1
|
Beggel S, Kalis EJJ, Geist J. Towards harmonized ecotoxicological effect assessment of micro- and nanoplastics in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125504. [PMID: 39662584 DOI: 10.1016/j.envpol.2024.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanoplastics are globally important environmental pollutants. Although research in this field is continuously improving, there are a number of uncertainties, inconsistencies and methodological challenges in the effect assessment of micro- and nanoparticles in freshwater systems. The current understanding of adverse effects is partly biased by the use of non-relevant particle types, unsuitable test setups and environmentally unrealistic dose metrics, which does not take into account realistic processes in particle uptake and consequent effects. Here we summarize the current state of the art by compiling the most recent research with the aim to highlight research gaps and further necessary steps towards more harmonized testing systems. In particular, ecotoxicological scenarios need to mirror environmentally realistic particle diversity and bioavailability. Harmonized test setups should include different uptake pathways, exposures and comparisons with natural reference particles. Effect assessments need to differentiate direct physical particle effects, such as lesions and toxicity caused by the polymer, from indirect effects, such as alterations of ambient environmental conditions by leaching, change of turbidity, food dilution and organisms' behavior. Implementation of these suggestions can contribute to harmonization and more effective, evidence-based assessments of the ecotoxicological effects of micro- and nanoplastics.
Collapse
Affiliation(s)
- Sebastian Beggel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Erwin J J Kalis
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany.
| |
Collapse
|
2
|
Cazenave J, Bacchetta C, Repetti MR, Rossi A. Biomarker responses in fish caged in a rice field during a bifenthrin application. ENVIRONMENTAL RESEARCH 2024; 263:120240. [PMID: 39490548 DOI: 10.1016/j.envres.2024.120240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/28/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The use of pesticides in integrated rice-fish farming could have an impact on fish health. The present study aimed to evaluate, for the first time, the biological effects of the insecticide bifenthrin on fish (Piaractus mesopotamicus and Hoplosternum littorale) using a caging experiment. Fish were divided into two sites: control (C) and bifenthrin exposure (BF). Two cages (n = 8 fish/cage) per species were placed separately at each site. The BF application (Seizer ®) was carried out with a coastal sprayer according to the BF recommended dose for rice cultivation (0.1 L/ha). After 72 h, fish were collected, and gills, liver, brain, and muscle were dissected for the analysis of biomarkers of accumulation, oxidative stress, and neurotoxicity. In P. mesopotamicus, the main changes were observed in the muscle, where BF accumulated and induced neurotoxicity (inhibition of cholinesterase activity) and oxidative stress (activation of antioxidant enzymes, decreased glutathione levels, increased lipid peroxidation). The gills and liver also showed changes in some markers of the antioxidant system. In H. littorale, BF exposure induced changes in oxidative stress biomarkers in liver (activation of antioxidant enzymes and lipid peroxidation) and gill tissues (alteration in antioxidant markers). These results show that the use of bifenthrin in rice fields poses a risk to fish farming under current pesticide management practices. Furthermore, its use could affect other species in these agroecosystems, highlighting the need for further studies to assess the ecological and productive consequences in a context of increasing pyrethroid use worldwide.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnología (INALI-CONICET-UNL), Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnología (INALI-CONICET-UNL), Santa Fe, Argentina
| | - María Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, UNL, Santiago del Estero 2654, 3000 Santa Fe, Argentina
| | - Andrea Rossi
- Instituto Nacional de Limnología (INALI-CONICET-UNL), Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina.
| |
Collapse
|
3
|
Eghan K, Lee S, Yoo D, Kim CH, Kim WK. Adverse effects of bifenthrin exposure on neurobehavior and neurodevelopment in a zebrafish embryo/larvae model. CHEMOSPHERE 2023; 341:140099. [PMID: 37690556 DOI: 10.1016/j.chemosphere.2023.140099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Bifenthrin, a third-generation synthetic pyrethroid, is widely used as an agricultural insecticide. However, it can flow into surface and groundwater, leading to adverse consequences such as immunotoxicity, hepatotoxicity, hormone dysregulation, or neurotoxicity. Nevertheless, the entire range of its neurotoxic consequences, particularly in aquatic organisms, remains unclear. In this study, we conducted an extensive examination of how exposure to bifenthrin affects the behavior and nervous system function of aquatic vertebrates, using a zebrafish model and multiple-layered assays. We exposed wild-type and transgenic lines [tg(elavl3:eGFP) and tg(mbp:mGFP)] to bifenthrin from <3 h post-fertilization (hpf) to 120 hpf. Our findings indicate that bifenthrin exposure concentrations of 103.9 and 362.1 μg/L significantly affects the tail-coiling response at 24 hpf and the touch-evoked responses at 72 hpf. Moreover, it has a significant effect on various aspects of behavior such as body contact, distance between subjects, distance moved, and turn angle. We attribute these effects to changes in acetylcholinesterase and dopamine levels, which decrease in a concentration-dependent manner. Furthermore, neuroimaging revealed neurogenesis defects, e.g., shortened brain and axon widths, and demyelination of oligodendrocytes and Schwann cells. Additionally, the transcription of genes related to neurodevelopment (e.g., gap43, manf, gfap, nestin, sox2) were significantly upregulated and neurotransmitters (e.g., nlgn1, drd1, slc6a4a, ache) was significantly downregulated. In summary, our data shows that bifenthrin exposure has detrimental effects on neurodevelopmental and neurotransmission systems in the zebrafish embryo/larvae model.
Collapse
Affiliation(s)
- Kojo Eghan
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Donggon Yoo
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| | - Woo-Keun Kim
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| |
Collapse
|
4
|
Das A, Bank S, Chatterjee S, Paul N, Sarkar K, Chatterjee A, Chakraborty S, Banerjee C, Majumdar A, Das M, Ghosh S. Bifenthrin disrupts cytochrome c oxidase activity and reduces mitochondrial DNA copy number through oxidative damage in pool barb (Puntius sophore). CHEMOSPHERE 2023; 332:138848. [PMID: 37156291 DOI: 10.1016/j.chemosphere.2023.138848] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Bifenthrin (BF), a synthetic pyrethroid is used worldwide for both agricultural and non-agricultural purposes due to its high insecticidal activity and low toxicity in mammals. However, its improper usage implies a possible risk to aquatic life. The Study was aimed to correlate the association of BF toxicity with mitochondrial DNA copy number variation in edible fish Punitus sophore. The 96-h LC 50 of BF in P. sophore was 3.4 μg/L, fish was treated with sub-lethal doses (0.34 μg/L,0.68 μg/L) of BF for 15 days. The activity and expression level of cytochrome c oxidase (Mt-COI) were measured to assess mitochondrial dysfunction caused by BF. Results showed BF reduced the level of Mt-COI mRNA in treated groups, hindered complex IV activity and increased ROS generation leading to oxidative damage. mtDNAcn was decreased in the muscle, brain and liver after BF treatment. Furthermore, BF induced neurotoxicity in brain and muscle cells through the inhibition of AchE activity. The treated groups showed elevated level of malondialdehyde (MDA) and an imbalance of antioxidant enzymes activity. Molecular docking and simulation analysis also predicted that BF binds to the active sites of the enzyme and restricts the fluctuation of active sites' residues. Hence, outcome of the study suggests reduction of mtDNAcn could be a potential biomarker to assess Bifenthrin induced toxicity in aquatic ecosystem.
Collapse
Affiliation(s)
- Anwesha Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sarbashri Bank
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Srilagna Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Nirvika Paul
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Kunal Sarkar
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Arindam Chatterjee
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Santanu Chakraborty
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Chaitali Banerjee
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| | - Anasuya Majumdar
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| | - Madhusudan Das
- Department of Zoology, Ballygunge Science College, University of Calcutta, Kolkata, 700019, West Bengal, India.
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, West Bengal, India.
| |
Collapse
|
5
|
Zhang L, Yan S, Hong X, Zhao G, Zha J. Integrative time series of cellular, humoral and molecular response revealed immunotoxicity of bifenthrin to Chinese rare minnow (Gobiocypris rarus) following Pseudomonas fluorescens challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106427. [PMID: 36805112 DOI: 10.1016/j.aquatox.2023.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Bifenthrin is a common pesticide that is widespread in aquatic environments. Although it has been shown to be toxic to aquatic organisms, its immunotoxicity and mechanism are unclear. Herein, we reported the immunotoxicity of bifenthrin on adult Chinese rare minnow (Gobiocypris rarus) after 28 days of exposure to different concentrations of bifenthrin (0.1, 0.3, and 1.0 μg/L) and 36-h Pseudomonas fluorescens challenge. Bifenthrin inhibited the fish humoral immune response to bacteria by altering the lymphocyte and neutrophil ratios and decreasing the production of lysozyme, complement component 3, immunoglobulin M, and C-reactive protein, particularly were 1.0 μg/L. Bifenthrin caused intestinal damage and significantly reduced the volume of intestinal mucus at 12 and 36 hours postinjection (hpi) (p < 0.05). Moreover, 1.0 μg/L bifenthrin significantly increased the fish mortality and bacterial loads at 12 and 36 hpi (p < 0.05). RNA-seq analysis revealed several enriched genes involved in pathogen attachment and recognition, inflammatory responses, and complement system at the early-to-mid stage of infection (4-12 hpi). Overall, our results corroborated that bifenthrin induced immunotoxicity in Gobiocypris rarus, resulting in immune dysfunction of fish and increasing their sensitivity to bacterial infection and accelerating mortality. Moreover, 4-12 hpi was better than 36 hpi for analyzing immune responses against pathogen infection in fish exposed to bifenthrin.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gaofeng Zhao
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Colás-Ruiz NR, Courant F, Gomez E, Lara-Martín PA, Hampel M. Transcriptomic and metabolomic integration to assess the response of gilthead sea bream (Sparus aurata) exposed to the most used insect repellent: DEET. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120678. [PMID: 36403875 DOI: 10.1016/j.envpol.2022.120678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
DEET is one of the most frequently detected insect repellents in the environment reaching concentrations of several μg L-1 in surface water. There is scarce information available regarding its mode of action in non-target organisms. Here, we have used an integrated metabolomic and transcriptomic approach to elucidate the possible adverse effects of DEET exposure in the marine fish gilthead sea bream (Sparus aurata). Individuals were exposed at an environmentally relevant concentration of DEET (10 μg L-1) for 22 days in a continuous flow-through system. Transcriptomic analysis revealed 250 differentially expressed genes in liver, while metabolomic analysis identified 190 differentially modulated features in liver and 98 in plasma. Multi-omic data integration and visualization allowed elucidation of the modes of action of DEET exposure, including: energy depletion through the disruption of carbohydrate and amino acids metabolisms, oxidative stress leading to DNA damage, lipid peroxidation, and damage to cell membrane and apoptosis. Activation of xenobiotic pathway as well as the inmune-inflammatory reaction was evidenced in the present work.
Collapse
Affiliation(s)
- Nieves R Colás-Ruiz
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain.
| | - Frédérique Courant
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Elena Gomez
- Hydrosciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Pablo A Lara-Martín
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| | - Miriam Hampel
- Faculty of Marine and Environmental Sciences (CASEM), University of Cadiz, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
7
|
Sharma S, Dar OI, Thakur S, Kesavan AK, Kaur A. Environmentally relevant concentrations of Triclosan cause transcriptomic and biomolecular alterations in the hatchlings of Labeo rohita. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104004. [PMID: 36328329 DOI: 10.1016/j.etap.2022.104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Suppression (p ≤ 0.05) of antioxidative/detoxification (except GPx and CYP3a) and cytoskeletal (except DHPR) genes but induction of metabolic (except for AST and TRY) and heat shock (except HSP60) genes of Labeo rohita hatchlings after 14 days of exposure to environmentally relevant concentrations of Triclosan (0.0063, 0.0126, 0.0252 and 0.06 mg/L) was followed by an increase (p ≤ 0.05) for most of the genes after 10 days recovery period. After recovery, LDH, ALT, CK, CHY, PA, HSP47 and DHPR declined, while SOD, CAT, GST, GR, GPx, CYP1a, CYP3a, AST, AChE, TRY, HSP60, HSP70, HSc71, HSP90 MLP-3, α-tropomyosin, desmin b and lamin b1 increased over exposure. Peak area of biomolecules (except 3290-3296, 2924-2925 and 2852-2855 cm-1) declined (p ≤ 0.01) more after recovery [except for an increase (p ≤ 0.01) at 1398-1401 cm-1]. CYP3a, CK, HSP90, MLP-3 and secondary structure of amide A are the most sensitive markers for the environmentally relevant concentrations of Triclosan.
Collapse
Affiliation(s)
- Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India; Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Punjab 140413, India
| | - Sharad Thakur
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Anup Kumar Kesavan
- Molecular Microbiology Lab, Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
8
|
Magnuson JT, Fuller N, Huff Hartz KE, Anzalone S, Whitledge GW, Acuña S, Lydy MJ, Schlenk D. Dietary Exposure to Bifenthrin and Fipronil Impacts Swimming Performance in Juvenile Chinook Salmon ( Oncorhynchus tshawytscha). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5071-5080. [PMID: 35353479 PMCID: PMC9354086 DOI: 10.1021/acs.est.1c06609] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two commonly used insecticides, bifenthrin and fipronil, can accumulate in the prey of juvenile Chinook salmon, yet the effects of dietary exposure are not understood. Therefore, to better characterize the effect of a dietary exposure route, juvenile Chinook salmon were fed chironomids dosed with a concentration of 9 or 900 ng/g of bifenthrin, fipronil, or their mixture for 25 days at concentrations previously measured in field-collected samples. Chinook were assessed for maximum swimming performance (Umax) using a short-duration constant acceleration test and biochemical responses related to energetic processes (glucose levels) and liver health (aspartate aminotransferase (AST) activity). Chinook exposed to bifenthrin and bifenthrin and fipronil mixtures had a significantly reduced swimming performance, although not when exposed to fipronil alone. The AST activity was significantly increased in bifenthrin and mixture treatments and glucose levels were increased in Chinook following a mixture treatment, although not when exposed to fipronil alone. These findings suggest that there are different metabolic processes between bifenthrin and fipronil following dietary uptake that may influence toxicity. The significant reductions in swimming performance and increased levels of biochemical processes involved in energetics and fish heath could have implications for foraging activity and predator avoidance in wild fish at sensitive life stages.
Collapse
Affiliation(s)
- Jason T. Magnuson
- Department
of Environmental Sciences, University of
California, Riverside, 2460A Geology, Riverside, California 92521, United States
| | - Neil Fuller
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Kara E. Huff Hartz
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Sara Anzalone
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Gregory W. Whitledge
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Shawn Acuña
- Metropolitan
Water District of Southern California, 1121 L Street, Suite 900, Sacramento, California 95814, United States
| | - Michael J. Lydy
- Department
of Zoology, Center for Fisheries, Aquaculture and Aquatic Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Daniel Schlenk
- Department
of Environmental Sciences, University of
California, Riverside, 2460A Geology, Riverside, California 92521, United States
- Institute
of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Stinson SA, Hasenbein S, Connon RE, Deng X, Alejo JS, Lawler SP, Holland EB. Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150920. [PMID: 34653458 PMCID: PMC8892843 DOI: 10.1016/j.scitotenv.2021.150920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 04/14/2023]
Abstract
The toxicity of single pesticides is likely underestimated when considering complex pesticide mixtures found in agricultural runoff and this is especially true for newer pesticides with little toxicity data on non-target species. The goal of our study was to compare the toxicity of two newer pesticides, imidacloprid (IMI) and chlorantraniliprole (CHL), when an invertebrate and fish were exposed to single compounds, binary mixtures or surface water collected near agricultural fields. A secondary goal was to determine whether changes in select subcellular molecular pathways correspond to the insecticides' mechanisms of activity in aquatic organisms. We conducted acute (96 h) exposures using a dilution series of field water and environmentally relevant concentrations of single and binary mixtures of IMI and CHL. We then evaluated survival, gene expression and the activity of IMI toward the n-acetylcholine receptor (nAChR) and CHL activity toward the ryanodine receptor (RyR). Both IMI and CHL were detected at all sampling locations for May 2019 and September 2019 sampling dates and exposure to field water led to high invertebrate but not fish mortality. Fish exposed to field collected water had significant changes in the relative expression of genes involved with detoxification and neuromuscular function. Exposure of fish to single compounds or binary mixtures of IMI and CHL led to increased relative gene expression of RyR in fish. Furthermore, we found that IMI targets the nAChR in aquatic invertebrates and that CHL can cause overactivation of the RyR in invertebrates and fish. Overall, our finding suggests that IMI and CHL may impact neuromuscular health in fish. Expanding monitoring efforts to include sublethal and molecular assays would allow the detection of subcellular level effects due to complex mixtures present in surface water near agricultural areas.
Collapse
Affiliation(s)
- Sarah A Stinson
- School of Veterinary Medicine, University of California Davis, CA, USA
| | - Simone Hasenbein
- School of Veterinary Medicine, University of California Davis, CA, USA
| | - Richard E Connon
- School of Veterinary Medicine, University of California Davis, CA, USA
| | - Xin Deng
- California Department of Pesticide Regulation, CA, USA
| | - Jordan S Alejo
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | - Sharon P Lawler
- Department of Entomology and Nematology, University of California Davis, CA, USA
| | - Erika B Holland
- Department of Biological Sciences, California State University Long Beach, CA, USA.
| |
Collapse
|
10
|
Hu T, Ma Y, Qiao K, Jiang Y, Li S, Gui W, Zhu G. Estrogen receptor: A potential linker of estrogenic and dopaminergic pathways in zebrafish larvae following deltamethrin exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149938. [PMID: 34525687 DOI: 10.1016/j.scitotenv.2021.149938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Deltamethrin (DM), a type II pyrethroid insecticide, is widely used to control agricultural pests. However, its excessive use exerts a detrimental effect on the ecological environment and human health, indicating the need to study its potential risks in detail. In the present study, zebrafish embryos were exposed to varying concentrations of DM (0.1, 1, 10, and 25 μg/L) for 96 h to assess the alterations in the transcript levels of proteins of the estrogenic and dopaminergic pathways. In addition, its effect on zebrafish locomotor activity was studied. The mRNA expression of cyp19a1b, erα, erβ2, fshr, gnrh2, gnrhr3, vtg3, dat, and dr1 significantly changed after exposing the embryos to DM. Deltamethrin at 10 and 25 μg/L significantly reduced the average swimming speed of zebrafish larvae. In addition, embryos injected with zebrafish estrogen receptor α (erα) and β (erβ) morpholinos and co-exposed to 25 μg/L DM for 96 h showed reduced expression of vtg3 mRNA compared to embryos exposed to 25 μg/L DM only. The locomotor activity of erα and erβ knockdown zebrafish following DM exposure was increased significantly when compared with that of larvae exposed to 25 μg/L DM only. Our results demonstrated that DM altered the locomotor activity of zebrafish larvae and the transcript levels of the components of estrogenic and dopaminergic pathways; erα and erβ knockdown weakened these effects.
Collapse
Affiliation(s)
- Tiantian Hu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yao Jiang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insect Pests of Zhejiang Province, Zhejiang, Hangzhou 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insect Pests of Zhejiang Province, Zhejiang, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
11
|
Esquivel-Blanco VA, Quintanilla-Villanueva GE, Villarreal-Chiu JF, Rodríguez-Delgado JM, Rodríguez-Delgado MM. The Potential Use of a Thin Film Gold Electrode Modified with Laccases for the Electrochemical Detection of Pyrethroid Metabolite 3-Phenoxybenzaldehyde. MATERIALS 2021; 14:ma14081992. [PMID: 33921175 PMCID: PMC8071532 DOI: 10.3390/ma14081992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022]
Abstract
There is increasing interest in developing portable technologies to detect human health threats through hybrid materials that integrate specific bioreceptors. This work proposes an electrochemical approach for detecting 3-Phenoxybenzaldehyde (3-PBD), a biomarker for monitoring human exposure to pyrethroid pesticides. The biosensor uses laccase enzymes as an alternative recognition element by direct oxidation of 3-PBD catalysts by the enzyme onto thin-film gold electrodes. The thin-film gold electrode modified by the immobilized laccase was characterized by Fourier-transform infrared spectrometry and scanning electron microscopy. The detection method’s electrochemical parameters were established, obtaining a linear range of 5 t 50 μM, the limit of detection, and quantification of 0.061 and 2.02 μM, respectively. The proposed biosensor’s analytical performance meets the concentration of pyrethroids detected in natural environments, reflecting its potential as an alternative analytical tool for monitoring the pyrethroid insecticide’s presence.
Collapse
Affiliation(s)
- Verónica Aglaeé Esquivel-Blanco
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Biotecnología, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (V.A.E.-B.); (G.E.Q.-V.); (J.F.V.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico
| | - Gabriela Elizabeth Quintanilla-Villanueva
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Biotecnología, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (V.A.E.-B.); (G.E.Q.-V.); (J.F.V.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Biotecnología, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (V.A.E.-B.); (G.E.Q.-V.); (J.F.V.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico
| | - José Manuel Rodríguez-Delgado
- Tecnológico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada Sur No. 2501, Col. Tecnológico, Monterrey, C.P. 64849, Nuevo León, Mexico
- Correspondence: (J.M.R.-D.); (M.M.R.-D.)
| | - Melissa Marlene Rodríguez-Delgado
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Laboratorio de Biotecnología, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (V.A.E.-B.); (G.E.Q.-V.); (J.F.V.-C.)
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca C.P. 66629, Nuevo León, Mexico
- Correspondence: (J.M.R.-D.); (M.M.R.-D.)
| |
Collapse
|
12
|
Farag MR, Alagawany M, Taha HSA, Ismail TA, Khalil SR, Abou-Zeid SM. Immune response and susceptibility of Nile tilapia fish to Aeromonas hydrophila infection following the exposure to Bifenthrin and/or supplementation with Petroselinum crispum essential oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112205. [PMID: 33848734 DOI: 10.1016/j.ecoenv.2021.112205] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Bifenthrin (BF) is a widely used 3rd generation type I pyrethroid with a potential toxic effect in fish. Nevertheless, its effect on the immune system remains unclear. In the present study, Oreochromis niloticus was exposed to BF at 0.68 μg/L for 60 days, followed by evaluating the hematological, biochemical, and immunological responses. Additionally, the potential of parsley (Petroselinum crispum) essential oil (PEO) to ameliorate the BF-induced toxic insults was explored. Our data have shown reductions in the growth performance with alterations observed in the hematological variables, protein profile and serum biomarkers of stress. DNA oxidative damage was evidenced by elevation of serum 8-hydroxy-2-deoxyguanosine (8-OHdG) content. BF-exposed fish presented also decline in serum lysozyme activity and levels of immunoglobulins (IgG and IgM) and nitric oxide (NO), with diminished resistance to Aeromonas hydrophila challenge. Furthermore, the RT-PCR analysis showed an upregulated expression pattern of immune -related genes including interleukin 1β (IL-1β), interferon - γ (IFN-γ) and tumor necrosis factor - α (TNF-α) genes in the liver tissue. Dietary co-supplementation of PEO at 1 or 2 mL/kg diet with concomitant BF exposure, alleviated the adverse effects of the insecticide in a dose-dependent manner. The observations from this study demonstrate the immunomodulation by BF and provide further insight into the protective properties of PEO and strengthen its applicability as a promising feed supplement to fish.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Heba S A Taha
- Genetic Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| |
Collapse
|
13
|
Fuller N, Magnuson JT, Huff Hartz KE, Fulton CA, Whitledge GW, Acuña S, Schlenk D, Lydy MJ. Effects of dietary cypermethrin exposure on swimming performance and expression of lipid homeostatic genes in livers of juvenile Chinook salmon, Oncorhynchus tshawytscha. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:257-267. [PMID: 33534069 DOI: 10.1007/s10646-021-02352-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The increased use of pyrethroid insecticides raises concern for exposure to non-target aquatic species, such as Chinook salmon (Oncorhynchus tshawytscha). Cypermethrin, a type II pyrethroid, is frequently detected in surface waters and sediments at concentrations that exceed levels that induce toxicity to several invertebrate and salmonid species. To better understand the effects of cypermethrin to salmonids following dietary exposure, juvenile Chinook salmon were dietarily exposed to a 0, 200, or 2000 ng/g cypermethrin diet for a duration of 7, 14, or 21 days and assessed for body burden residues, swimming performance, lipid content, and lipid homeostatic gene expression. The average cypermethrin concentrations in fish dietarily exposed to cypermethrin for 21 days were 155.4 and 952.1 ng cypermethrin/g lipid for the 200 and 2000 ng/g pellet treatments, respectively. Increased trends of fatty acid synthase (fasn, r2 = 0.10, p < 0.05) and ATP citrate lyase (acly, r2 = 0.21, p < 0.001) mRNA expression were found in the fish livers relative to increasing cypermethrin body burden residues, though no significant changes in the mRNA expression of farnesoid X receptor or liver X receptor were observed. Furthermore, Chinook salmon dietarily exposed to cypermethrin did not have a significantly altered burst swimming performance (Umax). These results support studies that have suggested Umax may not be a sensitive endpoint when assessing the effects of certain pesticide classes, such as pyrethroids, but that dysregulation of fasn and acly expression may alter lipid homeostasis and energy metabolism in the liver of fish dietarily exposed to cypermethrin.
Collapse
Affiliation(s)
- Neil Fuller
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Corie A Fulton
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Gregory W Whitledge
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Shawn Acuña
- Metropolitan Water District of Southern California, 1121L Street, Suite 900, Sacramento, CA, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
14
|
Farag MR, Mahmoud HK, El-Sayed SAA, Ahmed SYA, Alagawany M, Abou-Zeid SM. Neurobehavioral, physiological and inflammatory impairments in response to bifenthrin intoxication in Oreochromis niloticus fish: Role of dietary supplementation with Petroselinum crispum essential oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105715. [PMID: 33341507 DOI: 10.1016/j.aquatox.2020.105715] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study was conceptualized in order to assess the 96-h LC50 of bifenthrin (BF) in O. niloticus and also to measure the biochemical, behavioral, and molecular responses of the fish suchronically exposed to a sub-lethal concentration of the insecticide. The role of Petroselinum crispum essential oil (PEO) supplementation in mitigating the resulted neurotoxic insult was also investigated. The acute toxicity study revealed that the 96-h LC50 of BF is 6.81 μg/L, and varying degrees of behavioral changes were recorded in a dose-dependent manner. The subchronic study revealed reduction of dissolved oxygen and increased ammonia in aquaria of BF-exposed fish. Clinical signs revealed high degree of discomfort and aggressiveness together with reductions in survival rate and body weight gain. The levels of monoamines in brain, and GABA and amino acids in serum were reduced, together with decreased activities of Na+/K+-ATPase and acetylcholine esterases (AchE). The activities of antioxidant enzymes were also diminshed in the brain while oxdative damage and DNA breaks were elevated. Myeloperoxidase (MPO) activity in serum increased with overexpression of the pro-inflammatory cytokines in the brain tissue. BF also upregulated the expression of brain-stress related genes HSP70, Caspase-3 and P53. Supplemention of PEO to BF markedly abrogated the toxic impacts of the insecticide, specially at the high level. These findings demonstrate neuroprotective, antioxidant, genoprotective, anti-inflammatory and antiapoptic effects of PEO in BF-intoxicated fish. Based on these mechanistic insights of PEO, we recommend its use as an invaluable supplement in the fish feed.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511, Egypt.
| | - Hemat K Mahmoud
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sabry A A El-Sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Sarah Y A Ahmed
- Microbiology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| |
Collapse
|
15
|
Lovin LM, Kim S, Taylor RB, Scarlett KR, Langan LM, Chambliss CK, Chatterjee S, Scott JT, Brooks BW. Differential influences of (±) anatoxin-a on photolocomotor behavior and gene transcription in larval zebrafish and fathead minnows. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:40. [PMID: 34367861 PMCID: PMC8345817 DOI: 10.1186/s12302-021-00479-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Though anatoxin-a (antx-a) is a globally important cyanobacterial neurotoxin in inland waters, information on sublethal toxicological responses of aquatic organisms is limited. We examined influences of (±) antx-a (11-3490 μg/L) on photolocomotor behavioral responses and gene transcription associated with neurotoxicity, oxidative stress and hepatotoxicity, in two of the most common alternative vertebrate and fish models, Danio rerio (zebrafish) and Pimephales promelas (fathead minnow). We selected environmentally relevant treatment levels from probabilistic exposure distributions, employed standardized experimental designs, and analytically verified treatment levels using isotope-dilution liquid chromatography tandem mass spectrometry. Caffeine was examined as a positive control. RESULTS Caffeine influences on fish behavior responses were similar to previous studies. Following exposure to (±) antx-a, no significant photolocomotor effects were observed during light and dark transitions for either species. Though zebrafish behavioral responses profiles were not significantly affected by (±) antx-a at the environmentally relevant treatment levels examined, fathead minnow stimulatory behavior was significantly reduced in the 145-1960 μg/L treatment levels. In addition, no significant changes in transcription of target genes were observed in zebrafish; however, elavl3 and sod1 were upregulated and gst and cyp3a126 were significantly downregulated in fathead minnows. CONCLUSION We observed differential influences of (±) antx-a on swimming behavior and gene transcription in two of the most common larval fish models employed for prospective and retrospective assessment of environmental contaminants and water quality conditions. Sublethal responses of fathead minnows were consistently more sensitive than zebrafish to this neurotoxin at the environmentally relevant concentrations examined. Future studies are needed to understand such interspecies differences, the enantioselective toxicity of this compound, molecular initiation events within adverse outcome pathways, and subsequent individual and population risks for this emerging water quality threat.
Collapse
Affiliation(s)
- Lea M. Lovin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | | | | | - Laura M. Langan
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | | | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - J. Thad Scott
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
- Correspondence:
| |
Collapse
|
16
|
Zhang H, Hong X, Yan S, Zha J, Qin J. Environmentally relevant concentrations of bifenthrin induce changes in behaviour, biomarkers, histological characteristics, and the transcriptome in Corbicula fluminea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138821. [PMID: 32361119 DOI: 10.1016/j.scitotenv.2020.138821] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Bifenthrin (BF) is an insecticide that is commonly used to control agricultural and domestic pests and is widespread in aquatic environments. Although previous studies have found that BF is toxic to aquatic organisms, such a comprehensive study of the mechanism of toxic effects in bivalves is not common. In this study, to assess the toxic effects of BF on bivalves, adult Corbicula fluminea (C. fluminea) were exposed to 0, 1, 5, and 25 μg/L BF for 15 days. Transcriptome analysis revealed that BF exposure significantly altered the expression of genes involved in detoxification, antioxidation, and metabolism. Moreover, the ROS content and GST activity at 25 μg/L treatments were significantly increased (p < 0.05), and significant increases of MDA concentration and CAT activity were observed at 5 and 25 μg/L treatments (p < 0.05). However, AChE activity was markedly inhibited at 25 μg/L treatments (p < 0.05). In addition, vacuolation in the digestive tubules and the hemolytic infiltration of connective tissue were observed at all treatments, and the degeneration of the digestive tubule was observed at 5 and 25 μg/L treatments. In the behavioural assay, the siphoning behaviour of C. fluminea was significantly inhibited at 25 μg/L treatments (p < 0.05), whereas no significant change in burrowing behaviour was observed. Our findings suggested that BF exposure caused changes in detoxification, antioxidation, and metabolism pathways, biomarker activity or concentrations and histopathological characteristics, resulting in changes in behaviour. Therefore, our findings provide a basis for further evaluation of the toxicity of pyrethroid insecticides in bivalves.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China.
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
17
|
Yang C, Lim W, Song G. Mediation of oxidative stress toxicity induced by pyrethroid pesticides in fish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108758. [PMID: 32289527 DOI: 10.1016/j.cbpc.2020.108758] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022]
Abstract
Organophosphate and organochlorine pesticides are banned in most countries because they cause high toxicity and bioaccumulation in non-target organisms. Pyrethroid pesticides have been applied to agriculture and aquaculture since the 1970s to replace traditional pesticides. However, pyrethroids are approximately 1000 times more toxic to fish than to mammals and birds. Fish-specific organs such as the gills and their late metabolic action against this type of pesticide make fish highly susceptible to the toxicity of pyrethroid pesticides. Oxidative stress plays an important role in the neurological, reproductive, and developmental toxicity caused by pyrethroids. Deltamethrin, cypermethrin, and lambda-cyhalothrin are representative pyrethroid pesticides that induce oxidative stress in tissues such as the gills, liver, and muscles of fish and cause histopathological changes. Although they are observed in low concentrations in aquatic environments such as rivers, lakes, and surface water they induce DNA damage and apoptosis in fish. Pyrethroid pesticides cause ROS-mediated oxidative stress in fish species including carp, tilapia, and trout. They also cause lipid peroxidation and alter the state of DNA, proteins, and lipids in the cells of fish. Moreover, changes in antioxidant enzyme activity following pyrethroid pesticide exposure make fish more susceptible to oxidative stress caused by environmental pollutants. In this review, we examine the occurrence of pyrethroid pesticides in the aquatic environment and oxidative stress-induced toxicity in fish exposed to pyrethroids.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
18
|
Li M, Zhu J, Fang H, Wang M, Wang Q, Zhou B. Coexposure to environmental concentrations of cis-bifenthrin and graphene oxide: Adverse effects on the nervous system during metamorphic development of Xenopus laevis. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120995. [PMID: 31425913 DOI: 10.1016/j.jhazmat.2019.120995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Despite the great concerns associated with the combined biological effects of nanoparticles and insecticides, the current understanding of the corresponding ecological risks remains limited. Xenopus laevis (X. laevis) tadpoles were exposed to various concentrations of typical pyrethroid (cis-bifenthrin; cis-BF), either alone or in combination with graphene oxide (GO), for 21 days. The presence of GO resulted in increased bioconcentration of cis-BF and a higher 1S-enantiomer fraction. Exposure to cis-BF and GO caused further reduction in pre-metamorphic developmental rates and activated dopaminergic, noradrenergic, and serotonergic neurotransmitter systems. Reduced tadpole activity and levels of genomic DNA methylation at cytosine nucleotides (5hmC) were observed in the coexposure groups. These results indicate that GO enhance the bioconcentration of cis-BF and promote the conversion of its 1R-enantiomer to the 1S form, which lead to disruption of neurotransmitter systems as well as interference in metamorphic development.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
19
|
Eni G, Ibor OR, Andem AB, Oku EE, Chukwuka AV, Adeogun AO, Arukwe A. Biochemical and endocrine-disrupting effects in Clarias gariepinus exposed to the synthetic pyrethroids, cypermethrin and deltamethrin. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108584. [PMID: 31394255 DOI: 10.1016/j.cbpc.2019.108584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022]
Abstract
In the present study, we investigated plasma biochemical and steroid hormone responses, together with gonado-histopathological alterations in Clarias gariepinus exposed to sublethal concentrations of two synthetic pyrethroids (cypermethrin and deltamethrin). Fish were exposed to environmentally-relevant concentrations of cypermethrin at 0 (ethanol solvent control), 0.07, 0.014, 0.028, 0.056) and deltamethrin at 0.22, 0.44, 0.88 and 1.76 μg/L, for 7, 14, 21 and 28 days. Plasma enzyme (aspartate transaminase: AST, alanine transaminase: ALT and alkaline phosphatase: ALP) and steroid hormones (estradiol-17β: E2, testosterone: T) levels were analyzed. Gonado-histopathological evaluation shows the presence of ovo-testis (intersex), oocytes atresia, cytoplasmic degeneration and clumping of vitellogenic oocytes in females, while male fish displayed enlargement and degeneration of testicular seminiferous tubules after 28 days exposure to cypermethrin and deltamethrin. Plasma biochemical analysis in pesticides exposed fish revealed that AST, ALT and ALP were significantly increased in a concentration-dependent manner. In addition, we observed respective and apparent concentration- and time-dependent increase and decrease of plasma E2 and T levels, compared to control. Interestingly, the significant increase in E2 levels paralleled gonadal ovo-testis (intersex) condition in exposed fish, indicating endocrine disruptive effects of cypermethrin and deltamethrin that favor the estrogenic pathway, in addition to overt negative consequences on reproductive, biochemical and physiological health of the exposed fish.
Collapse
Affiliation(s)
- George Eni
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria; Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway
| | - Andem B Andem
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Ene E Oku
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | | | - Aina O Adeogun
- Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway.
| |
Collapse
|
20
|
Bertotto LB, Bruce R, Li S, Richards J, Sikder R, Baljkas L, Giroux M, Gan J, Schlenk D. Effects of bifenthrin on sex differentiation in Japanese Medaka (Oryzias latipes). ENVIRONMENTAL RESEARCH 2019; 177:108564. [PMID: 31306987 DOI: 10.1016/j.envres.2019.108564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/13/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Bifenthrin (BF) is a pyrethroid insecticide used in urban and agricultural applications. Previous studies in early life stages of fish have indicated anti-estrogenic activity; however, estrogenic activity has been observed in adults. To test the hypothesis that BF impairs sex differentiation, larval Japanese Medaka were exposed to BF during a critical developmental window for phenotypic sexual differentiation. Fish were exposed to environmentally relevant concentrations of BF (0.15 μg/L and 1.5 μg/L), a single concentration (0.3 mg/L) of an estrogen receptor (ER) antagonist (ICI 182,780), and an ER agonist (0.2 ug/L) (17β-estradiol). Fish were exposed at 8 days post hatch (dph) larvae for 30 days. Phenotypic sex, secondary sexual characteristics (SSC) and genotypic sex were investigated at sexual maturity (8 weeks). A trend towards masculinization (p = 0.06) based on the presence of papillary processes in anal fin rays of Japanese Medaka was observed in fish exposed to the lowest concentration of BF. However, genotypic gender ratios were not altered. These results show sex differentiation was not significantly altered by larval exposure to BF in Japanese medaka.
Collapse
Affiliation(s)
- Luísa Becker Bertotto
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA; Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| | - Richard Bruce
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA; School of Biological Sciences, Plymouth University, PL4 8AA, UK
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Jaben Richards
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Rafid Sikder
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Luka Baljkas
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Marissa Giroux
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA; Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Daniel Schlenk
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, 92521, USA; Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
21
|
Riangrungroj P, Bever CS, Hammock BD, Polizzi KM. A label-free optical whole-cell Escherichia coli biosensor for the detection of pyrethroid insecticide exposure. Sci Rep 2019; 9:12466. [PMID: 31462650 PMCID: PMC6713742 DOI: 10.1038/s41598-019-48907-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/13/2019] [Indexed: 11/15/2022] Open
Abstract
There is a growing need for low-cost, portable technologies for the detection of threats to the environment and human health. Here we propose a label-free, optical whole-cell Escherichia coli biosensor for the detection of 3-phenoxybenzoic acid (3-PBA), a biomarker for monitoring human exposure to synthetic pyrethroid insecticides. The biosensor functions like a competitive ELISA but uses whole-cells surface displaying an anti-3-PBA VHH as the detection element. When the engineered cells are mixed with 3-PBA-protein conjugate crosslinking that can be visually detected occurs. Free 3-PBA in samples competes with these crosslinks, leading to a detectable change in the output. The assay performance was improved by coloring the cells via expression of the purple-blue amilCP chromoprotein and the VHH expression level was reduced to obtain a limit of detection of 3 ng/mL. The optimized biosensor exhibited robust function in complex sample backgrounds such as synthetic urine and plasma. Furthermore, lyophilization enabled storage of biosensor cells for at least 90 days without loss of functionality. Our whole-cell biosensor is simple and low-cost and therefore has potential to be further developed as a screening tool for monitoring exposure to pyrethroids in low-resource environments.
Collapse
Affiliation(s)
- Pinpunya Riangrungroj
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Candace Spier Bever
- Foodborne Toxin Detection and Prevention Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA, 94710, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, California, 95616, United States
| | - Karen M Polizzi
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
22
|
Jiang S, Miao J, Wang X, Liu P, Pan L. Inhibition of growth in juvenile manila clam Ruditapes philippinarum: Potential adverse outcome pathway of TBBPA. CHEMOSPHERE 2019; 224:588-596. [PMID: 30844590 DOI: 10.1016/j.chemosphere.2019.02.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is ubiquitous and its contents showing an increasing trend in the coastal environment. In order to investigate the effects of TBBPA on marine bivalves, juvenile manila clams Ruditapes phillipinarum were exposed to TBBPA for 28 days. The results showed that shell growth rate of juvenile clams after exposure to 62.5-1000 μg L-1 TBBPA for 28 d were significantly inhibited (p < 0.05). Then in order to link the changes in filtration rate, mRNA expression of insulin-like growth factor homologue (IGF) and tissue thyroid hormone (TH) contents to growth, juvenile clams were exposed to 62.5 and 500 μg L-1 TBBPA for 14 days. The transcriptional levels of neuroendocrine signals (NPF and insulin homologue) associated with filter feeding regulation, and genes of TH synthesis-related enzymes were also examined. The results showed that filtration rates was significantly reduced to 44.1% and 14% of controls after 14 d of exposure. In parallel, exposure to TBBPA significantly increased the expression levels of insulin which may elicit the filter feeding inhibition. TBBPA exposure caused alterations in tissue content of THs and mRNA expression of TH synthesis-related enzymes. However, the data showed increased T3 content, T3/T4 ratio and mRNA expression of IGF. These data demonstrated that the most important key event of TBBPA could be linked to growth impairment in juveniles was the reduction of filtration rate. These results provide a robust framework towards revealing the underlying mechanism of the growth inhibition caused by TBBPA on bivalves and understanding the adverse outcome pathway across taxonomic phyla.
Collapse
Affiliation(s)
- Shanshan Jiang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China.
| | - Xin Wang
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Peipei Liu
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, PR China
| |
Collapse
|
23
|
Ligocki IY, Munson A, Farrar V, Viernes R, Sih A, Connon RE, Calisi RM. Environmentally relevant concentrations of bifenthrin affect the expression of estrogen and glucocorticoid receptors in brains of female western mosquitofish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:121-131. [PMID: 30769158 DOI: 10.1016/j.aquatox.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
In recent decades, pyrethroid pesticides have been deemed a safer alternative to previously used pesticides. While some evidence supports this assumption in mammals and birds, exposure to certain pyrethroids can affect concentrations of hormones vital to reproduction in fish. Thus, we hypothesized that pyrethroid exposure impacts fish reproductive behavior and the expression of genes associated with reproduction. We tested our hypothesis by examining effects of the widely used pyrethroid pesticide, bifenthrin, on the reproductive behaviors of the broadly distributed livebearing western mosquitofish, Gambusia affinis. We exposed sexually mature female fish to one of five environmentally relevant concentrations of bifenthrin and conducted behavioral assays to assess reproductive, social, and space use behaviors before and after exposure. We did not detect changes in behaviors measured in response to bifenthrin. However, exposure was associated with increased expression of an estrogen receptor gene (ER-α) and glucocorticoid receptor (GR) in brain tissue at bifenthrin concentrations at concentrations of 5.90 and 24.82 ng/L, and 5.90 and 12.21 ng/L, respectively. Our study supports the perspective that the use of multiple endpoints through integrative approaches is essential for understanding the cumulative impact of pollutants. Integrating physiological, morphological, and behavioral investigations of nonlethal concentrations of pollutants like bifenthrin may heighten our potential to predict their impact on individuals, populations, and communities.
Collapse
Affiliation(s)
- Isaac Y Ligocki
- Dept. of Evolution, Ecology, and Org. Biology, The Ohio State University, 43210, United States; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States.
| | - Amelia Munson
- Department of Environmental Science and Policy, University of California, Davis, United States
| | - Victoria Farrar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| | - Rechelle Viernes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, United States
| | - Richard E Connon
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, United States
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, United States
| |
Collapse
|
24
|
DeCourten BM, Connon RE, Brander SM. Direct and indirect parental exposure to endocrine disruptors and elevated temperature influences gene expression across generations in a euryhaline model fish. PeerJ 2019; 7:e6156. [PMID: 30643694 PMCID: PMC6329337 DOI: 10.7717/peerj.6156] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/24/2018] [Indexed: 12/22/2022] Open
Abstract
Aquatic organisms inhabiting polluted waterways face numerous adverse effects, including physiological disruption by endocrine disrupting compounds (EDCs). Little is known about how the temperatures associated with global climate change may influence the response of organisms exposed to EDCs, and the effects that these combined stressors may have on molecular endpoints such as gene expression. We exposed Menidia beryllina (inland silversides) to environmentally relevant concentrations (1 ng/L) of two estrogenic EDCs (bifenthrin and 17α-ethinylestradiol; EE2) at 22 °C and 28 °C. We conducted this experiment over multiple generations to better understand the potential effects to chronically exposed populations in the wild. We exposed adult parental fish (F0) for 14 days prior to spawning of the next generation. F1 larvae were then exposed from fertilization until 21 days post hatch (dph) before being transferred to clean water tanks. F1 larvae were reared to adulthood, then spawned in clean water to test for further effects of parental exposure on offspring (F2 generation). Gene expression was quantified by performing qPCR on F0 and F1 gonads, as well as F1 and F2 larvae. We did not detect any significant differences in the expression of genes measured in the parental or F1 adult gonads. We found that the 28 °C EE2 treatment significantly decreased the expression of nearly all genes measured in the F1 larvae. This pattern was transferred to the F2 generation for expression of the follicle-stimulating hormone receptor (FSHR) gene. Expression of 17β-hydroxysteroid dehydrogenase (17β-HSD) and G protein-coupled receptor 30 (GPR30) revealed changes not measured in the previous generation. Effects of the bifenthrin treatments were not observed until the F2 generation, which were exposed to the chemicals indirectly as germ cells. Our results indicate that effects of EDCs and their interactions with abiotic factors, may not be adequately represented by singular generation testing. These findings will contribute to the determination of the risk of EDC contamination to organisms inhabiting contaminated waterways under changing temperature regimes.
Collapse
Affiliation(s)
- Bethany M DeCourten
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States of America.,Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, United States of America
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA, United States of America
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States of America.,Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC, United States of America
| |
Collapse
|
25
|
Frank DF, Brander SM, Hasenbein S, Harvey DJ, Lein PJ, Geist J, Connon RE. Developmental exposure to environmentally relevant concentrations of bifenthrin alters transcription of mTOR and ryanodine receptor-dependent signaling molecules and impairs predator avoidance behavior across early life stages in inland silversides (Menidia beryllina). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:1-13. [PMID: 30414561 PMCID: PMC6464817 DOI: 10.1016/j.aquatox.2018.10.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/05/2023]
Abstract
Altered transcription of calcium-dependent signaling cascades involving the ryanodine receptor (RyR) and mechanistic target of rapamycin (mTOR) in response to environmental exposures have been described in model vertebrates, including zebrafish, while the relevance for wild fishes remains unknown. To address this knowledge gap, we exposed the euryhaline model species Menidia beryllina (inland silversides) to the insecticide bifenthrin, a known modulator of calcium signaling. The main objectives of this study were to determine: (1) whether exposure of developing silversides to environmentally relevant concentrations of bifenthrin alters their behavior; and (2) whether behavioral changes correlate with altered expression of genes involved in RyR and mTOR-dependent signaling pathways. At six hours post fertilization (hpf), inland silversides were exposed to bifenthrin at 3, 27 and 122 ng/L until 7 days post fertilization (dpf, larvae hatched at 6dpf), followed by a 14-day recovery period in uncontaminated water. Transcriptional responses were measured at 5, 7 and 21 dpf; locomotor behavior following external stimuli and response to an olfactory predator cue were assessed at 7 and 21 dpf. Bifenthrin elicited significant non-monotonic transcriptional responses in the majority of genes examined at 5 dpf and at 21 dpf. Bifenthrin also significantly altered predator avoidance behavior via olfactory mechanisms with main effects identified for animals exposed to 3 and 27 ng/L. Behavioral effects were not detected in response to visual stimuli during acute exposure, but were significant in the predator-cue assessment following the recovery period, suggesting delayed and long-term effects of early developmental exposures to bifenthrin. Our findings demonstrate that at picomolar (pM) concentrations, which are often not represented in ecotoxicological studies, bifenthrin perturbs early development of inland silversides. These developmental impacts are manifested behaviorally at later life stages, specifically as altered patterns of predator avoidance behavior, which have been correlated with population decline. Collectively, these data suggest that bifenthrin may be negatively impacting wild fish populations.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Susanne M Brander
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Simone Hasenbein
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
26
|
Pomytkin I, Costa‐Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev ED, Strekalova T. Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 2018; 24:763-774. [PMID: 29691988 PMCID: PMC6489906 DOI: 10.1111/cns.12866] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
While the insulin receptor (IR) was found in the CNS decades ago, the brain was long considered to be an insulin-insensitive organ. This view is currently revisited, given emerging evidence of critical roles of IR-mediated signaling in development, neuroprotection, metabolism, and plasticity in the brain. These diverse cellular and physiological IR activities are distinct from metabolic IR functions in peripheral tissues, thus highlighting region specificity of IR properties. This particularly concerns the fact that two IR isoforms, A and B, are predominantly expressed in either the brain or peripheral tissues, respectively, and neurons express exclusively IR-A. Intriguingly, in comparison with IR-B, IR-A displays high binding affinity and is also activated by low concentrations of insulin-like growth factor-2 (IGF-2), a regulator of neuronal plasticity, whose dysregulation is associated with neuropathologic processes. Deficiencies in IR activation, insulin availability, and downstream IR-related mechanisms may result in aberrant IR-mediated functions and, subsequently, a broad range of brain disorders, including neurodevelopmental syndromes, neoplasms, neurodegenerative conditions, and depression. Here, we discuss findings on the brain-specific features of IR-mediated signaling with focus on mechanisms of primary receptor activation and their roles in the neuropathology. We aimed to uncover the remaining gaps in current knowledge on IR physiology and highlight new therapies targeting IR, such as IR sensitizers.
Collapse
Affiliation(s)
- Igor Pomytkin
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - João P. Costa‐Nunes
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Faculdade de Medicina de LisboaInstituto de Medicina MolecularUniversidade de LisboaLisboaPortugal
| | - Vladimir Kasatkin
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and ImmunologyMoscowRussia
| | - Ekaterina Veniaminova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Anna Demchenko
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Alexey Lyundup
- Department of Advanced Cell TechnologiesInstitute of Regenerative MedicineSechenov First Moscow State Medical UniversityMoscowRussia
| | - Klaus‐Peter Lesch
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
- Division of Molecular PsychiatryCenter of Mental HealthClinical Research Unit on Disorders of Neurodevelopment and CognitionUniversity of WürzburgWürzburgGermany
| | - Eugene D. Ponomarev
- Faculty of MedicineSchool of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Tatyana Strekalova
- Department of Normal PhysiologyLaboratory of Psychiatric NeurobiologyInstitute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
- Laboratory of Cognitive DysfunctionsInstitute of General Pathology and PathophysiologyMoscowRussia
- Department of NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
27
|
Frank DF, Miller GW, Harvey DJ, Brander SM, Geist J, Connon RE, Lein PJ. Bifenthrin causes transcriptomic alterations in mTOR and ryanodine receptor-dependent signaling and delayed hyperactivity in developing zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:50-61. [PMID: 29727771 PMCID: PMC5992106 DOI: 10.1016/j.aquatox.2018.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 05/06/2023]
Abstract
Over the last few decades, the pyrethroid insecticide bifenthrin has been increasingly employed for pest control in urban and agricultural areas, putting humans and wildlife at increased risk of exposure. Exposures to nanomolar (nM) concentrations of bifenthrin have recently been reported to alter calcium oscillations in rodent neurons. Neuronal calcium oscillations are influenced by ryanodine receptor (RyR) activity, which modulates calcium-dependent signaling cascades, including the mechanistic target of rapamycin (mTOR) signaling pathway. RyR activity and mTOR signaling play critical roles in regulating neurodevelopmental processes. However, whether environmentally relevant levels of bifenthrin alter RyR or mTOR signaling pathways to influence neurodevelopment has not been addressed. Therefore, our main objectives in this study were to examine the transcriptomic responses of genes involved in RyR and mTOR signaling pathways in zebrafish (Danio rerio) exposed to low (ng/L) concentrations of bifenthrin, and to assess the potential functional consequences by measuring locomotor responses to external stimuli. Wildtype zebrafish were exposed for 1, 3 and 5 days to 1, 10 and 50 ng/L bifenthrin, followed by a 14 d recovery period. Bifenthrin elicited significant concentration-dependent transcriptional responses in the majority of genes examined in both signaling cascades, and at all time points examined during the acute exposure period (1, 3, and 5 days post fertilization; dpf), and at the post recovery assessment time point (19 dpf). Changes in locomotor behavior were not evident during the acute exposure period, but were observed at 19 dpf, with main effects (increased locomotor behavior) detected in fish exposed developmentally to bifenthrin at 1 or 10 ng/L, but not 50 ng/L. These findings illustrate significant influences of developmental exposures to low (ng/L) concentrations of bifenthrin on neurodevelopmental processes in zebrafish.
Collapse
Affiliation(s)
- Daniel F Frank
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Galen W Miller
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA 95616, USA
| | - Susanne M Brander
- Biology & Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Juergen Geist
- Aquatic Systems Biology, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85354 Freising, Germany
| | - Richard E Connon
- Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Pamela J Lein
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Ali JM, D'Souza DL, Schwarz K, Allmon LG, Singh RP, Snow DD, Bartelt-Hunt SL, Kolok AS. Response and recovery of fathead minnows (Pimephales promelas) following early life exposure to water and sediment found within agricultural runoff from the Elkhorn River, Nebraska, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1371-1381. [PMID: 29054649 DOI: 10.1016/j.scitotenv.2017.09.259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/16/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
Agricultural runoff is a non-point source of chemical contaminants that are seasonally detected in surface water and sediments. Agrichemicals found within seasonal runoff can elicit endocrine disrupting effects in organisms as adults, juveniles and larvae. The objectives of this study were (1) to determine if exposure to water, sediment or the water-sediment combination collected from an agricultural runoff event was responsible for changes in endocrine-responsive gene expression and development in fathead minnow larvae, and (2) whether such early life exposure leads to adverse effects as adults. Larvae were exposed during the first month post-hatch to water and sediment collected from the Elkhorn River and then allowed to depurate in filtered water until reaching sexual maturity, exemplifying a best-case recovery scenario. Gas chromatography mass spectrometry (GC/MS) analysis of the water and sediment samples detected 12 pesticides including atrazine, acetochlor, metolachlor and dimethenamid. In minnow larvae, exposure to river water upregulated androgen receptor gene expression whereas exposure to the sediment downregulated estrogen receptor α expression. Adult males previously exposed to both water and sediment were feminized through the induction of an ovipositor structure whereas no impacts were observed in other reproductive or sex characteristic endpoints for either sex based on exposure history. Results from this study indicate that both water and sediments found in agricultural runoff elicit responses from minnow larvae, and larvae can recover following early life exposure under a best-case scenario.
Collapse
Affiliation(s)
- Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center, Omaha, NE 68198-6805, United States
| | - Del L D'Souza
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182-0040, United States
| | - Kendall Schwarz
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182-0040, United States
| | - Luke G Allmon
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182-0040, United States
| | - Rajeev P Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, NE 68583-0844, United States
| | - Shannon L Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Peter Kiewit Institute, Omaha, NE 68182-0178, United States
| | - Alan S Kolok
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center, Omaha, NE 68198-6805, United States; Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182-0040, United States; Idaho Water Resources Research Institute, University of Idaho, Moscow, ID 83844-3002, United States.
| |
Collapse
|
29
|
Ghazy HA, Abdel-Razek MAS, El Nahas AF, Mahmoud S. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of metallothionein and immune related genes. FISH & SHELLFISH IMMUNOLOGY 2017; 68:318-326. [PMID: 28734967 DOI: 10.1016/j.fsi.2017.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/09/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment.
Collapse
Affiliation(s)
- Haneen A Ghazy
- Biotechnology Department, Animal Health Research Institute, Kafrelsheikh, Egypt
| | - Mohamed A S Abdel-Razek
- Department (Chemistry and Toxicity) of Pesticides, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Abeer F El Nahas
- Animal Wealth and Animal Husbandry Department, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| |
Collapse
|
30
|
Rehberger K, Werner I, Hitzfeld B, Segner H, Baumann L. 20 Years of fish immunotoxicology - what we know and where we are. Crit Rev Toxicol 2017; 47:509-535. [PMID: 28425344 DOI: 10.1080/10408444.2017.1288024] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Despite frequent field observations of impaired immune response and increased disease incidence in contaminant-exposed wildlife populations, immunotoxic effects are rarely considered in ecotoxicological risk assessment. The aim of this study was to review the literature on immunotoxic effects of chemicals in fish to quantitatively evaluate (i) which experimental approaches were used to assess immunotoxic effects, (ii) whether immune markers exist to screen for potential immunotoxic activities of chemicals, and (iii) how predictive those parameters are for adverse alterations of fish immunocompetence and disease resistance. A total of 241 publications on fish immunotoxicity were quantitatively analyzed. The main conclusions included: (i) To date, fish immunotoxicology focused mainly on innate immune responses and immunosuppressive effects. (ii) In numerous studies, the experimental conditions are poorly documented, as for instance age or sex of the fish or the rationale for the selected exposure conditions is often missing. (iii) Although a broad variety of parameters were used to assess immunotoxicity, the rationale for the choice of measured parameters was often not given, remaining unclear how they link to the suspected immunotoxic mode of action of the chemicals. (iv) At the current state of knowledge, it is impossible to identify a set of immune parameters that could reliably screen for immunotoxic potentials of chemicals. (v) Similarly, in fish immunotoxicology there is insufficient understanding of how and when chemical-induced modulations of molecular/cellular immune changes relate to adverse alterations of fish immunocompetence, although this would be crucial to include immunotoxicity in ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Kristina Rehberger
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Inge Werner
- b Swiss Centre for Applied Ecotoxicology , Dübendorf , Switzerland
| | | | - Helmut Segner
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - Lisa Baumann
- a Centre for Fish and Wildlife Health, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
31
|
Li L, Yang D, Song Y, Shi Y, Huang B, Yan J, Dong X. Effects of bifenthrin exposure in soil on whole-organism endpoints and biomarkers of earthworm Eisenia fetida. CHEMOSPHERE 2017; 168:41-48. [PMID: 27776237 DOI: 10.1016/j.chemosphere.2016.10.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
In this study, toxic effects of bifenthrin in soil on earthworms were evaluated by acute and chronic toxic endpoints combined with a set of biomarkers. Bifenthrin was moderately toxic in 72-h filter paper test and low toxic in 14-d soil test. The exposure of earthworms to bifenthrin-polluted soil for 8 weeks showed that cocoons were inhibited by high dose of bifenthrin, and larvae were stimulated by low dose but inhibited by high dose of bifenthrin. Furthermore, 28-d soil test on the responses of enzymes associated with antioxidation and detoxification in worms showed that peroxidase (POD) was stimulated by bifenthrin, superoxide dismutase (SOD) inhibited in the early period but stimulated in the later period, glutathione S- transferase (GST) inhibited in the later period, and ethoxyresorufin-O-deethylase (EROD) inhibited at day 3 but markedly stimulated at day 28 at high dose. The different responses of these indexes indicated that multi indexes should be jointly taken into account for comprehensive evaluation of the environmental risk of contaminants in soil.
Collapse
Affiliation(s)
- Lingling Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufang Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Yi Shi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Bin Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xinxin Dong
- Shenyang Agricultural Environment Monitoring Station, Shenyang, 110016, China
| |
Collapse
|
32
|
Brander SM, Jeffries KM, Cole BJ, DeCourten BM, White JW, Hasenbein S, Fangue NA, Connon RE. Transcriptomic changes underlie altered egg protein production and reduced fecundity in an estuarine model fish exposed to bifenthrin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:247-60. [PMID: 26975043 DOI: 10.1016/j.aquatox.2016.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 05/15/2023]
Abstract
Pyrethroid pesticides are a class of insecticides found to have endocrine disrupting properties in vertebrates such as fishes and in human cell lines. Endocrine disrupting chemicals (EDCs) are environmental contaminants that mimic or alter the process of hormone signaling. In particular, EDCs that alter estrogen and androgen signaling pathways are of major concern for fishes because these EDCs may alter reproductive physiology, behavior, and ultimately sex ratio. Bifenthrin, a pyrethroid with escalating usage, is confirmed to disrupt estrogen signaling in several species of fish, including Menidia beryllina (inland silverside), an Atherinid recently established as a euryhaline model. Our main objective was to broadly assess the molecular and physiological responses of M. beryllina to the ng/L concentrations of bifenthrin typically found in the environment, with a focus on endocrine-related effects, and to discern links between different tiers of the biological hierarchy. As such, we evaluated the response of juvenile Menidia to bifenthrin using a Menidia-specific microarray, quantitative real-time polymerase chain reaction (qPCR) on specific endocrine-related genes of interest, and a Menidia-specific ELISA to the egg-coat protein choriogenin, to evaluate a multitude of molecular-level responses that would inform mechanisms of toxicity and any underlying causes of change at higher biological levels of organization. The sublethal nominal concentrations tested (0.5, 5 and 50ng/L) were chosen to represent the range of concentrations observed in the environment and to provide coverage of a variety of potential responses. We then employed a 21-day reproductive assay to evaluate reproductive responses to bifenthrin (at 0.5ng/L) in a separate group of adult M. beryllina. The microarray analysis indicated that bifenthrin influences a diverse suite of molecular pathways, from baseline metabolic processes to carcinogenesis. A more targeted examination of gene expression via qPCR demonstrated that bifenthrin downregulates a number of estrogen-related transcripts, particularly at the lowest exposure level. Choriogenin protein also decreased with exposure to increasing concentrations of bifenthrin, and adult M. beryllina exposed to 0.5ng/L had significantly reduced reproductive output (fertilized eggs per female). This reduction in fecundity is consistent with observed changes in endocrine-related gene expression and choriogenin production. Taken together, our results demonstrate that environmental concentrations of bifenthrin have potential to interfere with metabolic processes, endocrine signaling, and to decrease reproductive output.
Collapse
Affiliation(s)
- Susanne M Brander
- Biology & Marine Biology, University of North Carolina, Wilmington, 601 South College Road, Wilmington, NC 28403, United States.
| | - Ken M Jeffries
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Bryan J Cole
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Bethany M DeCourten
- Biology & Marine Biology, University of North Carolina, Wilmington, 601 South College Road, Wilmington, NC 28403, United States
| | - J Wilson White
- Biology & Marine Biology, University of North Carolina, Wilmington, 601 South College Road, Wilmington, NC 28403, United States
| | - Simone Hasenbein
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Nann A Fangue
- Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Richard E Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| |
Collapse
|
33
|
Brinke A, Buchinger S. Toxicogenomics in Environmental Science. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 157:159-186. [DOI: 10.1007/10_2016_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Weston DP, Chen D, Lydy MJ. Stormwater-related transport of the insecticides bifenthrin, fipronil, imidacloprid, and chlorpyrifos into a tidal wetland, San Francisco Bay, California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:18-25. [PMID: 25956145 DOI: 10.1016/j.scitotenv.2015.04.095] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
Suisun Marsh, in northern San Francisco Bay, is the largest brackish marsh in California, and provides critical habitat for many fish species. Storm runoff enters the marsh through many creeks that drain agricultural uplands and the urban areas of Fairfield and Suisun City. Five creeks were sampled throughout a major storm event in February 2014, and analyzed for representatives of several major insecticide classes. Concentrations were greatest in creeks with urban influence, though sampling was done outside of the primary season for agricultural pesticide use. Urban creek waters reached maximum concentrations of 9.9 ng/l bifenthrin, 27.4 ng/l fipronil, 11.9 ng/l fipronil sulfone, 1462 ng/l imidacloprid, and 4.0 ng/l chlorpyrifos. Water samples were tested for toxicity to Hyalella azteca and Chironomus dilutus, and while few samples caused mortality, 70% of the urban creek samples caused paralysis of either or both species. Toxic unit analysis indicated that bifenthrin was likely responsible for effects to H. azteca, and fipronil and its sulfone degradate were responsible for effects to C. dilutus. These results demonstrate the potential for co-occurrence of multiple insecticides in urban runoff, each with the potential for toxicity to particular species, and the value of toxicity monitoring using multiple species. In the channels of Suisun Marsh farther downstream, insecticide concentrations and toxicity diminished as creek waters mixed with brackish waters entering from San Francisco Bay. Only fipronil and its degradates remained measurable at 1-10 ng/l. These concentrations are not known to present a risk based on existing data, but toxicity data for estuarine and marine invertebrates, particularly for fipronil's degradates, are extremely limited.
Collapse
Affiliation(s)
- Donald P Weston
- Department of Integrative Biology, University of California, Berkeley, CA 94720, United States.
| | - Da Chen
- Cooperative Wildlife Research Laboratory and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, United States.
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, United States.
| |
Collapse
|
35
|
Riedl J, Schreiber R, Otto M, Heilmeier H, Altenburger R, Schmitt-Jansen M. Metabolic Effect Level Index Links Multivariate Metabolic Fingerprints to Ecotoxicological Effect Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8096-8104. [PMID: 26020363 DOI: 10.1021/acs.est.5b01386] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A major goal of ecotoxicology is the prediction of adverse outcomes for populations from sensitive and early physiological responses. A snapshot of the physiological state of an organism can be provided by metabolic fingerprints. However, to inform chemical risk assessment, multivariate metabolic fingerprints need to be converted to readable end points suitable for effect estimation and comparison. The concentration- and time-dependent responsiveness of metabolic fingerprints to the PS-II inhibitor isoproturon was investigated by use of a Myriophyllum spicatum bioassay. Hydrophilic and lipophilic leaf extracts were analyzed with gas chromatography-mass spectrometry (GC-MS) and preprocessed with XCMS. Metabolic changes were aggregated in the quantitative metabolic effect level index (MELI), allowing effect estimation from Hill-based concentration-response models. Hereby, the most sensitive response on the concentration scale was revealed by the hydrophilic MELI, followed by photosynthetic efficiency and, 1 order of magnitude higher, by the lipophilic MELI and shoot length change. In the hydrophilic MELI, 50% change compares to 30% inhibition of photosynthetic efficiency and 10% inhibition of dry weight change, indicating effect development on different response levels. In conclusion, aggregated metabolic fingerprints provide quantitative estimates and span a broad response spectrum, potentially valuable for establishing adverse outcome pathways of chemicals in environmental risk assessment.
Collapse
Affiliation(s)
- Janet Riedl
- †Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - René Schreiber
- †Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Matthias Otto
- ‡Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Hermann Heilmeier
- ‡Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Rolf Altenburger
- †Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | | |
Collapse
|
36
|
Crago J, Schlenk D. The effect of bifenthrin on the dopaminergic pathway in juvenile rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:66-72. [PMID: 25781393 DOI: 10.1016/j.aquatox.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/27/2023]
Abstract
Bifenthrin is a type I pyrethroid pesticide, which has been shown to increase plasma estrogen concentrations in several fish models. The mechanism of action by which bifenthrin alters 17β-estradiol (E2) is unclear. E2 biosynthesis is regulated through pituitary follicle stimulating hormone, which is directly controlled by hypothalamic gonadotropin releasing hormone (GnRH2). Since dopaminergic signaling significantly influences GnRH2 release in fish, the goal of the study was to determine the effect of a 96 h and 2 weeks exposure to bifenthrin on dopaminergic signaling in juvenile rainbow trout (Oncorhynchus mykiss) (RT). Our results indicated that a decrease in dopamine receptor 2A (DR2A) expression was associated with a trend toward an increase in plasma E2 following exposure at 96 h and 2 weeks, and a significant increase in the relative expression of vitellogenin mRNA at 2 weeks. DR2A mRNA expression decreased 426-fold at 96 h and 269-fold at 2 weeks in the brains of 1.5 ppb (3.55 pM) bifenthrin treated RT. There was an increase in tyrosine hydroxylase transcript levels at 96 h, which is indicative of dopamine production in the brains of the 1.5 ppb (3.55 pM) bifenthrin treated RT. A significant increase in the relative expression of GnRH2 was observed at 96 h but a significant decrease was noted after 2 weeks exposure indicating potential feedback loop activation. These results indicate that the estrogenic-effects of bifenthrin may result in part from changes in signaling within the dopaminergic pathway, but that other feedback pathways may also be involved.
Collapse
Affiliation(s)
- Jordan Crago
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, Milwaukee, WI 53204, USA.
| | - Daniel Schlenk
- Department of Environment Studies, University California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
37
|
Crago J, Tran K, Budicin A, Schreiber B, Lavado R, Schlenk D. Exploring the impacts of two separate mixtures of pesticide and surfactants on estrogenic activity in male fathead minnows and rainbow trout. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:362-370. [PMID: 25392154 DOI: 10.1007/s00244-014-0098-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
In this study, male fathead minnows (FHM) (Pimephales promelas) and juvenile rainbow trout (RT; Oncorhynchus mykiss) were exposed to two different surfactant mixtures of analytical-grade nonlyphenol, 4-tert octyphenol, octylphenol ethoxylates, nonylphenol ethoxylates, and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). After a 7-days exposure to environmentally relevant concentrations of these compounds, there was no difference in the relative mRNA expression of vitellogenin (VTG) in male juvenile RT exposed to individual compounds or the 2,4-D-surfactant mixture compared with the control. In male FHM, there was a significant increase in VTG mRNA expression in the high individual treatments of 2,4-D and the surfactants but not the 2,4-D-surfactant mixtures compared with the control. These results were compared with another study exposing male FHM to individual and a mixture of alkylphenols and alkylphenol ethoxylates in two different combinations with the herbicide diuron and the insecticide bifenthrin. There were no differences in the relative expression of VTG mRNA amongst individual exposures and the control. Interestingly, when the ethoxylate mixture was combined with diuron, there was a significant decrease in the relative mRNA expression of VTG compared with the control. However, when the ethoxylate mixture was combined with both diuron and bifenthrin, there was a significant increase in the relative mRNA expression of VTG in male compared with all other groups in the multichemical mixture. The results of this study highlight differences between species and measurements of VTG in assessing the risk of mixtures to aquatic organisms.
Collapse
Affiliation(s)
- Jordan Crago
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA,
| | | | | | | | | | | |
Collapse
|
38
|
Groh KJ, Carvalho RN, Chipman JK, Denslow ND, Halder M, Murphy CA, Roelofs D, Rolaki A, Schirmer K, Watanabe KH. Development and application of the adverse outcome pathway framework for understanding and predicting chronic toxicity: II. A focus on growth impairment in fish. CHEMOSPHERE 2015; 120:778-792. [PMID: 25456049 DOI: 10.1016/j.chemosphere.2014.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 06/04/2023]
Abstract
Adverse outcome pathways (AOPs) organize knowledge on the progression of toxicity through levels of biological organization. By determining the linkages between toxicity events at different levels, AOPs lay the foundation for mechanism-based alternative testing approaches to hazard assessment. Here, we focus on growth impairment in fish to illustrate the initial stages in the process of AOP development for chronic toxicity outcomes. Growth is an apical endpoint commonly assessed in chronic toxicity tests for which a replacement is desirable. Based on several criteria, we identified reduction in food intake to be a suitable key event for initiation of middle-out AOP development. To start exploring the upstream and downstream links of this key event, we developed three AOP case studies, for pyrethroids, selective serotonin reuptake inhibitors (SSRIs) and cadmium. Our analysis showed that the effect of pyrethroids and SSRIs on food intake is strongly linked to growth impairment, while cadmium causes a reduction in growth due to increased metabolic demands rather than changes in food intake. Locomotion impairment by pyrethroids is strongly linked to their effects on food intake and growth, while for SSRIs their direct influence on appetite may play a more important role. We further discuss which alternative tests could be used to inform on the predictive key events identified in the case studies. In conclusion, our work demonstrates how the AOP concept can be used in practice to assess critically the knowledge available for specific chronic toxicity cases and to identify existing knowledge gaps and potential alternative tests.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Raquel N Carvalho
- European Commission, Joint Research Centre, Institute for Environment and Sustainability, Water Resources Unit, 21027 Ispra, Italy
| | | | - Nancy D Denslow
- University of Florida, Department of Physiological Sciences, Center for Environmental and Human Toxicology and Genetics Institute, 32611 Gainesville, FL, USA
| | - Marlies Halder
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Cheryl A Murphy
- Michigan State University, Fisheries and Wildlife, Lyman Briggs College, 48824 East Lansing, MI, USA
| | - Dick Roelofs
- VU University, Institute of Ecological Science, 1081 HV Amsterdam, The Netherlands
| | - Alexandra Rolaki
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, 21027 Ispra, Italy
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Department of Environmental Systems Science, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Karen H Watanabe
- Oregon Health & Science University, Institute of Environmental Health, Division of Environmental and Biomolecular Systems, 97239-3098 Portland, OR, USA
| |
Collapse
|
39
|
DeGroot BC, Brander SM. The role of P450 metabolism in the estrogenic activity of bifenthrin in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:17-20. [PMID: 25127356 DOI: 10.1016/j.aquatox.2014.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 05/15/2023]
Abstract
Bifenthrin, a pyrethroid pesticide, is estrogenic in vivo in fishes. However, bifenthrin is documented to be anti-estrogenic in vitro, in the ER-CALUX (estrogen receptor) cell line. We investigated whether metabolite formation is the reason for this incongruity. We exposed Menidia beryllina (inland silversides) to 10ng/l bifenthrin, 10ng/l 4-hydroxy bifenthrin, and 10ng/l bifenthrin with 25μg/l piperonyl butoxide (PBO) - a P450 inhibitor. Metabolite-exposed juveniles had significantly higher estrogen-mediated protein levels (choriogenin) than bifenthrin/PBO-exposed, while bifenthrin alone was intermediate (not significantly different from either). This suggests that metabolites are the main contributors to bifenthrin's in vivo estrogenicity.
Collapse
Affiliation(s)
- Breanna C DeGroot
- The University of North Carolina at Wilmington, Wilmington, NC, USA.
| | - Susanne M Brander
- The University of North Carolina at Wilmington, Wilmington, NC, USA.
| |
Collapse
|
40
|
Baker BH, Martinovic-Weigelt D, Ferrey M, Barber LB, Writer JH, Rosenberry DO, Kiesling RL, Lundy JR, Schoenfuss HL. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:374-388. [PMID: 24974177 DOI: 10.1007/s00244-014-0052-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted.
Collapse
Affiliation(s)
- Beth H Baker
- St. Cloud State University, WSB-273, 720 4th Avenue South, St. Cloud, MN, 56301, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Riar N, Crago J, Jiang W, Maryoung LA, Gan J, Schlenk D. Effects of salinity acclimation on the endocrine disruption and acute toxicity of bifenthrin in freshwater and euryhaline strains of Oncorhynchus mykiss. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2779-85. [PMID: 23983063 PMCID: PMC4104814 DOI: 10.1002/etc.2370] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 05/07/2023]
Abstract
The pyrethroid insecticide bifenthrin is frequently detected at ng/L concentrations in tributaries of the San Francisco Bay Delta. The estuary is also experiencing increasing salinity through climate change and water redirection. To evaluate the impacts of hypersaline conditions on bifenthrin toxicity in anadromous salmonids of the San Francisco Bay Delta (CA, USA), a 14-d laboratory exposure was performed using 2 strains of Oncorhynchus mykiss (rainbow trout and steelhead) acclimated to freshwater and to 8 g/L and 17 g/L salinity. The fish were then exposed to nominal concentrations of 0 µg/L, 0.1 µg/L, and 1.5 µg/L bifenthrin. Rainbow trout exhibited significant mortality following exposure to 1.5 µg/L (1.07 ± 0.35 µg/L measured) bifenthrin in freshwater. Elevated levels of Na⁺ /K⁺ adenosine triphosphatase α1A mRNA subunit expression was observed in the gill of rainbow trout acclimated to hypersaline conditions relative to freshwater animals. No significant difference was noted in Na⁺ /K⁺ adenosine triphosphatase subunit levels in brains of either strain in freshwater or hypersaline conditions. Likewise, significant differences were not observed in plasma vitellogenin or steroid hormone concentrations in either strain whether maintained in freshwater or saltwater. Saltwater acclimation significantly reduced nicotinamide adenine dinucleotide phosphate-catalyzed biotransformation of bifenthrin in liver microsomes of rainbow trout but not of steelhead. The present study showed that, relative to steelhead, rainbow trout have different responses to bifenthrin acute toxicity as well as different rates of hepatic bifenthrin biotransformation and regulation of Na⁺ /K⁺ adenosine triphosphatase subunits in gills. These data indicate that significant differences exist between the strains and that animal life history may have important effects on the susceptibility of each strain to environmental contaminants.
Collapse
|
42
|
Jin Y, Pan X, Cao L, Ma B, Fu Z. Embryonic exposure to cis-bifenthrin enantioselectively induces the transcription of genes related to oxidative stress, apoptosis and immunotoxicity in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2013; 34:717-723. [PMID: 23261506 DOI: 10.1016/j.fsi.2012.11.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 11/09/2012] [Accepted: 11/26/2012] [Indexed: 06/01/2023]
Abstract
Cis-bifenthrin (cis-BF) is used widely for agricultural and non-agricultural purpose. Thus, cis-BF is one of the most frequently detected insecticides in the aquatic ecosystem. As a chiral pesticide, the commercial cis-BF contained two enantiomers including 1R-cis-BF and 1S-cis-BF. However, the difference in inducing oxidative stress, apoptosis and immunotoxicity by the two enantiomers in zebrafish still remains unclear. In the present study, the zebrafish were exposed to environmental concentrations of cis-BF, 1R-cis-BF and 1S-cis-BF during the embryos developmental stage. We observed that the mRNA levels of the most genes related to oxidative stress, apoptosis and immunotoxicity including Cu/Zn-superoxide dismutase (Cu/Zn-Sod), catalase (Cat), P53, murine double minute 2 (Mdm2), B-cell lymphoma/leukaemia-2 gene (Bcl2), Bcl2 associated X protein (Bax), apoptotic protease activating factor-1 (Apaf1), Caspase 9 (Cas9), Caspase 3 (Cas3), interleukin-1 beta (IL-1β) and interleukin-8(Il-8) were much higher in 1S-cis-BF treated group than those in cis-BF or 1R-cis-BF treated ones, suggesting that 1S-cis-BF has higher risk to induced oxidative stress, apoptosis and immunotoxicity than 1R-cis-BF in zebrafish. The information presented in this study will help with elucidating the differences and environmental risk of the two enantiomers of cis-BF-induced toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | | | |
Collapse
|
43
|
Brander SM, He G, Smalling KL, Denison MS, Cherr GN. The in vivo estrogenic and in vitro anti-estrogenic activity of permethrin and bifenthrin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2848-55. [PMID: 23007834 PMCID: PMC3529915 DOI: 10.1002/etc.2019] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/06/2012] [Accepted: 08/13/2012] [Indexed: 05/17/2023]
Abstract
Pyrethroids are highly toxic to fish at parts per billion or parts per trillion concentrations. Their intended mechanism is prolonged sodium channel opening, but recent studies reveal that pyrethroids such as permethrin and bifenthrin also have endocrine activity. Additionally, metabolites may have greater endocrine activity than parent compounds. The authors evaluated the in vivo concentration-dependent ability of bifenthrin and permethrin to induce choriogenin (an estrogen-responsive protein) in Menidia beryllina, a fish species known to reside in pyrethroid-contaminated aquatic habitats. The authors then compared the in vivo response with an in vitro assay--chemical activated luciferase gene expression (CALUX). Juvenile M. beryllina exposed to bifenthrin (1, 10, 100 ng/L), permethrin (0.1, 1, 10 µg/L), and ethinylestradiol (1, 10, 50 ng/L) had significantly higher ng/mL choriogenin (Chg) measured in whole body homogenate than controls. Though Chg expression in fish exposed to ethinylestradiol (EE2) exhibited a traditional sigmoidal concentration response, curves fit to Chg expressed in fish exposed to pyrethroids suggest a unimodal response, decreasing slightly as concentration increases. Whereas the in vivo response indicated that bifenthrin and permethrin or their metabolites act as estrogen agonists, the CALUX assay demonstrated estrogen antagonism by the pyrethroids. The results, supported by evidence from previous studies, suggest that bifenthrin and permethrin, or their metabolites, appear to act as estrogen receptor (ER) agonists in vivo, and that the unmetabolized pyrethroids, particularly bifenthrin, act as an ER antagonists in cultured mammalian cells.
Collapse
Affiliation(s)
- Susanne M Brander
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA, USA.
| | | | | | | | | |
Collapse
|
44
|
Brander SM, Mosser CM, Geist J, Hladik ML, Werner I. Esfenvalerate toxicity to the cladoceran Ceriodaphnia dubia in the presence of green algae, Pseudokirchneriella subcapitata. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2409-2418. [PMID: 22975895 DOI: 10.1007/s10646-012-0996-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
The presence of phytoplankton, like other particulate organic matter, can interfere with the effects of hydrophobic contaminants such as pyrethroid pesticides. However, the reduction or elimination of toxicity by algae added as food during testing is not taken into account in standard US EPA whole effluent toxicity (WET) zooplankton tests. On the other hand, WET test conditions may overestimate toxicity of such compounds in highly productive surface waters with high concentrations of detritus and other particulate matter. In addition, WET tests do not measure impaired swimming ability or predator avoidance behavior as an indicator of increased mortality risk. This study used a modified version of the US EPA WET Ceriodaphnia dubia acute test to investigate the effects of phytoplankton on toxicity of the pyrethroid insecticide, esfenvalerate. Animals were exposed simultaneously to different concentrations of esfenvalerate and green algae (Pseudokirchneriella subcapitata). Mortality and predation risk were recorded after 4 and 24 h. Algae at or below concentrations specified in the WET protocol significantly reduced mortality. Regardless, organisms exposed to esfenvalerate were unable to avoid simulated predation in the presence of algae at any concentration. After 12 h, esfenvalerate adsorbed to algae represented 68-99 % of the total amount recovered. The proportion of algae-bound insecticide increased with algal concentration indicating that conclusions drawn from toxicity tests in which algae are added as food must be interpreted with caution as the dissolved fraction of such hydrophobic contaminants is reduced. Additionally, our results strongly suggest that the EPA should consider adding ecologically-relevant endpoints such as swimming behavior to standard WET protocols.
Collapse
Affiliation(s)
- Susanne M Brander
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
45
|
Costigan SL, Werner J, Ouellet JD, Hill LG, Law RD. Expression profiling and gene ontology analysis in fathead minnow (Pimephales promelas) liver following exposure to pulp and paper mill effluents. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:44-55. [PMID: 22728206 DOI: 10.1016/j.aquatox.2012.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/14/2012] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
Many studies link pulp and paper mill effluent (PPME) exposure to adverse effects in fish populations present in the mill receiving environments. These impacts are often characteristic of endocrine disruption and may include impaired reproduction, development and survival. While these physiological endpoints are well-characterized, the molecular mechanisms causing them are not yet understood. To investigate changes in gene transcription induced by exposure to a PPME at several stages of treatment, male and female fathead minnows (FHMs) were exposed for 6 days to 25% (v/v) secondary (biologically) treated kraft effluent (TK) or 100% (v/v) combined mill outfall (CMO) from a mill producing both kraft pulp and newsprint. The gene expression changes in the livers of these fish were analyzed using a 22K oligonucleotide microarray. Exposure to TK or CMO resulted in significant changes in the expression levels of 105 and 238 targets in male FHMs and 296 and 133 targets in females, respectively. Targets were then functionally analyzed using gene ontology tools to identify the biological processes in fish hepatocytes that were affected by exposure to PPME after its secondary treatment. Proteolysis was affected in female FHMs exposed to both TK and CMO. In male FHMs, no processes were affected by TK exposure, while sterol, isoprenoid, steroid and cholesterol biosynthesis and electron transport were up-regulated by CMO exposure. The results presented in this study indicate that short-term exposure to PPMEs affects the expression of reproduction-related genes in the livers of both male and female FHMs, and that secondary treatment of PPMEs may not neutralize all of their metabolic effects in fish. Gene ontology analysis of microarray data may enable identification of biological processes altered by toxicant exposure and thus provide an additional tool for monitoring the impact of PPMEs on fish populations.
Collapse
|
46
|
Woo S, Won H, Lee A, Yum S. Oxidative stress and gene expression in diverse tissues of Oryzias javanicus exposed to 17β-estradiol. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-012-0032-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. SENSORS 2012; 12:12741-71. [PMID: 23112741 PMCID: PMC3478868 DOI: 10.3390/s120912741] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 11/21/2022]
Abstract
Ecotoxicology faces the challenge of assessing and predicting the effects of an increasing number of chemical stressors on aquatic species and ecosystems. Herein we review currently applied tools in ecological risk assessment, combining information on exposure with expected biological effects or environmental water quality standards; currently applied effect-based tools are presented based on whether exposure occurs in a controlled laboratory environment or in the field. With increasing ecological relevance the reproducibility, specificity and thus suitability for standardisation of methods tends to diminish. We discuss the use of biomarkers in ecotoxicology including ecotoxicogenomics-based endpoints, which are becoming increasingly important for the detection of sublethal effects. Carefully selected sets of biomarkers allow an assessment of exposure to and effects of toxic chemicals, as well as the health status of organisms and, when combined with chemical analysis, identification of toxicant(s). The promising concept of “adverse outcome pathways (AOP)” links mechanistic responses on the cellular level with whole organism, population, community and potentially ecosystem effects and services. For most toxic mechanisms, however, practical application of AOPs will require more information and the identification of key links between responses, as well as key indicators, at different levels of biological organization, ecosystem functioning and ecosystem services.
Collapse
|
48
|
Cline BH, Steinbusch HWM, Malin D, Revishchin AV, Pavlova GV, Cespuglio R, Strekalova T. The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2. BMC Neurosci 2012; 13:110. [PMID: 22989159 PMCID: PMC3564824 DOI: 10.1186/1471-2202-13-110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/14/2012] [Indexed: 12/16/2022] Open
Abstract
Background A number of epidemiological studies have established a link between insulin resistance and the prevalence of depression. The occurrence of depression was found to precede the onset of diabetes and was hypothesized to be associated with inherited inter-related insufficiency of the peripheral and central insulin receptors. Recently, dicholine succinate, a sensitizer of the neuronal insulin receptor, was shown to stimulate insulin-dependent H2O2 production of the mitochondrial respiratory chain leading to an enhancement of insulin receptor autophosphorylation in neurons. As such, this mechanism can be a novel target for the elevation of insulin signaling. Results Administration of DS (25 mg/kg/day, intraperitoneal) in CD1 mice for 7 days prior to the onset of stress procedure, diminished manifestations of anhedonia defined in a sucrose test and behavioral despair in the forced swim test. Treatment with dicholine succinate reduced the anxiety scores of stressed mice in the dark/light box paradigm, precluded stress-induced decreases of long-term contextual memory in the step-down avoidance test and hippocampal gene expression of IGF2. Conclusions Our data suggest that dicholine succinate has an antidepressant-like effect, which might be mediated via the up-regulation of hippocampal expression of IGF2, and implicate the neuronal insulin receptor in the pathogenesis of stress-induced depressive syndrome.
Collapse
Affiliation(s)
- Brandon H Cline
- Interdisciplinary Center for Neurosciences, Heidelberg University, and Institute for Neuroanatomy, University Clinic Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Schlenk D, Lavado R, Loyo-Rosales JE, Jones W, Maryoung L, Riar N, Werner I, Sedlak D. Reconstitution studies of pesticides and surfactants exploring the cause of estrogenic activity observed in surface waters of the San Francisco Bay Delta. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9106-11. [PMID: 22881714 DOI: 10.1021/es3016759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To evaluate the potential role of endocrine disruption in the decline of pelagic fishes in the San Francisco Bay Delta of California, various surface water samples were collected, extracted, and found to elicit estrogenic activity in laboratory fish. Chemical analysis of the estrogenic samples indicated 2 pesticides (bifenthrin, diuron), 2 alkyphenols (AP), and mixtures of 2 types of alkyphenol polyethoxylates (APEOs). Evaluation of estrogenic activity was further characterized by in vitro bioassays using rainbow trout hepatocytes (Oncorhynchus mykiss) and in vivo studies with Japanese medaka (Oryzias latipes). In the in vitro bioassays, hepatocytes exposed to the pesticides alone or in combination with the AP/APEO mixtures at concentrations observed in surface waters failed to show estrogenic activity (induction of vitelloginin mRNA). In the in vivo bioassays, medaka exposed to individual pesticides or to AP/APEO alone did not have elevated VTG at ambient concentrations. However, when the pesticides were combined with AP/APEOs in the 7-day exposure a significant increase in VTG was observed. Exposure to a 5-fold higher concentration of the AP/APEO mixture alone also significantly induced VTG. In contrast to earlier studies with permethrin, biotransformation of bifenthrin to estrogenic metabolites was not observed in medaka liver microsomes and cytochrome P450 was not induced with AP/APEO treatment. These results showed that mixtures of pesticides with significantly different modes of action and AP/APEOs at environmentally relevant concentrations may be associated with estrogenic activity measured in water extracts and feral fish that have been shown to be in population decline in the San Francisco Bay Delta.
Collapse
Affiliation(s)
- Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Connon RE, D'Abronzo LS, Hostetter NJ, Javidmehr A, Roby DD, Evans AF, Loge FJ, Werner I. Transcription profiling in environmental diagnostics: health assessments in Columbia River basin steelhead (Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:6081-6087. [PMID: 22587496 DOI: 10.1021/es3005128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The health condition of out-migrating juvenile salmonids can influence migration success. Physical damage, pathogenic infection, contaminant exposure, and immune system status can affect survival probability. The present study is part of a wider investigation of out-migration success in juvenile steelhead (Oncorhynchus mykiss) and focuses on the application of molecular profiling to assess sublethal effects of environmental stressors in field-collected fish. We used a suite of genes in O. mykiss to specifically assess responses that could be directly related to steelhead health condition during out-migration. These biomarkers were used on juvenile steelhead captured in the Snake River, a tributary of the Columbia River, in Washington, USA, and were applied on gill and anterior head kidney tissue to assess immune system responses, pathogen-defense (NRAMP, Mx, CXC), general stress (HSP70), metal-binding (metallothionein-A), and xenobiotic metabolism (Cyp1a1) utilizing quantitative polymerase chain reaction (PCR) technology. Upon capture, fish were ranked according to visual external physical conditions into good, fair, poor, and bad categories; gills and kidney tissues were then dissected and preserved for gene analyses. Transcription responses were tissue-specific for gill and anterior head kidney with less significant responses in gill tissue than in kidney. Significant differences between the condition ranks were attributed to NRAMP, MX, CXC, and Cyp1a1 responses. Gene profiling correlated gene expression with pathogen presence, and results indicated that gene profiling can be a useful tool for identifying specific pathogen types responsible for disease. Principal component analysis (PCA) further correlated these responses with specific health condition categories, strongly differentiating good, poor, and bad condition ranks. We conclude that molecular profiling is an informative and useful tool that could be applied to indicate and monitor numerous population-level parameters of management interest.
Collapse
Affiliation(s)
- Richard E Connon
- School of Veterinary Medicine: Dept. Anatomy, Physiology and Cell Biology, University of California, Davis, California 95616, United States.
| | | | | | | | | | | | | | | |
Collapse
|