1
|
Pinto B, Correia D, Conde T, Faria M, Oliveira M, Domingues MDR, Domingues I. Impact of chronic fluoxetine exposure on zebrafish: From fatty acid profile to behavior. CHEMOSPHERE 2024; 366:143387. [PMID: 39362381 DOI: 10.1016/j.chemosphere.2024.143387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Bruno Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago Conde
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Melissa Faria
- IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria do Rosário Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Fergusson KN, Tanner JL, Brand JA, Hannington SL, Pettersen AK, Sundin J, Saaristo M, Bertram MG, Martin JM, Wong BBM. Effects of long-term fluoxetine exposure on morphology, but not behaviour or metabolic rate, in male guppies (Poecilia reticulata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107082. [PMID: 39270523 DOI: 10.1016/j.aquatox.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Contamination of aquatic ecosystems by pharmaceuticals is a growing threat worldwide. The antidepressant fluoxetine is one such pharmaceutical that is frequently detected in aquatic ecosystems, and has been found to alter the behaviour and physiology of exposed wildlife. Few studies, however, have investigated potential combined effects on behaviour and metabolic rate. In addition, exposures are often short in duration and rarely conducted under ecologically relevant conditions. Here, we examined the impacts of long-term fluoxetine exposure on boldness (exploration, activity, and antipredator behaviour), metabolic rate, and morphology in male guppies (Poecilia reticulata). Specifically, fish were exposed for 8 months (corresponding to approximately two overlapping generations) in semi-natural mesocosms to one of three treatments: an unexposed control (0 ng L-1), or low or high fluoxetine (mean measured concentrations: 30 ng L-1 and 292 ng L-1, respectively). Following exposure, we quantified male exploratory behaviour and activity in a novel environment (maze arena) and antipredator behaviour in the presence or absence of a live predator (spangled perch, Leiopotherapon unicolor), as well as metabolic rate and morphology (mass, standard length, and scaled mass index). Fluoxetine exposure did not significantly alter boldness, metabolic rate, mass, or standard length. However, fluoxetine exposure did alter body condition, whereby fish in the high treatment had a higher scaled mass index than control fish. Our results, considered alongside previous work, underscore the importance of exposure duration in mediating the effects of fluoxetine on fitness-related traits. Continued research under extended exposure periods (i.e., spanning multiple generations) is essential if we are to accurately predict the ecological impacts of fluoxetine on exposed wildlife, and their underlying mechanism(s).
Collapse
Affiliation(s)
- Kate N Fergusson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - James L Tanner
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| | - Jack A Brand
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | | | - Amanda K Pettersen
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Josefin Sundin
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Environment Protection Authority Victoria, EPA Science, Macleod, Victoria, Australia.
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; Department of Zoology, Stockholm University, Stockholm, Sweden; School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, Australia.
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Saran A, Singh S, Gupta N, Walke SC, Rao R, Simiyu C, Malhotra S, Mishra A, Puskur R, Masset E, White H, Waddington HS. Interventions promoting resilience through climate smart agricultural practices for women farmers: A systematic review. CAMPBELL SYSTEMATIC REVIEWS 2024; 20:e1426. [PMID: 39193393 PMCID: PMC11347864 DOI: 10.1002/cl2.1426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Background Climate change poses a significant threat to agricultural production worldwide, with developing countries being particularly vulnerable to its negative impacts. Agriculture, which is a crucial factor in ensuring food security and livelihoods, is particularly vulnerable to changes in climate patterns, such as increased temperatures, drought, and extreme weather events. One approach to addressing these challenges is by promoting the adoption of climate-smart agriculture (CSA) practices among farmers. CSA combines traditional agricultural practices with innovative techniques and technologies to adapt to and mitigate the impacts of climate change. infrastructure. By adopting CSA practices, farmers can enhance their resilience to climate variability and improve their productivity. Objectives This review examines the effectiveness of interventions promoting CSA to enhance farmers' knowledge of the benefits of CSA approaches, subsequent adoption of CSA, and disadoption of harmful agricultural practices in low- and middle-income countries (LMICs). Search Methods We searched 39 academic and online databases, websites, and repositories and screened over 19,000 experimental and quasi-experimental publications to identify studies promoting CSA practices to women farmers. We conducted a citation tracking process on included studies and contacted experts to ensure a thorough search. Selection Criteria The review focused on studies that included interventions promoting climate-smart agricultural approaches. Using EPPI Reviewer 4, two review authors independently screened the impact evaluation using a standardized screening tool. Data Collection and Analysis Information about participant characteristics, intervention characteristics, control conditions, research design, sample size, bias risk, outcomes, and results were gathered. Data collection and quantitative analysis were conducted using standard Campbell Collaboration methods. Main Results Eight impact evaluations were found (two randomized controlled trials) evaluating the effects of CSA practices on farmer's knowledge gains of the benefits of CSA practices and subsequent adoption. Knowledge dissemination approaches such as Farmer Field Schools and weather and climate information services were found to positively impact farmers' knowledge and adoption of specific CSA practices. However, the evidence supporting this claim is uncertain as a high risk of bias was assessed for five of the eight included studies. However, we found no effects on the disadoption of harmful practices such as pesticide overuse. Authors' Conclusions The evidence base for studies promoting climate-smart agricultural approaches (CSA) to farmers in LMICs is small, and there is a lack of studies reporting sex-disaggregated data and studies explicitly targeting women farmers. The review suggests that knowledge dissemination techniques are significantly effective in improving CSA knowledge and adoption, including integrated pest management techniques and their benefits, adoption of climate-resilient rice seed varieties (STRVs), and use of botanical pesticides by farmers. More and better confidence studies are needed to inform policy and programming, including those that look at a wider range of interventions, including changing norms, values, and institutional arrangements.
Collapse
|
4
|
Pinto B, Correia D, Conde T, Faria M, Oliveira M, Domingues MDR, Domingues I. Impact of chronic fluoxetine exposure on zebrafish: From fatty acid profile to behavior. CHEMOSPHERE 2024; 357:142026. [PMID: 38615959 DOI: 10.1016/j.chemosphere.2024.142026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The consumption of antidepressants, such as fluoxetine, has increased over the years and, as a result, they are increasingly found in aquatic systems. Given the increasing use of zebrafish as an animal model in toxicological studies, this work proposed to evaluate the effects of chronic exposure, for 21 days, to fluoxetine at environmentally relevant concentrations (1, 10, 100, and 1000 ng/L). The behavioral tests performed did not reveal significant effects of fluoxetine. However, oxidative stress and changes in energy metabolism were detected after exposure to the highest concentrations of fluoxetine tested, namely a decrease in glutathione S-transferase (GST) activity (decrease of ca. 31%), increase in catalase (CAT) activity (increase of ca. 71%), and decrease in lactate dehydrogenase (LDH) activity (decrease of ca. 53%). Analysis of the fatty acid profile (FA) revealed a decrease in the omega-3 FA, docosahexaenoic acid (DHA), C22:6 (decrease in relative abundance between 6% and 8% for both the head and body), an increase in omega-6 FA, linoleic acid (LA), C18:2, (increased relative abundance between 8% and 11% in the head and between 5% and 9% in the body), which may suggest changes in the inflammatory state of these organisms. The integrated analysis adopted proved to be useful in detecting subindividual effects of fluoxetine and modes of action in fish.
Collapse
Affiliation(s)
- Bruno Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago Conde
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Melissa Faria
- IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria do Rosário Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal; Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Santiago University Campus, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
5
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
6
|
Correia D, Bellot M, Goyenechea J, Prats E, Moro H, Gómez-Canela C, Bedrossiantz J, Tagkalidou N, Ferreira CSS, Raldúa D, Domingues I, Faria M, Oliveira M. Parental exposure to antidepressants has lasting effects on offspring? A case study with zebrafish. CHEMOSPHERE 2024; 355:141851. [PMID: 38579950 DOI: 10.1016/j.chemosphere.2024.141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Fish have common neurotransmitter pathways with humans, exhibiting a significant degree of conservation and homology. Thus, exposure to fluoxetine makes fish potentially susceptible to biochemical and physiological changes, similarly to what is observed in humans. Over the years, several studies demonstrated the potential effects of fluoxetine on different fish species and at different levels of biological organization. However, the effects of parental exposure to unexposed offspring remain largely unknown. The consequences of 15-day parental exposure to relevant concentrations of fluoxetine (100 and 1000 ng/L) were assessed on offspring using zebrafish as a model organism. Parental exposure resulted in offspring early hatching, non-inflation of the swimming bladder, increased malformation frequency, decreased heart rate and blood flow, and reduced growth. Additionally, a significant behavioral impairment was also found (reduced startle response, basal locomotor activity, and altered non-associative learning during early stages and a negative geotaxis and scototaxis, reduced thigmotaxis, and anti-social behavior at later life stages). These behavior alterations are consistent with decreased anxiety, a significant increase in the expression of the monoaminergic genes slc6a4a (sert), slc6a3 (dat), slc18a2 (vmat2), mao, tph1a, and th2, and altered levels of monoaminergic neurotransmitters. Alterations in behavior, expression of monoaminergic genes, and neurotransmitter levels persisted until offspring adulthood. Given the high conservation of neuronal pathways between fish and humans, data show the possibility of potential transgenerational and multigenerational effects of pharmaceuticals' exposure. These results reinforce the need for transgenerational and multigenerational studies in fish, under realistic scenarios, to provide realistic insights into the impact of these pharmaceuticals.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Eva Prats
- Center for Research and Development, Spanish National Research Council (CSIC), Spain.
| | - Hugo Moro
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Juliette Bedrossiantz
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Niki Tagkalidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Greece.
| | - Carla S S Ferreira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Melissa Faria
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Zhang Q, Xue Y, Wei K, Wang H, Ma Y, Wei Y, Fan Y, Gao L, Yao H, Wu F, Ding X, Zhang Q, Ding J, Fan Y, Lu M, Hu G. Locus Coeruleus-Dorsolateral Septum Projections Modulate Depression-Like Behaviors via BDNF But Not Norepinephrine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303503. [PMID: 38155473 PMCID: PMC10933643 DOI: 10.1002/advs.202303503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Locus coeruleus (LC) dysfunction is involved in the pathophysiology of depression; however, the neural circuits and specific molecular mechanisms responsible for this dysfunction remain unclear. Here, it is shown that activation of tyrosine hydroxylase (TH) neurons in the LC alleviates depression-like behaviors in susceptible mice. The dorsolateral septum (dLS) is the most physiologically relevant output from the LC under stress. Stimulation of the LCTH -dLSSST innervation with optogenetic and chemogenetic tools bidirectionally can regulate depression-like behaviors in both male and female mice. Mechanistically, it is found that brain-derived neurotrophic factor (BDNF), but not norepinephrine, is required for the circuit to produce antidepressant-like effects. Genetic overexpression of BDNF in the circuit or supplementation with BDNF protein in the dLS is sufficient to produce antidepressant-like effects. Furthermore, viral knockdown of BDNF in this circuit abolishes the antidepressant-like effect of ketamine, but not fluoxetine. Collectively, these findings underscore the notable antidepressant-like role of the LCTH -dLSSST pathway in depression via BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Qian Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - You Xue
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Ke Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hao Wang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yuan Ma
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yao Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yi Fan
- Department of NeurologyAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjing210024China
| | - Lei Gao
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hang Yao
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Fangfang Wu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Xin Ding
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Qingyu Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Jianhua Ding
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Yi Fan
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Ming Lu
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Gang Hu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| |
Collapse
|
8
|
Adel MR, Antón-Galindo E, Gago-Garcia E, Arias-Dimas A, Arenas C, Artuch R, Cormand B, Fernàndez-Castillo N. Decreased Brain Serotonin in rbfox1 Mutant Zebrafish and Partial Reversion of Behavioural Alterations by the SSRI Fluoxetine. Pharmaceuticals (Basel) 2024; 17:254. [PMID: 38399469 PMCID: PMC10891829 DOI: 10.3390/ph17020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
RBFOX1 functions as a master regulator of thousands of genes, exerting a pleiotropic effect on numerous neurodevelopmental and psychiatric disorders. A potential mechanism by which RBFOX1 may impact these disorders is through its modulation of serotonergic neurotransmission, a common target for pharmacological intervention in psychiatric conditions linked to RBFOX1. However, the precise effects of RBFOX1 on the serotonergic system remain largely unexplored. Here we show that homozygous rbfox1sa15940 zebrafish, which express a shorter, aberrant rbfox1 mRNA, have significantly reduced serotonin levels in telencephalon and diencephalon. We observed that the acute administration of fluoxetine partially reverses the associated behavioural alterations. The hyperactive phenotype and altered shoaling behaviour of the rbfox1sa15940/sa15940 zebrafish could be reversed with acute fluoxetine exposure in the Open Field and the Shoaling test, respectively. However, in the other paradigms, hyperactivity was not diminished, suggesting a distinct intrinsic motivation for locomotion in the different paradigms. Acute fluoxetine exposure did not reverse the alterations observed in the aggression and social novelty tests, suggesting the involvement of other neurological mechanisms in these behaviours. These findings underscore the importance of investigating the intricate working mechanisms of RBFOX1 in neurodevelopmental and psychiatric disorders to gain a better understanding of the associated disorders along with their pharmacological treatment.
Collapse
Affiliation(s)
- Maja R. Adel
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Edurne Gago-Garcia
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Angela Arias-Dimas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Concepció Arenas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
9
|
Correia D, Bellot M, Prats E, Gómez-Canela C, Moro H, Raldúa D, Domingues I, Oliveira M, Faria M. Impact of environmentally relevant concentrations of fluoxetine on zebrafish larvae: From gene to behavior. CHEMOSPHERE 2023; 345:140468. [PMID: 37852383 DOI: 10.1016/j.chemosphere.2023.140468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Fluoxetine is widely prescribed for the treatment of depressive states, acting at the level of the central nervous system, consequently affecting non-target organisms. This study aimed to investigate the influence of environmentally relevant fluoxetine concentrations (1-1000 ng/L) on Danio rerio development, assessing both embryotoxicity and behavior, antioxidant defense, gene expression and neurotransmitter levels at larval stage. Exposure to fluoxetine during early development was found to be able to accelerate embryo hatching in embryos exposed to 1, 10 and 100 ng/L, reduce larval size in 1000 ng/L, and increase heart rate in 10, 100 and 1000 ng/L exposed larvae. Behavioral impairments (decreased startle response and increased larvae locomotor activity) were associated with effects on monoaminergic systems, detected through the downregulation of key genes (vmat2, mao, tph1a and th2). In addition, altered levels of neurochemicals belonging to the serotonergic and dopaminergic systems (increased levels of tryptophan and norepinephrine) highlighted the sensitivity of early life stages of zebrafish to low concentrations of fluoxetine, inducing effects that may compromise larval survival. The obtained data support the necessity to test low concentrations of SSRIs in environmental risk assessment and the use of biomarkers at different levels of biological organization for a better understanding of modes of action.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Eva Prats
- Center for Research and Development, Spanish National Research Council (CSIC), Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Hugo Moro
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Melissa Faria
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain
| |
Collapse
|
10
|
Schuijt LM, Olusoiji O, Dubey A, Rodríguez-Sánchez P, Osman R, Van den Brink PJ, van den Berg SJP. Effects of the antidepressant fluoxetine on the swimming behaviour of the amphipod Gammarus pulex: Comparison of short-term and long-term toxicity in the laboratory and the semi-field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162173. [PMID: 36775155 DOI: 10.1016/j.scitotenv.2023.162173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Fluoxetine is one of the worlds most prescribed antidepressant, and frequently detected in surface waters. Once present in the aquatic environment, fluoxetine has been shown to disrupt the swimming behaviour of fish and invertebrates. However, swimming behaviour is also known to be highly variable according to experimental conditions, potentially concealing relevant effects. Therefore, the aims of this study were two-fold: i) investigate the swimming and feeding behaviour of Gammarus pulex after exposure to the antidepressant fluoxetine (0.2, 2, 20, and 200 μg/L), and ii) assess to what degree the experimental test duration (short-term and long-term) and test location (laboratory and semi-field conditions) affect gammarid's swimming behaviour. We used automated video tracking and analysis to asses a range of swimming behaviours of G. pulex, including swimming speed, startle responses after light transition, acceleration, curvature and thigmotaxis. We found larger effects on the swimming behaviour of G. pulex due to experimental conditions than due to tested antidepressant concentrations. Gammarids swam faster, more straight and showed a stronger startle response during light transition when kept under semi-field conditions compared to the laboratory. Effects found for different test durations were opposite in the laboratory and semi-field. In the laboratory gammarids swam slower and spent more time at the inner zone of the arena after 2 days compared to 21 days while for the semi-field the reverse was observed. Fluoxetine had only minor impacts on the swimming behaviour of G. pulex, but experimental conditions influenced behavioural outcomes in response to fluoxetine exposure. Overall, our results highlight the importance of standardizing and optimizing experimental protocols that assess behaviour to achieve reproducible results in ecotoxicology.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands.
| | | | - Asmita Dubey
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | | | - Rima Osman
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Sanne J P van den Berg
- Aquatic Ecology and Water Quality Management group, Wageningen University and Research, P.O. box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
11
|
Correia D, Domingues I, Faria M, Oliveira M. Effects of fluoxetine on fish: What do we know and where should we focus our efforts in the future? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159486. [PMID: 36257440 DOI: 10.1016/j.scitotenv.2022.159486] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Fluoxetine is one of the most studied and detected selective serotonin reuptake inhibitors in the aquatic environment, found at concentrations ranging from ng/L to μg/L. Its presence in this environment can induce effects on aquatic organisms that may compromise their fitness. Several experimental studies have demonstrated that fluoxetine can induce neurotoxicity, genetic and biochemical changes, and cause behavioral dysfunction in a wide range of fish species. However, contradictory results can be found. There is thus the need for a comprehensive review of the current state of knowledge on the effects of fluoxetine on fish at different levels of biological organization, highlighting inclusive patterns and discussing the potential causes for the contradictory results, that can be found in the available literature. This review also aims to explore and identify the main gaps in knowledge and areas for future research. We conclude that environmentally relevant concentrations of fluoxetine (e.g., from 0.00345 μg/L) produced adverse effects and often this concentration range is not addressed in conventional environmental risk assessment strategies. Its environmental persistence and ionizable properties reinforce the need for standardized testing with representative aquatic models, targeting endpoints sensitive to the specific mode of action of fluoxetine, in order to assess and rank its actual environmental risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Frese L, Braunbeck T. Adapting classic paradigms to analyze alterations of shoal-wide behavior in early-life stages of zebrafish (Danio rerio) - A case study with fluoxetine. Neurotoxicol Teratol 2023; 95:107136. [PMID: 36423854 DOI: 10.1016/j.ntt.2022.107136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
Abstract
Given the strong increase in prescription of neuroactive pharmaceuticals, neurotoxicity has received growing concern in science and the public. Regulatory requirements stimulated the development of new methods to evaluate the risk of neurotoxic substances for humans and the environment, and, with respect to potential damage to aquatic ecosystems, a variety of behavior-based assays have been proposed for neurotoxicity testing, most of which, however, are restricted to changes in the behavior of individual fish. Since many fish species form shoals under natural conditions, this may cause important aspects of behavior to be overlooked and there is a need for behavior assays integrating individual behavior with behavior of the entire swarm. In order to combine more environmentally realistic sub-chronic exposure scenarios with undistorted social behavior and animal welfare considerations, two behavioral assays are proposed that might be integrated into early-life stage toxicity studies according to OECD TG 210, which are commonly run for a multitude of regulations: To this end, protocols for a novel tank test and a predator response assay were adapted to also record the behavior of free-swimming zebrafish (Danio rerio) juveniles within shoals. Comparisons of the diving response (novel tank) or the shoal's coherence and position relative to the stimulus (predator) with control groups allow conclusions about the anxiety state of the fish, which might well have an impact on survival chances in the wild. As a model substance, the antidepressant fluoxetine ((RS)-N-Methyl-3-phenyl-3-(4-trifluoromethylphenoxy)propylamine) produced adverse effects down to concentrations three orders of magnitude below the EC10 from acute fish embryo toxicity tests according to OECD TG 236. With the integration of such behavior tests into OECD TG 210, important population-relevant information on potential neurotoxicity can be collected without increasing the number of experimental animals.
Collapse
Affiliation(s)
- Lukas Frese
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 504, D-69120 Heidelberg, Germany.
| |
Collapse
|
13
|
de Oliveira Santos AD, do Nascimento MTL, Sanson AL, Dos Santos RF, Felix LC, da Silva de Freitas A, Hauser-Davis RA, da Fonseca EM, Neto JAB, Bila DM. Pharmaceuticals, natural and synthetic hormones and phenols in sediments from an eutrophic estuary, Jurujuba Sound, Guanabara Bay, Brazil. MARINE POLLUTION BULLETIN 2022; 184:114176. [PMID: 36206614 DOI: 10.1016/j.marpolbul.2022.114176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
A screening for microcontaminants performed by gas chromatography detected several microcontaminants in 12 sediment samples from the eutrophic estuary Guanabara Bay (GB) in southeastern Brazil. Bisphenol A (BPA) ranged from 1.4 to 20.3 ng g-1, 4-octylphenol, from <limit of detection (LD) to 0.9 ng g-1, 4-nonylphenol, from <LD to 3 ng g-1, gemfibrozil, from <LD to 1.4 ng g-1, naproxen, from <LD to 15.5 ng g-1m Ibuprofen, from <LD ng g-1 and diclofenac, from <LD to 0.9 ng g-1. Among estrogens, estrone, estradiol, ethinylestradiol and estriol were detected, ranging, respectively from <LD to 5.7 ng g-1, <LD to 18.1 ng g-1, <LD to 22.9 ng g-1 and <LD to 0.5 ng g-1. A strong and positive correlation between 4-nonylphenol and estrone and a moderate and positive correlation between bisphenol A and estradiol were noted. These findings demonstrating high levels of the detected microcontaminants in all analyzed samples, indicating chronic GB pollution.
Collapse
Affiliation(s)
- Ana Dalva de Oliveira Santos
- Departamento de Geologia, Instituto de Geociências, Universidade Federal Fluminense, 24210-340 Niterói, RJ, Brazil.
| | | | - Ananda Lima Sanson
- Programa de Pós-Graduação em Biotecnologia do Centro de Pesquisa em Ciências Biológicas, NUPEB- UFOP, Universidade Federal de Ouro Preto, Minas Gerais, MG, Brazil
| | - Rejany Ferreira Dos Santos
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, 21040-360, Brazil
| | - Louise Cruz Felix
- Departamento de Engenharia Sanitária e Ambiental, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Alex da Silva de Freitas
- Departamento de Geologia, Instituto de Geociências, Universidade Federal Fluminense, 24210-340 Niterói, RJ, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, 21040-360, Brazil
| | - Estefan Monteiro da Fonseca
- Departamento de Geologia, Instituto de Geociências, Universidade Federal Fluminense, 24210-340 Niterói, RJ, Brazil
| | - José Antônio Baptista Neto
- Departamento de Geologia, Instituto de Geociências, Universidade Federal Fluminense, 24210-340 Niterói, RJ, Brazil
| | - Daniele Maia Bila
- Departamento de Engenharia Sanitária e Ambiental, Universidade do Estado do Rio de Janeiro, 20550-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
14
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
15
|
Demin KA, Kupriyanova OV, Shevyrin VA, Derzhavina KA, Krotova NA, Ilyin NP, Kolesnikova TO, Galstyan DS, Kositsyn YM, Khaybaev AAS, Seredinskaya MV, Dubrovskii Y, Sadykova RG, Nerush MO, Mor MS, Petersen EV, Strekalova T, Efimova EV, Kuvarzin SR, Yenkoyan KB, Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Kalueff AV. Acute behavioral and Neurochemical Effects of Novel N-Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish. ACS Chem Neurosci 2022; 13:1902-1922. [PMID: 35671176 DOI: 10.1021/acschemneuro.2c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, Kazan 420008, Russia.,Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia
| | - Ksenia A Derzhavina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nataliya A Krotova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Yurii M Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Maria V Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yaroslav Dubrovskii
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg State Chemical Pharmaceutical University, St. Petersburg 197022, Russia
| | | | - Maria O Nerush
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | | | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Savelii R Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M. Heratsi Yerevan State Medical University, Yerevan AM 0025, Armenia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia
| | | | | | | | | | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Ural Federal University, Ekaterinburg 620075, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia.,Moscow Institute of Physics and Technology, Moscow 141701, Russia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia.,Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
16
|
Costa FV, Rosa LV, Quadros VA, de Abreu MS, Santos ARS, Sneddon LU, Kalueff AV, Rosemberg DB. The use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns. Curr Neuropharmacol 2021; 20:476-493. [PMID: 33719974 DOI: 10.2174/1570159x19666210311104408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) has been considered a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish to recognize painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from an evolutionary and translational perspective. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.
Collapse
Affiliation(s)
- Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS. Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC. Brazil
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological & Environmental Sciences, Box 461, SE-405 30 Gothenburg. Sweden
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg. Russian Federation
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| |
Collapse
|
17
|
Chai T, Cui F, Di S, Wu S, Zhang Y, Wang X. New insights into cardiotoxicity induced by chiral fluoxetine at environmental-level: Enantioselective arrhythmia in developmental zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116182. [PMID: 33352483 DOI: 10.1016/j.envpol.2020.116182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Fluoxetine is frequently detected in aquatic environment, and chronic FLX exposure exhibits adverse effects on aquatic communities. Its chirality makes the adverse effects more complicated. This study aimed at the enantioselective cardiotoxicity in developmental zebrafish induced by racemic (rac-)/S-/R-fluoxetine. The accumulation profiles demonstrated that biotransformation of fluoxetine to norfluoxetine occurred during rac-fluoxetine exposure, with a higher enrichment of S-norfluoxetine than R-norfluoxetine. Heart malformations including pericardial edema, circulation abnormalities, and thrombosis were observed, and enantioselective changes also occurred. According to H&E staining and Masson's trichrome staining, the loose severity of cardiac structure and cardiac fibrosis in rac-norfluoxetine treated group was worse than that in fluoxetine treated groups. Results of toxicity-associated parameters in our homochiral enantiomers' exposure also indicated that the toxicity induced by S-fluoxetine was more severe than R-fluoxetine. Enantioselective arrhythmia in developmental zebrafish after chiral fluoxetine exposure could be caused by myocardial fibrosis, abnormal developmental processes, and the biotransformation of fluoxetine to norfluoxetine could make that worse. Our findings can be used to assess the environmental risk of the two enantiomers of fluoxetine that induce cardiotoxicity in aquatic organisms.
Collapse
Affiliation(s)
- Tingting Chai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Zhejiang, 311300, PR China
| | - Feng Cui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yiming Zhang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Zhejiang, 311300, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
18
|
Zindler F, Stoll S, Baumann L, Knoll S, Huhn C, Braunbeck T. Do environmentally relevant concentrations of fluoxetine and citalopram impair stress-related behavior in zebrafish (Danio rerio) embryos? CHEMOSPHERE 2020; 261:127753. [PMID: 32745739 DOI: 10.1016/j.chemosphere.2020.127753] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been shown to interfere with various physiological functions of aquatic organisms, yet the neuroactive potential of low concentrations of SSRIs in the aquatic environment is unclear. The current study investigated the effects of fluoxetine and citalopram on the visual motor response (VMR) of 107 h old zebrafish (Danio rerio) embryos. Results document a reduction in stress-related swimming activity of zebrafish embryos at environmentally relevant concentration levels, with fluoxetine being more effective than citalopram. Further experiments were designed to elucidate (1) if the lower neuroactive potential of citalopram is due to differences in uptake kinetics, (2) if the metabolite of fluoxetine, norfluoxetine, contributes to the neuroactive potential of fluoxetine, (3) and how SSRIs and their metabolites interact in equimolar mixtures. At the stage of 120 h, zebrafish embryos accumulate citalopram at significantly lower rates (up to 127 times) than fluoxetine. Moreover, it was demonstrated that norfluoxetine reduces the embryonic VMR similarly to fluoxetine resulting in additive effects of these substances on stress-related behavior in zebrafish embryos. In contrast, the interaction of fluoxetine, norfluoxetine and citalopram varied with test concentrations of the equimolar mixtures. Findings provide evidence that environmentally relevant concentrations of fluoxetine reduce stress-related behavior of zebrafish embryos, while these effects may be enhanced by the interaction of multiple SSRIs and their metabolites in environmental exposure scenarios.
Collapse
Affiliation(s)
- Florian Zindler
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| | - Saskia Stoll
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Sarah Knoll
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen, D-72076, Germany
| | - Carolin Huhn
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen, D-72076, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| |
Collapse
|
19
|
Höglund E, Øverli Ø, Åtland Å. Assaying waterborne psychoactive drugs by the response to naturalistic predator cues in the stickleback (Gasterosteus aculeatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140257. [PMID: 32783852 DOI: 10.1016/j.scitotenv.2020.140257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Ecotoxicological effects of psychiatric drugs and drug metabolites released by the human population are of increasing environmental concern. In this study we evaluate behavioral responses to visual predator cues in wild caught three-spined stickleback (Gasterosteus aculeatus) after exposure to water-born citalopram, a widely prescribed selective serotonin reuptake inhibitor with antidepressant and anxiolytic effects. Fish were exposed to ecological relevant concentrations of citalopram (0.15 or 1.5 μg L-1) for 10 or 20 days. After drug exposure, individual fish were moved to a test arena where they were exposed to two naturalistic visual predator cues; a shadow from beneath, which simulated an approaching fish, and an overhead silhouette of a passing gull. Both visual cues resulted in decreased locomotor activity after post cue presentation. Notably, citalopram exposure resulted in a dose dependent suppression in response to the overhead stimulus. These results show that an ecologically relevant stimulus elicits a robust avoidance behavioral in wild caught fish after 25 min of acclimatization in the test arena. This suggests that the gull stimulus can be utilized as a behavioral endpoint in high flow through assays of ecotoxicological effects of psychiatric drugs and drug metabolites. Furthermore, the short acclimation time of wild caught fish in the test arena, opens for behavioral screening by fish living or kept in water bodies which are potentially impacted by psychiatric drugs.
Collapse
Affiliation(s)
- Erik Höglund
- Norwegian Institute of Water Research, Oslo, Norway; Centre for Coastal Research, University of Agder, Kristiansand, Norway.
| | - Øyvind Øverli
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Åse Åtland
- Norwegian Institute of Water Research, Oslo, Norway
| |
Collapse
|
20
|
Tan H, Polverino G, Martin JM, Bertram MG, Wiles SC, Palacios MM, Bywater CL, White CR, Wong BBM. Chronic exposure to a pervasive pharmaceutical pollutant erodes among-individual phenotypic variation in a fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114450. [PMID: 32283454 DOI: 10.1016/j.envpol.2020.114450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical pollution is now recognised as a major emerging agent of global change. Increasingly, pharmaceutical pollutants are documented to disrupt ecologically important physiological and behavioural traits in exposed wildlife. However, little is known about potential impacts of pharmaceutical exposure on among-individual variation in these traits, despite phenotypic diversity being critical for population resilience to environmental change. Furthermore, although wildlife commonly experience multiple stressors contemporaneously, potential interactive effects between pharmaceuticals and biological stressors-such as predation threat-remain poorly understood. To redress this, we investigated the impacts of long-term exposure to the pervasive pharmaceutical pollutant fluoxetine (Prozac®) on among-individual variation in metabolic and behavioural traits, and the combined impacts of fluoxetine exposure and predation threat on mean metabolic and behavioural traits in a freshwater fish, the guppy (Poecilia reticulata). Using a mesocosm system, guppy populations were exposed for 15 months to one of two field-realistic levels of fluoxetine (nominal concentrations: 30 and 300 ng/L) or a solvent control. Fish from these populations were then tested for metabolic rate (oxygen uptake) and behaviour (activity), both before and after experiencing one of three levels of a predation treatment: an empty tank, a non-predatory fish (Melanotaenia splendida) or a predatory fish (Leiopotherapon unicolor). Guppies from both fluoxetine treatments had ∼70% lower among-individual variation in their activity levels, compared to unexposed fish. Similarly, fluoxetine exposure at the higher dosage was associated with a significant (26%) reduction in individual-level variation in oxygen uptake relative to unexposed fish. In addition, mean baseline metabolic rate was disrupted in low-fluoxetine exposed fish, although mean metabolic and behavioural responses to predation threat were not affected. Overall, our study demonstrates that long-term exposure to a pervasive pharmaceutical pollutant alters ecologically relevant traits in fish and erodes among-individual variability, which may be detrimental to the stability of contaminated populations globally.
Collapse
Affiliation(s)
- Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Australia.
| | - Giovanni Polverino
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Melbourne, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Sarah C Wiles
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Maria M Palacios
- School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | - Candice L Bywater
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Melbourne, Australia; Centre for Geometric Biology, Monash University, Melbourne, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
21
|
Zindler F, Tisler S, Loerracher AK, Zwiener C, Braunbeck T. Norfluoxetine Is the Only Metabolite of Fluoxetine in Zebrafish ( Danio rerio) Embryos That Accumulates at Environmentally Relevant Exposure Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4200-4209. [PMID: 32167300 DOI: 10.1021/acs.est.9b07618] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fluoxetine has been recognized as one of the most toxic pharmaceuticals in the aquatic environment. Since there is growing evidence that the toxic potential of fluoxetine in surface waters is markedly influenced by its own metabolism in aquatic species, this study investigated the biotransformation of fluoxetine in the zebrafish embryo - an aquatic model organism of intermediate complexity. Zebrafish embryos were exposed to 0.1, 1.0, 10, 50, and 5000 μg/L of fluoxetine from 48 to 120 h post-fertilization (hpf), and the accumulation of fluoxetine and its metabolites was analyzed over time. Additionally, depuration of fluoxetine and its metabolites from 96 to 120 hpf was investigated, and autoinhibitory effects of fluoxetine on phase I biotransformation were analyzed. Exposure to 5000 μg/L fluoxetine resulted in elevated 7-ethoxyresorufin-O-deethylase (EROD) activity of cytochrome P450 enzymes and continuous accumulation of fluoxetine and 11 fluoxetine metabolites. Embryos exposed to 10 and 50 μg/L fluoxetine were able to reduce fluoxetine accumulation from 94 to 120 hpf. During depuration, accumulation of fluoxetine and most metabolites was clearly reduced, and biotransformation shifted in favor of norfluoxetine, the primary fluoxetine metabolite in humans. Findings demonstrated that norfluoxetine is the only metabolite of fluoxetine that accumulates in zebrafish embryos at environmentally relevant exposure scenarios.
Collapse
Affiliation(s)
- Florian Zindler
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69120, Germany
| | - Selina Tisler
- Environmental Analytical Chemistry, Center for Applied Geosciences, Eberhard Universität Tübingen, Tübingen 72074, Germany
| | - Ann-Kathrin Loerracher
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69120, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, Center for Applied Geosciences, Eberhard Universität Tübingen, Tübingen 72074, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg D-69120, Germany
| |
Collapse
|
22
|
Involvement of anxiety-like behaviors and brain oxidative stress in the chronic effects of alarm reaction in zebrafish populations. Neurochem Int 2019; 129:104488. [DOI: 10.1016/j.neuint.2019.104488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/13/2019] [Accepted: 06/10/2019] [Indexed: 01/08/2023]
|
23
|
Mole RA, Brooks BW. Global scanning of selective serotonin reuptake inhibitors: occurrence, wastewater treatment and hazards in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:1019-1031. [PMID: 31085468 DOI: 10.1016/j.envpol.2019.04.118] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 05/17/2023]
Abstract
As the global population becomes more concentrated in urban areas, resource consumption, including access to pharmaceuticals, is increasing and chemical use is also increasingly concentrated. Unfortunately, implementation of waste management systems and wastewater treatment infrastructure is not yet meeting these global megatrends. Herein, pharmaceuticals are indicators of an urbanizing water cycle; antidepressants are among the most commonly studied classes of these contaminants of emerging concern. In the present study, we performed a unique global hazard assessment of selective serotonin reuptake inhibitors (SSRIs) in water matrices across geographic regions and for common wastewater treatment technologies. SSRIs in the environment have primarily been reported from Europe (50%) followed by North America (38%) and Asia-Pacific (10%). Minimal to no monitoring data exists for many developing regions of the world, including Africa and South America. From probabilistic environmental exposure distributions, 5th and 95th percentiles for all SSRIs across all geographic regions were 2.31 and 3022.1 ng/L for influent, 5.3 and 841.6 ng/L for effluent, 0.8 and 127.7 ng/L for freshwater, and 0.5 and 22.3 ng/L for coastal and marine systems, respectively. To estimate the potential hazards of SSRIs in the aquatic environment, percent exceedances of therapeutic hazard values of specific SSRIs, without recommended safety factors, were identified within and among geographic regions. For influent sewage and wastewater effluents, sertraline exceedances were observed 49% and 29% of the time, respectively, demonstrating the need to better understand emerging water quality hazards of SSRIs in urban freshwater and coastal ecosystems. This unique global review and analysis identified regions where more monitoring is necessary, and compounds requiring toxicological attention, particularly with increasing aquatic reports of behavioral perturbations elicited by SSRIs.
Collapse
Affiliation(s)
- Rachel A Mole
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA; School of Environment, Jinan University, Guangzhou, China.
| |
Collapse
|
24
|
Martin JM, Bertram MG, Saaristo M, Fursdon JB, Hannington SL, Brooks BW, Burket SR, Mole RA, Deal NDS, Wong BBM. Antidepressants in Surface Waters: Fluoxetine Influences Mosquitofish Anxiety-Related Behavior at Environmentally Relevant Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6035-6043. [PMID: 31034220 DOI: 10.1021/acs.est.9b00944] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pharmaceutical contamination is an increasing problem globally. In this regard, the selective serotonin reuptake inhibitors (SSRIs)-a group of antidepressants-are particularly concerning. By disrupting the serotonergic system, SSRIs have the potential to affect ecologically important behaviors in exposed wildlife. Despite this, the nature and magnitude of behavioral perturbations resulting from environmentally relevant SSRI exposure among species is poorly understood. Accordingly, we investigated the effects of two field-realistic levels of the SSRI fluoxetine (61 and 352 ng/L) on sociability and anxiety-related behaviors in eastern mosquitofish ( Gambusia holbrooki) for 28 days. Additionally, we measured whole-body tissue concentrations of fluoxetine and norfluoxetine. We found that fluoxetine altered anxiety-related behavior but not sociability. Specifically, female fish showed reduced anxiety-related behavior at the lower treatment level, while males showed an increase at the higher treatment level. In addition, we report a biomass-dependent and sex-specific accumulation of fluoxetine and norfluoxetine, with smaller fish showing higher relative tissue concentrations, with this relationship being more pronounced in males. Our study provides evidence for nonmonotonic and sex-specific effects of fluoxetine exposure at field-realistic concentrations. More broadly, our study demonstrated that neuroactive pharmaceuticals, such as fluoxetine, can affect aquatic life by causing subtle but important shifts in ecologically relevant behaviors.
Collapse
Affiliation(s)
- Jake M Martin
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Michael G Bertram
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Minna Saaristo
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Jack B Fursdon
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Stephanie L Hannington
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Bryan W Brooks
- Department of Environmental Science , Baylor University , Waco , Texas 76706 , United States
- School of Environment , Jinan University , Guangzhou , 510290 China
| | - S Rebekah Burket
- Department of Environmental Science , Baylor University , Waco , Texas 76706 , United States
| | - Rachel A Mole
- Department of Environmental Science , Baylor University , Waco , Texas 76706 , United States
| | - Nicholas D S Deal
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| | - Bob B M Wong
- School of Biological Sciences , Monash University , Melbourne , Victoria 3800 , Australia
| |
Collapse
|
25
|
Cortez FS, Souza LDS, Guimarães LL, Pusceddu FH, Maranho LA, Fontes MK, Moreno BB, Nobre CR, Abessa DMDS, Cesar A, Pereira CDS. Marine contamination and cytogenotoxic effects of fluoxetine in the tropical brown mussel Perna perna. MARINE POLLUTION BULLETIN 2019; 141:366-372. [PMID: 30955746 DOI: 10.1016/j.marpolbul.2019.02.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Concerns are growing about the presence of fluoxetine (FLX) in environmental matrices, as well as its harmful effects on non-target organisms. FLX in aquatic ecosystems has been detected in a range varying from pg/L to ng/L, while adverse effects have been reported in several organisms inhabiting freshwater and marine environments. The present study quantifies FLX concentrations in seawater samples from Santos Bay, Brazil and assesses metabolic responses and sublethal effects on the tropical brown mussel Perna perna. Levels of ethoxyresorufin‑O‑deethylase, dibenzylfluorescein dealkylase, glutathione S-transferase, glutathione peroxidase, cholinesterase, lipoperoxidation, and DNA damage were assessed in the gills and digestive gland of these animals, and lysosomal membrane stability was also assessed in hemocytes. FLX altered phase I and II enzyme activities, caused cytogenotoxic effects, and negatively impacted the overall health of mussels exposed to environmentally relevant concentrations. These findings contribute to characterize the risks of introducing this drug into the marine environment.
Collapse
Affiliation(s)
- Fernando Sanzi Cortez
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | | | | | | | | | - Mayana Karoline Fontes
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Beatriz Barbosa Moreno
- Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil
| | - Caio Rodrigues Nobre
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Denis Moledo de Souza Abessa
- Universidade Estadual Paulista Júlio de Mesquita, Pr. Infante Dom Henrique, s/n, São Vicente CEP: 11330-900, Brazil
| | - Augusto Cesar
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil
| | - Camilo Dias Seabra Pereira
- Universidade Santa Cecília, Rua Oswaldo Cruz 266, Santos, SP CEP:11045-907, Brazil; Universidade Federal de São Paulo, Rua Maria Máximo 168, Santos, SP CEP 11030-100, Brazil.
| |
Collapse
|
26
|
de Abreu MS, Giacomini AC, Echevarria DJ, Kalueff AV. Legal aspects of zebrafish neuropharmacology and neurotoxicology research. Regul Toxicol Pharmacol 2019; 101:65-70. [DOI: 10.1016/j.yrtph.2018.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
|
27
|
Bao W, Volgin AD, Alpyshov ET, Friend AJ, Strekalova TV, de Abreu MS, Collins C, Amstislavskaya TG, Demin KA, Kalueff AV. Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscience 2019; 404:218-232. [PMID: 30710667 DOI: 10.1016/j.neuroscience.2019.01.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Despite the high prevalence of medicinal use and abuse of opioids, their neurobiology and mechanisms of action are not fully understood. Experimental (animal) models are critical for improving our understanding of opioid effects in vivo. As zebrafish (Danio rerio) are increasingly utilized as a powerful model organism in neuroscience research, mounting evidence suggests these fish as a useful tool to study opioid neurobiology. Here, we discuss the zebrafish opioid system with specific focus on opioid gene expression, existing genetic models, as well as its pharmacological and developmental regulation. As many human brain diseases involve pain and aberrant reward, we also summarize zebrafish models relevant to opioid regulation of pain and addiction, including evidence of functional interplay between the opioid system and central dopaminergic and other neurotransmitter mechanisms. Additionally, we critically evaluate the limitations of zebrafish models for translational opioid research and emphasize their developing utility for improving our understanding of evolutionarily conserved mechanisms of pain-related, addictive, affective and other behaviors, as well as for fostering opioid-related drug discovery.
Collapse
Affiliation(s)
- Wandong Bao
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Andrey D Volgin
- Military Medical Academy, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | - Erik T Alpyshov
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China
| | - Ashton J Friend
- Tulane University School of Science and Engineering, New Orleans, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tatyana V Strekalova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Moscow, Russia; Department of Neuroscience, Maastricht University, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Christopher Collins
- ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy and School of Life Sciences, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; The International Zebrafish Neuroscience Research Consortium, New Orleans, LA, USA.
| |
Collapse
|
28
|
de Farias NO, Oliveira R, Sousa-Moura D, de Oliveira RCS, Rodrigues MAC, Andrade TS, Domingues I, Camargo NS, Muehlmann LA, Grisolia CK. Exposure to low concentration of fluoxetine affects development, behaviour and acetylcholinesterase activity of zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2019; 215:1-8. [PMID: 30195060 DOI: 10.1016/j.cbpc.2018.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/01/2022]
Abstract
Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) antidepressant widely used in clinics and very often found in environmental samples of urban aquatic ecosystems in concentrations ranging from ng/L to μg/L. Fish populations might be especially susceptible to FLX due to the presence of conserved cellular receptors of serotonin. Neurotoxic effects on fish biota of polluted water bodies may be expected, but there are no sufficient studies in the current literature to elucidate this hypothesis. Batteries of embryo larval assays with zebrafish were performed to evaluate the potential effects of FLX exposure, including environmentally relevant concentrations. Evaluated parameters included survival, development, behaviour and neuronal biochemical markers. Regarding acute toxicity, a 168 h-LC50 value of 1.18 mg/L was obtained. Moreover, hatching delay and loss of equilibrium were observed, but at a concentration level much higher than FLX measured environmental concentrations (>100 μg/L). On the other hand, effects on locomotor and acetylcholinesterase activity (≥0.88 and 6 μg/L, respectively) were found at levels close to the maximum reported FLX concentration in surface waters. Altogether, these results suggest that FLX is neurotoxic to early life stages of zebrafish, in a short period of time causing changes in important ecological attributes which can probably be linked from molecular to population level.
Collapse
Affiliation(s)
- Natália Oliveira de Farias
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Rhaul Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil; Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, 13484-332 Limeira, São Paulo, Brazil; Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, FCF - USP, 05508-000 Butantã, São Paulo, Brazil.
| | - Diego Sousa-Moura
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Reginaldo Carlyle Silva de Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Maria Augusta Carvalho Rodrigues
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Thayres Sousa Andrade
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| | - Inês Domingues
- Departamento de Biologia e CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Níchollas Serafim Camargo
- Laboratório de Nanobiotecnologia, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil; Faculdade da Ceilândia, Universidade de Brasília, 72220-90 Brasília, Distrito Federal, Brazil
| | - Luís Alexandre Muehlmann
- Laboratório de Nanobiotecnologia, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil; Faculdade da Ceilândia, Universidade de Brasília, 72220-90 Brasília, Distrito Federal, Brazil
| | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, 70910-900 Brasília, Distrito Federal, Brazil
| |
Collapse
|
29
|
Quadros VA, Costa FV, Canzian J, Nogueira CW, Rosemberg DB. Modulatory role of conspecific alarm substance on aggression and brain monoamine oxidase activity in two zebrafish populations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:322-330. [PMID: 29588212 DOI: 10.1016/j.pnpbp.2018.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/05/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistr and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistr and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistr and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristina W Nogueira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistr and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
30
|
Bertram MG, Ecker TE, Wong BBM, O'Bryan MK, Baumgartner JB, Martin JM, Saaristo M. The antidepressant fluoxetine alters mechanisms of pre- and post-copulatory sexual selection in the eastern mosquitofish (Gambusia holbrooki). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:238-247. [PMID: 29567445 DOI: 10.1016/j.envpol.2018.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/08/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
Contamination of aquatic habitats with pharmaceuticals is a major environmental concern. Recent studies have detected pharmaceutical pollutants in a wide array of ecosystems and organisms, with many of these contaminants being highly resistant to biodegradation and capable of eliciting sub-lethal effects in non-target species. One such pollutant is fluoxetine, a widely prescribed antidepressant, which is frequently detected in surface waters globally and can alter physiology and behaviour in aquatic organisms. Despite this, relatively little is known about the potential for fluoxetine to disrupt mechanisms of sexual selection. Here, we investigate the impacts of 30-day exposure to two environmentally realistic levels of fluoxetine (low and high) on mechanisms of pre- and post-copulatory sexual selection in the eastern mosquitofish (Gambusia holbrooki). We tested 1) male mating behaviour in the absence or presence of a competitor male, and 2) sperm quality and quantity. We found that high-fluoxetine exposure increased male copulatory behaviour in the absence of a competitor, while no effect was detected under male-male competition. Further, fluoxetine exposure at both concentrations increased total sperm count relative to males from the control group, while no significant change in sperm quality was observed. Lastly, low-fluoxetine males showed a significant reduction in condition index (mass relative to length). Our study is the first to show altered mechanisms of both pre- and post-copulatory sexual selection in an aquatic species resulting from environmentally realistic fluoxetine exposure, highlighting the capacity of pharmaceutical pollution to interfere with sensitive reproductive processes in wildlife.
Collapse
Affiliation(s)
- Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia.
| | - Tiarne E Ecker
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Victoria, Australia; The Development and Stem Cells Program of Monash Biomedicine Discovery Institute and the Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - John B Baumgartner
- Department of Biological Sciences, Macquarie University, New South Wales, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland
| |
Collapse
|
31
|
Song C, Liu BP, Zhang YP, Peng Z, Wang J, Collier AD, Echevarria DJ, Savelieva KV, Lawrence RF, Rex CS, Meshalkina DA, Kalueff AV. Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:384-394. [PMID: 28847526 DOI: 10.1016/j.pnpbp.2017.08.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Abstract
Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1β and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1β and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress.
Collapse
Affiliation(s)
- Cai Song
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; Graduate Institute of Neural and Cognitive Science, China Medical University and Hospital, Taichung 00001, Taiwan.
| | - Bai-Ping Liu
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Yong-Ping Zhang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Zhilan Peng
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Adam D Collier
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - David J Echevarria
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Katerina V Savelieva
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - Robert F Lawrence
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Christopher S Rex
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia
| | - Allan V Kalueff
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia; Ural Federal University, Ekaterinburg 620002, Russia.
| |
Collapse
|
32
|
Mennigen JA, Zamora JM, Chang JP, Trudeau VL. Endocrine disrupting effects of waterborne fluoxetine exposure on the reproductive axis of female goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:70-78. [PMID: 28821466 DOI: 10.1016/j.cbpc.2017.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/27/2017] [Accepted: 08/10/2017] [Indexed: 02/07/2023]
Abstract
Evidence suggests that pharmaceuticals and personal care products reach urban watersheds, bioconcentrate in fish, and potentially disrupt physiological homeostasis. These impairments often affect hormone functions. Selective serotonin reuptake inhibitors (SRRIs) are increasingly studied with regards to their endocrine disrupting effects on teleost physiological processes, including reproduction. To examine whether FLX effects on the endocrine regulation of reproductive physiology in goldfish are sex-specific, we exposed sexually recrudescent female goldfish to two waterborne concentrations of FLX (0.54μg/L and 54μg/L) using an experimental design previously used for sexually mature male goldfish. To evaluate possible endocrine disrupting effects, we quantified the gonadosomatic index, circulating hormone concentrations (luteinizing hormone, LH; growth hormone, GH; 17-β estradiol, E2; and testosterone, T), and the expression of isotocin and vasotocin in the telencephalon, gonadotropin subunits and GH in the pituitary, and gonadotropin receptors, GH receptors, and aromatase in the ovary. Female goldfish exposed to 0.54μg/L FLX exhibited a significant decrease in circulating E2, and conversely, a significant increase in circulating LH and ovarian aromatase mRNA levels, suggesting disruption of E2-mediated feedback on LH release. These results, when compared with those previously observed in males, reveal that waterborne exposure to environmentally relevant levels of FLX sex-specifically disrupts the reproductive endocrine axis in goldfish, characterized by a decrease in E2 in females, and conversely, estrogen-like effects in males. These data emphasize the importance of studying the effect of endocrine disrupting chemicals on both sexes.
Collapse
Affiliation(s)
- Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5 Ottawa, ON, Canada.
| | - Jacob M Zamora
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5 Ottawa, ON, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, T6G2E9 Edmonton, AB, Canada
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, 20 Marie Curie, K1N6N5 Ottawa, ON, Canada
| |
Collapse
|
33
|
|
34
|
Hu X, Dong Y, Jin X, Zhang C, Zhang T, Zhao J, Shi J, Li J. The novel and potent anti-depressive action of triptolide and its influences on hippocampal neuroinflammation in a rat model of depression comorbidity of chronic pain. Brain Behav Immun 2017; 64:180-194. [PMID: 28300618 DOI: 10.1016/j.bbi.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic pain and depression frequently coexist in clinical setting, and current clinical treatments for this comorbidity have shown limited efficacy. Triptolide (T10), an active component of Tripterygium wilfordii Hook F., has been demonstrated to exert strong analgesic activities in experimental pain models, but whether it possesses anti-depressive actions remains unknown. Using a depression comorbidity of chronic pain rat model induced by spinal nerve ligation (SNL), we investigated the potency of T10 for the treatment of comorbid depression in comparison with a widely used antidepressant, fluoxetine (FLX). Concomitant neuroinflammation changes were also examined in the hippocampus. The results showed that prophylactic and reversal treatments with T10 dose-dependently (30, 100, 300μg/kg) inhibited the depression-like behaviors (DLB) assessed by the forced swim test, sucrose preference test and body weight measurement. The anti-depressive efficacy of T10 at 300μg/kg was significantly stronger than that of FLX at 18mg/kg. T10 at all three doses exhibited more efficient analgesic effects than FLX at 18mg/kg. The combined application of T10 with FLX markedly augmented the effects of T10 or FLX per se, with the facilitating effects of T10 at 30μg/kg being most prominent. In addition, nerve injury caused the activation of microglia and p38 MAPK, the upregulation of IL-1β and TNF-α as well as the downregulation of IL-10 in the hippocampus at postoperative week (POW) 3. These neuroinflammatory responses were reversed by subchronic treatment with T10. Taken together, these results demonstrate that T10 possesses potent anti-depressive function, which is correlated with its immunoregulation in the hippocampus. The combination of a low dose of T10 with FLX may become a more effective medication strategy for the treatment of comorbid depression and chronic pain.
Collapse
Affiliation(s)
- Xiaofan Hu
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Yulin Dong
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohang Jin
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Chunkui Zhang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| | - Jinlian Li
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
35
|
Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol 2017; 174:1925-1944. [PMID: 28217866 PMCID: PMC5466539 DOI: 10.1111/bph.13754] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/11/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets.
Collapse
Affiliation(s)
- Kanza M Khan
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
| | - Adam D Collier
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| | - Darya A Meshalkina
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | - Elana V Kysil
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
| | | | | | | | - Jason E Warnick
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Department of Behavioral SciencesArkansas Tech UniversityRussellvilleARUSA
| | - Allan V Kalueff
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
- Institute of Translational BiomedicineSt. Petersburg State UniversitySt. PetersburgRussia
- Ural Federal UniversityEkaterinburgRussia
- Research Institute of Marine Drugs and Nutrition, College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangGuangdongChina
| | - David J Echevarria
- Department of PsychologyUniversity of Southern MississippiHattiesburgMSUSA
- The International Zebrafish Neuroscience Research Consortium (ZNRC)SlidellLAUSA
| |
Collapse
|
36
|
Martin JM, Saaristo M, Bertram MG, Lewis PJ, Coggan TL, Clarke BO, Wong BBM. The psychoactive pollutant fluoxetine compromises antipredator behaviour in fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:592-599. [PMID: 28063712 DOI: 10.1016/j.envpol.2016.10.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 05/24/2023]
Abstract
Pharmaceuticals are increasingly being detected in aquatic ecosystems worldwide. Particularly concerning are pharmaceutical pollutants that can adversely impact exposed wildlife, even at extremely low concentrations. One such contaminant is the widely prescribed antidepressant fluoxetine, which can disrupt neurotransmission and behavioural pathways in wildlife. Despite this, relatively limited research has addressed the behavioural impacts of fluoxetine at ecologically realistic exposure concentrations. Here, we show that 28-day fluoxetine exposure at two ecologically relevant dosages-one representing low surface water concentrations and another representing high effluent flow concentrations-alters antipredator behaviour in Eastern mosquitofish (Gambusia holbrooki). We found that fluoxetine exposure at the lower dosage resulted in increased activity levels irrespective of the presence or absence of a predatory dragonfly nymph (Hemianax papuensis). Additionally, irrespective of exposure concentration, fluoxetine-exposed fish entered the predator 'strike zone' more rapidly. In a separate experiment, fluoxetine exposure reduced mosquitofish freezing behaviour-a common antipredator strategy-following a simulated predator strike, although, in females, this reduction in behaviour was seen only at the lower dosage. Together, our findings suggest that fluoxetine can cause both non-monotonic and sex-dependent shifts in behaviour. Further, they demonstrate that exposure to fluoxetine at environmentally realistic concentrations can alter antipredator behaviour, with important repercussions for organismal fitness.
Collapse
Affiliation(s)
- Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Phoebe J Lewis
- Centre for Environmental Sustainability and Remediation, RMIT University, Victoria, Australia
| | - Timothy L Coggan
- Centre for Environmental Sustainability and Remediation, RMIT University, Victoria, Australia
| | - Bradley O Clarke
- Centre for Environmental Sustainability and Remediation, RMIT University, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
37
|
Saaristo M, McLennan A, Johnstone CP, Clarke BO, Wong BBM. Impacts of the antidepressant fluoxetine on the anti-predator behaviours of wild guppies (Poecilia reticulata). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:38-45. [PMID: 27988417 DOI: 10.1016/j.aquatox.2016.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 05/13/2023]
Abstract
Chemical pollution from pharmaceuticals is increasingly recognised as a major threat to aquatic communities. One compound of great concern is fluoxetine, which is one of the most widely prescribed psychoactive drugs in the world and frequently detected in the environment. The aim of this study was to investigate the effects of 28-d fluoxetine exposure at two environmentally relevant levels (measured concentrations: 4ng/L and 16ng/L) on anti-predator behaviour in wild guppies (Poecilia reticulata). This was achieved by subjecting fluoxetine-exposed and unexposed guppies to a simulated bird strike and recording their subsequent behavioural responses. We found that exposure to fluoxetine affected the anti-predator behaviour of guppies, with exposed fish remaining stationary for longer (i.e. 'freezing' behaviour) after the simulated strike and also spending more time under plant cover. By contrast, control fish were significantly more active and explored the tank more, as indicated by the distance covered per minute over the period fish spent swimming. Furthermore, behavioural shifts were sex-dependent, with evidence of a non-monotonic dose-response among the fluoxetine-exposed fish. This is one of the first studies to show that exposure to environmentally relevant concentrations of fluoxetine can alter the anti-predator behaviour of adult fish. In addition to the obvious repercussions for survival, impaired anti-predator behaviour can have direct impacts on fitness and influence the overall population dynamics of species.
Collapse
Affiliation(s)
- Minna Saaristo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia; Environmental and Marine Biology, Åbo Akademi University, Turku, Finland.
| | - Alisha McLennan
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Bradley O Clarke
- School of Sciences, Centre for Environmental Sustainability and Remediation, RMIT University, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Levels of pharmaceuticals in Slovene municipal and hospital wastewaters: a preliminary study. Arh Hig Rada Toksikol 2016; 67:106-15. [DOI: 10.1515/aiht-2016-67-2727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/01/2016] [Indexed: 01/13/2023] Open
Abstract
AbstractPharmaceuticals in wastewater have clearly raised concern and a broad range of analytical methods has been used to assess the risk as accurately as possible. The aim of our study was to measure and compare the concentrations of atorvastatin, bisoprolol, carbamazepine, ciprofloxacin, clofibric acid, diclofenac, fluoxetine, metoprolol, and sertraline in wastewater samples taken from one municipal and one hospital wastewater treatment plant in Slovenia and to predict the potential environmental burden using the risk quotient. In both effluents only clofibric acid and fluoxetine were not detected. The measured concentrations of the remaining seven pharmaceuticals varied between the ng L−1 and the μg L−1 range. Hospital effluent showed higher concentrations, except for diclofenac and carbamazepine. However, high risk quotient was found only for ciprofloxacin and diclofenac in both municipal and hospital effluent. In conclusion, our method can provide a useful tool for systematic monitoring of pharmaceuticals commonly found in wastewater, which will enable a reliable assessment of the risks for the aquatic biota and humans. Knowing the risks will help to plan wastewater treatment and preserve our environment.
Collapse
|
39
|
Melvin SD, Buck DR, Fabbro LD. Diurnal activity patterns as a sensitive behavioural outcome in fish: effect of short-term exposure to treated sewage and a sub-lethal PPCP mixture. J Appl Toxicol 2016. [DOI: 10.1002/jat.3284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Steven D. Melvin
- School of Medical and Applied Sciences; CQUniversity; Rockhampton Australia
- Australian Rivers Institute; Griffith University; Southport Australia
| | - David R. Buck
- School of Medical and Applied Sciences; CQUniversity; Rockhampton Australia
| | - Larelle D. Fabbro
- School of Medical and Applied Sciences; CQUniversity; Rockhampton Australia
| |
Collapse
|
40
|
Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, Li S, Liu Y, Chen P, Wang J, Yang L, Mitra A, Pal S, Chaudhuri A, Roy A, Biswas M, Roy D, Podder A, Poudel MK, Katare DP, Mani RJ, Kyzar EJ, Gaikwad S, Nguyen M, Song C. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:297-309. [PMID: 26372090 DOI: 10.1016/j.aquatox.2015.08.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 05/25/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Chemical-Technological Institute and Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia.
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Sumit Homechaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam D Collier
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | | | - Shaomin Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Yingcong Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Peirong Chen
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - JiaJia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Lei Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Anisa Mitra
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Subharthi Pal
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adwitiya Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anwesha Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Missidona Biswas
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Dola Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anupam Podder
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Manoj K Poudel
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Deepshikha P Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Ruchi J Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Evan J Kyzar
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 W Taylor St., Chicago, IL 60612, USA
| | - Siddharth Gaikwad
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| | - Michael Nguyen
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
41
|
Parker MO. Adult vertebrate behavioural aquatic toxicology: Reliability and validity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:323-329. [PMID: 26358137 DOI: 10.1016/j.aquatox.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Current advances in the ability to assay adult aquatic vertebrate behaviour are potentially very useful to aquatic toxicologists wishing to characterise the effects of pollutants on behaviour, cognition or neurodevelopment. This review considers two specific challenges faced by researchers wishing to exploit these technologies: maximising reliability and validity. It will suggest two behavioural procedures, with the potential for automation and high-throughput implementation, which can be used to measure social cohesion and anxiety, two areas of interest in behavioural aquatic toxicology. In addition, the review will make recommendations about how these procedures (and others) could be carried out to maximise reliability and validity.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
42
|
Stewart AM, Grossman L, Collier AD, Echevarria DJ, Kalueff AV. Anxiogenic-like effects of chronic nicotine exposure in zebrafish. Pharmacol Biochem Behav 2015; 139 Pt B:112-20. [DOI: 10.1016/j.pbb.2015.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
|
43
|
Sebire M, Elphinstone Davis J, Hatfield R, Winberg S, Katsiadaki I. Prozac affects stickleback nest quality without altering androgen, spiggin or aggression levels during a 21-day breeding test. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:78-89. [PMID: 26453812 DOI: 10.1016/j.aquatox.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/02/2015] [Accepted: 09/20/2015] [Indexed: 05/25/2023]
Abstract
Pharmaceuticals are increasingly being used in human and veterinary medicine, and their presence in the aquatic environment may present a threat to non-target aquatic organisms. The selective serotonin reuptake inhibitor fluoxetine (Prozac) has been reported to affect diverse behaviours (feeding, aggression, and reproduction) and also the endocrine system (steroid biosynthesis pathway) in fish. To investigate these claims further, and in particular effects on androgen synthesis, male three-spined sticklebacks (Gasterosteus aculeatus) were exposed to fluoxetine at 0, 3.2, 10 and 32μg/L in a flow-through system for 21 days. Their sex was determined prior to exposure using a non-invasive method to collect DNA for determining the genetic sex, reported here for the first time. This was necessary as the exposure required males of a non-breeding status which had not developed secondary characteristics. Post exposure a number of biochemical (serotonin, steroid and spiggin levels) and apical (aggressive behaviour) endpoints were measured. No effects were detected on morphometric parameters, spiggin or androgen (11-ketotestosterone) levels. However, all fluoxetine-exposed male fish had higher cortisol levels in comparison to the control fish, although this effect only persisted throughout the whole exposure duration at the highest concentration (32μg/L). In addition, the ratio of 5-HIAA/5-HT (serotonin metabolite/serotonin) was significantly lower in the brains of males exposed to fluoxetine at all concentrations tested. Although we found no differences in the number of nests built by the males, the quality of the nests produced by the fluoxetine-exposed males was generally inferior consisting only of a basic, rudimentary structure. Males exposed to 32μg/L of fluoxetine displayed a delayed response to a simulated threat (rival male via own mirror image) and were less aggressive (number of bites and attacks) toward their mirror image, but these differences were not statistically significant. In summary, fluoxetine exposure resulted in reduced serotonergic activity in the male three-spined stickleback brain suggesting that the mechanism of action between humans and fish is at least partially conserved. Furthermore, this study provided additional evidence of cross-talk between the serotonergic and stress axes as demonstrated by the perturbations in cortisol levels. This potentially complex interaction at brain level may be responsible for the effects observed on nest quality, an endpoint with serious ecological consequences for this species. Finally, despite our hypothesis (an effect on steroid biosynthesis, based on limited literature evidence), we observed no effects of fluoxetine exposure (at the concentrations and duration employed) on male stickleback androgen levels.
Collapse
Affiliation(s)
- Marion Sebire
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom.
| | | | - Robert Hatfield
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Svante Winberg
- Uppsala University, Department of Neuroscience, Box 593, 751 24 Uppsala, Sweden
| | - Ioanna Katsiadaki
- Cefas Weymouth Laboratory, Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
44
|
Stewart AM, Kaluyeva AA, Poudel MK, Nguyen M, Song C, Kalueff AV. Building Zebrafish Neurobehavioral Phenomics: Effects of Common Environmental Factors on Anxiety and Locomotor Activity. Zebrafish 2015; 12:339-48. [DOI: 10.1089/zeb.2015.1106] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Adam Michael Stewart
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Alexandra A. Kaluyeva
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Manoj K. Poudel
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Michael Nguyen
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU), Zhanjiang, China
| | - Allan V. Kalueff
- International Zebrafish Neuroscience Research Consortium (ZNRC), ZENEREI Institute, Slidell, Louisiana
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University (GDOU), Zhanjiang, China
- Institute of Translational Biomedicine, St. Petersburg State University (SPSU), St. Petersburg, Russia
| |
Collapse
|
45
|
Stewart AM, Gerlai R, Kalueff AV. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front Behav Neurosci 2015; 9:14. [PMID: 25729356 PMCID: PMC4325915 DOI: 10.3389/fnbeh.2015.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/14/2015] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of brain disorders and the lack of their efficient treatments necessitate improved in-vivo pre-clinical models and tests. The zebrafish (Danio rerio), a vertebrate species with high genetic and physiological homology to humans, is an excellent organism for innovative central nervous system (CNS) drug discovery and small molecule screening. Here, we outline new strategies for developing higher-throughput zebrafish screens to test neuroactive drugs and predict their pharmacological mechanisms. With the growing application of automated 3D phenotyping, machine learning algorithms, movement pattern- and behavior recognition, and multi-animal video-tracking, zebrafish screens are expected to markedly improve CNS drug discovery.
Collapse
Affiliation(s)
- Adam Michael Stewart
- ZENEREI Institute and The International Zebrafish Neuroscience Research Consortium Slidell, LA, USA
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga ON, Canada
| | - Allan V Kalueff
- ZENEREI Institute and The International Zebrafish Neuroscience Research Consortium Slidell, LA, USA ; Research Institute for Marine Drugs and Nutrients, College of Food Science and Technology, Guangdong Ocean University Zhanjiang, Guangdong, China
| |
Collapse
|