1
|
Gobas FAPC, Lee YS, Fremlin KM, Stelmachuk SC, Redman AD. Methods for assessing the bioaccumulation of hydrocarbons and related substances in terrestrial organisms: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1433-1456. [PMID: 36880196 DOI: 10.1002/ieam.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
This study investigates and reviews methods for the assessment of the terrestrial bioaccumulation potential of hydrocarbons and related organic substances. The study concludes that the unitless biomagnification factor (BMF) and/or the trophic magnification factor (TMF) are appropriate, practical, and thermodynamically meaningful metrics for identifying bioaccumulative substances in terrestrial food chains. The study shows that various methods, including physical-chemical properties like the KOA and KOW , in vitro biotransformation assays, quantitative structure-activity relationships, in vivo pharmacokinetic and dietary bioaccumulation tests, and field-based trophic magnification studies, can inform on whether a substance has the potential to biomagnify in a terrestrial food chain as defined by a unitless BMF exceeding 1. The study further illustrates how these methods can be arranged in a four-tier evaluation scheme for the purpose of screening assessments that aim to minimize effort and costs and expediate bioaccumulation assessment of the vast numbers of organic substances in commerce, identifies knowledge gaps, and provides recommendations for further research to improve bioaccumulation assessment. Integr Environ Assess Manag 2023;19:1433-1456. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Frank A P C Gobas
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yung-Shan Lee
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katharine M Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie C Stelmachuk
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| |
Collapse
|
2
|
Fairman K, Choi MK, Gonnabathula P, Lumen A, Worth A, Paini A, Li M. An Overview of Physiologically-Based Pharmacokinetic Models for Forensic Science. TOXICS 2023; 11:126. [PMID: 36851001 PMCID: PMC9964742 DOI: 10.3390/toxics11020126] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
A physiologically-based pharmacokinetic (PBPK) model represents the structural components of the body with physiologically relevant compartments connected via blood flow rates described by mathematical equations to determine drug disposition. PBPK models are used in the pharmaceutical sector for drug development, precision medicine, and the chemical industry to predict safe levels of exposure during the registration of chemical substances. However, one area of application where PBPK models have been scarcely used is forensic science. In this review, we give an overview of PBPK models successfully developed for several illicit drugs and environmental chemicals that could be applied for forensic interpretation, highlighting the gaps, uncertainties, and limitations.
Collapse
Affiliation(s)
- Kiara Fairman
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Me-Kyoung Choi
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Pavani Gonnabathula
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | | | - Miao Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
3
|
Kammann U, Nogueira P, Siegmund M, Schmidt N, Schmolke S, Kirchgeorg T, Hasenbein M, Wysujack K. Temporal trends of mercury levels in fish (dab, Limanda limanda) and sediment from the German Bight (North Sea) in the period 1995-2020. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:73. [PMID: 36334139 PMCID: PMC9637065 DOI: 10.1007/s10661-022-10655-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
As a toxic and harmful global pollutant, mercury (Hg) enters the marine environment through natural sources, and human activities. It bioaccumulates through the food chain and therefore, Hg is of great importance for environmental monitoring. This study aims to answer the question if Hg contamination in fish and sediment from the German Bight follows temporal trends. Therefore, 496 individual female dab (Limanda limanda) were analyzed. The Hg concentrations in the muscle of dab from the German Bight showed significant increase in function of time with an annual percental change of 1.4%, leading to a 41% increase in Hg contamination level within 25 years of monitoring. At the same time, Hg concentrations in sediment-analyzed in 86 samples-significantly decreased in the nearby North Sea environment. This surprising contradiction is shown in the present study and possible causes are discussed. It could be clearly shown that contamination in sediment and biota can follow completely different time courses and therefore, different environmental matrices should be considered in future monitoring studies. Age of the fish turned out to be a biological factor of particular importance for temporal trend analysis.
Collapse
Affiliation(s)
- Ulrike Kammann
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Pedro Nogueira
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Maike Siegmund
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Nicole Schmidt
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| | - Stefan Schmolke
- Federal Maritime and Hydrographic Agency, Wüstland 2, 22589 Hamburg, Germany
| | - Torben Kirchgeorg
- Federal Maritime and Hydrographic Agency, Wüstland 2, 22589 Hamburg, Germany
| | - Matthias Hasenbein
- Federal Maritime and Hydrographic Agency, Wüstland 2, 22589 Hamburg, Germany
| | - Klaus Wysujack
- Thünen Institute of Fisheries Ecology, Herwigstraße 31, 27572 Bremerhaven, Germany
| |
Collapse
|
4
|
Crawford SE, Brinkmann M, Ouellet JD, Lehmkuhl F, Reicherter K, Schwarzbauer J, Bellanova P, Letmathe P, Blank LM, Weber R, Brack W, van Dongen JT, Menzel L, Hecker M, Schüttrumpf H, Hollert H. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126691. [PMID: 34315022 DOI: 10.1016/j.jhazmat.2021.126691] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 05/24/2023]
Abstract
While it is well recognized that the frequency and intensity of flood events are increasing worldwide, the environmental, economic, and societal consequences of remobilization and distribution of pollutants during flood events are not widely recognized. Loss of life, damage to infrastructure, and monetary cleanup costs associated with floods are important direct effects. However, there is a lack of attention towards the indirect effects of pollutants that are remobilized and redistributed during such catastrophic flood events, particularly considering the known toxic effects of substances present in flood-prone areas. The global examination of floods caused by a range of extreme events (e.g., heavy rainfall, tsunamis, extra- and tropical storms) and subsequent distribution of sediment-bound pollutants are needed to improve interdisciplinary investigations. Such examinations will aid in the remediation and management action plans necessary to tackle issues of environmental pollution from flooding. River basin-wide and coastal lowland action plans need to balance the opposing goals of flood retention, catchment conservation, and economical use of water.
Collapse
Affiliation(s)
- Sarah E Crawford
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada
| | - Jacob D Ouellet
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Lehmkuhl
- Department of Geography, RWTH Aachen University, Aachen, Germany
| | - Klaus Reicherter
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Aachen, Germany
| | - Piero Bellanova
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Aachen, Germany; Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Aachen, Germany
| | - Peter Letmathe
- Chair of Management Accounting, RWTH Aachen University, Aachen, Germany
| | - Lars M Blank
- Chair of Applied Microbiology, Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Germany
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - Werner Brack
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany; Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research GmbH, Leipzig, Germany
| | - Joost T van Dongen
- Institute of Biology I, Aachen Biology and Biotechnology, RWTH Aachen University, Germany
| | - Lucas Menzel
- Department of Geography, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Holger Schüttrumpf
- Institute for Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department of Evolutionary Ecology and Environmental Toxicology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt am Main, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Mangold-Döring A, Grimard C, Green D, Petersen S, Nichols JW, Hogan N, Weber L, Hollert H, Hecker M, Brinkmann M. A Novel Multispecies Toxicokinetic Modeling Approach in Support of Chemical Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9109-9118. [PMID: 34165962 PMCID: PMC9066611 DOI: 10.1021/acs.est.1c02055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Standardized laboratory tests with a limited number of model species are a key component of chemical risk assessments. These surrogate species cannot represent the entire diversity of native species, but there are practical and ethical objections against testing chemicals in a large variety of species. In previous research, we have developed a multispecies toxicokinetic model to extrapolate chemical bioconcentration across species by combining single-species physiologically based toxicokinetic (PBTK) models. This "top-down" approach was limited, however, by the availability of fully parameterized single-species models. Here, we present a "bottom-up" multispecies PBTK model based on available data from 69 freshwater fishes found in Canada. Monte Carlo-like simulations were performed using statistical distributions of model parameters derived from these data to predict steady-state bioconcentration factors (BCFs) for a set of well-studied chemicals. The distributions of predicted BCFs for 1,4-dichlorobenzene and dichlorodiphenyltrichloroethane largely overlapped those of empirical data, although a tendency existed toward overestimation of measured values. When expressed as means, predicted BCFs for 26 of 34 chemicals (82%) deviated by less than 10-fold from measured data, indicating an accuracy similar to that of previously published single-species models. This new model potentially enables more environmentally relevant predictions of bioconcentration in support of chemical risk assessments.
Collapse
Affiliation(s)
- Annika Mangold-Döring
- Department for Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, 52074, Germany
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Derek Green
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Stephanie Petersen
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - John W. Nichols
- US Environmental Protection Agency, Duluth, Minnesota, 55804, USA
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- Western College of Veterinary Medicine, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, S7N 5B4, Canada
| | - Henner Hollert
- Department for Ecosystem Analysis, Institute for Environmental Research (Biology V), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Aachen, 52074, Germany
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences Goethe University Frankfurt, Frankfurt, 60438, Germany
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, S7N 3H5, Canada
- Corresponding author: Dr. Markus Brinkmann, 44 Campus Drive, S7N 5B3 Canada, Phone: +1 (306) 966 1204,
| |
Collapse
|
6
|
Brinkmann M, Ouellet JD, Zennegg M, Buchinger S, Reifferscheid G, Hollert H. Combined sediment desorption and bioconcentration model to predict levels of dioxin-like chemicals in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143891. [PMID: 33338786 DOI: 10.1016/j.scitotenv.2020.143891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Flooding and other sediment disturbances can lead to increases in sediment resuspension. In this context, it is of central importance to understand the kinetics of release from these sediments and the uptake of pollutants, such as polychlorinated biphenyls (PCBs) and polychlorinated dioxins and furans (PCDD/Fs), into aquatic organisms. In the present study, we parameterized a sediment desorption model based on experimentally determined rapidly-desorbing fractions of dioxin-like chemicals (DLCs). We coupled this desorption model with a physiologically-based toxicokinetic model for rainbow trout. This combined model was used to predict DLC concentrations in the muscle of exposed fish. The performance of this model was evaluated using a previously published dataset on DLC uptake from sediment suspensions during simulated re-suspension events. Predictions generally differed less than 10-fold from measured values, and the model showed a good global coefficient of determination (R2) of 0.95. The root mean squared error (RMSE) for PCBs was 0.31 log units and 0.53 log units for PCDD/Fs. The results of our study demonstrate that the prediction of bioconcentration and related risk to fish resulting from sediment resuspension can be accurately predicted using coupled desorption and toxicokinetic models.
Collapse
Affiliation(s)
- Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Canada.
| | - Jacob D Ouellet
- Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Markus Zennegg
- Swiss Federal Institute for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Dübendorf, Switzerland
| | - Sebastian Buchinger
- Federal Institute of Hydrology, Department G3: Biochemistry and Ecotoxicology, Koblenz, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology, Department G3: Biochemistry and Ecotoxicology, Koblenz, Germany
| | - Henner Hollert
- Goethe University Frankfurt, Department of Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Grimard C, Mangold-Döring A, Schmitz M, Alharbi H, Jones PD, Giesy JP, Hecker M, Brinkmann M. In vitro-in vivo and cross-life stage extrapolation of uptake and biotransformation of benzo[a]pyrene in the fathead minnow (Pimephales promelas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105616. [PMID: 33039795 DOI: 10.1016/j.aquatox.2020.105616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Understanding internal dose metrics is integral to adequately assess effects environmental contaminants might have on aquatic wildlife, including fish. In silico toxicokinetic (TK) models are a leading approach for quantifying internal exposure metrics for fishes; however, they often do not adequately consider chemicals that are actively biotransformed and have not been validated against early-life stages (ELS) that are often considered the most sensitive to the exposure to contaminants. To address these uncertainties, TK models were parameterized for the rapidly biotransformed chemical benzo[a]pyrene (B[a]P) in embryo-larval and adult life stages of fathead minnows. Biotransformation of B[a]P was determined through measurements of in vitro clearance. Using in vitro-in vivo extrapolation, in vitro clearance was integrated into a multi-compartment TK model for adult fish and a one-compartment model for ELS. Model predictions were validated using measurements of B[a]P metabolites from in vivo flow-through exposures to graded concentrations of water-borne B[a]P. Significantly greater amounts of B[a]P metabolites were observed with exposure to greater concentrations of parent compound in both life stages. However, when assessing biotransformation capacity, no differences in phase I or phase II biotransformation were observed with greater exposures to B[a]P. Results of modelling suggested that biotransformation of B[a]P can be successfully implemented into in silico models to accurately predict life stage-specific abundances of B[a]P metabolites in either whole-body larvae or the bile of adult fish. Models developed increase the scope of applications in which TK models can be used to support environmental risk assessments.
Collapse
Affiliation(s)
- Chelsea Grimard
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Annika Mangold-Döring
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | - Markus Schmitz
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Frankfurt, Germany
| | - Hattan Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Environmental Sciences, Baylor University, Waco, Texas, USA
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
8
|
Abstract
Physiology-based pharmacokinetic and toxicokinetic (PBPK/TK) models allow us to simulate the concentration of xenobiotica in the plasma and different tissues of an organism. PBPK/TK models are therefore routinely used in many fields of life sciences to simulate the physiological concentration of exogenous compounds in plasma and tissues. The application of PBTK models in ecotoxicology, however, is currently hampered by the limited availability of models for focal species. Here, we present a best practice workflow that describes how to build PBTK models for novel species. To this end, we extrapolated eight previously established rabbit models for several drugs to six additional mammalian species (human, beagle, rat, monkey, mouse, and minipig). We used established PBTK models for these species to account for the species-specific physiology. The parameter sensitivity in the resulting 56 PBTK models was systematically assessed to rank the relevance of the parameters on overall model performance. Interestingly, more than 80% of the 609 considered model parameters showed a negligible sensitivity throughout all models. Only approximately 5% of all parameters had a high sensitivity in at least one of the PBTK models. This approach allowed us to rank the relevance of the various parameters on overall model performance. We used this information to formulate a best practice guideline for the efficient development of PBTK models for novel animal species. We believe that the workflow proposed in this study will significantly support the development of PBTK models for new animal species in the future.
Collapse
|
9
|
Vidal A, Babut M, Garric J, Beaudouin R. Temperature effect on perfluorooctane sulfonate toxicokinetics in rainbow trout (Oncorhynchus mykiss): Exploration via a physiologically based toxicokinetic model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 225:105545. [PMID: 32569995 DOI: 10.1016/j.aquatox.2020.105545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/14/2020] [Accepted: 06/07/2020] [Indexed: 05/21/2023]
Abstract
Salmonids are poikilotherms, which means that their internal temperature varies with that of water. Water temperature thus controls many of their lifecycle processes and physiological functions, which could influence the mechanisms of absorption, distribution, metabolism and excretion (ADME) of many substances, including perfluorinated alkyl acids (PFAAs). However, the processes governing the fate of PFAAs are still poorly understood in fish. Here we developed a physiologically-based toxicokinetic (PBTK) model for rainbow trout (Oncorhynchus mykiss) to study changes in physiological functions and PFAA ADME at different temperatures. The model was calibrated using experimental data from dietary exposure to perfluorooctane sulfonate at 7 °C and 19 °C. Predictions of PFOS concentrations were globally satisfactory at both temperatures, when accounting for the influence of temperature on growth, ventilation rate, cardiac output, clearances, and absorption rates. Accounting for the influence of temperature on tissue-plasma partition coefficients significantly improved predicted in-organ PFOS concentrations.
Collapse
Affiliation(s)
- Alice Vidal
- INRAE, RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Marc Babut
- INRAE, RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Jeanne Garric
- INRAE, RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Rémy Beaudouin
- UMR-I 02 SEBIO, Models for Ecotoxicology and Toxicology Unit (METO), INERIS, 60550 Verneuil en Halatte, France.
| |
Collapse
|
10
|
Vidal A, Babut M, Garric J, Beaudouin R. Elucidating the fate of perfluorooctanoate sulfonate using a rainbow trout (Oncorhynchus mykiss) physiologically-based toxicokinetic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:1297-1309. [PMID: 31466209 DOI: 10.1016/j.scitotenv.2019.07.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Per- and poly-fluorinated substances (PFAS) are widely found in freshwater ecosystems because of their resistance to degradation. Among them, several long-chain perfluoroalkyl acids bioaccumulate in aquatic vertebrates, but our understanding of the mechanisms of absorption, distribution and elimination is still limited in fish. For this purpose, we developed a 10-compartment physiologically-based toxicokinetic (PBTK) model to elucidate perfluorooctane sulfonate (PFOS) kinetics in adult rainbow trout. This PBTK model included various physiological characteristics: blood perfusion to each organ, plasmatic fraction, PFOS free fraction, and growth of individuals. The parameters were optimized using Bayesian inferences. First, only PFOS absorption by diet was considered in the model as well as its elimination by urine, bile and feces. Then two mechanistic hypotheses, assumed to govern PFOS toxicokinetics in fish, namely the enterohepatic cycle and the absorption and elimination though gills, were tested. Improvement of the model's fit to the data was studied in each organ by comparing predictions with observed data using relative error. The experimental data set was obtained from an exposure experiment, where adult rainbow trout were fed with a PFOS-spiked diet for 42 days, followed by a 35-day depuration period. In all cases, PFOS concentrations were accurately predicted in organs and feces by the model. The results of this PBTK model demonstrated that feces represented the major elimination route for PFOS while urine was a minor route. Also, PFOS branchial uptake can be substantial despite low concentrations of the compound in water, and elimination through gills should not be neglected. Finally, the enterohepatic cycle is likely to play a minor role in PFOS toxicokinetics. Overall, this PBTK model accurately described PFOS distribution in rainbow trout and provides information on the relative contribution of absorption and elimination pathways.
Collapse
Affiliation(s)
- Alice Vidal
- Irstea, UR RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Marc Babut
- Irstea, UR RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Jeanne Garric
- Irstea, UR RIVERLY, 5 Avenue de la Doua, CS20244, 69625 Villeurbanne Cedex, France
| | - Rémy Beaudouin
- UMR-I 02 SEBIO, Unit of Models for Ecotoxicology and Toxicology (METO), INERIS, 60550 Verneuil en Halatte, France.
| |
Collapse
|
11
|
Zhang Y, Feng J, Gao Y, Liu X, Qu L, Zhu L. Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of Cd and Pb exposure in adult zebrafish Danio rerio: Accumulation and toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:959-968. [PMID: 30965548 DOI: 10.1016/j.envpol.2019.03.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Accurately predicting the accumulation and toxicity of metals in organisms is a challenging work in ecotoxicology. Here, we developed and validated a physiologically based toxicokinetic and toxicodynamic (PBTK-TD) model for adult zebrafish exposed to Cd and Pb. The model included the gill, liver, intestine, gonad, carcass, and brain, which were linked by blood circulation in the PBTK process and by dynamic relationships between the target organ concentrations and mortality in the TD process. Results showed that the PBTK sub-model can accurately describe and predict the uptake, distribution and disposition kinetics of Cd and Pb in zebrafish. The exchange rates and the accumulation of the metals in the organs were significantly different. For Cd, the highest exchange rate was between blood and liver, and the greatest accumulation of Cd occurred in the liver. For Pb, the greatest accumulation occurred in the gill. The TD sub-model further indicated that metal concentrations in the gill may effectively act as more suitable indicator of Cd and Pb toxic effect than whole body or other organs. The proposed PBTK-TD model is helpful to understanding the fundamental processes by which zebrafish regulate the uptake and disposition of metal and to quantitatively predicting metal toxicity.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xinyong Liu
- Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project, Tianjin 300380, China
| | - Liang Qu
- Construction and Administration Bureau of South-to-North Water Diversion Middle Route Project, Tianjin 300380, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Classen E, Schüttrumpf H. Institute of hydraulic engineering and water resources management (RWTH Aachen University): an overview of research focus and training. ENVIRONMENTAL SCIENCES EUROPE 2018; 30:18. [PMID: 29963348 PMCID: PMC5984637 DOI: 10.1186/s12302-018-0146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Water is an essential element and highly valuable resource in life. Between the priorities of environment, people and economy, it is of increasing importance to fully understand the fundamental force of water to be capable of handling waterborne events-such as flooding-manage and ensure water quality and availability, and utilize hydraulic energy. The Institute of Hydraulic Engineering and Water Resources Management (IWW) at RWTH Aachen University has a long research tradition in this field. Going back to the founding year of the university in 1870, the chair is based on the work of civil engineer Otto Intze, who is best known for his pioneering contributions in construction of dams and elevated water tanks. Ever since then, the institute has broadened its research spectrum and is today focusing on flood protection structures, hydraulic engineering design, integrated coastal zone management, morphodynamics and ethohydraulics. In a comprehensive approach, physical model experiments are combined with field measurements and numerical simulations to investigate a wide range of projects. With its annually organized International Symposium on Hydraulic Engineering (IWASA), the institute also offers information to a wide audience on highly topical aspects in the field of water engineering works and water management, while at the same time bridging the gap between science and industry. The institute is part of the "Project House Water", a research network at RWTH Aachen University that was established within the framework of the German excellence initiative. Here, scientific competencies from the fields of ecotoxicology, process engineering, geography, sociology, economy and hydraulic engineering are focussed to allow for an interdisciplinary, holistic assessment of flooding events and their impacts.
Collapse
Affiliation(s)
- Elisa Classen
- Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Strasse 17, 52074 Aachen, Germany
| | - Holger Schüttrumpf
- Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Strasse 17, 52074 Aachen, Germany
| |
Collapse
|
13
|
Crawford SE, Cofalla CBN, Aumeier B, Brinkmann M, Classen E, Esser V, Ganal C, Kaip E, Häussling R, Lehmkuhl F, Letmathe P, Müller AK, Rabinovitch I, Reicherter K, Schwarzbauer J, Schmitt M, Stauch G, Wessling M, Yüce S, Hecker M, Kidd KA, Altenburger R, Brack W, Schüttrumpf H, Hollert H. Project house water: a novel interdisciplinary framework to assess the environmental and socioeconomic consequences of flood-related impacts. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:23. [PMID: 28752018 PMCID: PMC5504220 DOI: 10.1186/s12302-017-0121-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Protecting our water resources in terms of quality and quantity is considered one of the big challenges of the twenty-first century, which requires global and multidisciplinary solutions. A specific threat to water resources, in particular, is the increased occurrence and frequency of flood events due to climate change which has significant environmental and socioeconomic impacts. In addition to climate change, flooding (or subsequent erosion and run-off) may be exacerbated by, or result from, land use activities, obstruction of waterways, or urbanization of floodplains, as well as mining and other anthropogenic activities that alter natural flow regimes. Climate change and other anthropogenic induced flood events threaten the quantity of water as well as the quality of ecosystems and associated aquatic life. The quality of water can be significantly reduced through the unintentional distribution of pollutants, damage of infrastructure, and distribution of sediments and suspended materials during flood events. To understand and predict how flood events and associated distribution of pollutants may impact ecosystem and human health, as well as infrastructure, large-scale interdisciplinary collaborative efforts are required, which involve ecotoxicologists, hydrologists, chemists, geoscientists, water engineers, and socioeconomists. The research network "project house water" consists of a number of experts from a wide range of disciplines and was established to improve our current understanding of flood events and associated societal and environmental impacts. The concept of project house and similar seed fund and boost fund projects was established by the RWTH Aachen University within the framework of the German excellence initiative with support of the German research foundation (DFG) to promote and fund interdisciplinary research projects and provide a platform for scientists to collaborate on innovative, challenging research. Project house water consists of six proof-of-concept studies in very diverse and interdisciplinary areas of research (ecotoxicology, water, and chemical process engineering, geography, sociology, economy). The goal is to promote and foster high-quality research in the areas of water research and flood-risk assessments that combine and build off-laboratory experiments with modeling, monitoring, and surveys, as well as the use of applied methods and techniques across a variety of disciplines.
Collapse
Affiliation(s)
- Sarah E. Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Catrina Brüll nee Cofalla
- Institute for Hydraulic Engineering and Water Management, RWTH Aachen University, Mies van der Rohe-Straße 17, 52074 Aachen, Germany
| | - Benedikt Aumeier
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
- School of the Environment & Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Elisa Classen
- Institute for Hydraulic Engineering and Water Management, RWTH Aachen University, Mies van der Rohe-Straße 17, 52074 Aachen, Germany
| | - Verena Esser
- Department of Geography, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| | - Caroline Ganal
- Institute for Hydraulic Engineering and Water Management, RWTH Aachen University, Mies van der Rohe-Straße 17, 52074 Aachen, Germany
| | - Elena Kaip
- Institute of Sociology, RWTH Aachen University, Eilfschornsteinstrasse 7, 52062 Aachen, Germany
| | - Roger Häussling
- Institute of Sociology, RWTH Aachen University, Eilfschornsteinstrasse 7, 52062 Aachen, Germany
| | - Frank Lehmkuhl
- Department of Geography, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| | - Peter Letmathe
- Chair of Management Accounting, RWTH Aachen University, Templergraben 64, 52062 Aachen, Germany
| | - Anne-Katrin Müller
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ilja Rabinovitch
- Chair of Management Accounting, RWTH Aachen University, Templergraben 64, 52062 Aachen, Germany
| | - Klaus Reicherter
- Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Lochnerstrasse 4-20, 52056 Aachen, Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstrasse 4-20, 52056 Aachen, Germany
| | - Marco Schmitt
- Institute of Sociology, RWTH Aachen University, Eilfschornsteinstrasse 7, 52062 Aachen, Germany
| | - Georg Stauch
- Department of Geography, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
| | - Matthias Wessling
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Süleyman Yüce
- Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
- School of the Environment & Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3 Canada
| | - Karen A. Kidd
- Canadian Rivers Institute and Biology Department, University of New Brunswick, 100 Tucker Park Road, Saint John, NB E2L 4L5 Canada
| | - Rolf Altenburger
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Department of Effect-directed Analysis, Helmholtz Centre for Environmental Research UFZ, Leipzig, Saxony Germany
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research UFZ, Leipzig, Saxony Germany
| | - Werner Brack
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
- Department of Effect-directed Analysis, Helmholtz Centre for Environmental Research UFZ, Leipzig, Saxony Germany
| | - Holger Schüttrumpf
- Institute for Hydraulic Engineering and Water Management, RWTH Aachen University, Mies van der Rohe-Straße 17, 52074 Aachen, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
14
|
Brack W, Dulio V, Ågerstrand M, Allan I, Altenburger R, Brinkmann M, Bunke D, Burgess RM, Cousins I, Escher BI, Hernández FJ, Hewitt LM, Hilscherová K, Hollender J, Hollert H, Kase R, Klauer B, Lindim C, Herráez DL, Miège C, Munthe J, O'Toole S, Posthuma L, Rüdel H, Schäfer RB, Sengl M, Smedes F, van de Meent D, van den Brink PJ, van Gils J, van Wezel AP, Vethaak AD, Vermeirssen E, von der Ohe PC, Vrana B. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:720-737. [PMID: 27810758 PMCID: PMC8281610 DOI: 10.1016/j.scitotenv.2016.10.104] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 05/21/2023]
Abstract
Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment.
Collapse
Affiliation(s)
- Werner Brack
- Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany; RWTH Aachen University, Aachen, Germany.
| | - Valeria Dulio
- Institut National de l'Environnement Industriel et des Risques INERIS, Verneuil-en-Halatte, France
| | - Marlene Ågerstrand
- ACES - Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Ian Allan
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany; RWTH Aachen University, Aachen, Germany
| | | | - Dirk Bunke
- Oeko-Institut e.V. - Institute for Applied Ecology, Freiburg, Germany
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD, NHEERL, Atlantic Ecology Division, Narrangansett, RI, USA
| | - Ian Cousins
- ACES - Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Beate I Escher
- Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany; Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - L Mark Hewitt
- Aquatic Ecosystem Protection Research Division, Environment Canada, Burlington, Ontario, Canada
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | - Juliane Hollender
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Robert Kase
- Swiss Centre for Applied Ecotoxicology, Eawag-EPFL, Dübendorf, Switzerland
| | - Bernd Klauer
- Helmholtz Centre for Environmental Research UFZ, Leipzig, Germany
| | - Claudia Lindim
- ACES - Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Cécil Miège
- IRSTEA - UR MALY, Villeurbanne Cedex, France
| | - John Munthe
- IVL Swedish Environmental Research Institute, Gothenburg, Sweden
| | | | - Leo Posthuma
- National Institute for Public Health and the Environment RIVM, Bilthoven, The Netherlands; Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, The Netherlands
| | - Heinz Rüdel
- Fraunhofer Inst Mol Biol & Appl Ecol IME, Aberg 1, D-57392 Schmallenberg, Germany
| | | | - Manfred Sengl
- Bavarian Environmental Agency, D-86179 Augsburg, Germany
| | - Foppe Smedes
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| | | | - Paul J van den Brink
- Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | | | - Annemarie P van Wezel
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands; Copernicus Institute, Utrecht University, Utrecht, The Netherlands
| | - A Dick Vethaak
- Deltares, Delft, The Netherlands; VU University Amsterdam, Institute for Environmental Studies, Amsterdam, The Netherlands
| | - Etienne Vermeirssen
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | - Branislav Vrana
- Masaryk University, Research Centre for Toxic Compounds in the Environment (RECETOX), Brno, Czech Republic
| |
Collapse
|
15
|
Baali A, Kammann U, Hanel R, El Qoraychy I, Yahyaoui A. Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in three species of fish from Morocco. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:25. [PMID: 27867806 PMCID: PMC5093182 DOI: 10.1186/s12302-016-0093-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/25/2016] [Indexed: 05/26/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAH) are environmental contaminants that pose significant risk to health of fish. Environmental pollution of fish is a topic of rising attention in Morocco. However, only few studies have been carried out so far, describing the potential threat of organic pollution to Moroccan aquatic ecosystem. Two polycyclic aromatic hydrocarbon (PAH) metabolites, 1-hydroxypyrene (1-OH-Pyr) and 1-hydroxyphenanthrene (1-OH-Phen), were identified and quantified from the bile of 18 European eels (Anguilla anguilla), 7 Moray (Muraenidae), and 28 Conger eels (Conger conger) collected from Moulay Bousselham lagoon and Boujdour coast. The bile metabolites were separated by high-performance liquid chromatography with fluorescence detection. The present study aims to compare the levels of PAH metabolites in fish from the lagoon and the open sea and to compare levels of PAH metabolites in different fish species. RESULTS The major metabolite present in all fish was 1-hydroxypyrene (<LOD-15.56 ng/mL) with lower concentration of 1-hydroxyphenanthrene (<LOD-9.6 ng/mL). These concentrations of PAH metabolites are low compared to studies published before. CONCLUSION The data confirm the importance of 1-hydroxypyrene as the key PAH metabolite in fish bile and suggest that the European eel is an ideal species for monitoring PAHs in Moroccan waters. The present study provides valuable information on concentrations of PAH metabolites in fish from Morocco, especially for the first time for Conger eels and Moray.
Collapse
Affiliation(s)
- Ayoub Baali
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| | | | | | - Ikram El Qoraychy
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| | - Ahmed Yahyaoui
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
16
|
Förstner U, Hollert H, Brinkmann M, Eichbaum K, Weber R, Salomons W. Dioxin in the Elbe river basin: policy and science under the water framework directive 2000-2015 and toward 2021. ENVIRONMENTAL SCIENCES EUROPE 2016; 28:9. [PMID: 27752444 PMCID: PMC5044960 DOI: 10.1186/s12302-016-0075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/17/2016] [Indexed: 05/30/2023]
Abstract
A critical review of the last 25 years of dioxin policy in the Elbe river catchment is presented along seven main theses of the River Basin Community (RBC)-Elbe background document "Pollutants" for the Management Plan 2016-2021. In this period, polychlorinated dibenzodioxins/-furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) will play a major role: (i) as new priority substances for which environmental quality standards (EQSs) need to be derived (Directive 2013/39/EC); (ii) in the search for innovative solutions in sediment remediation (i.e., respecting the influence of mechanical processes; Flood Risk Directive 2007/60/EC); and (iii) as indicators at the land-sea interface (Marine Strategy Framework Directive 2008/56/EC). In the Elbe river catchment, aspects of policy and science are closely connected, which became particularly obvious in a classic example of dioxin hot spot contamination, the case of the Spittelwasser creek. Here, the "source-first principle" of the first cycle of the European Water Framework Directive (WFD) had to be confirmed in a controversy on the dioxin hot spots with Saxony-Anhalt's Agency for Contaminated Sites (LAF). At the Spittelwasser site, the move from "inside the creek" to "along the river banks" goes parallel to a general paradigm shift in retrospective risk assessment frameworks and remediation techniques for organic chemicals (Ortega-Calvo et al. 2015). With respect to dioxin, large-scale stabilization applying activated carbon additions is particularly promising. Another important aspect is the assessment of the ecotoxicology of dioxins and dl- PCBs in context of sediment mobility and flood risk assessment, which has been studied in the project framework FloodSearch. Currently, the quality goals of the WFD to reach a "good chemical status" are not met in many catchment areas because substances such as mercury do and others probably will (PCDD/Fs and dl-PCB) exceed biota-EQS values catchment area-wide. So far, relating biota-EQS values to sediment-EQSs is not possible. To overcome these limitations, the DioRAMA project was initiated, which has led to improved approaches for the assessment of dioxin-contaminated sediment using in vitro bioassays and to a robust dataset on the interrelation between dioxins and dioxin-like compounds in sediments and biota.
Collapse
Affiliation(s)
- Ulrich Förstner
- Institute of Environmental Technology and Energy Economics, University of Technology Hamburg-Harburg, Eissendorfer Street, 21071 Hamburg, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt – Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Roland Weber
- POPs Environmental Consulting, Lindenfirststrasse 23, 73527 Schwäbisch Gmünd, Germany
| | - Wim Salomons
- Kromme Elleboog 21, 9751 RB, Haren, Groningen Netherlands
| |
Collapse
|
17
|
Brinkmann M, Schlechtriem C, Reininghaus M, Eichbaum K, Buchinger S, Reifferscheid G, Hollert H, Preuss TG. Cross-Species Extrapolation of Uptake and Disposition of Neutral Organic Chemicals in Fish Using a Multispecies Physiologically-Based Toxicokinetic Model Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1914-23. [PMID: 26794144 DOI: 10.1021/acs.est.5b06158] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The potential to bioconcentrate is generally considered to be an unwanted property of a substance. Consequently, chemical legislation, including the European REACH regulations, requires the chemical industry to provide bioconcentration data for chemicals that are produced or imported at volumes exceeding 100 tons per annum or if there is a concern that a substance is persistent, bioaccumulative, and toxic. For the filling of the existing data gap for chemicals produced or imported at levels that are below this stipulated volume, without the need for additional animal experiments, physiologically-based toxicokinetic (PBTK) models can be used to predict whole-body and tissue concentrations of neutral organic chemicals in fish. PBTK models have been developed for many different fish species with promising results. In this study, we developed PBTK models for zebrafish (Danio rerio) and roach (Rutilus rutilus) and combined them with existing models for rainbow trout (Onchorhynchus mykiss), lake trout (Salvelinus namaycush), and fathead minnow (Pimephales promelas). The resulting multispecies model framework allows for cross-species extrapolation of the bioaccumulative potential of neutral organic compounds. Predictions were compared with experimental data and were accurate for most substances. Our model can be used for probabilistic risk assessment of chemical bioaccumulation, with particular emphasis on cross-species evaluations.
Collapse
Affiliation(s)
| | - Christian Schlechtriem
- Department of Ecotoxicology, Fraunhofer Institute for Molecular Ecology (IME) , Schmallenberg, 57392 Germany
| | | | | | - Sebastian Buchinger
- Department G3: Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BFG) , Koblenz, 56068 Germany
| | - Georg Reifferscheid
- Department G3: Biochemistry and Ecotoxicology, Federal Institute of Hydrology (BFG) , Koblenz, 56068 Germany
| | - Henner Hollert
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210023 China
- College of Resources and Environmental Science, Chongqing University , Chongqing, 400030 China
- Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University , Shanghai, 200092 China
| | | |
Collapse
|
18
|
Brinkmann M, Preuss TG, Hollert H. Advancing In Vitro-In Vivo Extrapolations of Mechanism-Specific Toxicity Data Through Toxicokinetic Modeling. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 157:293-317. [PMID: 27619489 DOI: 10.1007/10_2015_5015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
International legislation, such as the European REACH regulation (registration, evaluation, authorization, and restriction of chemicals), mandates the assessment of potential risks of an ever-growing number of chemicals to the environment and human health. Although this legislation is considered one of the most important investments in consumer safety ever, the downside is that the current testing strategies within REACH rely on extensive animal testing. To address the ethical conflicts arising from these increased testing requirements, decision-makers, such as the European Chemicals Agency (ECHA), are committed to Russel and Burch's 3R principle (i.e., reduction, replacement, refinement) by demanding that animal experiments should be substituted with appropriate alternatives whenever possible. A potential solution of this dilemma might be the application of in vitro bioassays to estimate toxic effects using cells or cellular components instead of whole organisms. Although such assays are particularly useful to assess potential mechanisms of toxic action, scientists require appropriate methods to extrapolate results from the in vitro level to the situation in vivo. Toxicokinetic models are a straightforward means of bridging this gap. The present chapter describes different available options for in vitro-in vivo extrapolation (IVIVE) of mechanism-specific effects focused on fish species and also reviews the implications of confounding factors during the conduction of in vitro bioassays and their influence on the optimal choice of different dose metrics.
Collapse
Affiliation(s)
- Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | | | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
- College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing, 400715, China.
- College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
19
|
Wariaghli F, Kammann U, Hanel R, Yahyaoui A. PAH Metabolites in Bile of European Eel (Anguilla anguilla) from Morocco. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:740-744. [PMID: 26109310 DOI: 10.1007/s00128-015-1586-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Environmental pollution of fish with organic contaminants is a topic of rising attention in Morocco. Polycyclic aromatic hydrocarbons (PAH) are prominent organic contaminants which are rapidly metabolized in fish. Their metabolites are accumulated in the bile fluid and can be used to assess PAH exposure. The two PAH metabolites 1-hydroxypyrene and 1-hydroxyphenanthrene were quantified in European eels (Anguilla anguilla) from two Moroccan river systems by high-performance liquid chromatography with fluorescence detection. Mean values ranged from 52 to 210 ng/mL 1-hydroxypyrene and from 61 to 73 ng/mL 1-hydroxyphenanthrene. The overall concentrations of PAH metabolites in eel from Morocco appeared moderate compared to eel from European rivers and coastal sites. The present study provides first information on concentrations of PAH metabolites in fish from Morocco.
Collapse
Affiliation(s)
- Fatima Wariaghli
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany.
| | - Reinhold Hanel
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767, Hamburg, Germany
| | - Ahmed Yahyaoui
- Laboratory of Zoology and General Biology, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| |
Collapse
|
20
|
Brinkmann M, Freese M, Pohlmann JD, Kammann U, Preuss TG, Buchinger S, Reifferscheid G, Beiermeister A, Hanel R, Hollert H. A physiologically based toxicokinetic (PBTK) model for moderately hydrophobic organic chemicals in the European eel (Anguilla anguilla). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015. [PMID: 26218567 DOI: 10.1016/j.scitotenv.2015.07.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The European eel (Anguilla anguilla) is a facultatively catadromous fish species with a complex life cycle. Its current population status is alarming: recruitment has decreased drastically since the 1980s and its stock is still considered to be outside safe biological limits. Although there is no consensus on the reasons for this situation, it is currently thought to have resulted from a combination of different stressors, including anthropogenic contaminants. To deepen our understanding of the processes leading to the accumulation of lipophilic organic contaminants in yellow eels (i.e. the feeding, continental growth stage), we developed a physiologically based toxicokinetic model using our own data and values from the literature. Such models can predict the uptake and distribution of water-borne organic chemicals in the whole fish and in different tissues at any time during exposure. The predictive power of the model was tested against experimental data for six chemicals with n-octanol-water partitioning coefficient (log Kow) values ranging from 2.13-4.29. Model performance was excellent, with a root mean squared error of 0.28 log units. This model has the potential to help identify suitable habitats for restocking under eel management plans.
Collapse
Affiliation(s)
- Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marko Freese
- Thünen Institute of Fisheries Ecology, Hamburg, Germany
| | | | | | - Thomas G Preuss
- Environmental Biology and Chemodynamics, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Sebastian Buchinger
- Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Koblenz, Germany
| | - Georg Reifferscheid
- Federal Institute of Hydrology (BFG), Department G3: Biochemistry, Ecotoxicology, Koblenz, Germany
| | | | | | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China; College of Resources and Environmental Science, Chongqing University, Chongqing, China; Key Laboratory of Yangtze Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| |
Collapse
|
21
|
Brinkmann M, Eichbaum K, Reininghaus M, Koglin S, Kammann U, Baumann L, Segner H, Zennegg M, Buchinger S, Reifferscheid G, Hollert H. Towards science-based sediment quality standards-Effects of field-collected sediments in rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 166:50-62. [PMID: 26232131 DOI: 10.1016/j.aquatox.2015.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 05/05/2023]
Abstract
Sediments can act as long-term sinks for environmental pollutants. Within the past decades, dioxin-like compounds (DLCs) such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention in the scientific community. To investigate the time- and concentration-dependent uptake of DLCs and PAHs in rainbow trout (Oncorhynchus mykiss) and their associated toxicological effects, we conducted exposure experiments using suspensions of three field-collected sediments from the rivers Rhine and Elbe, which were chosen to represent different contamination levels. Five serial dilutions of contaminated sediments were tested; these originated from the Prossen and Zollelbe sampling sites (both in the river Elbe, Germany) and from Ehrenbreitstein (Rhine, Germany), with lower levels of contamination. Fish were exposed to suspensions of these dilutions under semi-static conditions for 90 days. Analysis of muscle tissue by high resolution gas chromatography and mass spectrometry and of bile liquid by high-performance liquid chromatography showed that particle-bound PCDD/Fs, PCBs and PAHs were readily bioavailable from re-suspended sediments. Uptake of these contaminants and the associated toxicological effects in fish were largely proportional to their sediment concentrations. The changes in the investigated biomarkers closely reflected the different sediment contamination levels: cytochrome P450 1A mRNA expression and 7-ethoxyresorufin-O-deethylase activity in fish livers responded immediately and with high sensitivity, while increased frequencies of micronuclei and other nuclear aberrations, as well as histopathological and gross pathological lesions, were strong indicators of the potential long-term effects of re-suspension events. Our study clearly demonstrates that sediment re-suspension can lead to accumulation of PCDD/Fs and PCBs in fish, resulting in potentially adverse toxicological effects. For a sound risk assessment within the implementation of the European Water Framework Directive and related legislation, we propose a strong emphasis on sediment-bound contaminants in the context of integrated river basin management plans.
Collapse
Affiliation(s)
- Markus Brinkmann
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Kathrin Eichbaum
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Mathias Reininghaus
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sven Koglin
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Ulrike Kammann
- Thünen-Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Lisa Baumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstr. 122, 3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Länggassstr. 122, 3012 Bern, Switzerland
| | - Markus Zennegg
- Swiss Federal Institute for Materials Science and Technology (Empa), Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Sebastian Buchinger
- Department G3: Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BFG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Georg Reifferscheid
- Department G3: Biochemistry, Ecotoxicology, Federal Institute of Hydrology (BFG), Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing 400715, China; College of Environmental Science and Engineering and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|
22
|
Stadnicka-Michalak J, Schirmer K, Ashauer R. Toxicology across scales: Cell population growth in vitro predicts reduced fish growth. SCIENCE ADVANCES 2015; 1:e1500302. [PMID: 26601229 PMCID: PMC4643812 DOI: 10.1126/sciadv.1500302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/19/2015] [Indexed: 05/19/2023]
Abstract
Environmental risk assessment of chemicals is essential but often relies on ethically controversial and expensive methods. We show that tests using cell cultures, combined with modeling of toxicological effects, can replace tests with juvenile fish. Hundreds of thousands of fish at this developmental stage are annually used to assess the influence of chemicals on growth. Juveniles are more sensitive than adult fish, and their growth can affect their chances to survive and reproduce. Thus, to reduce the number of fish used for such tests, we propose a method that can quantitatively predict chemical impact on fish growth based on in vitro data. Our model predicts reduced fish growth in two fish species in excellent agreement with measured in vivo data of two pesticides. This promising step toward alternatives to fish toxicity testing is simple, inexpensive, and fast and only requires in vitro data for model calibration.
Collapse
Affiliation(s)
- Julita Stadnicka-Michalak
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Corresponding author. E-mail: ;
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- ETH (Eidgenössische Technische Hochschule) Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Roman Ashauer
- Environment Department, University of York, Heslington, York YO10 5DD, UK
| |
Collapse
|