1
|
Niu Z, Liu Y, Wang Y, Liu Y, Chai L, Wang H. Impairment of bile acid metabolism and altered composition by lead and copper in Bufo gargarizans tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165901. [PMID: 37524187 DOI: 10.1016/j.scitotenv.2023.165901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Lead (Pb) and copper (Cu) are two common heavy metal contaminants in environments, and liver is recognized as one of the main target organs for toxicity of Pb and Cu in animal organisms. Bile acids play a critical role in regulating hepatic metabolic homeostasis by activating farnesoid X receptor (Fxr). However, there were few studies on the interactions between bile acids and liver pathology caused by heavy metals. In this work, the histopathological changes, targeted metabolome and transcriptome responses in the liver of Bufo gargarizans tadpoles to Pb and/or Cu were examined. We found that exposure to Pb and/or Cu altered the hepatic bile acid profile, resulting in increased hydrophobicity and toxicity of the bile acid pool. And the expression of genes involved in bile acid metabolism and their downstream signaling pathways in the liver were significantly altered by Pb and/or Cu exposure. The alteration of bile acid profiles and the expression of genes related to bile acid metabolism might induce oxidative stress and inflammation, ultimately inducing hepatocyte injury observed in the histological sections. To our knowledge, this is the first study to provide histological, biochemical, and molecular evidence for establishing the link between Pb and Cu exposure, disturbances in hepatic bile acid metabolism, and liver injury.
Collapse
Affiliation(s)
- Ziyi Niu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yaxi Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ying Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Guillante T, Fonseca JDS, Costa PG, Bianchini A, Robaldo RB, Zebral YD. Sex-biased response of pollution biomarkers in fish: Insights from the killifish Poecilia vivipara. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106613. [PMID: 37352752 DOI: 10.1016/j.aquatox.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Copper ions (Cu) are one of the most frequent trace-contaminants found in Brazilian waters and, although considered as an essential element, in high concentrations can accumulate and induce toxicity. Biomarkers are important tools that can be used to assess these impacts, but to be considered trustworthy, they have to be previously tested in target organisms through laboratory studies under controlled conditions. However, many of these experiments are conducted using only males, as it is believed that the hormonal variation of females can bias the results, increasing data variability. Notwithstanding, few studies have actually tested this hypothesis, highlighting the importance of considering and measuring the role of sex in ecotoxicological studies. The aim this study was to evaluate the influence of sex on biomarkers classically used in environmental monitoring programs using the fish Poecilia vivipara as model. For this, females and males were exposed for 96 h to two Cu concentrations (9 and 20 μg/L) and a control group. In liver and gills, Cu accumulation, total antioxidant capacity (TAC) and lipid peroxidation (LPO) were evaluated. In addition, samples of peripheral blood were used for neutrophil to lymphocyte ratio determination, a measure of the onset of secondary stress. Results show that Cu hepatic accumulation did not differ between females and males, but higher levels of this metal were observed in exposed animals compared to control fish. Additionally, interactive effects were observed for hepatic LPO, as males showed elevated oxidative damage in comparison to females. Moreover, Cu exposure elevated hepatic LPO relative to control only in males, but this increase in oxidative damage was not accompanied by changes in liver TAC. On the other hand, differences in branchial Cu accumulation and LPO were not observed. Conversely, control females showed elevated TAC in comparison to control males, but Cu exposure eliminated this difference. Cu exposure also induced an increase in the N:L ratio, indicating the presence of a secondary stress response unrelated to sex. Ultimately, the findings of this study demonstrate that sex can influence the response of biomarkers that are typically used in ecotoxicological investigations in a multifaceted manner. As a result, using animals from a singular sex in such studies may result in consequential outcomes, potentially leading to underestimation or overestimation of results.
Collapse
Affiliation(s)
- Tainá Guillante
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | | | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
3
|
Xue J, Xie L, Liu B, Zhou L, Hu Y, Ajuwon KM, Fang R. Dietary Supplementation of EGF Ameliorates the Negatively Effects of LPS on Early-Weaning Piglets: From Views of Growth Performance, Nutrient Digestibility, Microelement Absorption and Possible Mechanisms. Animals (Basel) 2021; 11:ani11061598. [PMID: 34071588 PMCID: PMC8227379 DOI: 10.3390/ani11061598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study aims to investigate how epidermal growth factor (EGF) attenuates the effect of lipopolysaccharide (LPS) on the growth performance, nutrient digestibility, microelement absorption of early-weaned pigs. A total of 48 early weaned piglets were randomly distributed to four groups consisting of a 2 × 2 factorial design. The main factors were the level of LPS (HLPS = high LPS: 100 μg/kg body weight; ZLPS = low LPS: 0 μg/kg body weight) and EGF (HEGF = high EGF: 2 mg/kg diet; ZEGF = low EGF: 0 mg/kg diet). Each group had four replicates and each replicate consisted of three piglets. The results showed that HLPS level decreased the growth performance and the apparent digestibility of crude fat, while HEGF level increased the average daily feed intake. The concentration of most microelements in the gastrointestinal tract chyme and feces were increased by HLPS level and decreased by HEGF level. The expression levels of most microelement transport-relative genes in the mucosa of gastrointestinal tissues were decreased by HLPS level and increased by HEGF level. In conclusion, dietary EGF could attenuate the negative effect of LPS exposure on the apparent digestibility of crude fat and microelement absorption through changing the expression levels of microelement transport-relative genes. EGF can be used as an additive to increase the essential trace elements absorption in the early weaning piglets. Abstract Epidermal growth factor (EGF) plays an important role in nutrients absorption. However, whether it can be an effective additive to improve the growth performance and nutrients absorption in lipopolysaccharide (LPS) challenged early weaning piglets is still unknown. A 14-days trial was conducted to investigate how EGF attenuates the effect of LPS on the growth performance, nutrient digestibility, microelement absorption of early-weaned pigs, and study the underlying mechanism. A total of 48 early weaned piglets, aged 25 days, were randomly distributed to four groups (control, EGF, LPS and EGF + LPS groups) consisting of a 2 × 2 factorial design. The main factors were the level of LPS (HLPS = high LPS: 100 μg/kg body weight; ZLPS = low LPS: 0 μg/kg body weight) and EGF (HEGF = high EGF: 2 mg/kg diet; ZEGF = low EGF: 0 mg/kg diet). Each group had four replicates and each replicate consisted of three piglets. The results showed that piglets injected with HLPS level significantly decreased the average daily gain (ADG), and significantly increased the feed conversion ratio (FCR) compared with the piglets injected with ZLPS level, while piglets fed HEGF level significantly increased the average daily feed intake (ADFI) compared with the piglets fed ZEGF level (p < 0.05). Piglets injected with HLPS level significantly decreased the apparent digestibility of crude fat compared with the piglets injected with ZLPS level (p < 0.05). Piglets injected with HLPS level significantly increased the concentration of most microelements in the gastrointestinal tract chyme and feces, and significantly decreased the expression levels of most microelement transport-relative genes in the mucosa of gastrointestinal tissues compared with the piglets injected with ZLPS level (p < 0.05). Piglets fed HEGF level significantly decreased the concentration of microelement in the gastrointestinal tract chyme and feces, and significantly increased the expression levels of the microelement transport-relative genes in the mucosa of gastrointestinal tissues compared with the piglets fed ZEGF level (p < 0.05). In conclusion, dietary EGF could attenuate the negative effect of LPS exposure on the apparent digestibility of crude fat and microelement absorption of early-weaning piglets. EGF and LPS influenced the absorption of essential trace element through changing the expression levels of microelement transport-relative genes in the mucosa of gastrointestinal tissues. In the early weaning piglets, EGF can be used as an additive to increase the essential trace elements absorption.
Collapse
Affiliation(s)
- Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Liang Xie
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Bo Liu
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Liyuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Yajun Hu
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Kolapo Matthew Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: ; Tel.: +86-(0)731-8618177
| |
Collapse
|
4
|
Baldissera MD, Souza CF, Barroso DC, Pereira RS, Alessio KO, Bizzi C, Baldisserotto B, Val AL. Acute exposure to environmentally relevant concentrations of copper affects branchial and hepatic phosphoryl transfer network of Cichlasoma amazonarum: Impacts on bioenergetics homeostasis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108846. [PMID: 32777469 DOI: 10.1016/j.cbpc.2020.108846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
The toxic effects of copper (Cu) are linked to dysfunction of metabolism and depletion of adenosine triphosphate (ATP). Nevertheless, the effects related to phosphoryl transfer network, a network of enzymes to precise coupling of the ATP-production and ATP-consuming process for maintenance of bioenergetic, remain unknown. Therefore, the aim of this study was to determine whether the phosphoryl transfer network could be one pathway involved in the bioenergetic imbalance of Cichlasoma amazonarum exposed for 96 h to environmentally relevant concentrations of Cu found in Amazonia water around mines. Branchial mitochondrial creatine kinase (CK) activity was significantly lower in fish exposed to 1500 μg/L Cu than in the control group, while branchial cytosolic CK activity was significantly greater. Branchial (exposed to 750 and 1500 μg/L Cu) and hepatic (exposed to 1500 μg/L Cu) pyruvate kinase (PK) activity was significantly lower in fish exposed to Cu than in the control group. Branchial and hepatic ATP levels were significantly lower in fish exposed to 1500 μg/L than in the control group. Branchial reactive oxygen species (ROS) and lipid peroxidation (LPO) levels were significantly higher in fish exposed to 750 and 1500 μg/L Cu compared to control. Hepatic ROS and LPO levels were significantly higher in fish exposed to 1500 μg/L than in the control group. Branchial and hepatic Cu levels were significantly higher in fish exposed to 1500 μg/L compared to other groups. Exposure to 750 and 1500 μg/L Cu impairs bioenergetics homeostasis, which appears to be mediated by ROS overproduction and lipid peroxidation.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Danilo C Barroso
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Rogério Santos Pereira
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| | - Keiti O Alessio
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Cézar Bizzi
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Adalberto L Val
- LEEM-Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Amazonas, Brazil
| |
Collapse
|
5
|
Zebral YD, da Silva Fonseca J, Roza M, Costa PG, Robaldo RB, Bianchini A. Combining elevated temperature with waterborne copper: Impacts on the energy metabolism of the killifish Poecilia vivipara. CHEMOSPHERE 2020; 253:126631. [PMID: 32302917 DOI: 10.1016/j.chemosphere.2020.126631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
We have previously demonstrated in a companion work that acclimation to 28 °C potentiated waterborne copper (Cu) toxic effects in Poecilia vivipara through oxidative stress-related processes. In the present study, we hypothesized that these results were related to kinetic metabolic adjustments in enzymes from aerobic and anaerobic pathways. To test this, P. vivipara was acclimated to two temperatures (22 °C or 28 °C) for three weeks and then exposed to Cu (control, 9 or 20 μg/L) for 96 h. The activity of enzymes from glycolysis (pyruvate kinase [PK] and lactate dehydrogenase [LDH]), Krebs cycle (citrate synthase [CS]) and the electron transport chain system (ETS) were assessed in gills, liver and muscle. Interactive effects were only seen for hepatic LDH activity, as both metal exposure and heat stress, combined or not, inhibited this enzyme, showing a suppression in anaerobic pathways. Conversely, a Cu main effect was present in the liver, expressed as an elevation in ETS activity, showing an enhancement in hepatic aerobic metabolism likely related with the very energy-demanding process of metal detoxification. Moreover, this study shows that P. vivipara has a remarkable ability to compensate heat stress in terms of energy metabolism, as we could not observe acclimation temperature effects for most of the cases. Nonetheless, a tissue-dependent effect of elevated temperature was observed, as we could observe an inhibition in muscular CS activity. Finally, it is concluded that kinetic adjustments in terms of the energy metabolism are not related with the temperature-dependent elevation of Cu toxicity in P. vivipara as we previously hypothesized.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil.
| | - Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Mauricio Roza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Ricardo Berteaux Robaldo
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
6
|
Copper Homeostasis in Mammals, with Emphasis on Secretion and Excretion. A Review. Int J Mol Sci 2020; 21:ijms21144932. [PMID: 32668621 PMCID: PMC7403968 DOI: 10.3390/ijms21144932] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/17/2023] Open
Abstract
One of the hallmarks of Cu metabolism in mammals is that tissue and fluid levels are normally maintained within a very narrow range of concentrations. This results from the ability of the organism to respond to variations in intake from food and drink by balancing excretion, which occurs mainly via the bile and feces. Although this sounds straightforward and we have already learned a great deal about aspects of this process, the balance between overall intake and excretion occurs over a high background of Cu recycling, which has generally been ignored. In fact, most of the Cu absorbed from the GI tract actually comes from digestive fluids and is constantly “re-used”. A great deal more recycling of Cu probably occurs in the interior, between cells of individual tissues and the fluid of the blood and interstitium. This review presents what is known that is pertinent to understanding these complexities of mammalian Cu homeostasis and indicates where further studies are needed.
Collapse
|
7
|
Pan Y, Ai CX, Zeng L, Liu C, Li WC. Modulation of copper-induced antioxidant defense, Cu transport, and mitophagy by hypoxia in the large yellow croaker (Larimichthys crocea). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:997-1010. [PMID: 31925663 DOI: 10.1007/s10695-020-00765-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the effects of hypoxia on Cu-induced antioxidant defense, Cu transport, and mitophagy in the liver of the large yellow croaker. Fish were exposed to hypoxia (3.0 mg L-1), Cu (120 μg L-1), and hypoxia (3.0 mg L-1) plus Cu (120 μg L-1) for 48 h. Hypoxia exposure increased antioxidant abilities to maintain cellular redox balance. Although Cu exposure alone improved antioxidant defense, Cu transport, and mitophagy, these stress responses could not completely neutralize Cu toxicity, as reflected by the elevated reactive oxygen species (ROS) and lipid peroxidation (LPO) and hepatic vacuoles. When compared with Cu stress alone, hypoxia increased Cu toxicity by inhibiting antioxidant defense, Cu transport, and mitophagy, leading to the increment of mortality, ROS, and LPO, and the deterioration of histological structure. The adverse effects of hypoxia on Cu-induced metal transport and mitophagy might be involved in metal-responsive element-binding transcription factor-1 (MTF-1) and Forkhead box O-3 (FoxO3) signaling pathways, respectively. Overall, hypoxia reduced antioxidant response, Cu transport, and mitophagy in fish exposed to Cu, which contributes to understanding the molecular mechanisms underlying negative effects of hypoxia on Cu toxicity in fish.
Collapse
Affiliation(s)
- Yun Pan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Lin Zeng
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China.
| | - Can Liu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Wen-Cheng Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| |
Collapse
|
8
|
da Silva Fonseca J, de Barros Marangoni LF, Marques JA, Bianchini A. Energy metabolism enzymes inhibition by the combined effects of increasing temperature and copper exposure in the coral Mussismilia harttii. CHEMOSPHERE 2019; 236:124420. [PMID: 31545208 DOI: 10.1016/j.chemosphere.2019.124420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The combined effects of exposure to increasing temperature and copper (Cu) concentrations were evaluated in the zooxanthellate scleractinian coral Mussismilia harttii. Endpoints analyzed included activity of enzymes involved in glycolysis (pyruvate kinase, PK; lactate dehydrogenase, LDH), Krebs cycle (citrate synthase, CS; isocitrate dehydrogenase; IDH), electron transport chain (electron transport system, ETS) and pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH). Coral polyps were kept under control conditions (25.0 ± 0.1 °C; 2.9 ± 0.7 μg/L Cu) or exposed to combined treatments of increasing temperature (26.6 ± 0.1 °C and 27.3 ± 0.1 °C) and concentrations of dissolved Cu (5.4 ± 0.9 and 8.6 ± 0.3 μg/L) for 4 and 12 days using a mesocosm system. PK activity was not affected by stressors. LDH, CS, IDH, ETS and G6PDH activities were temporally inhibited by stressors alone. CS, ETS and G6PDH activities remained inhibited by the combination of stressors after 12 days. Furthermore, all combinations between increasing temperature and exposure Cu were synergistic after prolonged exposure. Taken together, stressors applied alone led to temporary inhibitory effects on energy metabolism enzymes of the coral M. harttii, however, prolonged exposure reveals strong deleterious effects over the metabolism of corals due to the combination of stressors. The present study is the first one to give insights into the combined effects of increasing temperature and Cu exposure in the energy metabolism enzymes of a scleractinian coral. Findings suggest that moderate Cu contamination in future increasing temperature scenarios can be worrying for aerobic and oxidative metabolism of M. harttii.
Collapse
Affiliation(s)
- Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Laura Fernandes de Barros Marangoni
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA, 45807-000, Brazil
| | - Joseane Aparecida Marques
- Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA, 45807-000, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA, 45807-000, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
9
|
Zebral YD, Anni ISA, Junior ASV, Corcini CD, da Silva JC, Caldas JS, Acosta IB, Afonso SB, Bianchini A. Life-time exposure to waterborne copper IV: Sperm quality parameters are negatively affected in the killifish Poecilia vivipara. CHEMOSPHERE 2019; 236:124332. [PMID: 31323547 DOI: 10.1016/j.chemosphere.2019.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 05/15/2023]
Abstract
In previous studies, we have shown that copper (Cu) is significantly accumulated in various tissues of killifish Poecilia vivipara following chronic exposure. Also, we showed that chronic metal exposure disrupted energy production and growth in this species. In the present study, we aimed to evaluate if chronic exposure to this metal could also affect reproductive parameters of P. vivipara males (sperm quality). In order to test that, newborn (<24 h-old) fish were exposed to two concentrations of waterborne Cu (5 and 9 μg/L) for 345 days. After exposure, fish were euthanized and the testes were collected for sperm analysis. We could observe that exposed animals had reduced sperm motility and period of motility. Also, the sperm of exposed fish had reduced plasma membrane integrity, mitochondrial functionality and DNA integrity when compared to sperm of control animals. It is suggested that the well-known association of Cu with elevated oxidative damage, endocrine disruption and energetic disturbance are involved with the observed outcomes. The results obtained in the present study show that chronic exposure to environmentally relevant concentrations of waterborne Cu caused reductions in all parameters used to evaluate sperm quality. Therefore, it is concluded that life-time exposure to this metal may disrupt fish reproduction and negatively affect the maintenance of its populations.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Iuri Salim Abou Anni
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Antonio Sergio Varela Junior
- Programa de Pós-graduação Em Biologia de Ambientes Aquáticos Continentais, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Carine Dahl Corcini
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Faculdade de Veterinária, Universidade Federal Do Rio Grande, Capão Do Leão, Campus Universitário, 96160-000, Pelotas, RS, Brazil
| | - Janaina Camacho da Silva
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Jôsie Shwartz Caldas
- Programa de Pós-graduação Em Biologia de Ambientes Aquáticos Continentais, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Izani Bonel Acosta
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sidnei Braz Afonso
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
10
|
Piazza CE, Mattos JJ, de Toledo-Silva G, Flores-Nunes F, Tadra-Sfeir MZ, Trevisan R, Bittencourt AC, Bícego MC, Taniguchi S, Marques MRF, Dafré AL, Bianchini A, Souza EMD, Bainy ACD. Transcriptional effects in the estuarine guppy Poecilia vivipara exposed to sanitary sewage in laboratory and in situ. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109411. [PMID: 31299475 DOI: 10.1016/j.ecoenv.2019.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The urban growth has increased sanitary sewage discharges in coastal ecosystems, negatively affecting the aquatic biota. Mangroves, one of the most human-affected coastal biomes, are areas for reproduction and nursing of several species. In order to evaluate the effects of sanitary sewage effluents in mangrove species, this study assessed the hepatic transcriptional responses of guppy fish Poecilia vivipara exposed to sanitary sewage 33% (v:v), using suppressive subtraction hybridization (SSH), high throughput sequencing of RNA (Ion-proton) and quantification of transcript levels by qPCR of some identified genes in fish kept in a sewage-contaminated environment. Genes identified are related predominantly to xenobiotic biotransformation, immune system and sexual differentiation. The qPCR results confirmed the induction of cytochrome P450 1A (CYP1A), glutathione S transferase A-like (GST A-like) methyltransferase (MET) and UDP glycosyltransferase 1A (UDPGT1A), and repression of complement component C3 (C3), doublesex and mab-3 related transcription factor 1 (DMRT1), and transferrin (TF) in the laboratory experiment. In the field exposure, the transcript levels of CYP1A, DMRT1, MET, GST A-like and UDPGT1A were higher in fishes exposed at the contaminated sites compared to the reference site. Chemical analysis in fish from the laboratory and in situ experiments, and surface sediment from the sewage-contaminated sites revealed relevant levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCBs) and linear alkylbenzenes (LABs). These data reinforce the use of P. vivipara as a sentinel for monitoring environmental contamination in coastal regions.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | | | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Arnaldo Cechinel Bittencourt
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Maria Risoleta Freire Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Alcir Luiz Dafré
- Laboratory of Cellular Defenses, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Adalto Bianchini
- Department of Physiological Sciences, Federal University of Rio Grande Foundation, Rio Grande, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
11
|
Kwok ML, Chan KM. Functional characterization of copper transporters zCtr1, zAtox1, zAtp7a and zAtp7b in zebrafish liver cell line ZFL. Metallomics 2019; 11:1532-1546. [PMID: 31469368 DOI: 10.1039/c9mt00159j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copper (Cu) is an essential element for all organisms, serving as an enzyme cofactor to maintain cellular activity and vitality. However, Cu homeostasis must be maintained at the physiological and cellular levels as Cu ions can be highly toxic. In mammals, ATP7A is expressed in most tissues, but relatively lower expression is found in the liver, and is responsible for the intestinal uptake of Cu, while ATP7B is highly expressed in the liver, kidneys and placenta, and is responsible for removal of Cu in the liver. CTR1 and ATOX1 are responsible for cellular Cu uptake and intracellular Cu transport, respectively. Here, using a zebrafish liver cell line (ZFL), we studied the cellular functions of four zebrafish Cu transporters. In zebrafish, zAtp7a is expressed mainly in the liver and zAtp7b is expressed mainly in the intestines, different from that of humans which have a high ATP7b level in the liver and high ATP7a level in the intestines. We here found that zctr1 or zatox1 overexpression increased Cu accumulation in ZFL cells. Moreover, zctr1 overexpression made ZFL cells more sensitive to Cu and Zn exposure, and overexpression of zatox1 or zatp7b increased Cu uptake and Cu tolerance in ZFL cells. Overexpression of zatp7a made ZFL cells more sensitive to Zn. Taken together, our findings suggest that zatp7b is responsible for Cu export despite its expression level being much lower than zatp7a in ZFL cells.
Collapse
Affiliation(s)
- Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong.
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong.
| |
Collapse
|
12
|
Abou Anni IS, Zebral YD, Afonso SB, Moreno Abril SI, Lauer MM, Bianchini A. Life-time exposure to waterborne copper III: Effects on the energy metabolism of the killifish Poecilia vivipara. CHEMOSPHERE 2019; 227:580-588. [PMID: 31009864 DOI: 10.1016/j.chemosphere.2019.04.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Copper ions (Cu) are essential to life maintenance, nonetheless, elevated concentrations can be hazardous. Acute and sub-chronic toxic effects of this metal are well known and are usually related to enzymatic inhibition, elevated ROS production and dysfunction of energy metabolism. Despite that, chronic studies are extremely rare. Therefore, the aim of this study was to assess the effects of chronic exposure to 5, 9 and 20 μg/L Cu (28 ad 345 days) on the energy metabolism and survival of the killifish Poecilia vivipara. To accomplish that, we evaluated the activity of enzymes related to aerobic (pyruvate kinase (PK); citrate synthase (CS)) and anaerobic metabolism (lactate dehydrogenase (LDH)) in whole-body (28 days) or in gills, liver and muscle (345 days) of exposed fish. Additionally, whole-body oxygen consumption was evaluated in fish exposed for 28 days and hepatic and muscular expression of genes involved in mitochondrial metabolism (cox I, II and III and atp5a1) was assessed in animals exposed for 345 days. Finally, final survival was evaluated. Following 28 days, Cu did not affect survival neither enzyme activities. However, increased whole-body oxygen consumption was observed in comparison to control condition. After 345 days, 76.8%, 63.9%, 60.9% and 0% survival were observed for control, 5, 9 and 20 μg/L groups, respectively. Animals exposed to 5 and 9 μg/L had a significant reduction in branchial and muscular LDH activity and in hepatic PK activity. Also, exposure to 9 μg/L significantly increased hepatic CS activity. For gene expression, Cu down-regulated muscular cox II (9 μg/L) and III (5 and 9 μg/L), and up-regulated hepatic atp5a1 (9 μg/L). Findings reported in the present study indicate that chronic exposure to Cu induces tissue-specific responses in key aspects of the energetic metabolism. In gills and muscle, Cu leads to reduced energy production through inhibition of anaerobic pathways and mitochondrial respiratory chain. This effect is paralleled by an increased ATP consumption in the liver, characterized by the augmented CS activity and atp5a1 expression. Finally, reduced PK activity indicate that oxidative stress may be involved with the observed outcomes.
Collapse
Affiliation(s)
- Iuri Salim Abou Anni
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sidnei Braz Afonso
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sandra Isabel Moreno Abril
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Mariana Machado Lauer
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
13
|
Anni ISA, Zebral YD, Afonso SB, Jorge MB, Moreno Abril SI, Bianchini A. Life-time exposure to waterborne copper II: Patterns of tissue accumulation and gene expression of the metal-transport proteins ctr1 and atp7b in the killifish Poecilia vivipara. CHEMOSPHERE 2019; 223:257-262. [PMID: 30784733 DOI: 10.1016/j.chemosphere.2019.02.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
The involvement of transporting proteins on copper (Cu) bioaccumulation was evaluated in the killifish Poecilia vivipara chronically exposed to environmentally relevant concentrations of waterborne Cu. Fish (<24 h-old) were maintained under control condition or exposed to different waterborne Cu concentrations (5, 9 and 20 μg/L) for 28 and 345 days in saltwater. Following exposure periods, Cu accumulation and the expression of genes encoding for the high affinity Cu-transporter (ctr1) and the P-type Cu-ATPase (atp7b) were evaluated. Whole-body metal accumulation and gene expression were evaluated in fish exposed to 28 days. Similarly, in fish exposed to 345 days, liver, gills and gut were also evaluated. No fish survival was observed after exposure to 20 μg/L for 345 days. Whole-body Cu accumulation was significantly higher in fish exposed to 20 μg/L Cu for 28 days and in fish exposed to 9 μg/L for 345 days in comparison to control animals. Similarly, tissue Cu accumulation was significantly higher in fish exposed to 9 μg/L for 345 days in comparison to control animal. However, no significant accumulation was observed in fish muscle. Following exposure for 28 days, whole-body ctr1 expression was slightly induced in fish exposed to 9 μg/L. In turn, no significant change in ctr1 expression was observed following exposure to Cu for 345 days. Differently, whole-body atp7b expression was markedly up-regulated in the whole-body of fish exposed Cu for 28 days and in tissues of fish exposed to Cu for 345 days. These findings indicate the expression of atp7b is more responsive to Cu accumulation in P. vivipara than ctr1 expression and, therefore, more suitable to be used as a biomarker of exposure to this metal. Also, we argue that the expression of atp7b is sustained at elevated levels for as much time as fish are maintained in Cu contaminated water.
Collapse
Affiliation(s)
- Iuri Salim Abou Anni
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sidnei Braz Afonso
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Marianna Basso Jorge
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sandra Isabel Moreno Abril
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
14
|
Dornelles Zebral Y, Roza M, da Silva Fonseca J, Gomes Costa P, Stürmer de Oliveira C, Gubert Zocke T, Lemos Dal Pizzol J, Berteaux Robaldo R, Bianchini A. Waterborne copper is more toxic to the killifish Poecilia vivipara in elevated temperatures: Linking oxidative stress in the liver with reduced organismal thermal performance. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:142-149. [PMID: 30776781 DOI: 10.1016/j.aquatox.2019.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
In this study, we measured the interactive effect of temperature (22 °C and 28 °C) and waterborne copper (Cu) contamination (9 μg/L and 20 μg/L) on the killifish Poecilia vivipara. Endpoints analyzed included parameters involved in Cu-accumulation, antioxidant capacity (antioxidant capacity against peroxyl radicals [ACAP] and total antioxidant capacity [TAC]), oxidative damage (lipid peroxidation [LPO]) and upper thermal tolerance (critical thermal maximum [CTMax]). Results show that Cu hepatic accumulation was elevated in 28 °C in comparison to 22 °C in both exposure groups. For gills, this was true only in 20 μg/L. Moreover, hepatic and brachial accumulation were concentration-dependent in both acclimation temperatures. Additionally, Hepatic ACAP and TAC were elevated in animals acclimated to 28 °C and only the animals kept at this temperature had reduced ACAP and TAC levels facing metal exposure (9 and 20 μg/L). Similarly, the combination of elevated temperature and Cu exposure raised hepatic LPO levels. Finally, animals acclimated to 28 °C had higher CTMax levels in comparison to fish acclimated to 22 °C both in control and exposed animals, however, CTMax of contaminated fish were only reduced in comparison to control in animals kept at 28 °C. Concluding, we show that the physiological mechanism besides the potentiating effect of elevated temperature in Cu toxicity is related to higher hepatic and branchial metal accumulation and elevated oxidative stress in the liver, outlined by reduced antioxidant capacity and elevated oxidative damage. We also show that these outcomes lead to compromised organismal performance, characterized by reduced CTMax. Finally, it is concluded that Cu exposure in warmer periods of the year or within global warming predictions may be more hazardous to fish populations.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Mauricio Roza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Caroline Stürmer de Oliveira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Tayndy Gubert Zocke
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Juliana Lemos Dal Pizzol
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil
| | - Ricardo Berteaux Robaldo
- Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Federal de Pelotas, 96010-970, Capão do Leão, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
15
|
Zeng L, Wang YH, Ai CX, Zhang JS. Differential effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker Larimichthys crocea under acute copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:78-87. [PMID: 30193167 DOI: 10.1016/j.ecoenv.2018.08.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to evaluate investigate the effects of β-glucan on oxidative stress, inflammation and copper transport in two intestinal regions of large yellow croaker under acute copper stress. Fish were injected with β-glucan at a dose of 0 or 5 mg kg-1 body weight on 6, 4 and 2 days before exposed to 0 and 368 μg Cu L-1 for 48 h. Biochemical indicators (MDA, Cu content, MTs protein levels, Cu/Zn-SOD, CAT and iNOS activities), gene expressions of oxidative stresses (Cu/Zn-SOD, CAT, Nrf2, MTs and MTF-1), inflammatory responses (NF-κB, iNOS, IL-1β, IL-6 and TNF-α) and Cu transporters (ATP7A, ATP7B and CTR1) were determined. In the anterior intestine, β-glucan increased MTs levels, activities of Cu/Zn-SOD, CAT and iNOS, mRNA levels of MTs, CAT, iNOS, ATP7A and ATP7B, and reduced Cu content and CTR1 gene expression to inhibite Cu-induced MDA. But β-glucan had no effect on inflammatory gene expressions. In the mid intestine, β-glucan increased activities of Cu/Zn-SOD and iNOS, mRNA levels of Cu/Zn-SOD, CAT and iNOS to maintain MDA content. However, unlike the anterior intestine, β-glucan had no effect on Cu transporter gene expressions. Furthermore, transcription factors (Nrf2, NF-κB and MTF-1) paralleled with their target genes in the mid intestine, but no correlation was observed between NF-κB and IL-1β and TNF-α gene expressions in the anterior intestine. In conclusion, our results unambiguously showed that β-glucan induced oxidative stress, inflammation and copper transport were varied between the anterior and mid intestines of fish under Cu stress.
Collapse
Affiliation(s)
- Lin Zeng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yong-Hong Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chun-Xiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Jian-She Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
16
|
Nogueira LS, Bianchini A. Disturbance in Na + regulation in cells rich in mitochondria isolated from gills of the yellow clam Mesodesma mactroides exposed to copper under different osmotic conditions. MARINE ENVIRONMENTAL RESEARCH 2018; 140:152-159. [PMID: 29929735 DOI: 10.1016/j.marenvres.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Cells rich in mitochondria were isolated from gills of the seawater clam Mesodesma mactroides, incubated in isosmotic saline solution (840 mOsmol/kg H2O), and exposed (3 h) to environmentally realistic Cu concentrations (nominally: 0, 5, 9 and 20 μg/L). In cells exposed to 20 μg Cu/L, Cu accumulation, Na+ content reduction and carbonic anhydrase (CA) activity inhibition were observed, without significant changes in cell viability and Na+,K+-ATPase (NKA) activity. In the absence of Cu, cell viability and Cu content were reduced in hyposmotic media respect with the control, without changes in Na+ content and enzyme (CA and NKA) activities. In the presence of 5 or 9 μg/L Cu, cell Cu content was increased, especially at 670 mOsmol/kg H2O. Cell Na+ content and NKA activity were reduced after exposure to 20 μg/L Cu at 670 mOsmol/kg H2O. In turn, CA activity was dependent on Cu concentration, being significantly reduced in cells exposed to 9 and 20 μg/L Cu in both hyposmotic conditions. These findings indicate that Cu also negatively affects Na+ regulation in gill cells of the seawater clam M. mactroides, with Cu toxicity increasing at hyposmotic conditions. Also, they indicate that physiology is more important than water chemistry in predicting Cu toxicity in environments of changing salinity, pointing out CA activity as a potential biomarker of Cu exposure.
Collapse
Affiliation(s)
- Lygia S Nogueira
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.
| | - Adalto Bianchini
- Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ciências Fisiológicas, Av. Itália km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Zebral YD, Anni ISA, Afonso SB, Abril SIM, Klein RD, Bianchini A. Effects of life-time exposure to waterborne copper on the somatotropic axis of the viviparous fish Poecilia vivipara. CHEMOSPHERE 2018; 203:410-417. [PMID: 29631113 DOI: 10.1016/j.chemosphere.2018.03.202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/21/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
Reduced fish growth following chronic exposure to dissolved copper (Cu) is well reported in the literature. Nevertheless, information on the mechanism(s) involved in this process is scarce. Therefore, we evaluated growth, gene expression and concentrations of proteins related to growth regulation in the viviparous guppy Poecilia vivipara chronically exposed to dissolved Cu. Newborn (<24 h after birth) fish were kept under control conditions or exposed to environmentally relevant concentrations of Cu (5 and 9 μg/L) in salt water (24 ppt) for 345 days. After exposure, fish growth was evaluated based on body weight and length. Also, growth hormone (gh) mRNA expression was evaluated in brain, while growth hormone receptor 1 (ghr1) and 2 (ghr2) mRNA expressions were analyzed in brain, skeletal muscle and liver. In turn, insulin-like growth factor 1 (igf1) and 2 (igf2) mRNA expressions were evaluated in skeletal muscle and liver. Additionally, Gh concentration was assessed in brain, while Ghr concentration was evaluated in skeletal muscle and liver. Exposure to 9 μg/L Cu reduced fish body weigh and length. Metal exposure affected mRNA expression only in skeletal muscle. Reduced ghr2 mRNA expression was observed in guppies exposed to 5 and 9 μg/L Cu. Additionally, reduced igf1 and igf2 mRNA expressions were observed in guppies exposed to 9 μg/L Cu. However, no significant change in Ghr concentration was observed. The reduced ghr2 mRNA expression suggests that chronic Cu exposure induced an insensitivity of the skeletal muscle to Gh, thus resulting in reduced igf1 and igf2 mRNA expression which lead to reduced fish growth. These findings indicate that chronic exposure to dissolved Cu disrupts the somatotropic axis regulation, thus helping to elucidate the mechanism underlying the Cu-dependent inhibition of growth observed in the viviparous fish P. vivipara.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Iuri Salim Abou Anni
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sidnei Braz Afonso
- Curso de Graduação Em Ciências Biológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sandra Isabel Moreno Abril
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Roberta Daniele Klein
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação Em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
18
|
Li H, Su B, Qin G, Ye Z, Elaswad A, Alsaqufi A, Perera DA, Qin Z, Odin R, Vo K, Drescher D, Robinson D, Dong S, Zhang D, Shang M, Abass N, Das SK, Bangs M, Dunham RA. Repressible Transgenic Sterilization in Channel Catfish, Ictalurus punctatus, by Knockdown of Primordial Germ Cell Genes with Copper-Sensitive Constructs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:324-342. [PMID: 29679251 DOI: 10.1007/s10126-018-9819-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Repressible knockdown approaches were investigated to manipulate for transgenic sterilization in channel catfish, Ictalurus punctatus. Two primordial germ cell (PGC) marker genes, nanos and dead end, were targeted for knockdown and an off-target gene, vasa, was monitored. Two potentially copper-sensitive repressible promoters, yeast ctr3 (M) and ctr3-reduced (Mctr), were coupled with four knockdown strategies separately including: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos, full-length cDNA sequence of channel catfish nanos for overexpression (cDNA), and ds-sh RNA-targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with copper sulfate as the repressor compound. Spawning rates of full-sibling P1 fish exposed or not exposed to the constructs as treated and untreated embryos were 85 and 54%, respectively, indicating potential sterilization of fish and repression of the constructs. In F1 fish, mRNA expressions of PGC marker genes for most constructs were downregulated in the untreated group and the knockdown was repressed in the treated group. Gonad development in transgenic, untreated F1 channel catfish was reduced compared to non-transgenic fish for MctrN2, MN1, MN2, and MDND. For 3-year-old adults, gonad size in the transgenic untreated group was 93.4% smaller than the non-transgenic group for females and 92.3% for males. However, mean body weight of transgenic females (781.8 g) and males (883.8 g) was smaller than of non-transgenic counterparts (984.2 and 1254.3 g) at 3 years of age, a 25.8 and 41.9% difference for females and males, respectively. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but negative pleiotropic effects can result.
Collapse
Affiliation(s)
- Hanbo Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- National and Local United Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Harbin, 150070, China
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ahmed Alsaqufi
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Aquaculture and Animal Production, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Dayan A Perera
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Research and Development Corporation, Gus R. Douglass Institute, West Virginia State University, Institute, WV, 25112, USA
| | - Zhenkui Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ramji Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - David Drescher
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dalton Robinson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sheng Dong
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dan Zhang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Mei Shang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- National and Local United Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Harbin, 150070, China
| | - Nermeen Abass
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Sanjay K Das
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
19
|
Moreno Abril SI, Dalmolin C, Costa PG, Bianchini A. Expression of genes related to metal metabolism in the freshwater fish Hyphessobrycon luetkenii living in a historically contaminated area associated with copper mining. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:146-156. [PMID: 29723715 DOI: 10.1016/j.etap.2018.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Copper (Cu) mining in Minas do Camaquã-Brazil, released significant amounts of metals into the João Dias creek, where Hyphessobrycon luetkenii inhabit. Because the involvement of Cu in biological processes its concentration and availability is regulated by molecules as the metal regulatory transcription factor (MTF-1), metallothionein (MT) and transporters (ATP7A and CTR1). These genes were whole sequenced and their expression (GE) evaluated in gills, liver and intestine. Were collected fish in non-contaminated and contaminated (Cu 3.4-fold higher) sites of the creek (CC and PP) and respectively translocated (CP and PC) for 96 h. The GE of the non-translocated groups evidenced that MT, MTF-1 and CTR1 have organ specific differences between both communities. Additionally the translocation allowed to identify organ specific changes associated with the activation/inactivation of protective mechanisms. These findings indicate that MTF-1, MT and CTR-1 GE play an important role in the tolerance of H. luetkenii to Cu contamination.
Collapse
Affiliation(s)
- Sandra Isabel Moreno Abril
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil.
| | - Camila Dalmolin
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| |
Collapse
|
20
|
Zhou Y, Wei F, Zhang W, Guo Z, Zhang L. Copper bioaccumulation and biokinetic modeling in marine herbivorous fish Siganus oramin. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 196:61-69. [PMID: 29334673 DOI: 10.1016/j.aquatox.2018.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Marine herbivorous fish directly consume macroalgae, which commonly accumulate high levels of trace metals in polluted areas. We proposed that herbivorous fish could be better candidates for biomonitoring marine metal pollution than carnivorous fish. To date, the trophic transfer of Cu from macroalgae to marine herbivorous fish is unclear. In this study, the kinetics of Cu bioaccumulation in a widespread marine herbivorous fish, Siganus oramin, were investigated, and biokinetic modeling was applied to estimate the Cu levels in the fish sampled from different sites and seasons. The results showed that Cu accumulation in the fish was linearly correlated to the dietary Cu levels in the different prey species, which were proportional to the waterborne Cu concentrations. The Cu found in the subcellular trophically available metal fraction (TAM) in the prey contributed the largest proportion of accumulated Cu in S. oramin. The dietary assimilation efficiencies (AEs) of Cu were 15.56 ± 1.76%, 13.42 ± 2.86%, and 21.36 ± 1.47% for Ulva lactuca, Gracilaria lemaneiformis and Gracilaria gigas, respectively. The calculated waterborne uptake rate constant (ku) of Cu was 0.023 ± 0.011 L g-1 d-1, and the efflux rate constant (ke) was 0.055 ± 0.021 d-1. Dietary Cu accounted for 60%-75% of the body Cu in S. oramin, suggesting that dietary uptake could be the primary route for Cu bioaccumulation in herbivorous fish. The biokinetic model demonstrated that the Cu concentrations in the water and fish presented a positive linear relationship, which was in line with our field investigation along the coastal areas of South China. Therefore, we suggested that S. oramin could be used as a biomonitoring organism for Cu pollution in the marine environment. However, the heterogeneities between the predicted levels and the measured levels of Cu implied that seasonal changes should be taken into account to improve the accuracy of the model.
Collapse
Affiliation(s)
- Yanyan Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fangsan Wei
- Key Laboratory for Exploitation and Utilization of Marine Fisheries Resources in the South China Sea, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Wei Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
21
|
Holt WV. Exploitation of Non-mammalian Model Organisms in Epigenetic Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:155-173. [DOI: 10.1007/978-3-319-62414-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Zhou Y, Zhang W, Guo Z, Zhang L. Effects of salinity and copper co-exposure on copper bioaccumulation in marine rabbitfish Siganus oramin. CHEMOSPHERE 2017; 168:491-500. [PMID: 27865883 DOI: 10.1016/j.chemosphere.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Marine fish living in estuaries and coastal areas commonly encounter the stress of both salinity and metal pollution. In this study, euryhaline rabbitfish Siganus oramin were exposed to 50 μg L-1 waterborne Cu or 300 μg g-1 dry wt dietary Cu at salinity 33‰, 25‰, 20‰, 10‰, and 5‰ for 30 days. The Cu accumulation in the liver (>20-fold increase) and intestine (>5-fold increase) significantly increased after either waterborne or dietary Cu acclimation. Moreover, Cu accumulation was further enhanced in the liver, intestine, plasma, and whole body of Cu-exposed fish at lower salinities. Similarly, the waterborne Cu uptake rate constants (kus) were stable in the control at different salinities but increased significantly (2-4 times higher) after waterborne Cu exposure. Conversely, the dietary Cu assimilation efficiencies (AEs) were significantly lower in the dietary Cu-exposed fish (3-5%) than in the control fish (8-16%) at different salinities, suggesting that dietary Cu acclimation partially alleviated the dietary Cu uptake from the high-Cu diet. The Cu efflux rate constants (kes) were comparable among all treatments as 0.060-0.071 d-1. The changes of Cu accumulation by different salinities and Cu exposure were well estimated by the biokinetic modeling. In summary, the present study indicates that rabbitfish can regulate Cu uptake and accumulation when acclimated to different salinities, but the Cu-exposed rabbitfish failed to prevent the elevation of Cu accumulation at low salinities. It therefore suggested that the concurrence of low salinity and high Cu exposure enhances the risks of Cu bioaccumulation and toxicity in rabbitfish.
Collapse
Affiliation(s)
- Yanyan Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhiqiang Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
23
|
Chen F, Luo Z, Fan YF, Wu K, Pan YX, Liu X, Zhang LH, Song YF. Five metal elements homeostasis-related genes in Synechogobius hasta: Molecular characterization, tissue expression and transcriptional response to Cu and Fe exposure. CHEMOSPHERE 2016; 159:392-402. [PMID: 27323292 DOI: 10.1016/j.chemosphere.2016.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Two isoforms of Cu transporter (CTR1 and CTR2) and metallothionein (MT1 and MT2), and divalent metal ion transporter 1 (DMT1) were cloned and characterized in Synechogobius hasta, respectively. The protein sequences of S. hasta CTRs possessed two methionine-rich regions (MxM and MxxxM) and three transmembrane regions. At the C-terminus, CTR1 contained a sequence of conserved cysteine and histidine residues (HCH), while CTR2 did not contain the conserved sequence. The protein sequence of S. hasta DMT1 possessed all the characteristic features of DMT1, including twelve conserved hydrophobic cores of transmembrane domains. The protein sequences of S. hasta MTs were highly conserved in the total number of cysteine residues and their locations. mRNA of the five genes were expressed in a wide range of tissues but the levels were relatively higher in the liver. Cu exposure tended to up-regulate the mRNA expressions of CTR2, DMT1, MT1 and MT2. However, Fe down-regulated the Cu-induced increase of CTR2 and DMT1 mRNA levels. For the first time, our study cloned and characterized CTR1, CTR2, DMT1, MT1 and MT2 genes in S. hasta and determined their tissue-specific expression, and also the transcriptional change by Cu and Fe exposure, which shed new light on the CuFe relationship and help to understand the basic mechanisms of Cu and Fe homeostasis in fish.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Yao-Fang Fan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- Postgraduate Research Base, Panjin Guanghe Fishery Co. Ltd., Panjin 124200, China
| | - Li-Han Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Lasienė K, Straukas D, Vitkus A, Juodžiukynienė N. The influence of copper sulphate pentahydrate (CuSO4·5H2O) on the embryo development in the guppies (Poecilia reticulata). ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1080/1828051x.2016.1209990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kristina Lasienė
- Histologijos ? embriologijos katedra, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daumantas Straukas
- Histologijos ? embriologijos katedra, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aleksandras Vitkus
- Histologijos ? embriologijos katedra, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Nomeda Juodžiukynienė
- Histologijos ? embriologijos katedra, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
25
|
Glover CN, Urbina MA, Harley RA, Lee JA. Salinity-dependent mechanisms of copper toxicity in the galaxiid fish, Galaxias maculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:199-207. [PMID: 26966874 DOI: 10.1016/j.aquatox.2016.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
The euryhaline galaxiid fish, inanga (Galaxias maculatus) is widely spread throughout the Southern hemisphere occupying near-coastal streams that may be elevated in trace elements such as copper (Cu). Despite this, nothing is known regarding their sensitivity to Cu contamination. The mechanisms of Cu toxicity in inanga, and the ameliorating role of salinity, were investigated by acclimating fish to freshwater (FW), 50% seawater (SW), or 100% SW and exposing them to a graded series of Cu concentrations (0-200μgL(-1)) for 48h. Mortality, whole body Cu accumulation, measures of ionoregulatory disturbance (whole body ions, sodium (Na) influx, sodium/potassium ATPase activity) and ammonia excretion were monitored. Toxicity of Cu was greatest in FW, with mortality likely resulting from impaired Na influx. In both FW and 100% SW, ammonia excretion was significantly elevated, an effect opposite to that observed in previous studies, suggesting fundamental differences in the effect of Cu in this species relative to other studied fish. Salinity was protective against Cu toxicity, and physiology seemed to play a more important role than water chemistry in this protection. Inanga are sensitive to waterborne Cu through a conserved impairment of Na ion homeostasis, but some effects of Cu exposure in this species are distinct. Based on effect concentrations, current regulatory tools and limits are likely protective of this species in New Zealand waters.
Collapse
Affiliation(s)
- Chris N Glover
- School of Biological Sciences, University of Canterbury, New Zealand; Faculty of Science and Technology, Athabasca University, Alberta, Canada.
| | - Mauricio A Urbina
- School of Biological Sciences, University of Canterbury, New Zealand; Departamento de Zoología, Universidad de Concepción, Chile
| | - Rachel A Harley
- School of Biological Sciences, University of Canterbury, New Zealand
| | - Jacqueline A Lee
- School of Biological Sciences, University of Canterbury, New Zealand
| |
Collapse
|