, only slightly lower than in typical marine teleosts.
Collapse
Affiliation(s)
- G De Boeck
- Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
47
|
Taylor JR, Whittamore JM, Wilson RW, Grosell M. Postprandial acid-base balance and ion regulation in freshwater and seawater-acclimated European flounder, Platichthys flesus. J Comp Physiol B 2007; 177:597-608. [PMID: 17390137 DOI: 10.1007/s00360-007-0158-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/27/2007] [Accepted: 03/02/2007] [Indexed: 11/24/2022]
Abstract
The effects of feeding on both acid-base and ion exchange with the environment, and internal acid-base and ion balance, in freshwater and seawater-acclimated flounder were investigated. Following voluntary feeding on a meal of 2.5-5% body mass and subsequent gastric acid secretion, no systemic alkaline tide or respiratory compensation was observed in either group. Ammonia efflux rates more than doubled from 489 +/- 35 and 555 +/- 64 mumol kg(-1) h(-1) under control conditions to 1,228 +/- 127 and 1,300 +/- 154 mumol kg(-1) h(-1) post-feeding in freshwater and seawater-acclimated fish, respectively. Based on predictions of gastric acid secreted during digestion, we calculated net postprandial internal base gains (i.e., HCO (3) (-) secreted from gastric parietal cells into the blood) of 3.4 mmol kg(-1) in seawater and 9.1 mmol kg(-1 )in freshwater-acclimated flounder. However, net fluxes of ammonia, titratable alkalinity, Na(+) and Cl(-) indicated that branchial Cl(-)/HCO (3) (-) and Na(+)/H(+) exchange played minimal roles in counteracting these predicted base gains and cannot explain the absence of alkaline tide. Instead, intestinal Cl(-)/HCO (3) (-) exchange appears to be enhanced after feeding in both freshwater and seawater flounder. This implicates the intestine rather than the gills as a potential route of postprandial base excretion in fish, to compensate for gastric acid secretion.
Collapse
Affiliation(s)
- Josi R Taylor
- Rosenstiel School of Marine and Atmospheric Science, Department of Marine Biology and Fisheries, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | | | | | | |
Collapse
|
48
|
Pane EF, McDonald MD, Curry HN, Blanchard J, Wood CM, Grosell M. Hydromineral balance in the marine gulf toadfish (Opsanus beta) exposed to waterborne or infused nickel. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 80:70-81. [PMID: 16968655 DOI: 10.1016/j.aquatox.2006.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 05/11/2023]
Abstract
The effects of acute Ni exposure on the marine gulf toadfish (Opsanus beta) were investigated via separate exposures to waterborne nickel (Ni) and arterially infused Ni. Of the plasma electrolytes measured after 72 h of waterborne exposure (215.3 and 606.1 microM Ni in SW (salinity of 34)), only plasma [Ca2+] was significantly impacted (approximately 55% decrease at both exposure concentrations). At both exposure concentrations, plasma [Ni] was regulated for 24h, after which a linear accumulation over time occurred. Accumulation of Ni in the plasma, and in tissues in direct contact with seawater (gill, stomach, and intestine), was roughly proportional to the Ni concentration of the exposure water. Hydromineral balance in the intestinal fluid (IF) was markedly impacted, with Na(+), Cl(-), SO(4)(2-), K+, and Mg2+ concentrations elevated after 72 h of exposure to waterborne Ni. Following arterial Ni infusion (0.40 micromolNikg(-1)h(-1)), perturbation of hydromineral balance of the intestinal fluid was specific only to Na+ (significantly elevated by Ni infusion) and Mg2+ (significantly decreased by Ni infusion). Nitrogen excretion was not significantly impacted by Ni infusion. In all tissues save the kidney, Ni accumulation via infusion was only a fraction of that observed during waterborne exposures. Remarkably, the kidney Ni burden following infusion was almost identical to that resulting from both waterborne exposures, suggesting homeostatic control. Ni excretion, dominated at 24 h by extrarenal routes, was primarily a function of renal excretion by 72 h of infusion. The sum excretion from infused toadfish was relatively efficient, accounting for over 40% of the infused dose by 72 h. Mechanistic knowledge of the mechanisms of toxicity of waterborne Ni in marine systems is a critical component to the development of physiologically based modeling approaches to accurately predict Ni toxicity in marine and estuarine ecosystems.
Collapse
Affiliation(s)
- Eric F Pane
- Department of Biology, McMaster University, Hamilton, Ont, Canada.
| | | | | | | | | | | |
Collapse
|
49
|
Grosell M, Taylor JR. Intestinal anion exchange in teleost water balance. Comp Biochem Physiol A Mol Integr Physiol 2006; 148:14-22. [PMID: 17142078 DOI: 10.1016/j.cbpa.2006.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/06/2006] [Accepted: 10/15/2006] [Indexed: 11/23/2022]
Abstract
Simultaneous measurements of all major electrolytes including HCO3(-) and H+ as well as water demonstrated that fluids absorbed by the anterior intestine of the marine gulf toadfish under in vivo-like conditions on an overall net basis are hypertonic at 380 mOsm and acidic ([H+] = 27 mM). This unusual composition of fluids absorbed across the intestinal epithelium is due to the unusual intestinal fluid chemistry resulting from seawater ingestion and selective ion and water absorption along the gastro-intestinal tract. Measurement under near symmetrical conditions with high NaCl concentrations and low MgSO4 concentrations revealed absorption of iso-osmotic and much less acidic fluids by the intestinal epithelium, a situation resembling that of other water absorbing leaky vertebrate epithelia. Reduced luminal NaCl concentrations seen in vivo results in lower absolute water absorption rates but higher Cl-/HCO3(-) exchange rates which are associated with higher net H+ absorption rates. It appears that apical anion exchange is important for net Cl- uptake by the marine teleost intestine especially when luminal NaCl concentrations are low and/or when MgSO4 concentrations are high. Observations indicate that fluid absorption from solutions of low NaCl but high MgSO4 concentrations is energetically more demanding than absorption from NaCl rich solutions at the level of the intestinal epithelium. Furthermore, the high luminal MgSO4 concentration which is an unavoidable consequence of seawater ingestion projects a demand for renal and branchial compensation for intestinal MgSO4 uptake and absorption of hypertonic and acidic fluid by the intestine.
Collapse
|
50
|
Taylor JR, Grosell M. Feeding and osmoregulation: dual function of the marine teleost intestine. ACTA ACUST UNITED AC 2006; 209:2939-51. [PMID: 16857878 DOI: 10.1242/jeb.02342] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experiments on Gulf toadfish Opsanus beta demonstrate how feeding impacts osmoregulation in the marine teleost intestine. A high Ca(2+) diet of pilchards Sardina pilchardus ([Ca(2+)]=404.2 mmol kg(-1)) was compared to a low Ca(2+) diet of common squid Loligo forbesi ([Ca(2+)]=1.3 mmol kg(-1)), as high [Ca(2+)] has been shown to stimulate intestinal anion exchange. Gastrointestinal fluids and blood plasma were collected over a time course from pre-feeding to 216 h post feeding. Following food intake, monovalent ions were largely absorbed across the intestinal epithelium, leaving a fluid rich in divalent ions, which have a lower osmotic coefficient and effectively reduce osmotic pressure in the lumen to allow for enhanced fluid absorption. Concentrations of Cl(-) and HCO (-)(3) in fluid along the gastrointestinal tract of fish fed both diets, particularly 1 and 2 days post-feeding, demonstrate that apical Cl(-)/HCO (-)(3) exchange plays a vital role in postprandial Cl(-) and water absorption. Postprandial acid-base balance disturbance as indicated by plasma alkalinization was limited or absent, indicating compensation for gastric acid secretion in this teleost fish. Plasma osmolality peaked 12 h post-feeding in toadfish fed squid, but was not accompanied by a significant increase in inorganic ion concentrations. Transient fluid secretion by the gastrointestinal tract was evident from reduced luminal Mg(2+) and SO (2-)(4) concentrations for 24-48 h post feeding. Discrepancy between the sum of inorganic osmolytes and measured osmotic pressure was attributed to organic osmolytes, which occurred at high concentrations in the stomach and anterior intestine for up to 24 h post feeding.
Collapse
Affiliation(s)
- Josi R Taylor
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, USA.
| | | |
Collapse
|