1
|
Ju YR, Su CR, Chen CF, Shih CF, Gu LS. Single and mixture toxicity of benzophenone-3 and its metabolites on Daphnia magna. CHEMOSPHERE 2024; 366:143536. [PMID: 39419330 DOI: 10.1016/j.chemosphere.2024.143536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Benzophenone-3 (BP-3) is one of the organic ultraviolet (UV) filters widely used in personal care products, resulting in its ubiquitous occurrence in aquatic systems. This study discovered the potential risks of benzophenone-3 and its metabolites (BP-1 and BP-8) in aquatic environments. This study investigated the toxicity of three single BPs and their mixtures' effects on the survival of Daphnia magna. All three BP types were found to have toxic effects on D. magna, with median effective concentration (EC50) values of 22.55 mg/L for BP-1, 1.89 mg/L for BP-3, and 2.36 mg/L for BP-8, after 48 hours of exposure. When the three BPs were binary and ternary mixtures, the EC50 values fell within 2.74-32.26 mg/L. Binary and tertiary mixtures of the three BPs indicated no strong synergistic or antagonistic effects. The mixture toxicity predictions using the classical mixture concept of concentration addition and measured toxicity data showed good predictability. The ecological risks of BPs were assessed using the maximum measured environmental concentrations of BPs collected from a river in Taiwan, divided by their respective predicted no-effect concentration (PNEC) values derived from the assessment factor (AF) method. The result showed a low ecological risk for the sum of three BPs. However, BP-3 had the highest potential risk, while BP-1 was the lowest among the three BPs. Therefore, BP-3 should pay attention to long-term environmental monitoring and management. This study provides valuable information for establishing scientifically-based water quality criteria for BPs and evaluating and managing the potential risk of BPs in the aquatic environment.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan.
| | - Chang-Rui Su
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Fu Shih
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan
| | - Li-Siang Gu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan
| |
Collapse
|
2
|
Moreira Morais J, da Silva Brito R, Saiki P, Cirqueira Dias F, de Oliveira Neto JR, da Cunha LC, Lopes Rocha T, Bailão EFLC. Ecotoxicological assessment of UV filters benzophenone-3 and TiO 2 nanoparticles, isolated and in a mixture, in developing zebrafish ( Danio rerio). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:687-700. [PMID: 38836411 DOI: 10.1080/15287394.2024.2362809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.
Collapse
Affiliation(s)
- Jéssyca Moreira Morais
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Federal Institute of Education, Science and Technology of Goiás (IFG), Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Luiz Carlos da Cunha
- Center for Toxic-Pharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
3
|
Amankwah BK, Šauer P, Grabicová K, von der Ohe PC, Ayıkol NS, Kocour Kroupová H. Organic UV filters: Occurrence, risks and (anti-)progestogenic activities in samples from the Czech aquatic environment and their bioaccumulation in fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134338. [PMID: 38643577 DOI: 10.1016/j.jhazmat.2024.134338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
The occurrence, environmental risks and contribution of organic UV filters to detected (anti-)progestogenic activities were examined in samples of wastewater treatment plant influents and effluents, various surface waters and fish from the Czech Republic. Of the 20 targeted UV filters, 15 were detected in the WWTP influent samples, 11 in the effluents, and 13 in the surface water samples. Benzophenone-3, benzophenone-4, and phenyl benzimidazole sulfonic acid (PBSA) were found in all water samples. Octocrylene, UV-327 and 4-methylbenzylidene camphor exceeded the risk quotient of 1 at some sites. In the anti-progestogenic CALUX assay, 10 out of the 20 targeted UV filters were active. Anti-progestogenic activities reaching up to 7.7 ng/L, 3.8 ng/L, and 4.5 ng/L mifepristone equivalents were detected in influents, effluents, and surface waters, respectively. UV filters were responsible for up to 37 % of anti-progestogenic activities in influents. Anti-progestogenic activities were also measured in fish tissues from the control pond and Podroužek (pond with the highest number of detected UV filters) and ranged from 2.2 to 9.5 and 1.9 to 8.6 ng/g dw mifepristone equivalents, respectively. However, only benzophenone was found in fish, but it does not display anti-progestogenic activity and thus could not explain the observed activities.
Collapse
Affiliation(s)
- Beatrice Kyei Amankwah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Peter C von der Ohe
- UBA - German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | - Nurhan Sultan Ayıkol
- Ankara University, Graduate School of Health Science, Department of Veterinary Pharmacology and Toxicology, Turkiye
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
4
|
Ortiz-Román MI, Casiano-Muñiz IM, Román-Velázquez FR. Toxicity of UV Filter Benzophenone-3 in Brine Shrimp Nauplii ( Artemia salina) and Zebrafish ( Danio rerio) Embryos. J Xenobiot 2024; 14:537-553. [PMID: 38804285 PMCID: PMC11130858 DOI: 10.3390/jox14020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
The benzophenone (BP) family, including oxybenzone (BP-3), a prevalent sunscreen ingredient and environmental contaminant, has raised concerns since the year 2005. This study investigated oxybenzone toxicity in zebrafish (Danio rerio) eleutheroembryos and brine shrimp (Artemia salina) nauplii, focusing on the LC50 and developmental impacts. Zebrafish embryos (0.100-1.50 mg/L BP-3, 96 h) and A. salina (0.100-5.00 mg/L BP-3, 48 h) were tested with ultrasound-assisted emulsified liquid-phase microextraction (UA-ELPME) used for zebrafish tissue analysis. HPLC-DAD determined BP-3 concentrations (highest: 0.74 ± 0.13 mg/L). Although no significant zebrafish embryo mortality or hatching changes occurred, developmental effects were evident. Lethal concentrations were determined (A. salina LC50 at 24 h = 3.19 ± 2.02 mg/L; D. rerio embryos LC50 at 24 h = 4.19 ± 3.60 mg/L), with malformations indicating potential teratogenic effects. A. salina displayed intestinal tract alterations and D. rerio embryos exhibited pericardial edema and spinal deformities. These findings highlight oxybenzone's environmental risks, posing threats to species and ecosystem health.
Collapse
Affiliation(s)
- Melissa I. Ortiz-Román
- Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, USA;
| | | | | |
Collapse
|
5
|
Pintado-Herrera MG, Aguirre-Martínez GV, Martin-Díaz LM, Blasco J, Lara-Martín PA, Sendra M. Personal care products: an emerging threat to the marine bivalve Ruditapes philippinarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20461-20476. [PMID: 38376785 PMCID: PMC10927873 DOI: 10.1007/s11356-024-32391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
In the last few decades, there has been a growing interest in understanding the behavior of personal care products (PCPs) in the aquatic environment. In this regard, the aim of this study is to estimate the accumulation and effects of four PCPs within the clam Ruditapes philippinarum. The PCPs selected were triclosan, OTNE, benzophenone-3, and octocrylene. A progressive uptake was observed and maximum concentrations in tissues were reached at the end of the exposure phase, up to levels of 0.68 µg g-1, 24 µg g-1, 0.81 µg g-1, and 1.52 µg g-1 for OTNE, BP-3, OC, and TCS, respectively. After the PCP post-exposure period, the removal percentages were higher than 65%. The estimated logarithm bioconcentration factor ranged from 3.34 to 2.93, in concordance with the lipophobicity of each substance. No lethal effects were found although significant changes were observed for ethoxyresorufin O-demethylase activity, glutathione S-transferase activity, lipid peroxidation, and DNA damage.
Collapse
Affiliation(s)
- Marina G Pintado-Herrera
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain.
| | | | - Laura M Martin-Díaz
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Rio S. Pedro, 11510, Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
- International Research Center in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos S/N, 09001, Burgos, Spain
| |
Collapse
|
6
|
Yao YN, Wang Y, Zhang H, Gao Y, Zhang T, Kannan K. A review of sources, pathways, and toxic effects of human exposure to benzophenone ultraviolet light filters. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:30-44. [PMID: 38162868 PMCID: PMC10757257 DOI: 10.1016/j.eehl.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Benzophenone ultraviolet light filters (BPs) are high-production-volume chemicals extensively used in personal care products, leading to widespread human exposure. Given their estrogenic properties, the potential health risks associated with exposure to BPs have become a public health concern. This review aims to summarize sources and pathways of exposure to BPs and associated health risks. Dermal exposure, primarily through the use of sunscreens, constitutes a major pathway for BP exposure. At a recommended application rate, dermal exposure of BP-3 via the application of sunscreens may reach or exceed the suggested reference dose. Other exposure pathways to BPs, such as drinking water, seafood, and packaged foods, contribute minimal to the overall dose. Inhalation is a minor pathway of exposure; however, its contribution cannot be ignored. Human exposure to BPs is an order of magnitude higher in North America than in Asia and Europe. Studies conducted on laboratory animals and cells have consistently demonstrated the toxic effects of BP exposure. BPs are estrogenic and elicit reproductive and developmental toxicities. Furthermore, neurotoxicity, hepatotoxicity, nephrotoxicity, and carcinogenicity have been reported from chronic BP exposure. In addition to animal and cell studies, epidemiological investigations have identified associations between BPs and couples' fecundity and other reproductive disorders, as well as adverse birth outcomes. Further studies are urgently needed to understand the risks posed by BPs on human health.
Collapse
Affiliation(s)
- Ya-Nan Yao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - You Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hengling Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanxia Gao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York, NY 12237, USA
| |
Collapse
|
7
|
Dasmahapatra AK, Williams CB, Myla A, Tiwary SK, Tchounwou PB. A systematic review of the evaluation of endocrine-disrupting chemicals in the Japanese medaka ( Oryzias latipes) fish. FRONTIERS IN TOXICOLOGY 2023; 5:1272368. [PMID: 38090358 PMCID: PMC10711633 DOI: 10.3389/ftox.2023.1272368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 02/01/2024] Open
Abstract
Japanese medaka (Oryzias latipes) is an acceptable small laboratory fish model for the evaluation and assessment of endocrine-disrupting chemicals (EDCs) found in the environment. In this research, we used this fish as a potential tool for the identification of EDCs that have a significant impact on human health. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Google Scholar (https://scholar.google.com/) using the search terms, Japanese medaka, Oryzias latipes, and endocrine disruptions, and sorted 205 articles consisting of 128 chemicals that showed potential effects on estrogen-androgen-thyroid-steroidogenesis (EATS) pathways of Japanese medaka. From these chemicals, 14 compounds, namely, 17β-estradiol (E2), ethinylestradiol (EE2), tamoxifen (TAM), 11-ketotestosterone (11-KT), 17β-trenbolone (TRB), flutamide (FLU), vinclozolin (VIN), triiodothyronine (T3), perfluorooctanoic acid (PFOA), tetrabromobisphenol A (TBBPA), terephthalic acid (TPA), trifloxystrobin (TRF), ketoconazole (KTC), and prochloraz (PCZ), were selected as references and used for the identification of apical endpoints within the EATS modalities. Among these endpoints, during classification, priorities are given to sex reversal (masculinization of females and feminization of males), gonad histology (testis-ova or ovotestis), secondary sex characteristics (anal fin papillae of males), plasma and liver vitellogenin (VTG) contents in males, swim bladder inflation during larval development, hepatic vitellogenin (vtg) and choriogenin (chg) genes in the liver of males, and several genes, including estrogen-androgen-thyroid receptors in the hypothalamus-pituitary-gonad/thyroid axis (HPG/T). After reviewing 205 articles, we identified 108 (52.68%), 46 (22.43%), 19 (9.26%), 22 (17.18%), and 26 (12.68%) papers that represented studies on estrogen endocrine disruptors (EEDs), androgen endocrine disruptors (AEDs), thyroid endocrine disruptors (TEDs), and/or steroidogenesis modulators (MOS), respectively. Most importantly, among 128 EDCs, 32 (25%), 22 (17.18%), 15 (11.8%), and 14 (10.93%) chemicals were classified as EEDs, AEDs, TEDs, and MOS, respectively. We also identified 43 (33.59%) chemicals as high-priority candidates for tier 2 tests, and 13 chemicals (10.15%) show enough potential to be considered EDCs without any further tier-based studies. Although our literature search was unable to identify the EATS targets of 45 chemicals (35%) studied in 60 (29.26%) of the 205 articles, our approach has sufficient potential to further move the laboratory-based research data on Japanese medaka for applications in regulatory risk assessments in humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Charmonix B. Williams
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Anitha Myla
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Sanjay K. Tiwary
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
| | - Paul. B. Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, United States
- RCMI Center for Urban Health Disparities Research and Innovation, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
8
|
Wang B, Jin Y, Li J, Yang F, Lu H, Zhou J, Liu S, Shen Z, Yu X, Yuan T. Exploring environmental obesogenous effects of organic ultraviolet filters on children from a case-control study. CHEMOSPHERE 2023; 341:139883. [PMID: 37672813 DOI: 10.1016/j.chemosphere.2023.139883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
It has been globally recognized that obesity has become a major public health concern, especially childhood obesity. There is limited information, however, regarding the exposure risk of organic ultraviolet (UV) filters, a kind of emerging contaminant, on childhood obesity. This study would be made on 284 obese and 220 non-obese Chinese children with eight organic UV filters at urinary levels. The eight organic UV filters, including 2-Ethylhexyl 4-aminobenzoate (PABA-E), octisalate (EHS), homosalate (HMS), 2-Ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP-3), amiloxate (IAMC), octocrylene (OC) and 4-Methylbenzylidene camphor (4-MBC) were identified in urine samples with detection rates ranged from 35.32% to 100%, among which PABA-E, HMS, IAMC and OC were firstly detected in children' s urine. And the urinary UV filters concentration was associated with genders, living sites, guardian education levels, household income, and dietary factors. Urinary EHMC concentrations and childhood obesity were positively associated for girls [Adjusted OR = 2.642 (95% CI: 1.019, 6.853)], while OC concentrations and childhood obesity were negatively associated for girls [Adjusted OR = 0.022 (95% CI: 0.001, 0.817)]. The results suggest that EHMC exposure may be an environmental obesogen for girls. Moreover, two statistical models were used separately to evaluate the impact of UV filter mixtures on childhood obesity, including the Bayesian kernel machine regression (BKMR) model and the quantile g-computation (qgcomp) model. The negative association between UV filter mixtures and childhood obesity was proposed from both BKMR and qgcomp models. Further experimental and epidemiological studies are called upon to discern the individual and mixture impacts of organic UV filters on childhood obesity.
Collapse
Affiliation(s)
- Beili Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihui Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Lu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinyang Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
9
|
Marcin S, Aleksander A. Acute toxicity assessment of nine organic UV filters using a set of biotests. Toxicol Res 2023; 39:649-667. [PMID: 37779587 PMCID: PMC10541396 DOI: 10.1007/s43188-023-00192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
UV filters in environmental compartments are a source of concern related to their ecotoxicological effects. However, little is known about UV filters' toxicity, particularly those released into the environment as mixtures. Acute toxicity of nine organic UV filters benzophenone-1, benzophenone-2, benzophenone-3, 4-methoxy benzylidene camphor, octocrylene, ethylhexyl methoxycinnamate, 2-ethylhexyl salicylate, homosalate, and butyl methoxydibenzoylmethane was determined. UV filter solutions were tested as single, binary, and ternary mixtures of various compositions. Single solutions were tested using a set of bio tests, including tests on saline crustaceans (Artemia franciscana), freshwater crustaceans (Daphnia magna), marine bacteria (Aliivibrio fischeri), and freshwater plants (Lemna minor). The tests represent different stages of the trophic chain, and hence their overall results could be used to risk assessment concerning various water reservoirs. The toxicity of binary and ternary mixtures was analyzed using the standardized Microtox® method. Generally, organic UV filters were classified as acutely toxic. Octocrylene was the most toxic for Arthemia franciscana (LC50 = 0.55 mg L-1) and Daphnia magna (EC50 = 2.66-3.67 mg L-1). The most toxic against freshwater plants were homosalate (IC50 = 1.46 mg L-1) and octocrylene (IC50 = 1.95 mg L-1). Ethylhexyl methoxycinnamate (EC50 = 1.38-2.16 mg L-1) was the most toxic for marine bacteria. The least toxic for crustaceans and plants were benzophenone-1 (EC50 = 6.15-46.78 mg L-1) and benzophenone-2 (EC50 = 14.15-54.30 mg L-1), while 4-methoxy benzylidene camphor was the least toxic for marine bacteria (EC50 = 12.97-15.44 mg L-1). Individual species differ in their sensitivity to the tested organic UV filters. An assessment of the toxicity of mixtures indicates high and acute toxicity to marine bacteria after exposition to a binary mixture of benzophenone-2 with octocrylene, 2-ethylhexyl salicylate, or homosalate. The toxicity of mixtures was lower than single solutions predicting antagonistic interaction between chemicals. Graphical abstract
Collapse
Affiliation(s)
- Stec Marcin
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| | - Astel Aleksander
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| |
Collapse
|
10
|
Shetty N, Schalka S, Lim HW, Mohammad TF. The effects of UV filters on health and the environment. Photochem Photobiol Sci 2023; 22:2463-2471. [PMID: 37344707 DOI: 10.1007/s43630-023-00446-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Sunscreens are an important means of protection against sunburns, dyspigmentation, photoaging, and photocarcinogenesis. Sunscreens come in a variety of formulations that can protect against ultraviolet B (UVB) radiation, both UVB and ultraviolet A (UVA) radiation (broad-spectrum sunscreens), and UVB, UVA, and visible light (tinted broad-spectrum sunscreens). In the USA, there is currently a paucity of FDA-approved broad-spectrum filters on the market. Studies have identified the presence of multiple UV filters in water sources globally. Many laboratory studies have implicated the potential impact of UV filters on coral reef bleaching, the food chain, and human health. However, many of these studies are performed at concentrations that are much higher than those present in the natural environment. With increasing discussion surrounding the role of organic and inorganic UV filters as potential environmental pollutants over the past decade, approval of additional broad-spectrum filters would be an important means of alleviating the use of more controversial filters. The aim of this article is to review the effects of UV filters on health and the environment and explore potential adjunctive agents for photoprotection.
Collapse
Affiliation(s)
- Nayha Shetty
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Sérgio Schalka
- Medcin Skin Research Center and Biochemistry Department, Chemistry Institute of São Paulo University, São Paulo, Brazil
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA
| | - Tasneem F Mohammad
- Department of Dermatology, Henry Ford Health, 3031 W. Grand Blvd, Suite 800, Detroit, MI, 48202, USA.
| |
Collapse
|
11
|
de Oliveira-Lima J, Dias da Cunha RL, Souza de Jesus Santana A, de Brito-Gitirana L. Impact of benzophenone-3 on the integument and gills of zebrafish ( Danio rerio). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:603-615. [PMID: 37638879 DOI: 10.1080/03601234.2023.2247944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Benzophenone (BP-3) is an organic compound that is a common ingredient in lotions, conditioners, and other personal care products, which helps protect against ultraviolet radiation. This study investigated the effect of BP-3 on the structure of the integument and gills, as well as the activities of superoxide dismutase (SOD) and catalase (CAT) in the gills of Danio rerio. Fish were exposed to different concentrations (7, 70, and 700 µg L-1) of BP-3 for 7 and 14 d. For the histological analysis of the integument and gills, the fish were fixed in Bouin liquid and processed according to standard histologic procedures, and the tissue section slices were stained according to different histochemical methods. BP-3 caused tissue damage and morphological alterations in the gills; however, the integument showed no histological or morphological alterations. Furthermore, there was no observed correlation between the BP-3 concentration and exposure period and the gill alterations, as these did not occur in a linear manner. The gills were removed to evaluate the antioxidant defense; for this, CAT and SOD activities were measured, and a reduction of SOD activity was noted, whereas the CAT activity was not significantly affected.
Collapse
Affiliation(s)
- Jeffesson de Oliveira-Lima
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela Luiza Dias da Cunha
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea Souza de Jesus Santana
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lycia de Brito-Gitirana
- Laboratório de Histologia Integrativa, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Morin SM, Gregory KJ, Medeiros B, Terefe T, Hoshyar R, Alhusseiny A, Chen S, Schwartz RC, Jerry DJ, Vandenberg LN, Schneider SS. Benzophenone-3 exposure alters composition of tumor infiltrating immune cells and increases lung seeding of 4T1 breast cancer cells. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 7:100080. [PMID: 37593105 PMCID: PMC10434833 DOI: 10.1016/j.adcanc.2022.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Environmental chemicals are a persistent and pervasive part of everyday life. A subset of environmental chemicals are xenoestrogens, compounds that bind to the estrogen receptor (ER) and drive estrogen-related processes. One such chemical, benzophenone-3 (BP3), is a common chemical in sunscreen. It is a potent UV protectant but also is quickly absorbed through the skin. While it has been approved by the FDA, there is a renewed interest in the safety of BP3, particularly in relation to breast cancer. The focus of this study was to examine the impact that BP3 has on triple negative breast cancer (TNBC) through alterations to cells in the immune microenvironment. In this study, we exposed female mice to one of two doses of BP3 before injecting them with a TNBC cell line. Several immune endpoints were examined both in the primary tissues and from in vitro studies of T cell behavior. Our studies revealed that in the lung tumor microenvironment, exposure to BP3 not only increased the number of metastases, but also the total area of tumor coverage. We also found that BP3 caused alterations in immune populations in a tissue-dependent manner, particularly in T cells. Taken together, our data suggest that while BP3 may not directly affect the proliferation of TNBC, growth and metastasis of TNBC-derived tumors can be altered by BP3 exposures via the alterations in the immune populations of the tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie M. Morin
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Kelly J. Gregory
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Brenda Medeiros
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Tigist Terefe
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Reyhane Hoshyar
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ahmed Alhusseiny
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA, 01199, USA
| | - Shiuan Chen
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Richard C. Schwartz
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - D. Joseph Jerry
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA, 01199, USA
| |
Collapse
|
13
|
Moreira ALP, Paiva WS, de Souza AM, Pereira MCG, Rocha HAO, de Medeiros SRB, Luchiari AC. Benzophenone-3 causes oxidative stress in the brain and impairs aversive memory in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104164. [PMID: 37245610 DOI: 10.1016/j.etap.2023.104164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Oxybenzone (BP-3) is an ultraviolet (UV) filter widely used in industries that is directly or indirectly released into the aquatic environment. However, little is known about its effects on brain performance. Here, we investigated whether BP-3 exposure affects the redox imbalance in zebrafish and how they respond to a task that requires memory of an aversive situation. Fish were exposed to BP-3 10 and 50 μg L-1 for 15 days and then tested using an associative learning protocol with electric shock as a stimulus. Brains were extracted for reactive oxygen species (ROS) measurement and qPCR analysis of antioxidant enzyme genes. ROS production increased for exposed animals, and catalase (cat) and superoxide dismutase 2 (sod 2) were upregulated. Furthermore, learning and memory were reduced in zebrafish exposed to BP-3. These results suggested that BP-3 may lead to a redox status imbalance, causing impaired cognition and reinforcing the need to replace the toxic UV filters with filters that minimize environmental effects.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil.
| | - Weslley Souza Paiva
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Maria Clara Galvão Pereira
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Biotechnology of Natural Biopolymers, Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| | | | - Ana Carolina Luchiari
- Fish Lab, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
14
|
Gholap AD, Sayyad SF, Hatvate NT, Dhumal VV, Pardeshi SR, Chavda VP, Vora LK. Drug Delivery Strategies for Avobenzone: A Case Study of Photostabilization. Pharmaceutics 2023; 15:1008. [PMID: 36986867 PMCID: PMC10059943 DOI: 10.3390/pharmaceutics15031008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Several developments and research methods are ongoing in drug technology and chemistry research to elicit effectiveness regarding the therapeutic activity of drugs along with photoprotection for their molecular integrity. The detrimental effect of UV light induces damaged cells and DNA, which leads to skin cancer and other phototoxic effects. The application of sunscreen shields to the skin is important, along with recommended UV filters. Avobenzone is widely used as a UVA filter for skin photoprotection in sunscreen formulations. However, keto-enol tautomerism propagates photodegradation into it, which further channelizes the phototoxic and photoirradiation effects, further limiting its use. Several approaches have been used to counter these issues, including encapsulation, antioxidants, photostabilizers, and quenchers. To seek the gold standard approach for photoprotection in photosensitive drugs, combinations of strategies have been implemented to identify effective and safe sunscreen agents. The stringent regulatory guidelines for sunscreen formulations, along with the availability of limited FDA-approved UV filters, have led many researchers to develop perfect photostabilization strategies for available photostable UV filters, such as avobenzone. From this perspective, the objective of the current review is to summarize the recent literature on drug delivery strategies implemented for the photostabilization of avobenzone that could be useful to frame industrially oriented potential strategies on a large scale to circumvent all possible photounstable issues of avobenzone.
Collapse
Affiliation(s)
- Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
- Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner 422608, Maharashtra, India
| | - Sadikali F. Sayyad
- Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner 422608, Maharashtra, India
| | - Navnath T. Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Vilas V. Dhumal
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Sagar R. Pardeshi
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar K. Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
15
|
Scheele A, Sutter K, Karatum O, Danley-Thomson AA, Redfern LK. Environmental impacts of the ultraviolet filter oxybenzone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160966. [PMID: 36535482 DOI: 10.1016/j.scitotenv.2022.160966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Organic UV filters are emerging contaminants with increasing evidence of their negative impact on environmental health and water quality. One of the most common and environmentally relevant organic UV filters is oxybenzone (OBZ). While much of the initial focus has been on investigating the interaction of OBZ with coral reefs, there have been several recent studies that indicate that organic UV filters are affecting other environmental endpoints, including marine animals, algae, and plants. OBZ has been found to bioaccumulate in marine animals such as fish and mussels and then potentially acting as an endocrine disruptor. In plants, exposure to OBZ has been associated with decreased photosynthesis, inhibited seed germination, and impaired plant growth. In this review, we summarize the current state of knowledge regarding the environmental impacts of OBZ and suggest potential future directions.
Collapse
Affiliation(s)
- Alexis Scheele
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Kimberly Sutter
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Osman Karatum
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Ashley A Danley-Thomson
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America
| | - Lauren K Redfern
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL 33965, United States of America.
| |
Collapse
|
16
|
Cui M, Wu X, Yuan L, Zhai Y, Liang X, Wang Z, Li J, Xu L, Song W. Exposure to tris(2,6-dimethylphenyl) phosphate interferes with sexual differentiation via estrogen receptors 2a and 2b in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130525. [PMID: 37055955 DOI: 10.1016/j.jhazmat.2022.130525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
Tris(2,6-dimethylphenyl) phosphate (TDMPP), an emerging organophosphate flame retardant, is frequently detected in multiple environmental media. Although TDMPP has been proven as a compound with estrogenic activity, its feminizing effects on reproductive system remain unclear. This study investigated the adverse effects of TDMPP on gonadal development by exposing zebrafish for 105 days from 15 days post-fertilization. Exposure to TDMPP (0.5 and 5 μM, corresponding to about 200 and 2000 μg/L) induced ovarian formation in aromatase mutant (cyp19a1a-/-) line which normally presents all-male phenotype for deficiency of endogenous estrogen (E2), suggesting its feminizing effect on sexual differentiation. In addition, TDMPP also interfered with other aspects of reproduction by delaying puberty onset, retarding sexual maturation, impairing gametogenesis and subfertility. Molecular docking and reporter gene assay indicated that all three nuclear estrogen receptors (nERs) can be binded to and activated by TDMPP. Using a series of nERs mutant lines, we confirmed the indispensable role of esr2a and esr2b in mediating the feminizing effects of TDMPP. Further analysis revealed that the prominent effects of TDMPP on sexual differentiation correlated to upregulation of female-promoting genes and downregulation of male-promoting genes. Taken together, the present study provided unequivocal genetic evidence for estrogenic effects of TDMPP on reproductive system and its molecular mechanisms of action.
Collapse
Affiliation(s)
- Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiling Wu
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Lei Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yue Zhai
- School of Public Health, Jilin University, Changchun, China
| | - Xin Liang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zihan Wang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, China
| | - Lichun Xu
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
17
|
Boyd A, Choi J, Ren G, How ZT, El-Din MG, Tierney KB, Blewett TA. Can short-term data accurately model long-term environmental exposures? Investigating the multigenerational adaptation potential of Daphnia magna to environmental concentrations of organic ultraviolet filters. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130598. [PMID: 37056014 DOI: 10.1016/j.jhazmat.2022.130598] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 06/19/2023]
Abstract
Organic ultraviolet filters (UVFs) are contaminants of concern, ubiquitously found in many aquatic environments due to their use in personal care products to protect against ultraviolet radiation. Research regarding the toxicity of UVFs such as avobenzone, octocrylene and oxybenzone indicate that these chemicals may pose a threat to invertebrate species; however, minimal long-term studies have been conducted to determine how these UVFs may affect continuously exposed populations. The present study modeled the effects of a 5-generation exposure of Daphnia magna to these UVFs at environmental concentrations. Avobenzone and octocrylene resulted in minor, transient decreases in reproduction and wet mass. Oxybenzone exposure resulted in > 40% mortality, 46% decreased reproduction, and 4-fold greater reproductive failure over the F0 and F1 generations; however, normal function was largely regained by the F2 generation. These results indicate that Daphnia are able to acclimate over long-term exposures to concentrations of 6.59 μg/L avobenzone, ∼0.6 μg/L octocrylene or 16.5 μg/L oxybenzone. This suggests that short-term studies indicating high toxicity may not accurately represent long-term outcomes in wild populations, adding additional complexity to risk assessment practices at a time when many regions are considering or implementing UVF bans in order to protect these most sensitive invertebrate species.
Collapse
Affiliation(s)
- Aaron Boyd
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada.
| | - Jessica Choi
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Grace Ren
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Zuo Tong How
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H9, Canada
| | - Keith B Tierney
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada; University of Alberta, School of Public Health, Edmonton, AB T6G 1C9, Canada
| | - Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| |
Collapse
|
18
|
Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis. Molecules 2023; 28:molecules28031229. [PMID: 36770896 PMCID: PMC9920342 DOI: 10.3390/molecules28031229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The ubiquitous presence of emerging contaminants in the environment is an issue of great concern. Notably, for some of them, no established regulation exists. Benzophenones are listed as emerging contaminants, which have been identified in the environment as well as in human fluids, such as urine, placenta, and breast milk. Their accumulation and stability in the environment, combined with the revealed adverse effects on ecosystems including endocrine, reproductive, and other disorders, have triggered significant interest for research. Benzophenones should be extracted from environmental samples and determined for environmental-monitoring purposes to assess their presence and possible dangers. Numerous sample preparation methods for benzophenones in environmental matrices and industrial effluents have been proposed and their detection in more complex matrices, such as fish and sludges, has also been reported. These methods range from classical to more state-of-the-art methods, such as solid-phase extraction, dispersive SPE, LLE, SBSE, etc., and the analysis is mostly completed with liquid chromatography, using several detection modes. This review critically outlines sample preparation methods that have been proposed to date, for the extraction of benzophenones from simple and complex environmental matrices and for cleaning up sample extracts to eliminate potential interfering components that coexist therein. Moreover, it provides a brief overview of their occurrence, fate, and toxicity.
Collapse
|
19
|
Tian L, Guo M, Chen H, Wu Y. Human health risk assessment of cinnamate UV absorbers: In vitro and in silico investigations. ENVIRONMENT INTERNATIONAL 2023; 171:107658. [PMID: 36459820 DOI: 10.1016/j.envint.2022.107658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Organic UV absorbers (UVAs) are contaminants of emerging concern. Environmental persistence and potential toxicological enrichment studies of UVAs have attracted international concern. It is important to study the toxicity mechanism of UVAs. This study is the first to report the toxicological mechanism of two cinnamate UV absorbers (CUVAs), 2-ethyl 4-methoxycinnamate (OMC) and isoamyl 4-methoxycinnamate (IMC) based on cellular models and molecular models. Cellular models demonstrated that the CUVAs-induced apoptosis might be associated with cellular mitochondrial damage pathways. The results of molecular models showed that OMC and IMC could affect the binding between major proteins and enzymes in the mitochondrial damage pathway and contaminants, ultimately leading to apoptosis. The cellular-molecular models showed that IMC and OMC have dose-effect relationships on cytotoxicity. The composite model is more informative than a single model. This study further indicate that UVAs causes toxicology effects that have implications for the environment and human health.
Collapse
Affiliation(s)
- Luwei Tian
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China.
| | - Haili Chen
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yanan Wu
- College of Chemistry and Materials Engineering, Zhejiang Agriculture & Forestry University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
20
|
Li HM, Zhang YC, Li YY, Zhu QQ, Li J, Xu HM, Xiong YM, Qin ZF. Low concentrations of benzophenone-type UV-filters impair testis development in the amphibian Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106371. [PMID: 36529091 DOI: 10.1016/j.aquatox.2022.106371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Benzophenone-type UV filters (BPs) are ubiquitous contaminants in aquatic environments, possibly posing ecological risks to aquatic populations. So far, little is known about the potential adverse effects of BPs on amphibians. Given their potential estrogenic property, we investigated the detrimental effects of the commonly used BPs, BP-3, BP-2, and BP-1, on testis development in amphibians using Xenopus laevis as a model species. Following exposure to 10, 100, 1000 nM BP-3, BP-2, or BP-1 from stages 45/46 to 52, tadpoles presented morphological abnormal testes, characterized by reduced gonomere size and testis area, coupled with suppressed cell proliferation. Meanwhile, the downregulation of testis-biased gene expression and the upregulation of ovary-biased gene expression were observed in BPs-treated testes. Moreover, the estrogen receptor (ER) antagonist ICI 182780 significantly antagonized ovary-biased gene upregulation caused by BPs, suggesting that the effects of BPs on testis differentiation could be mediated by ER, at least partially. Of note, the effects of BPs were not concentration-dependent, but the lowest concentration generally exerted significant effects. Altogether, these observations indicate that the three BPs inhibited testis differentiation and exerted feminizing effects. Importantly, when BP-2 exposure was extended to two months post-metamorphosis, testes of froglets were generally less-developed, with relatively fewer spermatocytes, more spermatogonia, and poorly formed seminiferous tubules. Considering the fact that the lowest concentration (10 nM) of BPs in this study are detectable in aquatic environments, we conclude that BP-3, BP-2, and BP-1, even at environmentally relevant concentrations, can retard testis differentiation at pre-metamorphic stages and cause testis dysgenesis after metamorphosis in the amphibian X. laevis. Our findings suggest that ubiquitous BPs in aquatic environments could pose a potential risk to amphibians.
Collapse
Affiliation(s)
- Hong-Mei Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ying-Chi Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing-Qing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hai-Ming Xu
- Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Occupational and Environmental Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Chatzigianni M, Pavlou P, Siamidi A, Vlachou M, Varvaresou A, Papageorgiou S. Environmental impacts due to the use of sunscreen products: a mini-review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1331-1345. [PMID: 36173495 PMCID: PMC9652235 DOI: 10.1007/s10646-022-02592-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Sunscreen use has increased in recent years, as sunscreen products minimize the damaging effects of solar radiation. Active ingredients called ultraviolet (UV) filters or UV agents, either organic or inorganic, responsible for defending skin tissue against harmful UV rays, are incorporated in sunscreen formulations. UV agents have a serious impact on many members of bio communities, and they are transferred to the environment either directly or indirectly. Many organic UV filters are found to be accumulated in marine environments because of high values of the octanol/water partition coefficient. However, due to the fact that UV agents are not stable in water, unwanted by-products may be formed. Experimental studies or field observations have shown that organic UV filters tend to bioaccumulate in various aquatic animals, such as corals, algae, arthropods, mollusks, echinoderms, marine vertebrates. This review was conducted in order to understand the effects of UV agents on both the environment and marine biota. In vivo and in vitro studies of UV filters show a wide range of adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention, but the scientific data identify potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. However, more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and approved alternatives.
Collapse
Affiliation(s)
- Myrto Chatzigianni
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece.
| | - Angeliki Siamidi
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Division of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Athens, Greece
| | - Athanasia Varvaresou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| | - Spyridon Papageorgiou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
- Laboratory of Chemistry-Biochemistry-Cosmetic Science, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 28 Ag. Spyridonos Str., 12243, Egaleo, Greece
| |
Collapse
|
22
|
Gautam K, Seth M, Dwivedi S, Jain V, Vamadevan B, Singh D, Roy SK, Downs CA, Anbumani S. Soil degradation kinetics of oxybenzone (Benzophenone-3) and toxicopathological assessment in the earthworm, Eisenia fetida. ENVIRONMENTAL RESEARCH 2022; 213:113689. [PMID: 35718163 DOI: 10.1016/j.envres.2022.113689] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A preponderance of recent evidence indicates that oxybenzone and other personal-care product chemicals threaten the biota inhabiting various ecological niches. What is understudied is the ecotoxicological impact of oxybenzone, a UV filter in sunscreens and anti-aging products, to terrestrial/soil organisms that are keystone species in these habitats. In the present study, acute exposure (14-day) to oxybenzone resulted in earthworm mortality (LC50 of 364 mg/kg) and growth rate inhibition. Environmentally relevant concentration of oxybenzone (3.64, 7.28 and 36.4 mg/kg) at exposures of 7-day, 14-day, 28-day induced oxidative stress and neurotoxicity followed by perturbations in reproduction processes and changes in vital organs. Decreased levels of superoxide dismutase (SOD) and catalase (CAT) activity were statistically lower than controls (p < 0.05) on day 14 for all three concentrations, while glutathione-s-transferase (GST) activity was significantly elevated from controls on days 7 and 14. On day 28, SOD and CAT activities were either not significantly different from the control or were higher, demonstrating a temporal multiphasic response of anti-oxidant enzymes. GST activity on day 28 was significantly reduced compared to controls. Acetylcholinesterase levels across the three-time points exhibited a complicated behaviour, with every exposure concentration being significantly different from the control. Chronic exposure negatively influences earthworm health status with elevated biomarker values analysed using IBRv2 index. This, in turn, impacted higher levels of hierarchical organization, significantly impairing reproduction and organismal homeostasis at the histological level and manifesting as decreasing cocoon formation and successful hatching events. Thus, the overall findings demonstrate that oxybenzone is toxic to Eisenia fetida at low-level, long-term exposure. Based on the concentration verification analysis and application of the EPA PestDF tool, oxybenzone undergoes single first-order kinetics degradation in OECD soil with DT50 and DT90 as 8.7-28.9 days, respectively.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Seth
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shreya Dwivedi
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Veena Jain
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Dhirendra Singh
- Central Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu K Roy
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C A Downs
- Haereticus Environmental Laboratory, Clifford, VA, 24522, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Downs CA, Diaz-Cruz MS, White WT, Rice M, Jim L, Punihaole C, Dant M, Gautam K, Woodley CM, Walsh KO, Perry J, Downs EM, Bishop L, Garg A, King K, Paltin T, McKinley EB, Beers AI, Anbumani S, Bagshaw J. Beach showers as sources of contamination for sunscreen pollution in marine protected areas and areas of intensive beach tourism in Hawaii, USA. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129546. [PMID: 35941056 DOI: 10.1016/j.jhazmat.2022.129546] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In 2019, sands in nearby runoff streams from public beach showers were sampled on three islands in the State of Hawaii and tested for over 18 different petrochemical UV filters. Beach sands that are directly in the plume discharge of beach showers on three of the islands of Hawaii (Maui, Oahu, Hawai'i) were found to be contaminated with a wide array of petrochemical-based UV-filters that are found in sunscreens. Sands from beach showers across all three islands had a mean concentration of 5619 ng/g of oxybenzone with the highest concentration of 34,518 ng/g of oxybenzone at a beach shower in the Waikiki area of Honolulu. Octocrylene was detected at a majority of the beach shower locations, with a mean concentration of 296.3 ng/g across 13 sampling sites with the highest concentration of 1075 ng/g at the beach shower in Waikiki. Avobenzone, octinoxate, 4-methylbenzylidene camphor and benzophenone-2 were detected, as well as breakdown products of oxybenzone, including benzophenone-1, 2,2'-dihydroxy-4-methoxybenzophenone, and 4-hydroxybenzophenone. Dioxybenzone (DHMB) presented the highest concentration in water (75.4 ng/mL), whereas octocrylene was detected in all water samples. Some of these same target analytes were detected in water samples on coral reefs that are adjacent to the beach showers. Risk assessments for both sand and water samples at a majority of the sampling sites had a Risk Quotient > 1, indicating that these chemicals could pose a serious threat to beach zones and coral reef habitats. There are almost a dozen mitigation options that could be employed to quickly reduce contaminant loads associated with discharges from these beach showers, like those currently being employed (post-study sampling and analysis) in the State of Hawaii, including banning the use of sunscreens using petrochemical-based UV filters or educating tourists before they arrive on the beach.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA.
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | | | - Marc Rice
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Laura Jim
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Cindi Punihaole
- Kahalu`u Bay Education Center, The Kohala Center, P.O. Box 437462, Kamuela, HI 967, USA
| | - Mendy Dant
- Fair Wind Cruises, Kailua Kona, HI 96740, USA
| | - Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Cheryl M Woodley
- US National Oceanic & Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Coral Disease & Health Program, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC 29412, USA
| | - Kahelelani O Walsh
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Jenna Perry
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Evelyn M Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA
| | - Lisa Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI 96825-07610, USA
| | - Achal Garg
- Chemists Without Borders, Sacramento, CA 95835, USA
| | - Kelly King
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | - Tamara Paltin
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | | | - Axel I Beers
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jeff Bagshaw
- Hawaii Division of Forestry and Wildlife, 685 Haleakala Hwy, Kahului, HI 96732, USA
| |
Collapse
|
24
|
Optimisation of the conditions of dispersive liquid–liquid microextraction for environmentally friendly determination of bisphenols and benzophenone in complex water matrices by LC-MS/MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Abou-Dahech M, HS Boddu S, Devi Bachu R, Jayachandra Babu R, Shahwan M, Al-Tabakha MM, Tiwari AK. A Mini-Review on Limitations Associated with UV Filters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
27
|
Enhanced Toxicity of Bisphenols Together with UV Filters in Water: Identification of Synergy and Antagonism in Three-Component Mixtures. Molecules 2022; 27:molecules27103260. [PMID: 35630736 PMCID: PMC9143986 DOI: 10.3390/molecules27103260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Contaminants of emerging concern (CEC) localize in the biome in variable combinations of complex mixtures that are often environmentally persistent, bioaccumulate and biomagnify, prompting a need for extensive monitoring. Many cosmetics include UV filters that are listed as CECs, such as benzophenone derivatives (oxybenzone, OXYB), cinnamates (2-ethylhexyl 4-methoxycinnamate, EMC) and camphor derivatives (4-methylbenzylidene-camphor, 4MBC). Furthermore, in numerous water sources, these UV filters have been detected together with Bisphenols (BPs), which are commonly used in plastics and can be physiologically detrimental. We utilized bioluminescent bacteria (Microtox assay) to monitor these CEC mixtures at environmentally relevant doses, and performed the first systematic study involving three sunscreen components (OXYB, 4MBC and EMC) and three BPs (BPA, BPS or BPF). Moreover, a breast cell line and cell viability assay were employed to determine the possible effect of these mixtures on human cells. Toxicity modeling, with concentration addition (CA) and independent action (IA) approaches, was performed, followed by data interpretation using Model Deviation Ratio (MDR) evaluation. The results show that UV filter sunscreen constituents and BPs interact at environmentally relevant concentrations. Of notable interest, mixtures containing any pair of three BPs (e.g., BPA + BPS, BPA + BPF and BPS + BPF), together with one sunscreen component (OXYB, 4MBC or EMC), showed strong synergy or overadditive effects. On the other hand, mixtures containing two UV filters (any pair of OXYB, 4MBC and EMC) and one BP (BPA, BPS or BPF) had a strong propensity towards concentration dependent underestimation. The three-component mixtures of UV filters (4MBC, EMC and OXYB) acted in an antagonistic manner toward each other, which was confirmed using a human cell line model. This study is one of the most comprehensive involving sunscreen constituents and BPs in complex mixtures, and provides new insights into potentially important interactions between these compounds.
Collapse
|
28
|
Downs CA, Bishop E, Diaz-Cruz MS, Haghshenas SA, Stien D, Rodrigues AMS, Woodley CM, Sunyer-Caldú A, Doust SN, Espero W, Ward G, Farhangmehr A, Tabatabaee Samimi SM, Risk MJ, Lebaron P, DiNardo JC. Oxybenzone contamination from sunscreen pollution and its ecological threat to Hanauma Bay, Oahu, Hawaii, U.S.A. CHEMOSPHERE 2022; 291:132880. [PMID: 34780745 DOI: 10.1016/j.chemosphere.2021.132880] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Hanauma Bay is a 101-acre bay created by the partial collapse of a volcanic cone and once supported a vibrant coral reef system. It is the most popular swimming area in the Hawaiian Islands and has been reported to have averaged between 2.8 and 3.5 million visitors a year between the 1980s and the 2010s, with visitors averaging between 3000-4000 a day and peaking around 10,000-13,000 per day. Concentrations of oxybenzone and other common UV filters were measured in subsurface water samples and in sands from the beach-shower areas in Hanauma Bay. Results demonstrate that beach showers also can be a source of sunscreen environmental contamination. Hydrodynamic modeling indicates that oxybenzone contamination within Hanauma Bay's waters could be retained between 14 and 50 h from a single release event period. Focusing on only oxybenzone, two different Hazard and Risk Assessment analyses were conducted to determine the danger of oxybenzone to Hanauma Bay's coral reef system. Results indicate that oxybenzone contamination poses a significant threat to the wildlife of Hanauma Bay. To recover Hanauma Bay's natural resources to a healthy condition and to satisfactorily conserve its coral reef and sea grass habitats, effective tourism management policies need to be implemented that mitigate the threat of sunscreen pollution.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA, 2453, USA; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France.
| | - Elizabeth Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI, 96825-07610, USA
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center. Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | - Cheryl M Woodley
- U.S. National Oceanic & Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Coral Disease & Health Program, Hollings Marine Laboratory, 331 Ft. Johnson Rd. Charleston, SC, 29412, USA
| | - Adrià Sunyer-Caldú
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center. Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | - William Espero
- Hawaii State Senate, Senate District 19, Hawaii State Capitol, 415 S. Beretania St. Honolulu, HI, 96813, USA
| | - Gene Ward
- Hawaii State Legislature, House District 17, Hawaii State Capitol, 415 S. Beretania St. Honolulu, HI, 96813, USA
| | | | | | - Michael J Risk
- Department of Earth Sciences, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | | |
Collapse
|
29
|
Organic UV Filters Induce Toll-like-Receptors and Related Signaling Pathways in Peripheral Blood Mononuclear Cells of Juvenile Loggerhead Sea Turtles (Caretta caretta). Animals (Basel) 2022; 12:ani12050594. [PMID: 35268162 PMCID: PMC8909695 DOI: 10.3390/ani12050594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Emerging environmental contaminants, such as sunscreen agents, have been broadly identified in marine ecosystems. Thus, the present work aims to investigate whether organic UV filters cause immunotoxic effects in juvenile loggerhead sea turtles (Caretta caretta). We found that loggerhead sea turtles showing high circulating levels of organic UV filters manifested increased expression of genes involved in inflammatory responses, probably due to contaminant-induced oxidative damage. Abstract Recent evidence suggests that exposure to organic ultraviolet filters (UV filters) is associated with dysregulated neuroendocrine-immune homeostasis. Marine species are likely to be among the most vulnerable to UV filters due to widespread diffusion of these chemicals in the aquatic environment. In the present study, the effects of UV filter bioaccumulation on toll-like-receptors (TLRs) and related signaling pathways were investigated in peripheral blood mononuclear cells (PBMCs) of juvenile loggerhead sea turtles (Caretta caretta). We found that the expression of both TLR1 and TLR2 was significantly increased in UV-filter exposed turtles compared to control animals. Similarly, the signaling pathway downstream of activated TLRs (i.e., Ras-related C3 botulinum toxin substrate 1 (RAC1), Phosphoinositide 3-kinase (PI3K), serine/threonine-protein kinase (AKT3), and nuclear factor κB (NF-κB)) was significantly up-regulated, leading to an enhanced transcription of pro-inflammatory cytokines. In addition, we demonstrated that high levels of plasma UV filters increased lipid peroxidation in sea turtles’ PBMCs. Our results indicated that UV filters affected the inflammatory responses of PBMCs via modulation of the TLR/NF-κB signaling pathway and provided a new insight into the link between exposure to sunscreen agents and sea turtle health.
Collapse
|
30
|
Moreira ALP, Luchiari AC. Effects of oxybenzone on zebrafish behavior and cognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152101. [PMID: 34863770 DOI: 10.1016/j.scitotenv.2021.152101] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The increased ultraviolet (UV) radiation on the Earth's surface increased the need for UV filters products. One of the most used is oxybenzone, which is indiscriminately released in the environment. Oxybenzone's ecotoxicological effects on physiology have been investigated because of the bioaccumulation and action as an endocrine disruptor. However, little is known about its effects on behavior or cognition. In this study, we approach the effects of short-term oxybenzone exposure on locomotion, anxiety-like, social behavior, and short-term memory in zebrafish (Danio rerio). Adult zebrafish were exposed to oxybenzone 10, 100 and 1000 μg L-1 for 15 days and then tested (novel tank, shoal preference, mirror test, and T-maze with novelty). Fish exposed to oxybenzone showed reduced locomotion, decreased anxiety-like behavior, less time near/interacting with the shoal, fewer interactions with the mirror image, and decreased exploration of the novel arm in the T-maze test. These results suggest that oxybenzone affects perception, increases risk-taking, impairs proper aggressive response, and jeopardizes the animals' ability to retain information. These results reinforce the risk posed by products discarded into the aquatic ecosystems, especially those with underestimated toxic potential.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|
31
|
Matouskova K, Vandenberg LN. Towards a paradigm shift in environmental health decision-making: a case study of oxybenzone. Environ Health 2022; 21:6. [PMID: 34998398 PMCID: PMC8742442 DOI: 10.1186/s12940-021-00806-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Technological advancements make lives safer and more convenient. Unfortunately, many of these advances come with costs to susceptible individuals and public health, the environment, and other species and ecosystems. Synthetic chemicals in consumer products represent a quintessential example of the complexity of both the benefits and burdens of modern living. How we navigate this complexity is a matter of a society's values and corresponding principles. OBJECTIVES We aimed to develop a series of ethical principles to guide decision-making within the landscape of environmental health, and then apply these principles to a specific environmental chemical, oxybenzone. Oxybenzone is a widely used ultraviolet (UV) filter added to personal care products and other consumer goods to prevent UV damage, but potentially poses harm to humans, wildlife, and ecosystems. It provides an excellent example of a chemical that is widely used for the alleged purpose of protecting human health and product safety, but with costs to human health and the environment that are often ignored by stakeholders. DISCUSSION We propose six ethical principles to guide environmental health decision-making: principles of sustainability, beneficence, non-maleficence, justice, community, and precautionary substitution. We apply these principles to the case of oxybenzone to demonstrate the complex but imperative decision-making required if we are to address the limits of the biosphere's regenerative rates. We conclude that both ethical and practical considerations should be included in decisions about the commercial, pervasive application of synthetic compounds and that the current flawed practice of cost-benefit analysis be recognized for what it is: a technocratic approach to support corporate interests.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts – Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA 01003 USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts – Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA 01003 USA
| |
Collapse
|
32
|
Wheate NJ. A review of environmental contamination and potential health impacts on aquatic life from the active chemicals in sunscreen formulations. Aust J Chem 2022. [DOI: 10.1071/ch21236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Warren LD, Guyader ME, Kiesling RL, Higgins CP, Schoenfuss HL. Linking Trace Organic Contaminants in On-Site Wastewater-Treatment Discharge with Biological Effects. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3193-3204. [PMID: 34499771 DOI: 10.1002/etc.5208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/25/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Around the globe, on-site wastewater-treatment systems (OWTSs) are critical for rural communities without access to a municipal sewer system. However, their treatment efficiency does not match that of modern wastewater-treatment plants. The impact of OWTS discharge on nearby aquatic ecosystems and their resident fish species is poorly understood. In the present study, larval and adult fathead minnows (Pimephales promelas) and adult sunfish (Lepomis macrochirus) were exposed for 21 days to two trace organic contaminant (TOrC) mixtures replicating water chemistry derived from a previous environmental study. Larval fathead minnows were assessed for survival, growth, predator avoidance, and feeding efficiency. Adult fathead minnows and sunfish were assessed for a suite of physiological endpoints (condition indices, vitellogenin, glucose), histological changes, and fecundity. The only observed effect of TOrC mixture exposure on larval fathead minnows was a decrease in feeding efficiency. Effects were mixed in exposed adult fishes, except for male sunfish which realized a significant induction of vitellogenin (p < 0.05). The consequences of TOrC mixture exposure in the present controlled laboratory study match effects observed in wild-caught sunfish in a corresponding field study. The present study begins to bridge the gap by connecting nonpoint OWTS pollution with biological effects observed in resident lake fish species. Given the effects observed despite the brevity of the laboratory mixture exposure, longer-term studies are warranted to understand the full impacts of OWTS discharge to nearby aquatic ecosystems. Environ Toxicol Chem 2021;40:3193-3204. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Les D Warren
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Meaghan E Guyader
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | | | - Christopher P Higgins
- Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| |
Collapse
|
34
|
Tian L, Huang L, Cui H, Yang F, Li Y. The toxicological impact of the sunscreen active ingredient octinoxate on the photosynthesis activity of Chlorella sp. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105469. [PMID: 34500299 DOI: 10.1016/j.marenvres.2021.105469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Products designed to filter ultraviolet (UV) light are responsible for growing levels of anthropogenic environmental contamination. Octinoxate (ONT) is among the most common UV filtering active ingredients in cosmetics and sunscreens. The present study was designed to evaluate the toxicological effects of ONT on the photosynthetic activity of the Chlorella species of marine microalgae. These analyses identified ONT as a potent photo-toxicant, the effects of which were more pronounced upon light exposure relative to in the dark. Short-term ONT exposure had no effect on photosynthetic electron transport capacity in the dark but did significantly reduce the ribulose-1,5-bisphosphate carboxylase/oxygenase activity in Chlorella cells, suggesting that this compound can directly suppress the photosynthetic Calvin cycle. When cells were subsequently exposed to light, the disruption of this cycle resulted in an excess of excitation energy, in turn driving the excessive generation of reactive oxygen species (ROS). ROS-mediated disruption of cellular metabolism further aggravated this ONT-induced microalgal damage. As such, under natural light conditions, these microalgae cells are exposed to increased oxidative stress that impairs their growth and causes pigment bleaching. Restricting the utilization of ONT-containing sunscreens thus has the potential to better preserve the integrity of aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
- Lin Tian
- College of Environmental Science & Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lei Huang
- College of Environmental Science & Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Feifei Yang
- School of Ocean Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yongfu Li
- College of Environmental Science & Engineering, Ocean University of China, Qingdao, 266100, China; CAS Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, 266071, China.
| |
Collapse
|
35
|
Wang H, Xi H, Xu L, Jin M, Zhao W, Liu H. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147819. [PMID: 34029823 DOI: 10.1016/j.scitotenv.2021.147819] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 05/07/2023]
Abstract
Due to the extensive use and incomplete removal, pharmaceutical and personal care products (PPCPs) are introduced into the water continuously. It has been proved that the unique properties of PPCPs are influential to organisms and the environment, and gradually affect human health. In this paper, the toxicological effects of typical PPCPs, and the environmental behavior of PPCPs in aquatic are reviewed. The risk assessments of PPCPs in the water are summarized. The research directions of environmental toxicology research of PPCPs in the future are proposed. Many PPCPs were found to be toxic or even highly toxic toward aquatic organisms, and have the potential for bioaccumulation. It is essential to study the acute and long-term toxicity of PPCPs and their metabolites, evaluate the environmental behaviors and make a reasonable assessment of ecotoxicology and human health risks of PPCPs.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Xi
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Linling Xu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
36
|
Watkins YSD, Sallach JB. Investigating the exposure and impact of chemical UV filters on coral reef ecosystems: Review and research gap prioritization. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:967-981. [PMID: 33734562 DOI: 10.1002/ieam.4411] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Coral reefs are among the world's most productive and biologically diverse ecosystems. In recent decades, they have experienced an unparalleled decline resulting from various anthropogenically induced stressors. Ultraviolet (UV) filters found in personal care products, such as sunscreen, are chemical pollutants that are emerging as a growing toxic threat to reef organisms. In this study, a systematic literature review was conducted to (1) determine the current understanding of spatial distribution and the occurrence of UV filters exposed to the marine environment, (2) synthesize current ecotoxicological thresholds of relevant reef organisms under various UV-filter exposures, (3) identify research gaps related to both exposure and toxicity of UV filters in coral reef ecosystems. With gaps identified, a survey was developed and distributed to experts in the field representing academic, governmental, not-for-profit, and industry researchers in order to prioritize research gaps and inform future research efforts. The survey identified the need for better understanding of the impacts of co-stressors, long-term exposure, mixture, and degradation product exposure and realistic environmental conditions. Ultimately, this review will help guide priority research efforts to understand the risks of UV-filter exposure to coral reef ecosystems. Integr Environ Assess Manag 2021;17:967-981. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Yasmine S D Watkins
- Department of Environment and Geography, University of York, Heslington, York, UK
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York, UK
| |
Collapse
|
37
|
Dos Santos Almeida S, Silva Oliveira V, Ribeiro Dantas M, Luiz Borges L, Teixeira de Sabóia-Morais SM, Lopes Rocha T, Luiz Cardoso Bailão EF. Environmentally relevant concentrations of benzophenone-3 induce differential histopathological responses in gills and liver of freshwater fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44890-44901. [PMID: 33852111 DOI: 10.1007/s11356-021-13839-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
BP-3 is one of the most used organic UV filters. However, its widespread use and release into aquatic environment can induce ecotoxicological impact on aquatic organisms. Thus, the aim of the current study is to evaluate the gills and liver of freshwater fish Poecilia reticulata subjected to acute exposure (96 h) to BP-3 at environmentally relevant concentrations (10-1000 ng L-1). The study was based on adopting qualitative and semi-quantitative approach to assess histopathological changes and integrated the biomarker response in order to investigate organ-specific responses to BP-3 exposure. BP-3 has induced high histopathological index associated with circulatory disturbances, as well as with regressive and immunological changes in gills, whereas the hepatic histopathological index was associated with circulatory disturbances. Moreover, lower BP-3 concentrations were mostly associated with changes in gills, whereas higher BP-3 concentration was mostly linked to hepatic changes. In conclusion, acute exposure to BP-3 at environmentally relevant concentrations had stronger impact on gills than on the liver of P. reticulata, which confirmed organ-specific responses to UV filters.
Collapse
Affiliation(s)
- Sara Dos Santos Almeida
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, 75.132-903, Brazil
| | - Vinícius Silva Oliveira
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, 75.132-903, Brazil
| | - Mariana Ribeiro Dantas
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, 75.132-903, Brazil
| | - Leonardo Luiz Borges
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, 75.132-903, Brazil
- School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
38
|
Achar JC, Na J, Im H, Jung J. Role of extracellular polymeric substances in leaching and bioconcentration of benzophenone-3 from microplastic fragments. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125832. [PMID: 33887569 DOI: 10.1016/j.jhazmat.2021.125832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Adverse effects of microplastics (MPs) are exacerbated by plastic additives such as benzophenone-3 (BP-3). The aim of the present study was to evaluate the role of extracellular polymeric substances (EPS) of Chlorella vulgaris in leaching BP-3 additive (3.0 ± 0.2% wt/wt) from polyethylene MP fragments (99.8 ± 4.1 µm) and subsequent bioconcentration in Daphnia magna. BP-3 leaching in M4 medium was higher at pH 8 than at pH 6, because of the higher solubility of BP-3 (pKa=7.07) at pH 8. However, EPS reduced BP-3 leaching in M4 medium, possibly because of repulsive interactions between the negatively charged EPS and anionic BP-3. Thus, BP-3 leaching was greater at lower pH (6 >8) and EPS concentration (20 >50 mg L-1 as total organic carbon), which was well related to BP-3 sorption capacity of EPS. Although BP-3 uptake in D. magna was decreased at pH 8 by increasing EPS concentration, the bioconcentration of BP-3 in D. magna was increased, possibly because of reduced BP-3 elimination. These findings suggest the important role of EPS in the bioconcentration of anionic plastic additives, which should be further evaluated to understand the underlying toxicokinetic mechanisms.
Collapse
Affiliation(s)
- Jerry Collince Achar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyungjoon Im
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
39
|
Cormier B, Le Bihanic F, Cabar M, Crebassa JC, Blanc M, Larsson M, Dubocq F, Yeung L, Clérandeau C, Keiter SH, Cachot J, Bégout ML, Cousin X. Chronic feeding exposure to virgin and spiked microplastics disrupts essential biological functions in teleost fish. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125626. [PMID: 33740727 DOI: 10.1016/j.jhazmat.2021.125626] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/26/2023]
Abstract
Toxicity of polyethylene (PE) and polyvinyl chloride (PVC) microplastics (MPs), either virgin or spiked with chemicals, was evaluated in two short-lived fish using a freshwater species, zebrafish, and a marine species, marine medaka. Exposures were performed through diet using environmentally relevant concentrations of MPs over 4 months. No modification of classical biomarkers, lipid peroxidation, genotoxicity or F0 behaviour was observed. A significant decrease in growth was reported after at least two months of exposure. This decrease was similar between species, independent from the type of MPs polymer and the presence or not of spiked chemicals, but was much stronger in females. The reproduction was evaluated and it revealed a significant decrease in the reproductive output for both species and in far more serious numbers in medaka. PVC appeared more reprotoxic than PE as were MPs spiked with PFOS and benzophenone-3 compared to MPs spiked with benzo[a]pyrene. Further, PVC-benzophenone-3 produced behavioural disruption in offspring larvae. These results obtained with two species representing different aquatic environments suggest that microplastics exert toxic effects, slightly different according to polymers and the presence or not of sorbed chemicals, which may lead in all cases to serious ecological disruptions.
Collapse
Affiliation(s)
- Bettie Cormier
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Florane Le Bihanic
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France
| | - Mathieu Cabar
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France
| | | | - Mélanie Blanc
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Florian Dubocq
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Leo Yeung
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | | | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Jérôme Cachot
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France.
| |
Collapse
|
40
|
Yang H, Lu G, Yan Z, Liu J. Influence of suspended sediment on the bioavailability of benzophenone-3: Focus on accumulation and multi-biological effects in Daphnia magna. CHEMOSPHERE 2021; 275:129974. [PMID: 33639549 DOI: 10.1016/j.chemosphere.2021.129974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The UV-filter benzophenone-3 (BP3) tends to associate with suspended sediment (SPS) due to hydrophobicity, which could alter its toxicological effects on non-target aquatic organisms. In this study, the freshwater cladoceran Daphnia magna (D. magna) was selected as a model organism to investigate the impacts of the source and composition of SPS on the accumulation and multiple toxicological effects (from the molecular level to individual level) of BP3. Among the three components of SPS, amorphous organic carbon (AOC) and minerals promoted the body burden of BP3, while black carbon (BC) inhibited the bioaccumulation. The inhibition effects of BP3 on swimming and feeding behaviors of D. magna were also enhanced due to the presence of AOC and BC. Compared with BP3 exposure alone, higher oxidative stress and neurotoxicity were observed in the presence of SPS containing AOC, BC and minerals, corresponding to that superoxide dismutase, catalase and glutathione-S-transferase activities were further induced, and acetylcholinesterase activity was inhibited. Furthermore, BP3 induced mRNA expression levels of the endocrine system (ecdysone receptor, cytochrome P450 CYP314) and metabolic system (toxicant nuclear receptor HR96, P-glycoprotein), and the presence of SPS containing AOC, BC and minerals exhibited an enhanced effect. Combined with all endpoints, evident relationship was observed between the bioaccumulation level and the response of individual behavior and molecular biomarkers. The results demonstrated that the effects of SPS compositions on bioaccumulation and toxicological effects of organic UV-filters should be considered in aquatic environments.
Collapse
Affiliation(s)
- Haohan Yang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
41
|
Carve M, Allinson G, Nugegoda D, Shimeta J. Trends in environmental and toxicity research on organic ultraviolet filters: A scientometric review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145628. [PMID: 33940738 DOI: 10.1016/j.scitotenv.2021.145628] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/12/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In recent decades, the potential toxicological and environmental effects of organic ultraviolet filters (OUVF) have received growing attention. The number of studies in this area has increased; however, presently there is no scientometric perspective addressing this topic. The purpose of this study is to identify the intellectual base and research front using the visualization and analysis software, CiteSpace. We retrieved 453 articles, published in print or online as an early-access article between 2002 and 2020, from the Web of Science with a topic search related to OUVFs, environment, and toxicology. We then analysed synthesized networks of co-authorship (author, institution, country), co-citation (author, document, journal) and co-occurring keywords. The annual publication output has trended upwards since 2002. Authors based in China accounted for 29.4% of the total publications, followed by USA (17.4%); but overall publications from Switzerland and Spain were more influential. Major research themes identified included OUVF concentrations in aquatic environments, and hormonal effects. Emerging themes included improving the sensitivity of analytical detection methods for both OUVFs and their metabolites, consequences of OUVF transport to the marine environment, and concerns over prenatal exposure. Based on keyword analysis, benzophenone-3, 4-methylbenzylidene-camphor, 3-benzylidene camphor, and ethylhexyl-methoxycinnamate are the most studied OUVFs, and effects on estrogenic activity, gene expression, reproduction, and more recently, oxidative stress, have received most attention from a toxicological perspective. Other prominent topics were sources of environmental contamination and ecological risk assessments. This study maps the major research domains of OUVF environmental toxicology research; explanations and implications of the findings are discussed; and emerging trends highlighted.
Collapse
Affiliation(s)
- Megan Carve
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Graeme Allinson
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Sciences, RMIT University, Bundoora, Victoria 3083, Australia; Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, PO Box 71, Bundoora, 3078, Victoria, Australia
| | - Jeff Shimeta
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
42
|
Cao W, Wu N, Qu R, Sun C, Huo Z, Ajarem JS, Allam AA, Wang Z, Zhu F. Oxidation of benzophenone-3 in aqueous solution by potassium permanganate: kinetics, degradation products, reaction pathways, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31301-31311. [PMID: 33599933 DOI: 10.1007/s11356-021-12913-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-3 (BP-3) is used in a wide range of personal care products and plastics to resist ultraviolet light, which has aroused considerable public concern due to its endocrine-disrupting effects. In this work, we systematically investigated the chemical oxidation process of BP-3 by KMnO4. The influences of several factors, such as pH, oxidant dose, temperature, coexisting water constituents, and water matrices, on BP-3 degradation efficiency were evaluated. The removal rate of 10 μM BP-3 could reach 91.3% in 2 h under the conditions of pH = 8.0, [BP-3]0:[KMnO4]0 = 1:20, and T = 25 °C, with the observed rate constant (kobs) value of 0.0202 min-1. The presence of typical anions (Cl-, NO3-, SO42-) and HA could slightly increase BP-3 removal, while HCO3- caused a relatively significant promotion of BP-3 degradation. On the basis of mass spectrometry and theoretical calculations, hydroxylation, direct oxidation, and carbon-carbon bridge bond cleavage were mainly involved in the oxidation process. Toxicity assessment revealed that the acute and chronic toxicities were reduced significantly, which suggested KMnO4 is a promising technique for BP-3 removal.
Collapse
Affiliation(s)
- Wanming Cao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Zongli Huo
- Jiangsu Province Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, Beni Suef University, Beni Suef, 65211, Egypt
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
| | - Feng Zhu
- Jiangsu Province Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
43
|
Lucas J, Logeux V, Rodrigues AMS, Stien D, Lebaron P. Exposure to four chemical UV filters through contaminated sediment: impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29412-29420. [PMID: 33555472 DOI: 10.1007/s11356-021-12582-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
UV filters are widely used in many pharmaceutical and personal care products such as sunscreen and cosmetics to protect from UV irradiation. Due to their hydrophobic properties and relative stability, they have a high capacity to accumulate in sediment. Little information is available on their ecotoxicity on fish. In aquatic ecosystems, fish eggs could be directly affected by UV filters through contact with contaminated sediment. The aim of this study was to investigate the individual toxicity of four UV filters: benzophenone-3 (BP3), butyl methoxydibenzoylmethane (BM), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), and methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT), in embryo-larval stages of zebrafish Danio rerio. Fish eggs were exposed to single UV filters by contact with spiked sediment during 96 h at a concentration of 10 μg g-1. Among the four UV filters tested, BP3 was the more toxic, reducing cardiac frequency and increasing standard metabolic rate of larvae.
Collapse
Affiliation(s)
- Julie Lucas
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France.
| | - Valentin Logeux
- Sorbonne Université, CNRS, Fédération de Recherche, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-Mer, France
| |
Collapse
|
44
|
Oh JJ, Kim JY, Son SH, Jung WJ, Kim DH, Seo JW, Kim GH. Fungal melanin as a biocompatible broad-spectrum sunscreen with high antioxidant activity. RSC Adv 2021; 11:19682-19689. [PMID: 35479243 PMCID: PMC9033651 DOI: 10.1039/d1ra02583j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022] Open
Abstract
Melanin is considered a bio-inspired dermo-cosmetic component due to its high UV absorption and antioxidant activity. Among various melanin sources, fungal melanin is a promising candidate for sunscreen because of its sustainability and scalability; however, quantitative assessment of its function has not yet been sufficiently explored. In this study, melanin samples derived from Amorphotheca resinae were prepared, followed by the evaluation of their sunscreen performance, antioxidant activity, and cytotoxicity. Melanin-blended cream was prepared by blending a melanin suspension and a pure cream. The cream showed an in vitro sun protection factor value of 2.5 when the pigment content was 5%. The cream showed a critical wavelength of approximately 388 nm and a UVA/UVB ratio of more than 0.81, satisfying the broad-spectrum sunscreen requirement. Oxygen radical absorbance capacity assays indicated that fungal melanin had antioxidant activity similar to ascorbic acid but higher than reduced glutathione. Fungal melanin had no statistically significant cytotoxicity to human keratinocyte cell lines until 72 h of exposure, even at a concentration of 4 mg mL-1. Consequently, melanin pigment can be used as a biocompatible broad-spectrum sunscreen with high antioxidant activity and as a practical alternative in dermo-cosmetic formulations.
Collapse
Affiliation(s)
- Jeong-Joo Oh
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Korea +82 2 3290 9753 +82 2 3290 3014
| | - Jee Young Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Korea +82 2 3290 9753 +82 2 3290 3014
| | - Seung Han Son
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University Seoul 04763 Korea
| | - Won-Jo Jung
- Department of Advanced Materials Chemistry, Korea University Sejong 30019 Korea
| | - Da Hee Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Korea +82 2 3290 9753 +82 2 3290 3014
| | - Jin-Woo Seo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Korea +82 2 3290 9753 +82 2 3290 3014
| | - Gyu-Hyeok Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University 145, Anam-ro, Seongbuk-gu Seoul 02841 Korea +82 2 3290 9753 +82 2 3290 3014
| |
Collapse
|
45
|
Xu M, Zheng D, Gong S. Effects of Low Concentration Benzophenone-3 Exposure on the Sex Ratio and Offspring Development of Zebrafish (Danio rerio). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:740-746. [PMID: 33710386 DOI: 10.1007/s00128-021-03166-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Benzophenone-3 (BP-3) is an important ultraviolet (UV)-screening agent using in cosmetics, however, the associated environmental pollution and the toxicity to organisms, particularly aquatic organisms, cannot be neglected. In this study, the potential risks posed to zebrafish when exposed to environmental residual concentrations of BP-3 were evaluated. Zebrafish embryos (F0) were exposed to 0, 0.056, 2.3, and 38 μg/L BP-3 until 42 days' post-fertilization (dpf). The effects of BP-3 on the sex ratio and gene expression of F0 zebrafish were investigated. In the F1 embryos, cumulative hatching rate, body length, and heartbeats were observed. The result showed that F0 and F1 exposure to concentrations of 0.056 and 38 μg/L BP-3 elicited stronger toxicity at 96 hpf than single generation exposures. Overall, our results provide a new understanding on the effects of low BP-3 concentration chronic exposure on sex ratio and offspring developmental toxicity of the F0 zebrafish.
Collapse
Affiliation(s)
- Mengyi Xu
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou, China.
- Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangzhou, China.
| | - Danyang Zheng
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou, China
- Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangzhou, China
| | - Shengzhao Gong
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou, China
- Guangdong Engineering Technical Research Center for Green Household Chemicals, Guangzhou, China
| |
Collapse
|
46
|
Siano G, Crespi S, Bonesi SM. Substituent and Surfactant Effects on the Photochemical Reaction of Some Aryl Benzoates in Micellar Green Environment †. Photochem Photobiol 2021; 97:1298-1309. [PMID: 33860538 DOI: 10.1111/php.13431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
In this study, we carried out preparative and mechanistic studies on the photochemical reaction of a series of p-substituted phenyl benzoates in confined and sustainable micellar environment. The aim of this work is mainly focused to show whether the nature of the surfactant (ionic or nonionic) leads to noticeable selectivity in the photoproduct formation and whether the electronic effects of the substituents affect the chemical yields and the rate of formation of the 5-substituted-2-hydroxybenzophenone derivatives. Application of the Hammett linear free energy relationship (LFER) on the rate of formation of benzophenone derivatives, on the lower energy band of the UV-visible absorption spectra of the aryl benzoates and 5-substituted-2-hydroxybenzophenone derivatives allows a satisfactory quantification of the substituent effects. Furthermore, UV-visible and 2D-NMR (NOESY) spectroscopies have been employed to measure the binding constant Kb and the location of the aryl benzoates within the hydrophobic core of the micelle. Finally, TD-DFT calculations have been carried out to estimate the energies of the absorption bands of p-substituted phenyl benzoates and 5-substituted-2-hydroxybenzophenone derivatives providing good linear correlation with those values measured experimentally.
Collapse
Affiliation(s)
- Gastón Siano
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Sergio M Bonesi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
Jung JW, Kang JS, Choi J, Park JW. A Novel Approach to Derive the Predicted No-Effect Concentration (PNEC) of Benzophenone-3 (BP-3) Using the Species Sensitivity Distribution (SSD) Method: Suggestion of a New PNEC Value for BP-3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073650. [PMID: 33807469 PMCID: PMC8037607 DOI: 10.3390/ijerph18073650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
The necessity for the aquatic ecological risk assessment for benzophenone-3 (BP-3) is increasing due to its high toxic potential and high detection frequency in freshwater. The initial step in the ecological risk assessment is to determine predicted no-effect concentration (PNEC). This study derived PNEC of BP-3 in freshwater using a species sensitivity distribution (SSD) approach, whilst existing PNECs are derived using assessment factor (AF) approaches. A total of eight chronic toxicity values, obtained by toxicity testing and a literature survey, covering four taxonomic classes (fish, crustaceans, algae, and cyanobacteria) were used for PNEC derivation. Therefore, the quantity and quality of the toxicity data met the minimum requirements for PNEC derivation using an SSD approach. The PNEC derived in this study (73.3 μg/L) was far higher than the environmental concentration detected in freshwater (up to 10.4 μg/L) as well as existing PNECs (0.67~1.8 μg/L), mainly due to the difference in the PNEC derivation methodology (i.e., AF vs. SSD approach). Since the SSD approach is regarded as more reliable than the AF approach, we recommend applying the PNEC value derived in this study for the aquatic ecological risk assessment of BP-3, as the use of the existing PNEC values seems to unnecessarily overestimate the potential ecological risk of BP-3 in freshwater.
Collapse
Affiliation(s)
- Jae-Woong Jung
- Center for Defense Acquisition and Requirements Analysis, Korea Institute for Defense Analyses, Seoul 02455, Korea;
| | - Jae Soon Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Science, Bio Anti-Aging Medical Research Center, Gyeongsang National University Medical School, Jinju 52727, Korea;
| | - Jinsoo Choi
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Korea;
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Korea;
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-55-750-3833
| |
Collapse
|
48
|
Carvalhais A, Pereira B, Sabato M, Seixas R, Dolbeth M, Marques A, Guilherme S, Pereira P, Pacheco M, Mieiro C. Mild Effects of Sunscreen Agents on a Marine Flatfish: Oxidative Stress, Energetic Profiles, Neurotoxicity and Behaviour in Response to Titanium Dioxide Nanoparticles and Oxybenzone. Int J Mol Sci 2021; 22:1567. [PMID: 33557180 PMCID: PMC7913899 DOI: 10.3390/ijms22041567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
UV filters are potentially harmful to marine organisms. Given their worldwide dissemination and the scarcity of studies on marine fish, we evaluated the toxicity of an organic (oxybenzone) and an inorganic (titanium dioxide nanoparticles) UV filter, individually and in a binary mixture, in the turbot (Scophthalmus maximus). Fish were intraperitoneally injected and a multi-level assessment was carried out 3 and 7 days later. Oxybenzone and titanium dioxide nanoparticles induced mild effects on turbot, both isolated and in mixture. Neither oxidative stress (intestine, liver and kidney) nor neurotoxicity (brain) was found. However, liver metabolic function was altered after 7 days, suggesting the impairment of the aerobic metabolism. An increased motility rate in oxybenzone treatment was the only behavioural alteration (day 7). The intestine and liver were preferentially targeted, while kidney and brain were unaffected. Both infra- and supra-additive interactions were perceived, with a toxicodynamic nature, resulting either in favourable or unfavourable toxicological outcomes, which were markedly dependent on the organ, parameter and post-injection time. The combined exposure to the UV filters did not show a consistent increment in toxicity in comparison with the isolated exposures, which is an ecologically relevant finding providing key information towards the formulation of environmentally safe sunscreen products.
Collapse
Affiliation(s)
- Ana Carvalhais
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Bárbara Pereira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Mariangela Sabato
- Department of Biological and Environmental Sciences, Università degli Studi di Messina, 98166 Messina, Italy;
| | - Rafaela Seixas
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Marina Dolbeth
- CIIMAR, University of Porto, 4450-208 Matosinhos, Portugal; or
| | - Ana Marques
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Sofia Guilherme
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Patrícia Pereira
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Mário Pacheco
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| | - Cláudia Mieiro
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.); (B.P.); (R.S.); (A.M.); (S.G.); (P.P.); (M.P.)
| |
Collapse
|
49
|
Prakash V, Anbumani S. A Systematic Review on Occurrence and Ecotoxicity of Organic UV Filters in Aquatic Organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:121-161. [PMID: 34554327 DOI: 10.1007/398_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing production of cosmetic products such as organic UV filters (OUVFs) in recent years has raised concern regarding their safety to human and environmental health. The inability of wastewater treatment plants in removing these chemical entities and their high octanol-water partition coefficient values tend to result in the persistence of OUVFs in several environmental matrices, leading these to be categorized as "emerging environmental contaminants" because of their unknown risk. Besides aquatic ecosystem contamination, the application of sludge disposal equally threatens terrestrial biota. Besides, the available reviews focusing on levels of OUVFs in aqueous systems (freshwater and marine), instrumental analysis from various samples, and specific toxicity effects, compiled information on the ecotoxicity of OUVFs is currently lacking. Hence, the present manuscript systematically reviews the ecotoxicity of OUVFs in freshwater and marine organisms occupying lower to higher trophic levels, including the underlying mechanisms of action and current knowledge gaps. The available scientific evidence suggests that OUVFs are a prime candidate for environmental concern due to their potential toxic effects. To the best of our knowledge, this is the first document detailing the toxicological effects of OUVFs in aquatic organisms.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
50
|
Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int J Womens Dermatol 2021; 7:45-69. [PMID: 33537395 PMCID: PMC7838327 DOI: 10.1016/j.ijwd.2020.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Sunscreens are topical preparations containing one or more compounds that filter, block, reflect, scatter, or absorb ultraviolet (UV) light. Part 2 of this review focuses on the environmental, ecological effects and human toxicities that have been attributed to UV filters. METHODS Literature review using NIH databases (eg, PubMed and Medline), FDA and EPA databases, Google Scholar, the Federal Register, and the Code of Federal Regulations (CFR). LIMITATIONS This was a retrospective literature review that involved many different types of studies across a variety of species. Comparison between reports is limited by variations in methodology and criteria for toxicity. CONCLUSIONS In vivo and in vitro studies on the environmental and biological effects of UV filters show a wide array of unanticipated adverse effects on the environment and exposed organisms. Coral bleaching receives considerable attention from the lay press, but the scientific literature identifies potential toxicities of endocrine, neurologic, neoplastic and developmental pathways. These effects harm a vast array of aquatic and marine biota, while almost no data supports human toxicity at currently used quantities (with the exception of contact allergy). Much of these data are from experimental studies or field observations; more controlled environmental studies and long-term human use data are limited. Several jurisdictions have prohibited specific UV filters, but this does not adequately address the dichotomy of the benefits of photoprotection vs lack of eco-friendly, safe, and FDA-approved alternatives.
Collapse
Key Words
- 4-MBC, 4-methylbenzylidene camphor
- AAD, American Academy of Dermatology
- Aquatic organism toxicity of UV filters
- BP-3, Benzophenone-3 or Oxybenzone
- Bioaccumulation
- CDER, Center for Drug Evaluation and Research (part of FDA)
- Coral bleaching
- EPA, Environmental Protection Agency
- Europa, European Union Commission for Public Health
- FDA, Food and Drug Administration
- GBRMPA, Great Barrier Reef Marine Park Authority
- GRASE, Generally Recognized As Safe and Effective
- Human toxicity of UV filters
- NDA, New drug application
- NHANES, National Health and Nutrition Examination Survey
- NanoTiO2, Nanoparticle titanium dioxide
- Nanoparticle toxicity
- OC, Octocrylene
- OMC, Octyl methoxycinnamate or octinoxate
- OTC, Over-the-counter
- PABA, Para-aminobenzoic acid
- PCPC, Personal care products and cosmetics
- PPCP, Pharmaceuticals and personal care products
- Sunscreen side effects
- TiO2, Titanium dioxide
- UV filter
- UV, Ultraviolet
- UVF, Ultraviolet filter
- WWTP, Wastewater treatment plant
Collapse
Affiliation(s)
- David Fivenson
- Fivenson Dermatology, 3200 W. Liberty Rd., Suite C5, Ann Arbor, MI 48103, United States
- St. Joseph Mercy Health System Ann Arbor-Dermatology Residency Program, United States
| | - Nina Sabzevari
- St. Joseph Mercy Hospital, Dermatology Resident, 5333 McAuley Drive, Suite 5003, Ypsilanti, MI 48197, United States
| | - Sultan Qiblawi
- Michigan State University College of Human Medicine, 965 Fee Rd A110, East Lansing, MI 48824, United States
| | - Jason Blitz
- Navy Region Hawaii Public Health Emergency Officer (PHEO) NMRTC, 480 Central Avenue, Code DPH, Pearl Harbor Hawaii JBPHH, HI 96860-4908, United States
| | - Benjamin B. Norton
- Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Scott A. Norton
- Dermatology Division, Children’s National Hospital, 111 Michigan Avenue, NW, Washington, DC 20010, United States
- Dermatology and Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|