1
|
Rojas-Hucks S, Rodriguez-Jorquera IA, Nimpstch J, Bahamonde P, Benavides JA, Chiang G, Pulgar J, Galbán-Malagón CJ. South American National Contributions to Knowledge of the Effects of Endocrine Disrupting Chemicals in Wild Animals: Current and Future Directions. TOXICS 2022; 10:toxics10120735. [PMID: 36548568 PMCID: PMC9781241 DOI: 10.3390/toxics10120735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 05/28/2023]
Abstract
Human pressure due to industrial and agricultural development has resulted in a biodiversity crisis. Environmental pollution is one of its drivers, including contamination of wildlife by chemicals emitted into the air, soil, and water. Chemicals released into the environment, even at low concentrations, may pose a negative effect on organisms. These chemicals might modify the synthesis, metabolism, and mode of action of hormones. This can lead to failures in reproduction, growth, and development of organisms potentially impacting their fitness. In this review, we focused on assessing the current knowledge on concentrations and possible effects of endocrine disruptor chemicals (metals, persistent organic pollutants, and others) in studies performed in South America, with findings at reproductive and thyroid levels. Our literature search revealed that most studies have focused on measuring the concentrations of compounds that act as endocrine disruptors in animals at the systemic level. However, few studies have evaluated the effects at a reproductive level, while information at thyroid disorders is scarce. Most studies have been conducted in fish by researchers from Brazil, Argentina, Chile, and Colombia. Comparison of results across studies is difficult due to the lack of standardization of units in the reported data. Future studies should prioritize research on emergent contaminants, evaluate effects on native species and the use of current available methods such as the OMICs. Additionally, there is a primary focus on organisms related to aquatic environments, and those inhabiting terrestrial environments are scarce or nonexistent. Finally, we highlight a lack of funding at a national level in the reviewed topic that may influence the observed low scientific productivity in several countries, which is often negatively associated with their percentage of protected areas.
Collapse
Affiliation(s)
- Sylvia Rojas-Hucks
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | | | - Jorge Nimpstch
- Facultad de Ciencias, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Paulina Bahamonde
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados—HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 2360004, Chile
- Millennium Nucleus of Austral Invasive Salmonids (INVASAL), Concepción 4070386, Chile
- Cape Horn International Center (CHIC), Universidad de Magallanes, Punta Arenas 6210427, Chile
| | - Julio A. Benavides
- Doctorado en Medicina de la Conservación, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- Centro de Investigación para la Sustentabilidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34090 Montpellier, France
| | - Gustavo Chiang
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
- Centro de Investigación para la Sustentabilidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago 8370134, Chile
| | - Cristóbal J. Galbán-Malagón
- GEMA, Center for Genomics, Ecology & Environment, Universidad Mayor, Camino la Pirámide 5750, Huechuraba, Santiago 8580000, Chile
- Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| |
Collapse
|
2
|
Minimization of Environmental Impact of Kraft Pulp Mill Effluents: Current Practices and Future Perspectives towards Sustainability. SUSTAINABILITY 2021. [DOI: 10.3390/su13169288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kraft mill effluents are characterized by their content of suspended solids, organic matter and color due to the presence of lignin, lignin derivatives and tannins. Additionally, Kraft mill effluents contain adsorbable organic halogens and wood extractive compounds (resin acids, fatty acids, phytosterol) and show high conductivity due to the chemical compounds used in the digestion process of pulp. Currently, Kraft mills are operating under the concept of a linear economy and, therefore, their effluents are generating serious toxicity effects, detected in daphnia, fish and biosensors. These effluents are treated by activated sludge and moving bed biofilm systems that are unable to remove recalcitrant organic matter, color and biological activity (toxicity) from effluents. Moreover, under climate change, these environmental effects are being exacerbated and some mills have had to stop their operation when the flows of aquatic ecosystems are lower. The aim of this review is to discuss the treatment of Kraft pulp mill effluents and their impact regarding the current practices and future perspectives towards sustainability under climate change. Kraft pulp mill sustainability involves the closure of water circuits in order to recirculate water and reduce the environmental impact, as well as the implementation of advanced technology for these purposes.
Collapse
|
3
|
Sharma P, Purchase D, Chandra R. Residual pollutants in treated pulp paper mill wastewater and their phytotoxicity and cytotoxicity in Allium cepa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2143-2164. [PMID: 33400008 DOI: 10.1007/s10653-020-00730-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/21/2020] [Indexed: 06/12/2023]
Abstract
Discharged pulp and paper mill wastewater (PPMW) were collected near M/s K. R. pulp and papers Limited, Shahjahanpur, India. Chemical analysis of the wastewater showed high BOD (3653-4180 mg L-1) and COD (17,890-19100 mg L-1) values from two different sampling sites. The levels of total phenol were in the range of 389-432 mg L-1; nitrogen (125-234 mg L-1), sulfate (1926-2098 mg L-1), chloride (3.12-5.43 mg L-1) and lignin (38,950-39,000 mg L-1) along with various heavy metals (Fe, 87-79; Zn, 34-22; Cu, 3.28-2.57; Cd, 1.90-0.36; Ni, 6-5, and Pb, 41.23-36.54 mg L-1) were above the permissible limits recommended by the CPCB and the USEPA. The BOD/COD ratio was < 0.2 which indicated very low biodegradability of the organic matters present in the effluent. The organometallic complex generated from the pulp and paper industry persists in the environment and might be toxic to aquatic organisms. The organic polymers, lignin, metals and ions present in the PPMW were characterized using SEM, EDAX, FTIR, and UV-VIS spectroscopy. The major pollutants detected in the discharged PPMW included nonacosane, heptacosane, octadecanoic acid, hexadecane, and 6-benzamide- 3- [2- [1-(phenylmethyl)-4-piperidinyl] ethyl]-1, 2-benzisoxazole, as well as a group of plant fatty acids classified as EDCs, and mutagenic pollutants. The cytotoxic and androgenic properties of these complex organics were examined. The seed germination test with Phaseolus mungo and cytotoxicity test with Allium cepa showed that at > 20% concentration of PPMW, α-amylase production was inhibited and chromosomal segregation at metaphase and anaphase during cell division was disturbed, which resulted in c-mitosis, sticky chromosomes, and laggard chromosomes. In addition, SEM of the root of A. cepa showed fissures and fractured tissues of the root cap, probably due to the inhibition of auxins that were responsible for root cap formation. The findings indicated A. cepa as a good test model for examining the DNA damage and cytotoxicity by PPMW, and the discharged effluent should be treated at a tertiary stage for environmental protection.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Rae Bareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, UK
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Rae Bareli Road, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
4
|
de Oliveira VS, Castro AJG, Cesconetto PA, de Souza AZP, Júnior JJB, de Oliveira Nuñer AP, Soares CHL, Van Der Kraak G, Silva FRMB. Triterpene betulin may be involved in the acute effects of pulp and paper mill effluent on testis physiology in zebrafish. Toxicol In Vitro 2021; 73:105147. [PMID: 33722738 DOI: 10.1016/j.tiv.2021.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Pulp and paper mill effluent can cause changes in the morphology and energy metabolism in the zebrafish (Danio rerio) testis. Betulin, a naturally occurring triterpene is commonly present in this type of effluent and is suspected of being involved in these effects. The aim of this study was to compare the effects pulp and paper mill effluent and betulin on various aspects of testicular physiology in the zebrafish. This included the in vitro effects of effluent and betulin on testicular lactate content and lactate dehydrogenase (LDH) activity. In addition, the effects of betulin on glucose uptake, glycogen, alanine aminotransferase (ALT), reactive oxygen and nitrogen species formation and oxidative damage in the testes were determined. Furthermore, we compared the effects and mechanism of action of betulin and effluent on calcium homeostasis in testes. In vitro exposure to both effluent and betulin decreased lactate and calcium influx, possibly due to the activation of the sodium‑calcium exchanger (NCX) pump. Additionally, betulin-treated testes had higher reactive oxygen species (ROS) and reduced glutathione (GSH) content, as well as increased glutathione transferase (GST) activity and a tendency towards decreased catalase (CAT) activity. Thus, this study shows that alterations in testis physiology caused by the pulp and paper mill effluent in the testis may be due in part to the actions of betulin.
Collapse
Affiliation(s)
- Vanessa Staldoni de Oliveira
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Allisson Jhonatan Gomes Castro
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Patrícia Acordi Cesconetto
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Ariane Zamoner Pacheco de Souza
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | | | - Alex Pires de Oliveira Nuñer
- Universidade Federal de Santa Catarina, Departamento de Aquicultura, Centro de Ciências Agrárias, Florianópolis, SC, Brazil
| | - Carlos Henrique Lemos Soares
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Glen Van Der Kraak
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| | | |
Collapse
|
5
|
Muthukumaravel K, Vasanthi N, Stalin A, Alam L, Santhanabharathi B, Musthafa MS. Sublethal effects of phenol on histology of selected organs of freshwater fish Mystus vittatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13752-13760. [PMID: 33191468 DOI: 10.1007/s11356-020-11434-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Acute toxicity (96 h LC50) of phenol was analyzed in the cat fish Mystus vittatus in static bio-assay over a 96-h exposure period using probit method. The 24, 48, 72, and 96 h LC50 values (with 95% confidence limits) of phenol for fingerling catfish were found out as 13.98, 13.17, 12.62, and 12.21 mg/l respectively. Investigations pertaining to the histopathological sections have shown high degree of pathological lesions observed in various parts like gill, liver intestine, and kidney of the fish species. Analysis of gill section revealed observable changes in the experimental species such as fusion, malformation at the tip of secondary lamellae, vacuolation, hyperplasia, and epithelial damage. Exposure of phenol showed cytoplasmic vacuolation, tissue damage, and loss of hepatic cell wall in the liver of experimental organism. Lesions of tissue damage at the epithelial site, inflammation, and clumping of adjacent villi made of columnar epithelium have been observed in the intestine of fish, and also the excretory part of the fish kidney revealed various changes like glomerular atrophy, damage of Bowman's capsule, vacuolization, and degeneration of renal epithelium. The current study on histological changes observed in the experimental organisms has thrown light on the current scenario which poses threat and danger to the whole aquatic ecosystem, and this study plays a vital role in assessing the aquatic pollution.
Collapse
Affiliation(s)
- Kannayiram Muthukumaravel
- P.G. and Research Department of Zoology, Khadir Mohideen College, Bharathidasan University, Adirampattinam, Tamil Nadu, 614 701, India
| | - Natarajan Vasanthi
- P.G. and Research Department of Zoology, Khadir Mohideen College, Bharathidasan University, Adirampattinam, Tamil Nadu, 614 701, India
| | - Arumugam Stalin
- P.G. and Research Department of Zoology, National College (Autonomous), Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620001, India
| | - Lubna Alam
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Bharathi Santhanabharathi
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), University of Madras, Chennai, Tamil Nadu, 600 014, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), University of Madras, Chennai, Tamil Nadu, 600 014, India.
| |
Collapse
|
6
|
Jaiswal S, Kumar Gupta G, Panchal K, Mandeep, Shukla P. Synthetic Organic Compounds From Paper Industry Wastes: Integrated Biotechnological Interventions. Front Bioeng Biotechnol 2021; 8:592939. [PMID: 33490048 PMCID: PMC7820897 DOI: 10.3389/fbioe.2020.592939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Synthetic organic compounds (SOCs) are reported as xenobiotics compounds contaminating the environment from various sources including waste from the pulp and paper industries: Since the demand and production of paper is growing increasingly, the release of paper and pulp industrial waste consisting of SOCs is also increasing the SOCs' pollution in natural reservoirs to create environmental pollution. In pulp and paper industries, the SOCs viz. phenol compounds, furans, dioxins, benzene compounds etc. are produced during bleaching phase of pulp treatment and they are principal components of industrial discharge. This review gives an overview of various biotechnological interventions for paper mill waste effluent management and elimination strategies. Further, the review also gives the insight overview of various ways to restrict SOCs release in natural reservoirs, its limitations and integrated approaches for SOCs bioremediation using engineered microbial approaches. Furthermore, it gives a brief overview of the sustainable remediation of SOCs via genetically modified biological agents, including bioengineering system innovation at industry level before waste discharge.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Guddu Kumar Gupta
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Kusum Panchal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Mandeep
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Ussery EJ, McMaster ME, Servos MR, Miller DH, Munkittrick KR. A 30-Year Study of Impacts, Recovery, and Development of Critical Effect Sizes for Endocrine Disruption in White Sucker ( Catostomus commersonii) Exposed to Bleached-Kraft Pulp Mill Effluent at Jackfish Bay, Ontario, Canada. Front Endocrinol (Lausanne) 2021; 12:664157. [PMID: 33967964 PMCID: PMC8101260 DOI: 10.3389/fendo.2021.664157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
Jackfish Bay is an isolated bay on the north shore of Lake Superior, Canada that has received effluent from a large bleached-kraft pulp mill since the 1940s. Studies conducted in the late 1980s found evidence of reductions in sex steroid hormone levels in multiple fish species living in the Bay, and increased growth, condition and relative liver weights, with a reduction in internal fat storage, reduced gonadal sizes, delayed sexual maturation, and altered levels of circulating sex steroid hormones in white sucker (Catostomus commersonii). These early studies provided some of the first pieces of evidence of endocrine disruption in wild animals. Studies on white sucker have continued at Jackfish Bay, monitoring fish health after the installation of secondary waste treatment (1989), changes in the pulp bleaching process (1990s), during facility maintenance shutdowns and during a series of facility closures associated with changing ownership (2000s), and were carried through to 2019 resulting in a 30-year study of fish health impacts, endocrine disruption, chemical exposure, and ecosystem recovery. The objective of the present study was to summarize and understand more than 75 physiological, endocrine, chemical and whole organism endpoints that have been studied providing important context for the complexity of endocrine responses, species differences, and challenges with extrapolation. Differences in body size, liver size, gonad size and condition persist, although changes in liver and gonad indices are much smaller than in the early years. Population modeling of the initial reproductive alterations predicted a 30% reduction in the population size, however with improvements over the last couple of decades those population impacts improved considerably. Reflection on these 30 years of detailed studies, on environmental conditions, physiological, and whole organism endpoints, gives insight into the complexity of endocrine responses to environmental change and mitigation.
Collapse
Affiliation(s)
- Erin J. Ussery
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada
- *Correspondence: Erin J. Ussery,
| | - Mark E. McMaster
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Mark R. Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - David H. Miller
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Ann Arbor, MI, United States
| | | |
Collapse
|
8
|
Barra RO, Chiang G, Saavedra MF, Orrego R, Servos MR, Hewitt LM, McMaster ME, Bahamonde P, Tucca F, Munkittrick KR. Endocrine Disruptor Impacts on Fish From Chile: The Influence of Wastewaters. Front Endocrinol (Lausanne) 2021; 12:611281. [PMID: 33841326 PMCID: PMC8027499 DOI: 10.3389/fendo.2021.611281] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/16/2021] [Indexed: 12/02/2022] Open
Abstract
Industrial wastewaters and urban discharges contain complex mixtures of chemicals capable of impacting reproductive performance in freshwater fish, called endocrine-disrupting compounds (EDCs). In Chile, the issue was highlighted by our group beginning over 15 years ago, by analyzing the impacts of pulp and paper mill effluents (PPME) in the Biobio, Itata, and Cruces River basins. All of the rivers studied are important freshwater ecosystems located in the Mediterranean region of Central Chile, each with a unique fish biodiversity. Sequentially, we developed a strategy based on laboratory assays, semicontrolled-field experiments (e.g., caging) and wild fish population assessments to explore the issue of reproductive impacts on both introduced and native fish in Chile. The integration of watershed, field, and laboratory studies was effective at understanding the endocrine responses in Chilean freshwater systems. The studies demonstrated that regardless of the type of treatment, pulp mill effluents can contain compounds capable of impacting endocrine systems. Urban wastewater treatment plant effluents (WWTP) were also investigated using the same integrated strategy. Although not directly compared, PPME and WWTP effluent seem to cause similar estrogenic effects in fish after waterborne exposure, with differing intensities. This body of work underscores the urgent need for further studies on the basic biology of Chilean native fish species, and an improved understanding on reproductive development and variability across Chilean ecosystems. The lack of knowledge of the ontogeny of Chilean fish, especially maturation and sexual development, with an emphasis on associated habitats and landscapes, are impediment factors for their conservation and protection against the threat of EDCs. The assessment of effects on native species in the receiving environment is critical for supporting and designing protective regulations and remediation strategies, and for conserving the unique Chilean fish biodiversity.
Collapse
Affiliation(s)
- Ricardo O. Barra
- Faculty of Environmental Sciences and EULA-Chile Centre, University of Concepción, Concepción, Chile
- *Correspondence: Ricardo O. Barra,
| | - Gustavo Chiang
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Maria Fernanda Saavedra
- Faculty of Environmental Sciences and EULA-Chile Centre, University of Concepción, Concepción, Chile
| | - Rodrigo Orrego
- Natural Science Institute Alexander von Humboldt, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
| | | | - L. Mark Hewitt
- Water Science and Technology, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Mark E. McMaster
- Water Science and Technology, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Paulina Bahamonde
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados-HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
- Núcleo Milenio INVASAL, Concepción, Chile
| | - Felipe Tucca
- Instituto Tecnológico del Salmón (INTESAL), Puerto Montt, Chile
| | | |
Collapse
|
9
|
Sharma P, Tripathi S, Chandra R. Highly efficient phytoremediation potential of metal and metalloids from the pulp paper industry waste employing Eclipta alba (L) and Alternanthera philoxeroide (L): Biosorption and pollution reduction. BIORESOURCE TECHNOLOGY 2021; 319:124147. [PMID: 32992272 DOI: 10.1016/j.biortech.2020.124147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
The aims of the study was the evaluation of phytoremediation potential by Eclipta alba (L) and Alternanthera philoxeroide (L) of pulp and paper mill waste after secondary treatment which a source of aquatic and soil pollution due to huge discharge of organometallic compounds per tone of paper production. The result revealed 50% reduction of pollution parameters after in-situ phytoremediation. The comparative analysis of metal and metalloids showed the highest accumulation of Fe (2251.24 ± 64.74) in both plants. The antioxidant activity, chlorophyll and carotenoid content were increased in E. alba (L.) and A. philoxeroide (L.) respectively. From the results, it was concluded that E. alba (L.) and A. philoxeroide (L.) could be effectively used for the removal of metals and metalloids from effluent and sludge of pulp and paper mill waste that may help to reduce adverse health effects of metal accumulation in humans and animals via their food chain.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India.
| |
Collapse
|
10
|
Sharma P, Tripathi S, Chandra R. Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon 2020; 6:e04559. [PMID: 32760841 PMCID: PMC7393463 DOI: 10.1016/j.heliyon.2020.e04559] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
The present manuscript has focused on the heavy metal; accumulation potential by common native plants i.e. Chenopodium album L., Ricinus communis, Ranunculus sceleratus, and Rumex dentatus growing on the disposed of pulp and paper mill effluent sludge. The sludge showed the abundance of benzene propanoic acid tert- butyldimethylsilyl ester, Octadecanoic acid, TMS, Hexadecanoic acid, TMS, cinnamic acid-α-phenyl-TMS ester, β-sitosterol TMS, 4-mercaptobenzoic acid as residual complex organic compounds along with heavy metals Fe (98.30 mg/L-1), Zn (51.00 mg/L-1), Cu (3.21 mg/L-1), Cd (9.11 mg/L-1), Mn (18.27 mg/L-1), Ni (5.21 mg/L-1), (Hg 0.014 mg/L-1) which were above the prescribed limit of environmental standard. The complexation of organic compounds with heavy metal restricts the bioavailability of metals to plants. But the metal analysis in various parts of the plant showed a significant amount of metal accumulation. Further, histological observations of root tissue through TEM showed apparent deposition of metal granules near the cell wall and vacuole as adoption features of plants. But the variable concentration of metal accumulation in different parts by various plants indicated the variable potential of tested plants with various metals. This also indicated their metal bio-availability and movement to plant tissue. Further, their bioconcentration factor (BCF) and translocation factor (TF) > 1.0 indicated the hyperaccumulation tendency of plants Mn was accumulated maximum in leaves C. album (69.38 mg/kg-1) followed by Cu (25.75 mg/kg -1), As (23.20 mg/kg -1), Fe (20.90 mg/kg -1) and Pb was maximum accumulated (22.41 mg/kg -1) in R. cummunis leaves. The result revealed that arsenic has been accumulated in higher amount root, shoot and leaves of all tested plants. The metal accumulator plants showed phytoremediation potential also by reducing various pollution parameters after growth on sludge. These potential plants may be used as biotechnological tools for the eco-restoration of polluted sites.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh 226025, India
| |
Collapse
|
11
|
de Oliveira VS, Castro AJG, Domingues JT, de Souza AZP, Scheffer DDL, Latini A, Soares CHL, Van Der Kraak G, Silva FRMB. A Brazilian pulp and paper mill effluent disrupts energy metabolism in immature rat testis and alters Sertoli cell secretion and mitochondrial activity. Anim Reprod 2020; 17:e20190116. [PMID: 32714452 PMCID: PMC7375872 DOI: 10.1590/1984-3143-ar2019-0116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our objective was to investigate whether the pulp and paper mill industry effluent could affect the testis and Sertoli cells in a fast exposure period. For this, the present study was carried out in immature rats at 10-day-old. Testis treated in vitro with 4% effluent for 1 h presented changes in energy metabolism in terms of a decrease in lactate content and glucose uptake. Elevation in GSH content, as an antioxidant defense mechanism, was also detected. Sertoli cells treated with 4% effluent for 1 hour showed alterations in the mitochondrial metabolism that favor the decoupling of oxidative phosphorylation and the generation of oxygen reactive species and also a time and concentration-dependent delay secretion of acidic vesicles. Our results showed that pollutants present in the pulp and paper mill effluents, in a short time of exposure, are capable of inducing alterations in important metabolic functions in the testis and in Sertoli cells that are crucial for the correct progression of spermatogenesis and fertility.
Collapse
Affiliation(s)
| | | | | | | | - Débora da Luz Scheffer
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Alexandra Latini
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
12
|
Kumar A, Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 2020; 6:e03170. [PMID: 32095645 PMCID: PMC7033530 DOI: 10.1016/j.heliyon.2020.e03170] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/04/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Ligninolytic enzymes play a key role in degradation and detoxification of lignocellulosic waste in environment. The major ligninolytic enzymes are laccase, lignin peroxidase, manganese peroxidase, and versatile peroxidase. The activities of these enzymes are enhanced by various mediators as well as some other enzymes (feruloyl esterase, aryl-alcohol oxidase, quinone reductases, lipases, catechol 2, 3-dioxygenase) to facilitate the process for degradation and detoxification of lignocellulosic waste in environment. The structurally laccase is isoenzymes with monomeric or dimeric and glycosylation levels (10–45%). This contains four copper ions of three different types. The enzyme catalyzes the overall reaction: 4 benzenediol + O2 to 4 benzosemiquinone + 2H2O. While, lignin peroxidase is a glycoprotein molecular mass of 38–46 kDa containing one mole of iron protoporphyrin IX per one mol of protein, catalyzes the H2O2 dependent oxidative depolymerization of lignin. The manganese peroxidase is a glycosylated heme protein with molecular mass of 40–50kDa. It depolymerizes the lignin molecule in the presence of manganese ion. The versatile peroxidase has broad range substrate sharing typical features of the manganese and lignin peroxidase families. Although ligninolytic enzymes have broad range of industrial application specially the degradation and detoxification of lignocellulosic waste discharged from various industrial activities, its large scale application is still limited due to lack of limited production. Further, the extremophilic properties of ligninolytic enzymes indicated their broad prospects in varied environmental conditions. Therefore it needs more extensive research for understanding its structure and mechanisms for broad range commercial applications.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar (A Central) University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
13
|
Belcher SM, Cline JM, Conley J, Groeters S, Jefferson WN, Law M, Mackey E, Suen AA, Williams CJ, Dixon D, Wolf JC. Endocrine Disruption and Reproductive Pathology. Toxicol Pathol 2019; 47:1049-1071. [PMID: 31833458 PMCID: PMC8008741 DOI: 10.1177/0192623319879903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past 20 years, investigations involving endocrine active substances (EAS) and reproductive toxicity have dominated the landscape of ecotoxicological research. This has occurred in concert with heightened awareness in the scientific community, general public, and governmental entities of the potential consequences of chemical perturbation in humans and wildlife. The exponential growth of experimentation in this field is fueled by our expanding knowledge into the complex nature of endocrine systems and the intricacy of their interactions with xenobiotic agents. Complicating factors include the ever-increasing number of novel receptors and alternate mechanistic pathways that have come to light, effects of chemical mixtures in the environment versus those of single EAS laboratory exposures, the challenge of differentiating endocrine disruption from direct cytotoxicity, and the potential for transgenerational effects. Although initially concerned with EAS effects chiefly in the thyroid glands and reproductive organs, it is now recognized that anthropomorphic substances may also adversely affect the nervous and immune systems via hormonal mechanisms and play substantial roles in metabolic diseases, such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
| | - J. Mark Cline
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | - Mac Law
- North Carolina State College of Veterinary Medicine, Raleigh, NC, USA
| | - Emily Mackey
- Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
14
|
Singh AK, Chandra R. Pollutants released from the pulp paper industry: Aquatic toxicity and their health hazards. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:202-216. [PMID: 31029991 DOI: 10.1016/j.aquatox.2019.04.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The pulp paper industries release wastewater containing very complex organic and inorganic pollutants. These pollutants are discharged mainly pulping and bleaching process during paper manufacturing. The main gaseous pollutants hydrogen sulfides, sodium sulfide, methyl mercaptan, sulfur, and chlorine dioxide is reported for chronic, respiratory disorder and irritation to skin, eyes and cardiac problem along with nausea and headache. The major inorganic pollutants include ferrous, copper, zinc, nickel, and magnesium, which is reported for neurotoxicity, toxic to juvenile channel catfish (Ictalurus punctatus) and Accumulation to gill > liver > ovary > muscle. The detected major organic and inorganic pollutants are hexadecanoic acids, octacosane, β-sitosterol trimethylsilyl ether, 1-tetradecane, 2-methoxy phenol, trichlorocatechol, tetrachlorocatechol, chlorophenols, chloroguaiacols, chlorosyringols, chlorocatechols, terpenes, methanol, phenol, alkylated phenols, decalone, benzoic acid, abietic acid, and dehydroabietic acid. Several of these compounds are reported as endocrine-disrupting chemicals (EDCs). Therefore, direct toxicity of effluent to the reproductive system in aquatic flora and fauna are reported. Several reports have highlighted reduced gonad size, change in secondary sexual character, delayed maturity and suppression of sex hormone in fish rainbow trout (Oncorhynchus mykiss) and mosquitofish (Gambusia holbrooki) further the in-vitro studies of organic compounds on fish, Salmonella typhimurium, Vibrio fischeri, and Saccharomyces have shown inhibition in growth and luminescence properties. The presence of organic and inorganic pollutants in pulp paper industry wastewater causes phytotoxicity chromosomal aberration in Allium cepa. Thus the manuscript has concluded that detected pollutants produced foul odors and cause hermaphroditism in fish, hepatotoxicity and mutagenic effect. In addition, the growth of coliform bacteria in River and other aquatic resources has been reported due to contamination of PPI effluent. The studies also highlighted the presence of tannins, chlorophenols, dioxins, furans, biocide, fatty acids, and resin acids along with chlorolignine compounds as persistent organic pollutants (POP), which needs special attention for pollution prevention of rivers, lakes and other aquatic resources.
Collapse
Affiliation(s)
- Ajay Kumar Singh
- Department of Environmental Microbiology, School of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raibareli Road, Lucknow 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raibareli Road, Lucknow 226025, India.
| |
Collapse
|
15
|
Orrego R, Hewitt LM, McMaster M, Chiang G, Quiroz M, Munkittrick K, Gavilán JF, Barra R. Assessing wild fish exposure to ligands for sex steroid receptors from pulp and paper mill effluents in the Biobio River Basin, Central Chile. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:256-263. [PMID: 30612013 DOI: 10.1016/j.ecoenv.2018.12.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Bioactive substances in the Biobio River Basin in Chile were examined by deploying Semi Permeable Membrane Devices (SPMDs) upstream and downstream of 4 pulp mill effluent discharges. Androgenic and estrogenic activity of SPMD extracts were then evaluated using in vitro fish sex steroid receptor binding assays. The results indicated the occurrence of estrogenic type compounds associated with one of the mill discharges. A significant correlation among the presence of these compounds, an increase in gonadosomatic index GSI and induction of hepatic EROD activity of two native fish species was observed. However, no significant presence of mature oocytes in female gonads was detected. Although EROD induction was observed in sites impacted by mill effluents, an increase of its activity occurred towards the downstream areas, suggesting other non-mill sources. More research is needed to understand the environmental changes in context of the new technological improvements in treatment systems to MBBR (Moving Bed Biofilm Reactor) recently implemented by the pulp mill industries.
Collapse
Affiliation(s)
- Rodrigo Orrego
- Natural Science Institute Alexander von Humboldt, Aquatic Toxicology Laboratory, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Av. Universidad de Antofagasta, 02800 Antofagasta, Chile.
| | - L Mark Hewitt
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Mark McMaster
- Environment and Climate Change Canada, Burlington, Ontario, Canada
| | | | - Mauricio Quiroz
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Kelly Munkittrick
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Juan F Gavilán
- Department of Cellular Biology, Faculty of Biological Sciences, University of Concepcion, Chile
| | - Ricardo Barra
- Department of Aquatic Systems, Faculty of Environmental Sciences and EULA-Chile Centre, University of Concepción, Concepción, Chile
| |
Collapse
|
16
|
Llanos-Rivera A, Castro LR, Vásquez P, Silva J, Bay-Schmith E. The impact of kraft pulping effluent on egg survival and hatching success in two species of Clupeiformes (Teleostei). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25269-25279. [PMID: 29946836 DOI: 10.1007/s11356-018-2583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The anchoveta (Engraulis ringens) and sardine (Strangomera bentincki) are coastal pelagic species with important spawning areas off the coast of Chile. The discharge of secondary-treated effluents from a kraft pulp plant near one of these spawning areas has raised environmental concerns. Therefore, effluent effects on the development of anchoveta and sardine eggs were assessed by in vitro exposure. Eggs were sampled between 2007 and 2010 off Talcahuano, Chile. Subsequent toxicity tests (96 h duration, 12 °C) were performed using increasing effluent concentrations, a filtered seawater control, and two potassium dichromate concentrations (to verify consistent embryonic sensitivity). Egg mortality and hatching success were evaluated. For anchoveta, mortality (9.9 ± 7.1%) did not significantly differ among groups in five toxicity tests except the final toxicity test that showed significant differences in mortality (5.6% control vs 27.8% in 100% effluent). For sardines, no differences in mortality existed between the effluent dilutions (2.6 ± 3.6%) and control (6.3 ± 3.9%). Notably, anchoveta egg survival and hatching success rates were inconsistent, i.e., the highest rates of hatching failure occurred on the same sampling date with the highest rates of survival for the 100% effluent group (72%). In conclusion, the obtained results indicate that (i) anchoveta egg mortality and hatching failure increase only under 100% effluent exposure, coinciding with decreased egg quality near the end of spawning season and (ii) high effluent dilutions not significantly increase sardine and anchoveta egg mortalities. Nevertheless, the recorded adverse effects to the hatching process should be studied in greater detail, particularly considering interspecific variability and the complexity of reproductive processes, especially during early development.
Collapse
Affiliation(s)
- Alejandra Llanos-Rivera
- Programa de Investigación Marina de Excelencia (PIMEX-Nueva Aldea), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile.
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile.
| | - Leonardo R Castro
- Programa de Investigación Marina de Excelencia (PIMEX-Nueva Aldea), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile
- Centro COPAS Sur Austral, Universidad de Concepción, Concepción, Chile
- Centro de Investigación Dinámica de Ecosistemas de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Paulina Vásquez
- Programa de Investigación Marina de Excelencia (PIMEX-Nueva Aldea), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile
| | - Jeannette Silva
- Programa de Investigación Marina de Excelencia (PIMEX-Nueva Aldea), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile
- Laboratorio de Bioensayos, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile
| | - Enrique Bay-Schmith
- Programa de Investigación Marina de Excelencia (PIMEX-Nueva Aldea), Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile
- Laboratorio de Bioensayos, Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4030000, Concepción, Chile
| |
Collapse
|
17
|
Castro AJG, Baptista IE, de Moura KRS, Padilha F, Tonietto J, de Souza AZP, Soares CHL, Silva FRMB, Van Der Kraak G. Exposure to a Brazilian pulp mill effluent impacts the testis and liver in the zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2018; 206-207:41-47. [PMID: 29499384 DOI: 10.1016/j.cbpc.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 11/29/2022]
Abstract
While many studies have shown that pulp mill effluents can affect ovarian physiology in fish, far fewer studies have considered the effects in males. We conducted a lab study to examine the effects of effluent from a Brazilian pulp and paper mill on hepatic and testicular morphology and various aspects of testicular physiology in the zebrafish Danio rerio. Males were exposed to lab water (control) or 4% effluent for 14 days. Effluent exposure did not affect testis size as measured by the gonadosomatic index, but contributed to morphological changes in the seminiferous tubules. The number of cysts with histopathological changes was elevated in effluent-exposed fish and the number of cysts containing spermatids was significantly reduced. The testis of effluent exposed fish had reduced levels of lactate, elevated lactate dehydrogenase activity, increased levels of reactive oxygen species and reduced levels of phosphorylated P38 mitogen-activated protein kinase (pP38 MAPK). Separate studies showed that the addition of lactate to testicular tissue incubated in vitro increased the activation of P38 MAPK. Effluent exposure also increased vacuolization, necrosis, apoptosis, hyperemia, and fat infiltration of the hepatocytes. Collectively, we provide evidence of short term effects of pulp mill effluent on testicular and hepatic physiology and biochemistry in the zebrafish.
Collapse
Affiliation(s)
| | - Ivana Eunice Baptista
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Fernanda Padilha
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Juliana Tonietto
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
18
|
Weber AA, Moreira DP, Melo RMC, Vieira ABC, Prado PS, da Silva MAN, Bazzoli N, Rizzo E. Reproductive effects of oestrogenic endocrine disrupting chemicals in Astyanax rivularis inhabiting headwaters of the Velhas River, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:693-703. [PMID: 28341464 DOI: 10.1016/j.scitotenv.2017.02.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/20/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
The Velhas River is the most polluted river in the state of Minas Gerais, south-eastern Brazil. Due to its historical and environmental relevance, the aim of this study was to evaluate the effects of oestrogenic endocrine disruptors on the reproduction of the lambari Astyanax rivularis, a small-sized species found in headwaters of the São Francisco River basin. Quarterly field samplings were carried out during a reproductive cycle in three streams of the upper Velhas River: S1 (reference site) and S2 and S3 (sites contaminated by untreated sewage). The main oestrogenic compounds were evaluated in water using HPLC/MS. Molecular, histological and reproductive biomarkers were assessed in liver and gonad. The results showed higher average concentrations of oestradiol (>200ng/l) in S2 and S3, oestrone (>250ng/l) in S2 as well as oestriol (>200ng/l), bisphenol A (>190ng/l), and nonylphenol (>600ng/l) in S3 compared to S1 (<70ng/l for all compounds). In S2 and S3, there was an increase in the proportion of females, higher ELISA levels of vitellogenin (Vtg) and proteins of the zona radiata (Zrp) in liver males. Insulin-like growth factor (IGF-I) levels were lower in S2 males, which also had a smaller body size, a smaller seminiferous tubule diameter, a higher proportion of spermatogonia, and lower proportion of spermatozoa in relation to S1. Histopathological analyses detected an increase in yolk deficient oocytes and over-ripening in the contaminated sites, and these alterations were associated to a reduction of hepatic Vtg levels and a delay in spawning, respectively. Intersex specimens with perinucleolar follicles in a multifocal distribution in the testis were detected in S2 and S3. These results indicate that chronic exposure to oestrogenic compounds induced endocrine disruption that may affect wild populations of A. rivularis in the Velhas River.
Collapse
Affiliation(s)
- André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Augusto Bicalho Cruz Vieira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Paula Suzanna Prado
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Mirra Angelina Neres da Silva
- Departamento of Química, Universidade Federal de Minas Gerais, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte 30535-610, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Orrego R, Milestone CB, Hewitt LM, Guchardi J, Heid-Furley T, Slade A, MacLatchy DL, Holdway D. Evaluating the potential of effluent extracts from pulp and paper mills in Canada, Brazil, and New Zealand to affect fish reproduction: Estrogenic effects in fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1547-1555. [PMID: 27808443 DOI: 10.1002/etc.3675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/26/2016] [Accepted: 11/01/2016] [Indexed: 05/24/2023]
Abstract
The authors examined the potential of pulp mill effluent from pulp-producing countries (Canada, Brazil, New Zealand) to affect fish reproduction. Specifically, the estrogenic effects in juvenile rainbow trout (Oncorhynchus mykiss) pulse-exposed to 11 different mill effluent extracts (intraperitoneal injections of solid-phase extraction-dichloromethane nonpolar fraction). The results indicated that effluent extracts were estrogenic in juvenile trout irrespective of the gender, as reflected by increasing level of plasma vitellogenin (VTG; Brazil > New Zealand > Canada). Despite the high variability observed among mills, differences in VTG levels were related to the type of mill process (kraft > elementary chlorine-free kraft > thermomechanical pulping). Moreover, effluent treatments did not appear to significantly decrease VTG induction. A consistent estrogenic effect was observed in those mills that process a combination of feedstocks (softwood and hardwood), with the highest increase in VTG related to eucalyptus feedstock. The results demonstrate significant estrogenic effects of pulp mill effluents on chronically exposed juvenile trout, suggesting that in vivo metabolic activation of precursors is necessary to cause the observed increases in VTG levels. This molecular estrogenic response provides a useful starting point for predicting population-level impacts through the adverse outcome pathway methodology. Environ Toxicol Chem 2017;36:1547-1555. © 2016 SETAC.
Collapse
Affiliation(s)
- Rodrigo Orrego
- Faculty of Marine Sciences and Biological Resources, Natural Science Institute Alexander von Humboldt, University of Antofagasta, Antofagasta, Chile
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Craig B Milestone
- Aquatic Ecosystem Protection Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - L Mark Hewitt
- Aquatic Ecosystem Protection Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - John Guchardi
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | | | | | | | - Douglas Holdway
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| |
Collapse
|
20
|
Vrecl M, Jenčič V. Occurrence of intersex in wild freshwater fish in Slovenian rivers: a histological evaluation. Arh Hig Rada Toksikol 2017; 67:216-222. [PMID: 27749265 DOI: 10.1515/aiht-2016-67-2730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/01/2016] [Indexed: 11/15/2022] Open
Abstract
The aim of this preliminary research was to establish if there are intersex occurrences in wild freshwater fish in Slovenian rivers and streams. In the first study we evaluated all fish species of both sexes obtained from the river Ljubljanica from its source to mouth. In the second study we focused on the rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta m. fario) males from 30 rivers and streams in different parts of Slovenia. The male gonads were histologically assessed for the presence of oocytes to determine the frequency and degree of intersex. Oocytes were found in the testicular tissue of a single grayling (Thymallus thymallus) and in the adipose tissue adjacent to the testis of a single common barbel (Barbus barbus), both from the Ljubljanica. Several cyst-like structures that resemble degenerated presumptive oocytes were also present in several trout testes. This preliminary report is the first of its kind in Slovenia. To gain a better insight into the intersex issue in Slovenia, we plan to regularly biomonitor freshwater pollution by histologically examining fish gonads and, if possible, by determining vitellogenin plasma levels in fish.
Collapse
|
21
|
Martel PH, O'Connor BI, Kovacs TG, van den Heuvel MR, Parrott JL, McMaster ME, MacLatchy DL, Van Der Kraak GJ, Hewitt LM. The Relationship between Organic Loading and Effects on Fish Reproduction for Pulp Mill Effluents across Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3499-3507. [PMID: 28221781 DOI: 10.1021/acs.est.6b05572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study builds upon the work of a multiagency consortium tasked with determining cost-effective solutions for the effects of pulp mill effluents on fish reproduction. A laboratory fathead minnow egg production test and chemical characterization tools were used to benchmark 81 effluents from 20 mills across Canada, representing the major pulping, bleaching, and effluent treatment technologies. For Kraft and mechanical pulp mills, effluents containing less than 20 mg/L BOD5 were found to have the greatest probability of having no effects. Organic loading, expressed as the total detected solvent-extractable components by gas chromatography/mass spectrometry (GC/MS), also correlated with decreased egg laying. Exceptions were found for specific Kraft, mechanical, and sulfite mills, suggesting yet unidentified causative agents are involved. Recycled fiber mill effluents, tested for the first time, were found to have little potential for reproductive effects despite large variations in BOD5 and GC/MS profiles. Effluent treatment systems across all production types were generally efficient, achieving a combined 82-98% BOD5 removal. Further reductions of final effluent organic loadings toward the target of less than 20 mg/L are recommended and can be realized through biotreatment optimization, the reduction of organic losses associated with production upsets and selecting best available technologies that reduce organic loadings to biotreatment.
Collapse
Affiliation(s)
- Pierre H Martel
- FPInnovations , 570 boul. Saint-Jean, Pointe-Claire, QC Canada , H9R 3J9
| | - Brian I O'Connor
- FPInnovations , 570 boul. Saint-Jean, Pointe-Claire, QC Canada , H9R 3J9
| | - Tibor G Kovacs
- FPInnovations , 570 boul. Saint-Jean, Pointe-Claire, QC Canada , H9R 3J9
| | - Michael R van den Heuvel
- Canadian Rivers Institute, Department of Biology, University of Prince Edward Island , 550 University Avenue, Charlottetown, PEI Canada , C1A 4P3
| | - Joanne L Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada , 867 Lakeshore Road, Burlington, ON Canada , L7S 1A1
| | - Mark E McMaster
- Water Science and Technology Directorate, Environment and Climate Change Canada , 867 Lakeshore Road, Burlington, ON Canada , L7S 1A1
| | - Deborah L MacLatchy
- Canadian Rivers Institute, Department of Biology, Wilfrid Laurier University , 75 University Avenue West, Waterloo, ON Canada , N2L 3C5
| | - Glen J Van Der Kraak
- Department of Integrative Biology, University of Guelph , 50 Stone Road East, Guelph, ON Canada , N1G 2W1
| | - L Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada , 867 Lakeshore Road, Burlington, ON Canada , L7S 1A1
| |
Collapse
|
22
|
Chamorro S, López D, Brito P, Jarpa M, Piña B, Vidal G. Sublethal Effects of Chlorine-Free Kraft Mill Effluents on Daphnia magna. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:843-847. [PMID: 27704189 DOI: 10.1007/s00128-016-1936-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
The implementation of elemental chlorine-free (ECF) bleaching methods has drastically reduced the aquatic toxicity of Kraft mill effluents during the last decade. However, the residual toxicity of Kraft mill effluents is still a potential concern for the environment, even when subjected to secondary wastewater treatment. The aim of this study is characterize potential sublethal effects of ECF Kraft mill effluents using Daphnia magna as model species. D. magna exposed towards increasing concentration of ECF Kraft mill effluent showed a significant, dose-dependent reduction in feeding. Conversely, post-feeding assay, life history, and allometric growth analyses showed stimulatory, rather than inhibitory effects in exposed animals at low concentrations, while high concentrations of ECF Kraft mill effluents reduced their reproductive output. These results suggest a hormetic effect in which moderate concentrations of the effluent had a stimulatory effect with higher concentrations causing inhibition in some variables.
Collapse
Affiliation(s)
- Soledad Chamorro
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Daniela López
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Pablina Brito
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Mayra Jarpa
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Gladys Vidal
- Engineering and Environmental Biotechnology Group, Environmental Science Faculty and Center EULA-Chile, University of Concepción, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|