1
|
Li SC, Gu LH, Wang YF, Wang LM, Chen L, Giesy JP, Tuo X, Xu WL, Wu QH, Liu YQ, Wu MH, Diao YY, Zeng HH, Zhang QB. A proteomic study on gastric impairment in rats caused by microcystin-LR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:169306. [PMID: 38103614 DOI: 10.1016/j.scitotenv.2023.169306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Microcystins (MCs) are the most common cyanobacterial toxins. Epidemiological investigation showed that exposure to MCs can cause gastro-intestinal symptoms, gastroenteritis and gastric cancer. MCs can also accumulate in and cause histopathological damage to stomach. However, the exact mechanisms by which MCs cause gastric injury were unclear. In this study, Wistar rats were administrated 50, 75 or 100 μg microcystin-LR (MC-LR)/kg, body mass (bm) via tail vein, and histopathology, response of anti-oxidant system and the proteome of gastric tissues at 24 h after exposure were studied. Bleeding of fore-stomach and gastric corpus, inflammation and necrosis in gastric corpus and exfoliation of mucosal epithelial cells in gastric antrum were observed following acute MC-LR exposure. Compared with controls, activities of superoxide dismutase (SOD) were significantly greater in gastric tissues of exposed rats, while activities of catalase (CAT) were less in rats administrated 50 μg MC-LR/kg, bm, and concentrations of glutathione (GSH) and malondialdehyde (MDA) were greater in rats administrated 75 or 100 μg MC-LR/kg, bm. These results indicated that MC-LR could disrupt the anti-oxidant system and cause oxidative stress. The proteomic results revealed that MC-LR could affect expressions of proteins related to cytoskeleton, immune system, gastric functions, and some signaling pathways, including platelet activation, complement and coagulation cascades, and ferroptosis. Quantitative real-time PCR (qRT-PCR) analysis showed that transcriptions of genes for ferroptosis and gastric function were altered, which confirmed results of proteomics. Overall, this study illustrated that MC-LR could induce gastric dysfunction, and ferroptosis might be involved in MC-LR-induced gastric injury. This study provided novel insights into mechanisms of digestive diseases induced by MCs.
Collapse
Affiliation(s)
- Shang-Chun Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Li-Hong Gu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yan-Fang Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Li-Mei Wang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Liang Chen
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences, Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wen-Li Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Hui Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yi-Qing Liu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ming-Huo Wu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Yang-Yang Diao
- Department of Pediatrics, Southwest Medical University, Luzhou 646000, China
| | - Hao-Hang Zeng
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China
| | - Qing-Bi Zhang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Yao X, Liu Y, Yang Y, Li Y, Hu N, Song F, Yang F. Microcystin-LR-Exposure-Induced Kidney Damage by Inhibiting MKK6-Mediated Mitophagy in Mice. Toxins (Basel) 2023; 15:404. [PMID: 37368704 DOI: 10.3390/toxins15060404] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/29/2023] Open
Abstract
Previous studies have reported that microcystin-LR (MC-LR) levels are highly correlated with abnormal renal function indicators, suggesting that MC-LR is an independent risk factor for kidney damage. However, the evidence for the exact regulation mechanism of MC-LR on kidney damage is still limited, and further in-depth exploration is needed. In addition, the mitochondria-related mechanism of MC-LR leading to kidney damage has not been elucidated. To this end, the present study aimed to further explore the mechanism of mitophagy related to kidney damage induced by MC-LR through in vitro and in vivo experiments. Male C57BL/6 mice were fed with a standard rodent pellet and exposed daily to MC-LR (20 μg/kg·bw) via intraperitoneal injections for 7 days. Moreover, HEK 293 cells were treated with MC-LR (20 μM) for 24 h. The histopathological results exhibited kidney damage after MC-LR exposure, characterized by structurally damaged nephrotomies, with inflammatory cell infiltration. Similarly, a significant increase in renal interstitial fibrosis was observed in the kidneys of MC-LR-treated mice compared with those of the control group (CT) mice. MC-LR exposure caused impaired kidney function, with markedly increased blood urea nitrogen (BUN), creatinine (Cr), and uric acid (UA) levels in mice. Ultrastructural analysis exhibited obviously swollen, broken, and disappearing mitochondrial crests, and partial mitochondrial vacuoles in the MC-LR-treated HEK 293 cells. The Western blotting results demonstrated that exposure to MC-LR significantly increased the protein expressions of MKK6, p-p38, and p62, while the expression of mitophagy-related proteins was significantly inhibited in the kidneys of mice and HEK293 cells, including parkin, TOM20, and LC3-II, indicating the inhibition of mitophagy. Therefore, our data suggest that the inhibition of MKK6-mediated mitophagy might be the toxicological mechanism of kidney toxicity in mice with acute exposure to MC-LR.
Collapse
Affiliation(s)
- Xueqiong Yao
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying Liu
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410017, China
| | - Yafang Li
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Na Hu
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fengmei Song
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410017, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210000, China
| |
Collapse
|
4
|
Wang Y, Guo Y, Liu H, Du X, Shi L, Wang W, Zhang S. Hawthorn fruit extract protect against MC-LR-induced hepatotoxicity by attenuating oxidative stress and apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1239-1250. [PMID: 36880395 DOI: 10.1002/tox.23760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Microcystins (MCs) is a class of cyclic heptapeptide compounds with biological activity. There is no effective treatment for liver injury caused by MCs. Hawthorn is a medicinal and edible plant traditional Chinese medicine with hypolipidemic, reducing inflammation and oxidative stress in the liver. This study discussed the protective effect of hawthorn fruit extract (HFE) on liver damage caused by MC-LR and the underlying molecular mechanism. After MC-LR exposure, pathological changes were observed and hepatic activity of ALT, AST and ALP were increased obviously, but they were remarkably restored with HFE administration. In addition, MC-LR could significantly reduce SOD activity and increase MDA content. Importantly, MC-LR treatment resulted in mitochondrial membrane potential decreased, and Cytochrome C release, eventually leading to cell apoptosis rate increase. HFE pretreatment could significantly alleviate the above abnormal phenomena. To examine the mechanism of protection, the expression of critical molecules in the mitochondrial apoptosis pathway was examined. The levels of Bcl-2 was inhibited, and the levels of Bax, Caspase-9, Cleaved Caspase-9, and Cleaved caspase-3 were upregulated after MC-LR treatment. HFE reduced MC-LR-induced apoptosis via reversing the expression of key proteins and genes in the mitochondrial apoptotic pathway. Hence, HFE could alleviate MC-LR induced hepatotoxicity by reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Yongshui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yao Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjun Wang
- College of Nursing, Jining Medical University, Jining, Shandong, China
| | - Shenshen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Feng M, Gui Y, An J, Cao X, Lu W, Yang G, Jian S, Hu B, Wen C. The thioredoxin expression of Cristaria plicata is regulated by Nrf2/ARE pathway under microcystin stimulation. Int J Biol Macromol 2023; 242:124509. [PMID: 37085063 DOI: 10.1016/j.ijbiomac.2023.124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Thioredoxin plays an important role in inhibiting apoptosis and protecting cells from oxidative stress. This study was aimed to clarify how the expression of Trx from Cristaria plicata is regulated by Nrf2/ARE pathway. The expression of CpTrx mRNA was significantly up-regulated in gill and kidney tissues under microcystin stress. The Nrf2 gene of Cristaria plicata was identified to possess an auto active domain bit. While CpNrf2 was knocked down by specific small RNA, CpTrx mRNA expression was significantly down-regulated. The promoter of CpTrx gene had high transcriptional activity, and this basic transcriptional activity persisted after ARE element mutation. The region of promoter -206 to +217 bp was a core promoter region and had forward regulatory elements. Gel shift Assay exhibited that the CpTrx promoter could bind to the purified proteins CpNrf2 and CpMafK in vitro. The binding phenomenon disappeared after the ARE element mutation in promoter region. Subcellular localization experiments displayed that fluorescence overlap between CpNrf2 and Trx promoter increased under microcystin toxin stress. These results suggested that Trx expression was regulated by Nrf2/ARE pathway under oxidative stress.
Collapse
Affiliation(s)
- Maolin Feng
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Yingping Gui
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Jinhua An
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - XinYing Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Gang Yang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Shaoqing Jian
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
6
|
Wei L, Fu J, He L, Wang H, Ruan J, Li F, Wu H. Microcystin-LR-induced autophagy regulates oxidative stress, inflammation, and apoptosis in grass carp ovary cells in vitro. Toxicol In Vitro 2023; 87:105520. [PMID: 36410616 DOI: 10.1016/j.tiv.2022.105520] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
MC-LR is one of the cyanotoxins produced by fresh water cyanobacteria. Previous studies showed that autophagy played an important role in MC-LR-induced reproduction toxicity. However, information on the toxicological mechanism is limited. In this study, MC-LR could induce autophagy and apoptosis in GCO cells in vitro. In GCO cells that had been exposed to MC-LR, the inhibitor of 3-MA effectively decreased cell viability and damaged cell ultrastructure. Oxidative stress was significantly increased in the 3-MA + MC-LR group, accompanied by significantly increased MDA content and decreased CAT activity and GST, SOD1, GPx, and GR expression levels (P < 0.05). Inflammation was more serious in the 3-MA + MC-LR group than that of MC-LR group, which was evidenced by increasing expression levels of TNFα, IL11, MyD88, TNFR1, TRAF2, JNK, CCL4, and CCL20 (P < 0.05). Interestingly, the significant decrease of Caspase-9, Caspase-7, and Bax expression and significant increase of Bcl-2 and Bcl-2/Bax ratio in 3-MA + MC-LR group compared to MC-LR group, suggesting that extent of apoptosis were reduced. Taken together, these results indicated that MC-LR induced autophagy and apoptosis in GCO cells, however, the inhibition of autophagy decreased the extent of apoptosis, induced more serious oxidative stress and inflammation, which eventually induced cell death. Our findings provided some information for exploring the toxicity of MC-LR, however, the role of autophagy require further study in vivo.
Collapse
Affiliation(s)
- Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| | - Jianping Fu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi Province 330022, PR China
| | - Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Fugui Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| |
Collapse
|
7
|
Gao H, Zhu N, Deng S, Du C, Tang Y, Tang P, Xu S, Liu W, Shen M, Xiao X, Yang F. Combination Effect of Microcystins and Arsenic Exposures on CKD: A Case-Control Study in China. Toxins (Basel) 2023; 15:144. [PMID: 36828458 PMCID: PMC9964595 DOI: 10.3390/toxins15020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Evidence has shown that exposure to environmental pollutants such as microcystins (MCs), arsenic (As), and cadmium (Cd) can lead to the occurrence and development of chronic kidney disease (CKD). There is a synergistic effect between MCs and Cd. However, the combined effect of MCs and As exposures on CKD remains unclear. In Hunan province, China, 135 controls and 135 CKD cases were enrolled in a case-control study. Serum MCs, plasma As and Cd concentrations were measured for all participants. We investigated the association between MCs/As and CKD risk using conditional logistic regression. The additive model explored the interaction effect, and the Bayesian kernel machine regression (BKMR) models investigated the combined effects of MCs, As, and Cd on CKD. The results showed that MCs and As were significantly associated with CKD risk. Participants in the highest MCs concentration had a 4,81-fold increased risk of CKD compared to those in the lowest quartile (95% confidence interval [CI]: 1,96 to 11,81). The highest quartile of As concentrations corresponded to an adjusted odds ratio of 3.40 (95% CI: 1.51, 7.65) relative to the lowest quartile. MCs/As and CKD risk exhibited significant dose-response correlations (all p for trend < 0.01). In addition, a positive interaction effect of MCs and As on CKD was also reported. The CKD risk due to interaction was 2.34 times (95% CI: 0.14, 4.54) relative to the CKD risk without interaction, and the attributable proportion of CKD due to interaction among individuals with both exposures was 56% (95% CI: 0.22, 0.91). In the BKMR, the combined effect of MCs, As, and Cd was positively associated with CKD. In conclusion, both MCs and As are independent risk factors for CKD, exerting a synergistic effect between them. Combined exposure to MCs, As, and Cd can increase the risk of CKD.
Collapse
Affiliation(s)
- Hong Gao
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Nursing, University of South China, Hengyang 421001, China
| | - Na Zhu
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- School of Nursing, University of South China, Hengyang 421001, China
| | - Shuxiang Deng
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Can Du
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Yan Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Minxue Shen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha 410000, China
| | - Xinhua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Department of Epidemiology and Health Statistics, The Key Laboratory of Typical Environmental Pollution and Health Hazards of Hunan Province, School of Basic Medicine, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
Tang Y, Yi X, Zhang X, Liu B, Lu Y, Pan Z, Yu T, Feng W. Microcystin‑leucine arginine promotes colorectal cancer cell proliferation by activating the PI3K/Akt/Wnt/β‑catenin pathway. Oncol Rep 2023; 49:18. [PMID: 36453240 PMCID: PMC9773010 DOI: 10.3892/or.2022.8455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Microcystin‑leucine arginine (MC‑LR) is an environmental toxin produced by cyanobacteria and is considered to be a potent carcinogen. However, to the best of our knowledge, the effect of MC‑LR on colorectal cancer (CRC) cell proliferation has never been studied. The aim of the present study was to investigate the effect of MC‑LR on CRC cell proliferation and the underlying mechanisms. Firstly, a Cell Counting Kit‑8 (CCK‑8) assay was conducted to determine cell viability at different concentrations, and 50 nM MC‑LR was chosen for further study. Subsequently, a longer CCK‑8 assay and a cell colony formation assay showed that MC‑LR promoted SW620 and HT29 cell proliferation. Furthermore, western blotting analysis showed that MC‑LR significantly upregulated protein expression of PI3K, p‑Akt (Ser473), p‑GSK3β (Ser9), β‑catenin, c‑myc and cyclin D1, suggesting that MC‑LR activated the PI3K/Akt and Wnt/β‑catenin pathways in SW620 and HT29 cells. Finally, the pathway inhibitors LY294002 and ICG001 were used to validate the role of the PI3K/Akt and Wnt/β‑catenin pathways in MC‑LR‑accelerated cell proliferation. The results revealed that MC‑LR activated Wnt/β‑catenin through the PI3K/Akt pathway to promote cell proliferation. Taken together, these data showed that MC‑LR promoted CRC cell proliferation by activating the PI3K/Akt/Wnt/β‑catenin pathway. The present study provided a novel insight into the toxicological mechanism of MC‑LR.
Collapse
Affiliation(s)
- Yaqi Tang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaoyu Yi
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinyu Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Baojie Liu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yongzheng Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhifang Pan
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Tao Yu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weiguo Feng
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
9
|
Yan M, Jin H, Pan C, Hang H, Li D, Han X. Movement Disorder and Neurotoxicity Induced by Chronic Exposure to Microcystin-LR in Mice. Mol Neurobiol 2022; 59:5516-5531. [PMID: 35732866 DOI: 10.1007/s12035-022-02919-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
Abstract
Microcystins are produced by some species of cyanobacteria, which are hazardous materials to the environment and human beings. It has been demonstrated that microcystin-LR (MC-LR) could disrupt the blood-brain barrier and cause learning and memory deficits, but the neurotoxicity of MC-LR on motor function remains unclear. In this study, the mice were exposed to MC-LR dissolved in drinking water at doses of 1, 7.5, or 15 μg/L for 15 months. We observed that 15 μg/L MC-LR could enter mouse brain tissues such as the cortex, hippocampus, and substantia nigra (SN). And 15 μg/L MC-LR also caused hypokinesia in mice and induced the loss and apoptosis of SN dopaminergic neurons (DA neurons). Meanwhile, MC-LR induced the accumulation of alpha synuclein (α-syn) in DA neurons and decreased the proteins of tyrosine hydroxylase (TH), dopa decarboxylase (DDC) and dopamine transporter (DAT), resulting in a reduction in dopamine (DA) content, which are pathological features of Parkinson's disease (PD). These results suggested that chronic MC-LR might induce PD-like lesions in mice. Moreover, chronic MC-LR exposure caused the inflammatory response in the SN, manifested by the increased numbers of glial cells and the release of inflammatory factors (TNF-α, MCP-1, and IL-6). In vitro, it was proved that MC-LR mediated SH-SY5Y cell apoptosis by activating oxidative stress and damaging mitochondria. Collectively, this study revealed a novel molecular mechanism for MC-LR neurotoxicity with significant implications for human health and the public environment.
Collapse
Affiliation(s)
- Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Hexing Hang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.,Department of Hepatopancreatobiliary Surgery, Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Jiangsu Province, 210008, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
10
|
Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Toxicon 2022; 211:21-35. [DOI: 10.1016/j.toxicon.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
11
|
Wang Q, Chen G, Zhang Q, Wang M, Wang G, Hu T. Microcystin-leucine arginine blocks vasculogenesis and angiogenesis through impairing cytoskeleton and impeding endothelial cell migration by downregulating integrin-mediated Rho/ROCK signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67108-67119. [PMID: 34244946 DOI: 10.1007/s11356-021-15337-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The main characteristic of eutrophication is cyanobacteria harmful algae blooms. Microcystin-leucine arginine (MC-LR) is considered to be the most toxic and most commonly secondary metabolite produced by cyanobacteria. It has been reported that MC-LR had potential vascular toxicity. However, the mechanism that MC-LR-induced vascular toxicity is very limited and remains to be clarified. The aim of this study was to evaluate the toxic hazard toward the vasculogenesis and angiogenesis of MC-LR. Its effects on vasculogenesis, sprouting angiogenesis, and endothelial cell tube formation were studied. The study showed that MC-LR exposure blocked vasculogenesis in zebrafish embryos, sprouting angiogenesis from rat aorta, and tube formation of human umbilical vein endothelial cells (HUVECs). In addition, MC-LR exposure also induced the disruption of cytoskeletal structures and markedly inhibited endothelial cell (EC) migration from caudal hematopoietic tissue in zebrafish and HUVEC migration. Western blot analysis showed that MC-LR exposure downregulated the expressions of integrin β1, FAK, Rho, and ROCK. Combined with these results, MC-LR could induce disruption of cytoskeleton via downregulating integrin-mediated FAK/ROCK signaling pathway, leading to the inhibition of EC migration, which finally blocked vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- Qilong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China.
| |
Collapse
|
12
|
Lin W, Hung TC, Kurobe T, Wang Y, Yang P. Microcystin-Induced Immunotoxicity in Fishes: A Scoping Review. Toxins (Basel) 2021; 13:765. [PMID: 34822549 PMCID: PMC8623247 DOI: 10.3390/toxins13110765] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanobacteria (blue-green algae) have been present on Earth for over 2 billion years, and can produce a variety of bioactive molecules, such as cyanotoxins. Microcystins (MCs), the most frequently detected cyanotoxins, pose a threat to the aquatic environment and to human health. The classic toxic mechanism of MCs is the inhibition of the protein phosphatases 1 and 2A (PP1 and PP2A). Immunity is known as one of the most important physiological functions in the neuroendocrine-immune network to prevent infections and maintain internal homoeostasis in fish. The present review aimed to summarize existing papers, elaborate on the MC-induced immunotoxicity in fish, and put forward some suggestions for future research. The immunomodulatory effects of MCs in fish depend on the exposure concentrations, doses, time, and routes of exposure. Previous field and laboratory studies provided strong evidence of the associations between MC-induced immunotoxicity and fish death. In our review, we summarized that the immunotoxicity of MCs is primarily characterized by the inhibition of PP1 and PP2A, oxidative stress, immune cell damage, and inflammation, as well as apoptosis. The advances in fish immunoreaction upon encountering MCs will benefit the monitoring and prediction of fish health, helping to achieve an ecotoxicological goal and to ensure the sustainability of species. Future studies concerning MC-induced immunotoxicity should focus on adaptive immunity, the hormesis phenomenon and the synergistic effects of aquatic microbial pathogens.
Collapse
Affiliation(s)
- Wang Lin
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
- Department of Fisheries Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Tomofumi Kurobe
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA;
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA; (T.-C.H.); (Y.W.)
| | - Pinhong Yang
- Hunan Provincial Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan Provincial Key Laboratory for Health Aquaculture and Product Processing in Dongting Lake Area, Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, Hunan Engineering Research Center of Aquatic Organism Resources and Environmental Ecology, Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
| |
Collapse
|
13
|
Chen Y, Zhou Y, Wei X, Yang Y, Li X, Xu Y, Liu C, Chen Z. Analysis of miRNA and mRNA expression in the dysregulation of insulin secretion in MIN6 cells exposed to microcystin-leucine-arginine. Toxicon 2021; 201:169-176. [PMID: 34450178 DOI: 10.1016/j.toxicon.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
Microcystin -leucine-arginine (MC-LR), produced by freshwater cyanobacteria, is a potential pancreatic β-cell toxin. In this study, the function of the mouse pancreatic β-cell line, MIN6, was evaluated after MC-LR exposure, and the underlying molecular mechanisms were explored. Exposure to MC-LR for 24 h was found to inhibit cell viability and impair insulin secretion. Such findings indicate that β-cell function would be impaired following MC-LR treatment. The microarray results revealed altered miRNA and mRNA expression profiles that might be responsible for the abnormal function of MIN6 cells. Further, miRNA-gene network analysis demonstrated that miR-29b-3p, miR-6967-5p, miR-3473, miR-7061-5p, Xkr4, Tmem178b, Scp2, Ypel2, and Kcnj11 are key miRNAs and genes in the MC-LR-induced MIN6-cell toxicity. The altered expression levels of several miRNAs (e.g., miR-320-5p, miR-770-5p, miR-99a-3p, and miR-375-5p) and genes (e.g., Pklr and Gpd2) involved in insulin secretion or the onset of diabetes were also identified in MIN6 cells after treatment with MC-LR. Collectively, these findings provide evidence of the toxic effects of MC-LR on β-cells and the underlying molecular mechanisms of its glycometabolism toxicity. MCs may thus possibly play an important role in the development of diabetes mellitus in humans.
Collapse
Affiliation(s)
- Yu Chen
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yuan Zhou
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Xiao Wei
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yu Yang
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Xingjia Li
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Yijiao Xu
- Research Center of Endocrinology and Metabolic Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | - Zhaoyao Chen
- Department of Neurology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
14
|
Pawlik-Skowrońska B, Bownik A. Cyanobacterial anabaenopeptin-B, microcystins and their mixture cause toxic effects on the behavior of the freshwater crustacean Daphnia magna (Cladocera). Toxicon 2021; 198:1-11. [PMID: 33915136 DOI: 10.1016/j.toxicon.2021.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/30/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Comparison of the toxic effects caused by the pure cyanobacterial cyclic hexapeptide anabaenopeptin-B (AN-B), the heptapeptides: microcystin-LR (MC-LR) and MC-LF as well as a binary mixture of AN-B with MC-LR on the swimming speed and hopping frequency - essential activities of Daphnia, was experimentally determined. Till now, no information on behavioral effects of AN-B and its mixture with microcystins, commonly produced by cyanobacteria, was available. Also MC-LF effect on aquatic crustaceans was determined for the first time. The results showed that AN-B exerted considerable inhibition of D. magna swimming speed and hopping frequency similar to MC-LR and MC-LF. The mixture of AN-B and MC-LR caused stronger toxic effects, than the individual oligopeptides used at the same concentration. The much lower 48 h- EC50 value of the AN-B and MC-LR mixture (0.95 ± 0.12 μg/mL) than those of individual oligopeptides AN-B (6.3 ± 0.63 μg/mL), MC-LR (4.0 ± 0.27 μg/mL), MC-LF (3.9 ± 0.20 μg/mL) that caused swimming speed inhibition explains the commonly observed stronger toxicity of complex crude cyanobacterial extracts to daphnids than individual microcystins. The obtained results indicated that AN-B, microcystins and their mixture exerted time- and concentration-dependent motility disturbances of crustaceans and they can be good candidates for evaluation of toxicity in early warning systems. Other cyanobacterial oligopeptides beyond microcystins should be considered as a real threat for aquatic organisms.
Collapse
Affiliation(s)
- Barbara Pawlik-Skowrońska
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, Faculty of Environmental Biology, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| |
Collapse
|
15
|
Xu S, Yi X, Liu W, Zhang C, Massey IY, Yang F, Tian L. A Review of Nephrotoxicity of Microcystins. Toxins (Basel) 2020; 12:toxins12110693. [PMID: 33142924 PMCID: PMC7693154 DOI: 10.3390/toxins12110693] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Cyanobacterial blooms triggered by eutrophication and climate change have become a global public health issue. The toxic metabolites microcystins (MCs) generated by cyanobacteria can accumulate in food chain and contaminate water, thus posing a potential threat to human and animals health. Studies have suggested that aside liver, the kidney may be another target organ of MCs intoxication. Therefore, this review provides various evidences on the nephrotoxicity of MCs. The review concludes that nephrotoxicity of MCs may be related to inhibition of protein phosphatases and excessive production of reactive oxygen species, cytoskeleton disruption, endoplasmic reticulum stress, DNA damage and cell apoptosis. To protect human from MCs toxic consequences, this paper also puts forward some directions for further research.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
| | - Xiping Yi
- School of Public Health, Xiangnan University, Chenzhou 423000, China;
- Chenzhou Center for Disease Control and Prevention, Chenzhou 423000, China
| | - Wenya Liu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
| | - Chengcheng Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
| | - Isaac Yaw Massey
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
| | - Fei Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, Hunan, China; (S.X.); (W.L.); (C.Z.); (I.Y.M.)
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China
- Correspondence: (F.Y.); (L.T.); Tel./Fax: +86-731-84805460 (F.Y.)
| | - Li Tian
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha 410013, China
- Correspondence: (F.Y.); (L.T.); Tel./Fax: +86-731-84805460 (F.Y.)
| |
Collapse
|
16
|
Zhang X, Zhou C, Li W, Li J, Wu W, Tao J, Liu H. Vitamin C Protects Porcine Oocytes From Microcystin-LR Toxicity During Maturation. Front Cell Dev Biol 2020; 8:582715. [PMID: 33134299 PMCID: PMC7578366 DOI: 10.3389/fcell.2020.582715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR) is the most toxic cyanotoxin found in water bodies. Microcystins are produced as secondary products of cyanobacteria metabolism. They have a stable structure, and can bioaccumulate in living organisms. Humans and livestock who drink fresh water containing MC-LR can be poisoned. However, few studies have reported the effects of MC-LR exposure on livestock or human reproduction. In this study, we used porcine oocytes as a model to explore the effects of MC-LR on oocyte maturation, and studied the impact of vitamin C (VC) administration on MC-LR-induced meiosis defects. Exposure to MC-LR significantly restricted cumulus cell expansion and decreased first polar body extrusion. Further studies showed that MC-LR exposure led to meiosis arrest by disturbing cytoskeleton dynamics with MC-LR exposed oocytes displaying aberrant spindle organization, low levels of acetylate α-tubulin, and disturbed actin polymerization. Additionally, MC-LR exposure impaired cytoplasmic maturation by inducing mitochondria dysfunction. Moreover, MC-LR also produced abnormal epigenetic modifications, and induced high levels of oxidative stress, caused DNA damage and early apoptosis. The administration of VC provided partial protection from all of the defects observed in oocytes exposed to MC-LR. These results demonstrate that MC-LR has a toxic effect on oocyte meiosis through mitochondrial dysfunction-induced ROS, DNA damage and early apoptosis. Supplementation of VC is able to protect against MC-LR-induced oocyte damage and represents a potential therapeutic strategy to improve the quality of MC-LR-exposed oocytes.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Changyin Zhou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Juan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Shi F, Li W, Zhao H, He Y, Jiang Y, Ni J, Abbasi B, Rui R, Ju S. Microcystin-LR exposure results in aberrant spindles and induces apoptosis in porcine oocytes. Theriogenology 2020; 158:358-367. [PMID: 33038821 DOI: 10.1016/j.theriogenology.2020.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Microcystin-LR (MC-LR), as a well-known hepatotoxin, was recently found to accumulate in gonads and induce a variety of reproductive damages in zebrafish, mice and other model organisms, however, little information is available on whether MC-LR has toxic effects on the mammalian oocytes, especially in livestock species. In this study, the effects of MC-LR on meiotic maturation of porcine oocytes were investigated, and the potential mechanism of MC-LR toxicity was explored. Germinal vesicle (GV)-stage oocytes were exposed to 0, 20, 40 and 60 μM MC-LR, respectively, during the in vitro maturation for 44 h, and the results showed that the first polar body (PbI) extrusion rate of the oocytes decreased significantly when the MC-LR concentration reached 40 (P < 0.01) or 60 μM (P < 0.001). After treated with 60 μM MC-LR for 44 h, a significant higher percentage of the oocytes arrested at anaphase-telophase I (ATI) stage (P < 0.01). Laser scanning confocal results further confirmed that a significantly larger proportion of the 60 μM MC-LR-treated oocytes exhibited aberrant spindles and misaligned chromosomes, suggesting a failure of spindle assembly and homologous chromosome segregation during the ATI stage. Furthermore, the ROS levels in the 60 μM MC-LR-exposed oocytes were significantly higher than the control group (P < 0.01), while the expression of antioxidant related genes (SOD1, CAT and GPX) were much lower compared with control group, indicating that oxidative stress was induced and the antioxidant capacity of oocytes was depleted by 60 μM MC-LR treatment. Additionally, markedly decreased mitochondrial membrane potential (MMP) (P < 0.01) and significantly higher incidence of early apoptosis (P < 0.01) were observed in the 60 μM MC-LR-treated oocytes, suggesting that MC-LR exposure induced apoptosis in porcine oocytes. Moreover, the protein expression of PP2A was remarkably inhibited, whereas the expression of p53, BAX, Caspase3 and Cleaved-caspase3 were prominently increased in the 60 μM MC-LR-exposed oocytes. Together, these results suggested that 60 μM of MC-LR exposure can induce oxidative stress, and lead to aberrant spindles, impaired MMP, and trigger apoptosis, which eventually result in failure of porcine oocyte maturation.
Collapse
Affiliation(s)
- Fengyao Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Hongyu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Jun Ni
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Benazir Abbasi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
18
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
19
|
Makpol S, Abdul Sani NF, Hakimi NH, Ab Rani N, Zakaria SNA, Abd Rasid AF, Gunasekaran G, Mohd Sahardi NFN, Tan JK, Abd Ghafar N, Mad Nordin MF. Zingiber officinale Roscoe Prevents DNA Damage and Improves Muscle Performance and Bone Integrity in Old Sprague Dawley Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1-18. [DOI: 10.1155/2020/3823780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Age-related loss of skeletal muscle mass and strength or sarcopenia is attributed to the high level of oxidative stress and inadequate nutritional intake. The imbalance in oxidative status with increased production of free radicals results in damage to the DNA which leads to cell dysfunction. This study aimed to determine the effect of Zingiber officinale Roscoe (ginger) on muscle performance and bone integrity in Sprague Dawley (SD) rats. SD rats aged three (young), nine (adult), and twenty-one (old) months old were treated with either distilled water or ginger extract at a concentration of 200 mg/kg body weight (BW) daily for 3 months via oral gavage. Muscle performance was assessed at 0, 1, 2, and 3 months of treatment by measuring muscle strength, muscle function, and bone integrity while DNA damage was determined by comet assay. Muscle cell histology was analyzed by hematoxylin and eosin (H&E) staining. Young and adult ginger-treated rats showed a significant improvement in muscle strength after 3 months of supplementation. Bone mineral density (BMD) and bone mineral content (BMC) were increased while fat free mass (FMM) was decreased after 3 months of ginger supplementation in young rats but not changed in adult and old ginger supplemented groups. Interestingly, supplementation of ginger for 3 months to the old rats decreased the level of damaged DNA. Histological findings showed reduction in the size of muscle fibre and fascicles with heterogenous morphology of the muscle fibres indicating sarcopenia was evident in old rats. Treatment with ginger extract improved the histological changes even though there was evidence of cellular infiltration (mild inflammation) and dilated blood vessels. In conclusion, Z. officinale Roscoe prevents DNA damage and improves muscle performance and bone integrity in SD rats indicating its potential in alleviating oxidative stress in ageing and thus delaying sarcopenia progression.
Collapse
Affiliation(s)
- Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Fathiah Abdul Sani
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Haleeda Hakimi
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nazirah Ab Rani
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siti Nor Asyikin Zakaria
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ahmad Fais Abd Rasid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Geetha Gunasekaran
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Fatin Nabilah Mohd Sahardi
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Level 18 Preclinical Building, UKM Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mariam Firdhaus Mad Nordin
- Department of Chemical Process Engineering, Universiti Teknologi Malaysia (UTM) Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| |
Collapse
|
20
|
Gu L, Li S, Bai J, Zhang Q, Han Z. α-Lipoic acid protects against microcystin-LR induced hepatotoxicity through regeneration of glutathione via activation of Nrf2. ENVIRONMENTAL TOXICOLOGY 2020; 35:738-746. [PMID: 32061150 DOI: 10.1002/tox.22908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Microcystins (MCs), as the most dominant bloom-forming strains in eutrophic surface water, can induce hepatotoxicity by oxidative stress. Alpha-lipoic acid (α-LA) is a super antioxidant that can induce the synthesis of antioxidants, such as glutathione (GSH), by nuclear factor erythroid 2-related factor 2 (Nrf2). However, the potential molecular mechanism of α-LA regeneration of GSH remains unclear. The present study aimed to investigate whether α-LA could reduce the toxicity of MCs induced in human hepatoma (HepG2), Bel7420 cells, and BALB/c mice by activating Nrf2 to regenerate GSH. Results showed that exposure to 10 μM microcystin-leucine arginine (MC-LR) reduced viability of HepG2 and Bel7402 cells and promoted the formation of reactive oxygen species (ROS) compared with untreated cells. Moreover, the protection of α-LA included reducing the level of ROS, increasing superoxide dismutase activity, and decreasing malondialdehyde. Levels of reduced glutathione (rGSH) and rGSH/oxidized glutathione were significantly increased in cells cotreated with α-LA and MC-LR compared to those treated with MC-LR alone, indicating an ability of α-LA to attenuate oxidative stress and MC-LR-induced cytotoxicity by increasing the amount of rGSH. α-LA can mediate GSH regeneration through the Nrf2 pathway under the action of glutathione reductase in MC-LR cell lines. Furthermore, the data also showed that α-LA-induced cytoprotection against MC-LR is associated with Nrf2 mediate pathway in vivo. These findings demonstrated the potential of α-LA to resist MC-LR-induced oxidative damage of liver.
Collapse
Affiliation(s)
- Lihong Gu
- Department of labor hygiene and environmental hygiene, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Shangchun Li
- Department of labor hygiene and environmental hygiene, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Bai
- Department of labor hygiene and environmental hygiene, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Qingbi Zhang
- Department of labor hygiene and environmental hygiene, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhixia Han
- Department of labor hygiene and environmental hygiene, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
21
|
Zingiber Officinale Roscoe Prevents Cellular Senescence of Myoblasts in Culture and Promotes Muscle Regeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1787342. [PMID: 32419792 PMCID: PMC7210549 DOI: 10.1155/2020/1787342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
Background Ageing resulted in a progressive loss of muscle mass and strength. Increased oxidative stress in ageing affects the capacity of the myoblast to differentiate leading to impairment of muscle regeneration. Zingiber officinale Roscoe (ginger) has potential benefits in reversing muscle ageing due to its antioxidant property. This study aimed to determine the effect of ginger in the prevention of cellular senescence and promotion of muscle regeneration. Methods Myoblast cells were cultured into young and senescent state before treated with different concentrations of ginger standardised extracts containing different concentrations of 6-gingerol and 6-shogaol. Analysis on cellular morphology and myogenic purity was carried out besides determination of SA-β-galactosidase expression and cell cycle profile. Myoblast differentiation was quantitated by determining the fusion index, maturation index, and myotube size. Results Treatment with ginger extracts resulted in improvement of cellular morphology of senescent myoblasts which resembled the morphology of young myoblasts. Our results also showed that ginger treatment caused a significant reduction in SA-β-galactosidase expression on senescent myoblasts indicating prevention of cellular senescence, while cell cycle analysis showed a significant increase in the percentage of cells in the G0/G1 phase and reduction in the S-phase cells. Increased myoblast regenerative capacity was observed as shown by the increased number of nuclei per myotube, fusion index, and maturation index. Conclusions Ginger extracts exerted their potency in promoting muscle regeneration as indicated by prevention of cellular senescence and promotion of myoblast regenerative capacity.
Collapse
|
22
|
Fried S, Gilboa D, Har-Zahav A, Lavrut PM, Du Y, Karjoo S, Russo P, Shamir R, Wells RG, Waisbourd-Zinman O. Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia. Sci Rep 2020; 10:7599. [PMID: 32371929 PMCID: PMC7200694 DOI: 10.1038/s41598-020-64503-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia is a neonatal liver disease with extrahepatic bile duct obstruction and progressive liver fibrosis. The etiology and pathogenesis of the disease are unknown. We previously identified a plant toxin, biliatresone, responsible for biliary atresia in naturally-occurring animal models, that causes cholangiocyte destruction in in-vitro models. Decreases in reduced glutathione (GSH) mimic the effects of biliatresone, and agents that replenish cellular GSH ameliorate the effects of the toxin. The goals of this study were to define signaling pathways downstream of biliatresone that lead to cholangiocyte destruction and to determine their relationship to GSH. Using cholangiocyte culture and 3D cholangiocyte spheroid cultures, we found that biliatresone and decreases in GSH upregulated RhoU/Wrch1, a Wnt signaling family member, which then mediated an increase in Hey2 in the NOTCH signaling pathway, causing downregulation of the transcription factor Sox17. When these genes were up- or down-regulated, the biliatresone effect on spheroids was phenocopied, resulting in lumen obstruction. Biopsies of patients with biliary atresia demonstrated increased RhoU/Wrch1 and Hey2 expression in cholangiocytes. We present a novel pathway of cholangiocyte injury in a model of biliary atresia, which is relevant to human BA and may suggest potential future therapeutics.
Collapse
Affiliation(s)
- Sophia Fried
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Dafna Gilboa
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adi Har-Zahav
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Yu Du
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sara Karjoo
- Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Pierre Russo
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rebecca G Wells
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Orith Waisbourd-Zinman
- Institute for Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel. .,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. .,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
23
|
Wei H, Wang S, Xu EG, Liu J, Li X, Wang Z. Synergistic toxicity of microcystin-LR and Cu to zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136393. [PMID: 31955075 DOI: 10.1016/j.scitotenv.2019.136393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Toxic cyanobacterial blooms often coincide with metal pollution in a freshwater environment because of surface run-off enriched with nutrients and metals. However, the joint toxic effects of cyanobacterial toxins and metals on aquatic animals remain unknown. In this study, single and joint toxic effects and mechanisms of microcystin-LR (MCLR) and copper (Cu) were investigated in the early development of zebrafish (Danio rerio). The LC5072-h values were 2.79 mg/L for MCLR and 3.23 mg/L for Cu. The sublethal concentrations of MCLR (≤600 μg/L) did not affect the normal development of zebrafish but increased its hatchability. Strong synergistic toxic effects were observed after co-exposure to MCLR and Cu at environmental concentrations (≤60 μg/L). The synergistic toxic effects of these two compounds could be attributed to the increased bioaccumulation of MCLR and Cu, which was mediated by MCLR transporters (e.g., oatp1d1 and oatp2b1) and Cu transporters (e.g., ctr1 and atp7a), in zebrafish. Such bioaccumulation caused oxidative stress, as suggested by the disrupted gene expression of anti-oxidative enzymes (e.g., Cu/Zn-SOD, Mn-SOD, and CAT). Our results revealed for the first time the synergistic toxic effects and potential toxic mechanism of MCLR-Cu in aquatic animals. These synergistic effects should be considered when assessing the ecological risk of toxic cyanobacterial blooms.
Collapse
Affiliation(s)
- Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation Hubei, Institute of Geodesy and Geophysics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shao Wang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Elvis Genbo Xu
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada; Department of Biology, University of Southern Denmark, Odense DK-5230, Denmark
| | - Jin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation Hubei, Institute of Geodesy and Geophysics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China.
| |
Collapse
|
24
|
Wang C, Wang X, Xiao S, Bu X, Lin Z, Qi C, Qin JG, Chen L. T-2 toxin in the diet suppresses growth and induces immunotoxicity in juvenile Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2020; 97:593-601. [PMID: 31891810 DOI: 10.1016/j.fsi.2019.12.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The T-2 toxin is a trichothecene mycotoxin and is highly toxic to aquatic animals, but little is known on its toxic effect in crustaceans. In the present study, the crab juveniles were fed with diets containing four levels of T-2 toxin: 0 (control), 0.6 (T1), 2.5 (T2) and 5.0 (T3) mg/kg diet for 56 days to evaluate its impact on the juvenile of Chinese mitten crab (Eriocheir sinensis). The crabs fed the T-2 toxin diets had significantly lower weight gain and specific growth rate than those fed the control diet. Moreover, crab survival in T3 group was obviously lower than that in the control. Oxidative stress occurred in all the treatment groups as indicated by higher activities of total superoxide dismutase, glutathione peroxidase, and total antioxidant capacity than those in the control. The total hemocyte count, respiratory burst, phenoloxidase in the hemolymph, and phenoloxidase, acid phosphatase and alkaline phosphatase in the hepatopancreas of crabs fed T-2 toxin were significantly lower than those in the control. The transcriptional expressions of lipopolysaccharide-induced TNF-alpha factor, relish, and the apoptosis genes in the hepatopancreas were induced by dietary T-2 toxin. The genes related to detoxication including cytochrome P450 gene superfamily and glutathione S transferase were induced in low concentration, then decreased in high concentration. Dietary T-2 toxin damaged the hepatopancreas structure, especially as seen in the detached basal membrane of hepatopancreatic tubules. This study indicates that dietary T-2 toxin can reduce growth performance, deteriorate health status and cause hepatopancreas dysfunction in crabs.
Collapse
Affiliation(s)
- Chunling Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| | - Shusheng Xiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xianyong Bu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Zhideng Lin
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
25
|
Yuan L, Liu H, Liu X, Zhang X, Wu J, Wang Y, Du X, Wang R, Ma Y, Chen X, Petlulu P, Cheng X, Zhuang D, Guo H, Zhang H. Epigenetic modification of H3K4 and oxidative stress are involved in MC-LR-induced apoptosis in testicular cells of SD rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:277-291. [PMID: 31691492 DOI: 10.1002/tox.22865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide, produced by aquatic cyanobacteria such as microcystis, with strong reproductive toxicity which poses greater threat to the reproductive abilities of humans and animals. By exploring the role of trimethylation of histone H3 at lysine 4 (H3K4me3) and the role of oxidative stress in MC-LR-induced apoptosis in testicular Sertoli cells in Sprague-Dawley (SD) rats, this study indicated that MC-LR increased the expression levels of apoptosis-related genes by raising the levels of H3K4me3. 5'-Deoxy-5'-methylthioadenosine (MTA), the inhibitor of H3K4me3, reduced apoptosis, indicating for the first time that epigenetic modification is closely related to the testicular reproductive toxicity induced by MC-LR. MC-LR also induced oxidative stress by stimulating the generation of reactive oxygen species (ROS), and subsequently triggering mitochondria-mediated apoptotic pathway by decreasing mitochondrial membrane potential and increasing the levels of Bax, Bcl-2, Caspase-3, and so on. MC-LR-induced apoptosis of testicular cells could be decreased after pretreatment with oxidative stress inhibitor N-acetyl-cysteine (NAC). Furthermore, the pathological damage to mitochondria and testes were observed in SD rats. These results show that MC-LR can induce apoptosis by raising the levels of H3K4me3, and pretreatment with MTA can ameliorate the MC-LR-induced apoptosis of cocultured cells by lowering the levels of H3K4me3. Furthermore, NAC has a protective effect on MC-LR-induced apoptosis of testicular cells in SD rats by inhibiting the oxidative stress.
Collapse
Affiliation(s)
- Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas
| | | | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
AlKahtane AA, Abushouk AI, Mohammed ET, ALNasser M, Alarifi S, Ali D, Alessia MS, Almeer RS, AlBasher G, Alkahtani S, Aleya L, Abdel-Daim MM. Fucoidan alleviates microcystin-LR-induced hepatic, renal, and cardiac oxidative stress and inflammatory injuries in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2935-2944. [PMID: 31838672 DOI: 10.1007/s11356-019-06931-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/31/2019] [Indexed: 04/15/2023]
Abstract
Fucoidans (FUCs) are sulfated polysaccharides that have a wide range of bioactivities. The current study was designed to evaluate the antioxidant potential of FUC against microcystin-LR (MC-LR)-induced toxicity. Five mice groups (n = 8) were used. Group 1 received saline, Group 2 received oral FUC 100 mg/kg/day for 21 days, Group 3 received i.p. MC-LR 10 μg/kg/day for 14 days, Group 4 received MC-LR plus FUC 50 mg/kg/day, and Group 5 received MC-LR plus FUC 100 mg/kg/day. The present study showed that MC-LR administration was associated with significant increases (p < 0.01) in serum concentrations of hepatic (aspartate transferase, alanine transferase, and alkaline phosphatase), renal (urea and creatinine), and cardiac (creatine kinase and CK-MB) injury biomarkers, as well as serum lactate dehydrogenase, cholesterol, and pro-inflammatory cytokines (interleukins-1β and 6, and tumor necrosis factor-α), compared with the control group. Further, MC-LR-intoxicated mice exhibited significantly higher (p < 0.01) hepatic, renal, and cardiac tissue levels of malondialdehyde and nitric oxide, as well as lower tissue levels of reduced glutathione and activities of glutathione peroxidase, superoxide dismutase, and catalase enzymes in comparison with control mice. Treatment by FUC significantly ameliorated all the above-mentioned alterations in a dose-dependent manner with frequent restoration of the normal ranges in the FUC 100 mg/kg/day dose group. Moreover, treatment by FUC alone at 100 mg/kg/day was not associated with significant negative alterations in the assessed biochemical parameters, highlighting its safety at this dose. In conclusion, treatment by FUC significantly ameliorated organ injury, induced by MC-LR in mouse hepatic, renal, and cardiac tissues.
Collapse
Affiliation(s)
- Abdullah A AlKahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Eman T Mohammed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Moonerah ALNasser
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Alessia
- Department of Biology, Science College, Al-Imam Muhammad Ibn Saud, Islamic University, Riyadh, Saudi Arabia
| | - Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249 Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
27
|
Krishnan A, Koski G, Mou X. Characterization of microcystin-induced apoptosis in HepG2 hepatoma cells. Toxicon 2019; 173:20-26. [PMID: 31734250 DOI: 10.1016/j.toxicon.2019.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022]
Abstract
Microcystins (MCs) are a class of hepatotoxins that are commonly produced by freshwater cyanobacteria. MCs harm liver cells through inhibiting protein phosphatases 1 and 2A (PP1 and PP2A) and can produce dualistic effects, i.e., cell death and uncontrolled cellular proliferation. The induction of programmed cell death, i.e., apoptosis, in MC treated hepatic cells has been described previously; however, its exact pathway remains unclear. To address this, HepG2 human hepatoma cells were exposed to MC-LR, the most prevalent isomer of MCs, and morphological and physiological responses were examined. Microscopy and Alamar Blue assay showed that HepG2 cells responded to MC-LR treatment with apoptosis characteristics, such as clumping and shrinking of cells and detachment from the monolayer culture surface. A fluorescent caspase activation assay further revealed activation of all tested apoptosis-dependent caspases (i.e., caspase-3/7, 8 and 9) after 24 h of MC-LR treatment. Furthermore, caspase-8 was found being activated 4 h after MC-LR treatment, earlier than observed activation of caspase-9 (8 h after MC-LR treatment). These data demonstrated that MC-LR can induce apoptosis of HepG2 cells through both extrinsic and intrinsic pathways and that the extrinsic pathway may be activated before the intrinsic pathway. This indicates that extrinsic pathway is more sensitive than intrinsic pathway in MC induced apoptosis. This knowledge contributes to a better understanding of MC hepatotoxicity and can be further used for developing treatments for MC exposed hepatic cells.
Collapse
Affiliation(s)
- Anjali Krishnan
- Biological Science Department, Kent State University, Kent, OH 44242, United States
| | - Gary Koski
- Biological Science Department, Kent State University, Kent, OH 44242, United States
| | - Xiaozhen Mou
- Biological Science Department, Kent State University, Kent, OH 44242, United States.
| |
Collapse
|
28
|
Liu W, Zhan C, Zhang T, Zhang X. Microcystin-LR influences the in vitro oocyte maturation of zebrafish by activating the MAPK pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105261. [PMID: 31419757 DOI: 10.1016/j.aquatox.2019.105261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/14/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Harmful cyanobacteria and their production of microcystins (MCs) exert significant toxicity on reproduction of fish, especially the process of oogenesis. Our previous studies demonstrated that MCs have negative impacts on the quantity and quality of mature oocytes in female zebrafish. However, the underlying mechanisms of MCs disrupting oocyte maturation (OM) have been rarely reported. In the present study, in vitro oocytes (immature) were separated from zebrafish and treated with 1, 10, 100 μg/L MC-LR. The serine/threonine protein phosphatase 2A (PP2A) activity was downregulated significantly in oocytes exposed to 10 and 100 μg/L MC-LR for both 2 and 4 h. The phosphorylation levels of mitogen-activated protein kinase (MAPK) were detected without noticeable change in all oocytes treated with MC-LR for 2 h, whereas the activated levels of MAPK subtypes (ERK, p38 and JNK) increased remarkably in the 100 μg/L MC-LR treatment of 4 h. In the oocytes exposed to 100 μg/L MC-LR for 4 h, germinal vesicle breakdown (GVBD) rates changed abnormally and maturation-promoting factor (MPF) activity increased significantly, in accordance with the upregulation of Cyclin B protein levels. Moreover, the MAPK inhibitors (10 μM) were applied to explore the role of MAPK subtypes during MC-LR influencing OM and results showed that ERK inhibitor U0126 and p38 inhibitor SB203580 mitigated the effects of 100 μg/L MC-LR-induced MAPK hyper-phosphorylation and elevated GVBD in the oocytes. In conclusion, the present study indicates that microcystins disrupt the meiotic maturation by the pathway of MC-PP2A-MAPK-OM due to the phosphorylation disorder in oocytes.
Collapse
Affiliation(s)
- Wanjing Liu
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Chunhua Zhan
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Tongzhou Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
29
|
Wang J, Chen Y, Zhang C, Xiang Z, Ding J, Han X. Learning and memory deficits and alzheimer's disease-like changes in mice after chronic exposure to microcystin-LR. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:504-518. [PMID: 30947040 DOI: 10.1016/j.jhazmat.2019.03.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Previous studies have demonstrated that toxins produced by toxic cyanobacterial blooms are hazardous materials. Although microcystin-LR (MC-LR) has been revealed to inflict damage to the brain, the mechanisms underlying its neurotoxicity as a result of chronic exposure to MC-LR are not fully described. In this study, the mice were exposed to MC-LR dissolved in drinking water at doses of 1, 7.5, 15, or 30 μg/L for 180 days. MC-LR accumulated mostly in the mouse hippocampus (55 ng/g dry weight) followed by cortex (28 ng/g dry weight) after exposure to MC-LR at 30 μg/L. MC-LR exposure at this concentration induced dysfunction of learning and memory, accompanied with apoptosis of neuronal cells (with 10% reduction of the neurons in the CA1 region and 15% in the CA2 region), reduction of spine density, accumulation of β-amyloid plaques 1-42 (Aβ1-42), and enhanced phosphorylation of tau (p-tau) in the brain, which is characteristic of Alzheimer's disease (AD). These data indicate that MC-LR may induce AD-like pathology. Following prolonged exposure, MC-LR significantly upregulated the ratio of proBDNF to BDNF by downregulating the tPA levels, thereby activating downstream signaling pathways to improve the expression of p-JNK, and c-Jun while to inhibit the expression of p-Creb and p-PKC. This study uncovered new molecular mechanisms that account for neurotoxicity after chronic exposure to MC-LR, which has wide-ranging implications for public health.
Collapse
Affiliation(s)
- Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Changliang Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
30
|
Microcystin-LR promotes necroptosis in primary mouse hepatocytes by overproducing reactive oxygen species. Toxicol Appl Pharmacol 2019; 377:114626. [PMID: 31201821 DOI: 10.1016/j.taap.2019.114626] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Microcystin-LR (MC-LR) is a type of cyclic heptapeptide toxin produced by cyanobacteria during bloom events. MC-LR-induced cell death is critically involved in its potent specific hepatotoxicity. Many studies have demonstrated that prototypical apoptosis as a form of programmed cell death after MC-LR is associated with liver injury. However, whether another form of programmed cell death exists and the underlying mechanism have not been reported. Here, we demonstrate that MC-LR can induce necroptosis via ROS overactivation in primary mouse hepatocytes. Various potential pathways of programmed cell death induced by MC-LR were evaluated by annexin V/PI dual staining for flow cytometric analysis, image-based PI staining analysis and western blot analysis. Cell viability was determined by the CCK8 assay. Rupture of the plasma membrane was indicated by lactate dehydrogenase release. ROS was evaluated with the carboxy-H2DCFDA fluorescent probe. It was found that in MC-LR-treated cells, as the plasma membrane was damaged, annexin V/PI-stained double-positive cells were significantly induced and PI-stained nuclei were more diffuse. Western blot analysis showed that MC-LR treatment significantly upregulated the expression of necroptotic and apoptotic proteins. Mechanistically, MC-LR induced ROS overproduction by dysregulating the expression and activity of the pro-oxidants SOD1, MAOA, and NOX4 and the antioxidant GPX1. These results indicate the presence of a novel mechanism for MC-LR-mediated liver injury and present a novel target in the treatment of MC-LR-exposed patients.
Collapse
|
31
|
Zhang Y, Shi Q, Wei W, Xu F, Nie F, Yang H. Effects of microcystin-LR on the immune dysfunction and ultrastructure of hepatopancreas in giant freshwater prawn Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2019; 89:586-594. [PMID: 30991147 DOI: 10.1016/j.fsi.2019.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Microcystins (MCs), produced by cyanobacteria, can strongly inhibit the activity of protein phosphatase, and exhibit strong hepatotoxicity. Macrobrachium rosenbergii is an important aquaculture economic species. Cyanobacterial blooms occur frequently during the culture of M. rosenbergii. However, the effects of MCs on the M. rosenbergii immune function have not been studied. In the present study, M. rosenbergii were exposed to environment-related concentrations of MC-LR type (0.5 and 5 μg/L) for 3 weeks. Hepatopancreatic histology was investigated, and antioxidant enzymes activity, acid phosphatase, alkaline phosphatase and lysozyme activity in hepatopancreas were also analyzed. Results showed that MC-LR could damage M. rosenbergii hepatopancreas, induce hepatopancreatic apoptosis and antioxidant dysfunctions. The expression profiles of major immune-related genes after MC-LR exposure were also detected. Some genes with antibacterial functions were suppressed, and the expression of apoptosis-related genes were up-regulated. After MC-LR exposure, the cumulative mortality of M. rosenbergii infected with Vibrio vulnificus and Aeromonas hydrophila were much higher than the control in a time-dose dependent manner. These results indicated the potential negative influence of MC-LR on the immune function of M. rosenbergii.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiang Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fei Xu
- Lake Gaobaoshaobo Fishery Administrative Committee, 732 Middle Yangzijiang Road, Yangzhou, 225009, China
| | - Fubing Nie
- Lake Gaobaoshaobo Fishery Administrative Committee, 732 Middle Yangzijiang Road, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
32
|
Paschoalini AL, Savassi LA, Arantes FP, Rizzo E, Bazzoli N. Heavy metals accumulation and endocrine disruption in Prochilodus argenteus from a polluted neotropical river. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:539-550. [PMID: 30476816 DOI: 10.1016/j.ecoenv.2018.11.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/21/2018] [Accepted: 11/11/2018] [Indexed: 05/20/2023]
Abstract
Heavy metals are considered major pollutants of aquatic environments due to the difficulty of metabolization and the bioaccumulative potential in tissues of aquatic organisms, especially fish muscle that is often used as food worldwide. In addition to causing cell damage, some metals such as aluminium (Al), cadmium (Cd), copper (Cu), and lead (Pb) can act as endocrine disrupting chemicals in fish. The Paraopeba and Abaete Rivers are important tributaries of the upper São Francisco River basin, but the Paraopeba River receives, along its course, the discharge of many types of effluents that affect fish species, including widely consumed species such as Prochilodus argenteus. This study evaluated histological and molecular changes caused by chronic exposure to heavy metals in P. argenteus from the Paraopeba River and compared this to fish from the non-impacted Abaete River. Sampled fish from both rivers were used in histological analyses and immunohistochemical assays. The results showed increased incidence of histopathologies and changes in number and morphology of germline cells in both sexes. In addition, up-regulated expression of oestrogens-induced proteins in the liver of males were detected in polluted environment. All the alterations were related to the concentration of metals in water and fish. The high concentration of various metals observed in water and fish from Paraopeba River serves as an alert to the environmental and public health regulatory authorities.
Collapse
Affiliation(s)
- A L Paschoalini
- Morphology department, Biological Sciences Institute, Federal University of Minas Gerais, UFMG, Belo Horizonte 30161-970, Minas Gerais, Brazil
| | - L A Savassi
- Morphology department, Biological Sciences Institute, Federal University of Minas Gerais, UFMG, Belo Horizonte 30161-970, Minas Gerais, Brazil
| | - F P Arantes
- Post-Graduate Program in Vertebrate Biology, Pontifical Catholic University of Minas Gerais, PUC Minas, Belo Horizonte 30535-610, Minas Gerais, Brazil
| | - E Rizzo
- Morphology department, Biological Sciences Institute, Federal University of Minas Gerais, UFMG, Belo Horizonte 30161-970, Minas Gerais, Brazil
| | - N Bazzoli
- Post-Graduate Program in Vertebrate Biology, Pontifical Catholic University of Minas Gerais, PUC Minas, Belo Horizonte 30535-610, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Razak AM, Khor SC, Jaafar F, Karim NA, Makpol S. Targeting myomiRs by tocotrienol-rich fraction to promote myoblast differentiation. GENES AND NUTRITION 2018; 13:31. [PMID: 30519366 PMCID: PMC6267085 DOI: 10.1186/s12263-018-0618-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/05/2018] [Indexed: 11/10/2022]
Abstract
Background Several muscle-specific microRNAs (myomiRs) are differentially expressed during cellular senescence. However, the role of dietary compounds on myomiRs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF) on myomiRs and myogenic genes during differentiation of human myoblasts. Young and senescent human skeletal muscle myoblasts (HSMM) were treated with 50 μg/mL TRF for 24 h before and after inducing differentiation. Results The fusion index and myotube surface area were higher (p < 0.05) on days 3 and 5 than that on day 1 of differentiation. Ageing reduced the differentiation rate, as observed by a decrease in both fusion index and myotube surface area in senescent cells (p < 0.05). Treatment with TRF significantly increased differentiation at days 1, 3 and 5 of young and senescent myoblasts. In senescent myoblasts, TRF increased the expression of miR-206 and miR-486 and decreased PTEN and PAX7 expression. However, the expression of IGF1R was upregulated during early differentiation and decreased at late differentiation when treated with TRF. In young myoblasts, TRF promoted differentiation by modulating the expression of miR-206, which resulted in the reduction of PAX7 expression and upregulation of IGF1R. Conclusion TRF can potentially promote myoblast differentiation by modulating the expression of myomiRs, which regulate the expression of myogenic genes.
Collapse
Affiliation(s)
- Azraul Mumtazah Razak
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Shy Cian Khor
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Faizul Jaafar
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Norwahidah Abdul Karim
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17, Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaakob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Wang J, Chen Y, Chen Z, Xiang Z, Ding J, Han X. Microcystin-leucine arginine inhibits gonadotropin-releasing hormone synthesis in mice hypothalamus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:391-399. [PMID: 30064084 DOI: 10.1016/j.ecoenv.2018.07.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-leucine arginine (MC-LR) causes serum testosterone declines and male reproductive disorders. However, the molecular mechanisms underlying the pathological changes are still unclear. In the present study, we aimed to investigate the toxic effects of MC-LR on gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus. Our results demonstrated that MC-LR could enter GnRH neurons and inhibit GnRH synthesis, resulting in the decrease of serum GnRH and testosterone levels. The inhibitory effects of MC-LR on GnRH synthesis were identified to be associated with activation of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP response element-binding protein (CREB)/c-Fos signaling pathway. With miRNA microarray analyses, we found that miR-329-3p was down-regulated most dramatically in MC-LR-treated GT1-7 cells. We then further identified that miR-329-3p regulated PRKAR1A and PRKACB expression and thus influenced GnRH synthesis. This is the first study to explore the molecular mechanism underlying the inhibitory effects of MC-LR on GnRH synthesis in the hypothalamus. Our data have provided a new perspective in the development of diagnosis and treatment strategies for male infertility as a result of dysfunction of the hypothalamic-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zhangpeng Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
35
|
Pan C, Chen Y, Xu T, Wang J, Li D, Han X. Chronic exposure to microcystin-leucine-arginine promoted proliferation of prostate epithelial cells resulting in benign prostatic hyperplasia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1535-1545. [PMID: 30145517 DOI: 10.1016/j.envpol.2018.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-leucine-arginine (MC-LR), as a most common and deleterious variant among all structural analogues of Microcystins (MCs), can cause male reproductive dysfunction. However, its toxic effects on prostate in adult mice have not been invested in detail. In this study, we observed that MC-LR could enter prostate tissues and induce focal hyperplasia and prostate inflammation. Moreover, increased levels of prostate specific antigen (PSA) and prostate acid phosphatase (PAP) in serum of mice following chronic exposure to MC-LR were detected. We also examined increased expression of forkhead box protein M1 (FOXM1) and PSA in human prostate epithelial cells (RWPE-1) treated with MC-LR at low levels, and FOXM1 could regulate PSA expression. Furthermore, MC-LR also induced expression of CyclinD1 via FOXM1/Wnt/β-catenin signaling pathways in RWPE-1 cells, promoting proliferation of prostate epithelial cells, resulting in prostatic hyperplasia in vivo. As a foreign substance, MC-LR also induced immune reaction in RWPE-1 cells mediated by NF-κB pathway, promoting production of pro-inflammatory cytokines and chemokines. Collectively, these findings demonstrated that MC-LR may induce prostatic hyperplasia and prostatitis in mice following chronic low-dose exposure to MC-LR. This work may provide new perspectives in developing new diagnosis and treatment strategies for MC-LR-induced prostatic toxicity.
Collapse
Affiliation(s)
- Chun Pan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Tianchi Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
36
|
Koç E, Çelik-Uzuner S, Uzuner U, Çakmak R. The Detailed Comparison of Cell Death Detected by Annexin V-PI Counterstain Using Fluorescence Microscope, Flow Cytometry and Automated Cell Counter in Mammalian and Microalgae Cells. J Fluoresc 2018; 28:1393-1404. [PMID: 30343360 DOI: 10.1007/s10895-018-2306-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
The evaluation of cell wellness is an important task for molecular biology research. This mainly comprises the assessment for morphology and viability of culturing cells. Annexin V-Propidium iodide counterstaining has been currently one of the common and easy methods to discriminate apoptotic and necrotic cell profiles. The method is operated by fluorescence-based detection of counterstain via laser beam-employed instruments including flow cytometer, fluorescence microscope and automated cell counter. The detection is primarily conducted based on the same principle; however the efficiency of instruments may vary. Here we evaluated the efficiency of those instruments for the clear-cut detection of cell death through various mammalian and microalgae cell lines. To the best of our knowledge, this is the first study revealing comparative analyses of apoptotic and necrotic cells in mammalian and microalgae cells using Annexin V-PI counterstain detected by flow cytometer, fluorescence microscope and automated cell counter. Fluorescence microscope and cell counter instruments were also tested and compared for the traditional trypan blue-based cell viability detection performance. For these, cell death was induced by UV-irradiation and/or bee venom for mammalian (pancreatic cancer, metastatic breast cancer and mouse fibroblasts) and microalgae cells (Chlorella vulgaris), respectfully. Findings postulated that automated cell counter and fluorescence microscopy revealed similar patterns for the detection by both counterstain and trypan blue in mammalian cells. Interestingly, flow cytometry did provide an accurate and significant detection for only one mammalian cell line when UV-treatment was followed by routine Annexin V-Propidium iodide counterstaining. Unlike, only flow cytometry revealed a significant change in the detection of death of microalgae cells by Annexin V-Propidium iodide method, but both Annexin and conventional trypan blue methods were not applicable for the automated cell counter and microscopic detections for microalgae cells. The related outputs propose that the obtaining reliable quantitation strongly depends on cell type and instruments used. These suggest the necessity of optimization and validation endeavors before any cell death detection initiative. The analytical outcomes present insights into detailed assessment of cell death detection of eukaryotic cells and provide a direction to researchers to consider.
Collapse
Affiliation(s)
- Emine Koç
- Department of Molecular Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Selcen Çelik-Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | - Uğur Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ramazan Çakmak
- Department of Molecular Biotechnology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| |
Collapse
|
37
|
Zhang L, Lyu K, Wang N, Gu L, Sun Y, Zhu X, Wang J, Huang Y, Yang Z. Transcriptomic Analysis Reveals the Pathways Associated with Resisting and Degrading Microcystin in Ochromonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11102-11113. [PMID: 30176726 DOI: 10.1021/acs.est.8b03106] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Toxic Microcystis bloom is a tough environment problem worldwide. Microcystin is highly toxic and is an easily accumulated secondary metabolite of toxic Microcystis that threatens water safety. Biodegradation of microcystin by protozoan grazing is a promising and efficient biological method, but the mechanism in this process is still unclear. The present study aimed to identify potential pathways involved in resisting and degrading microcystin in flagellates through transcriptomic analyses. A total of 999 unigenes were significantly differentially expressed between treatments with flagellates Ochromonas fed on microcystin-producing Microcystis and microcystin-free Microcystis. These dysregulated genes were strongly associated with translation, carbohydrate metabolism, phagosome, and energy metabolism. Upregulated genes encoding peroxiredoxin, serine/threonine-protein phosphatase, glutathione S-transferase (GST), HSP70, and O-GlcNAc transferase were involved in resisting microcystin. In addition, genes encoding cathepsin and GST and genes related to inducing reactive oxygen species (ROS) were all upregulated, which highly probably linked with degrading microcystin in flagellates. The results of this study provided a better understanding of transcriptomic responses of flagellates to toxic Microcystis as well as highlighted a potential mechanism of biodegrading microcystin by flagellate Ochromonas, which served as a strong theoretical support for control of toxic microalgae by protozoans.
Collapse
Affiliation(s)
- Lu Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Kai Lyu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Na Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Lei Gu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Yunfei Sun
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Xuexia Zhu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Jun Wang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Yuan Huang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences , Nanjing Normal University , 1 Wenyuan Road , Nanjing 210023 , China
- Department of Ecology, College of Life Science and Technology , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
38
|
Wang X, Xu L, Li X, Chen J, Zhou W, Sun J, Wang Y. The differential effects of microcystin-LR on mitochondrial DNA in the hippocampus and cerebral cortex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:68-76. [PMID: 29729571 DOI: 10.1016/j.envpol.2018.04.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-LR (MC-LR) is the most abundant toxicant among microcystin variants produced by cyanobacteria. MC-induced toxicity is broadly reported to pose a threat to aquatic animals and humans and has been associated with the dysfunction of some organs such as liver and kidney. However, MC-induced neurotoxicity has not been well characterized after long-term exposure. This study was designed to investigate the neurotoxic effects after chronic oral administration of MC-LR. In our trial, C57/BL6 mice received MC-LR at 0, 1, 5, 10, 20 and 40 μg/L in drinking water for twelve months. Our data demonstrated that mitochondrial DNA (mtDNA) damage was evident in the damaged neurons as a result of chronic exposure. Histopathological abnormalities and mtDNA damage were observed in the hippocampus and cerebral cortex. Furthermore, MC-LR exerted distinct effects on these two brain regions. The hippocampus was more susceptible to the treatment of MC-LR compared with the cerebral cortex. However, no strong relationships were observed between the genotoxic effects and exposure doses. In conclusion, this study has provided a mtDNA-related mechanism for underlying chronic neurotoxicity of MC-LR and suggested the presence of differential toxicant effects on the hippocampus and cerebral cortex.
Collapse
Affiliation(s)
- Xiaofen Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Lizhi Xu
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China; Experimental Center of Basic Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xinxiu Li
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Jingwen Chen
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Wei Zhou
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Jiapeng Sun
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
39
|
Huang C, Wu P, Jiang WD, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Zhang YA, Zhou XQ, Feng L. Deoxynivalenol decreased the growth performance and impaired intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 80:376-391. [PMID: 29906621 DOI: 10.1016/j.fsi.2018.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxin contaminants of animal feed worldwide and brings significant threats to the animal production. However, studies concerning the effect of DON on fish intestine are scarce. This study explored the effects of DON on intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). A total of 1440 juvenile grass carp (12.17 ± 0.01 g) were fed six diets containing graded levels of DON (27, 318, 636, 922, 1243 and 1515 μg/kg diet) for 60 days. This study for the first time documented that DON caused body malformation in fish, and histopathological lesions, oxidative damage, declining antioxidant capacity, cell apoptosis and destruction of tight junctions in the intestine of fish. The results indicated that compared with control group (27 μg/kg diet), DON: (1) increased the reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) content, and up-regulated the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1: Keap1a but not Keap1b), whereas decreased glutathione (GSH) content and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes (except GSTR in MI) and NF-E2-related factor 2 (Nrf2), as well as the protein levels of Nrf2 in fish intestine. (2) up-regulated cysteinyl aspartic acid-protease (caspase) -3, -7, -8, -9, apoptotic protease activating factor-1 (Apaf-1), Bcl2-associated X protein (Bax), Fas ligand (FasL) and c-Jun N-terminal protein kinase (JNK) mRNA levels, whereas down-regulated B-cell lymphoma-2 (bcl-2) and myeloid cell leukemia-1 (Mcl-1) mRNA levels in fish intestine. (3) down-regulated the mRNA levels of ZO-1, ZO-2b, occludin, claudin-c, -f, -7a, -7b, -11 (except claudin-b and claudin-3c), whereas up-regulated the mRNA levels of claudin-12, -15a (not -15b) and myosin light chain kinase (MLCK) in fish intestine. All above data indicated that DON caused the oxidative damage, apoptosis and the destruction of tight junctions via Nrf2, JNK and MLCK signaling in the intestine of fish, respectively. Finally, based on PWG, FE, PC and MDA, the safe dose of DON for grass carp were all estimated to be 318 μg/kg diet.
Collapse
Affiliation(s)
- Chen Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
40
|
Wejnerowski Ł, Rzymski P, Kokociński M, Meriluoto J. The structure and toxicity of winter cyanobacterial bloom in a eutrophic lake of the temperate zone. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:752-760. [PMID: 29934736 PMCID: PMC6061131 DOI: 10.1007/s10646-018-1957-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2018] [Indexed: 05/22/2023]
Abstract
Winter cyanobacterial blooms have become increasingly common in eutrophic lakes advocating a need for their monitoring and risk assessment. The present study evaluated the toxicity of a winter cyanobacterial bloom in a eutrophicated freshwater lake located in Western Poland. The bloom was dominated by potentially toxic species: Planktothrix agardhii, Limnothrix redekei, and Aphanizomenon gracile. The toxin analysis revealed the presence of demethylated forms of microcystin-RR and microcystin-LR in ranges of 24.6-28.7 and 6.6-7.6 µg/L, respectively. The toxicity of sampled water was further evaluated in platelet-rich plasma isolated from healthy human subjects using lipid peroxidation and lactate dehydrogenase assays. No significant adverse effects were observed. The present study demonstrates that toxicity of some winter cyanobacterial blooms in the temperate zone, like that in Lubosińskie Lake, may not exhibit significant health risks despite microcystin production.
Collapse
Affiliation(s)
- Łukasz Wejnerowski
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806, Poznań, Poland
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | - Jussi Meriluoto
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6A, 20520, Turku, Finland
| |
Collapse
|
41
|
Exposure routes and health effects of microcystins on animals and humans: A mini-review. Toxicon 2018; 151:156-162. [PMID: 30003917 DOI: 10.1016/j.toxicon.2018.07.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 02/03/2023]
Abstract
Microcystins (MCs) pollution has quickly risen in infamy and has become a major problem to public health worldwide. MCs are a group of monocyclic hepatotoxic peptides, which are produced by some bloom-forming cyanobacteria in water. More than 100 different MCs variants posing a great threat to animals and humans due to their potential carcinogenicity have been reported. To reduce MCs risks, the World Health Organization has set a provisional guideline of 1 μg/L MCs in human's drinking water. This paper provides an overview of exposure routes of MCs into the human system and health effects on different organs after MCs exposure including the liver, intestine, brain, kidney, lung, heart and reproductive system. In addition, some evidences on human poisoning and deaths associated with MCs exposure are presented. Finally, in order to protect human life against the health threats posed by MCs, this paper also suggests some directions for future research that can advance MCs control and minimize human exposure to MCs.
Collapse
|
42
|
Liu W, Wang L, Zheng C, Liu L, Wang J, Li D, Tan Y, Zhao X, He L, Shu W. Microcystin-LR increases genotoxicity induced by aflatoxin B1 through oxidative stress and DNA base excision repair genes in human hepatic cell lines. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:455-463. [PMID: 29100183 DOI: 10.1016/j.envpol.2017.10.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Aflatoxin B1 (AFB1) and microcystin-LR (MC-LR) simultaneously exist in polluted food and water in humid and warm areas, and each has been reported to be genotoxic to liver and associated with hepatocellular carcinoma (HCC). However, the genotoxic effects of the two biotoxins in combination and potential mechanism remain unknown. We treated the human hepatic cell line HL7702 with AFB1 and MC-LR together at different ratios, examined their genotoxic effects using micronuclei and comet assays, and evaluated the possible mechanism by measuring oxidative stress markers and DNA base excision repair (BER) genes. Our data show that co-exposure to AFB1 and MC-LR significantly increased DNA damage compared with AFB1 or MC-LR alone as measured by the levels of both micronuclei and tail DNA. Meanwhile, AFB1 and MC-LR co-exposure showed biphasic effects on ROS production, and a gradual trend towards increased Glutathione (GSH) levels and activity of Catalase (CAT) and Superoxide Dismutase (SOD). Furthermore, MC-LR, with or without AFB1, significantly down-regulated the expression of the base excision repair (BER) genes 8-oxoguanine glycosylase-1 (OGG1) and X-ray repair cross complementing group 1 (XRCC1). AFB1 and MC-LR in combination upregulated the expression of the BER gene apurinic/apyrimidinic endonuclease 1 (APE1), whereas either agent alone had no effect. In conclusion, our studies show that MC-LR exacerbates AFB1-induced genotoxicity and we report for the first time that this occurs through effects on oxidative stress and the deregulation of DNA base excision repair genes.
Collapse
Affiliation(s)
- Wenyi Liu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; Center for Disease Control and Prevention of Guangzhou Military Command, Dongguanzhuang Road NO.91, Tianhe District, Guangzhou 510507, China
| | - Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Chuanfen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Lebin Liu
- Center for Disease Control and Prevention of Guangzhou Military Command, Dongguanzhuang Road NO.91, Tianhe District, Guangzhou 510507, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Daibo Li
- Center for Disease Control and Prevention of Guangzhou Military Command, Dongguanzhuang Road NO.91, Tianhe District, Guangzhou 510507, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xilong Zhao
- Kunming General Hospital of Chengdu Military Command, Kunming 650032, China
| | - Lixiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
43
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
44
|
Augusti PR, Brasil AVS, Souto C, Göethel G, de Oliveira Rios A, Emanuelli T, Bürger ME, Garcia SC. Microcystin-LR exposure induces oxidative damage in Caenorhabditis elegans: Protective effect of lutein extracted from marigold flowers. Food Chem Toxicol 2017; 109:60-67. [PMID: 28866331 DOI: 10.1016/j.fct.2017.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
Microcystin-LR (MIC-LR) is a hepatotoxin, with toxicity mechanisms linked to oxidative stress. Besides, neurotoxic effects of MIC-LR have recently been described. Herein, we evaluated the effects of environmentally important concentrations of MIC-LR (1, 10, 100, 250, and 500 μg/L) on oxidative stress markers and the survival rate of the nematode Caenorhabditis elegans (C. elegans). In addition, a possible protective effect of the carotenoid lutein (LUT) extracted from marigold flowers against MIC-LR toxicity was investigated. Higher concentrations (250 and 500 μg/L) of MIC-LR induced the generation of reactive oxygen species (ROS) and resulted in a survival loss in C elegans. Meanwhile, all MIC-LR concentrations caused an increase in the superoxide dismutase (SOD) expression, while catalase (CAT) expression was only affected at 500 μg/L. The carotenoid LUT prevented the ROS generation, impairment in the CAT expression, and the survival loss induced by MIC-LR in C. elegans. Our results confirm the toxicity of MIC-LR even in a liver-lacking invertebrate and the involvement of oxidative events in this response. Additionally, LUT appears to be able to mitigate the MIC-LR toxic effects.
Collapse
Affiliation(s)
- Paula Rossini Augusti
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, CEP 91501-970, RS, Brazil.
| | - Allana Von Sulzback Brasil
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, CEP 91501-970, RS, Brazil
| | - Caroline Souto
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil
| | - Alessandro de Oliveira Rios
- Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43.212, Campus do Vale, Porto Alegre, CEP 91501-970, RS, Brazil
| | - Tatiana Emanuelli
- Núcleo Integrado de Desenvolvimento em Análises Laboratoriais (NIDAL), Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Santa Maria, CEP 97105-900, RS, Brazil
| | - Marilise Escobar Bürger
- Laboratório de Farmacologia e Toxicologia (FARMATOX), Departamento de Fisiologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Santa Maria, CEP 97105-900, RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, CEP 90610-000, RS, Brazil
| |
Collapse
|
45
|
McLellan NL, Manderville RA. Toxic mechanisms of microcystins in mammals. Toxicol Res (Camb) 2017; 6:391-405. [PMID: 30090507 PMCID: PMC6060792 DOI: 10.1039/c7tx00043j] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Microcystins, such as microcystin-leucine arginine (MC-LR), are some of the most toxic and prevalent cyanotoxins produced by cyanobacteria in freshwater and saltwater algal blooms worldwide. Acute and chronic exposures to microcystins are primarily known to cause hepatotoxicity; cellular damage and genotoxicity within mammalian livers. However, in vivo studies indicate that similar damage may occur in other mammalian organs and tissues, such as the kidney, heart, reproductive systems, and lungs - particularly following chronic low-dose exposures. Mechanisms of toxicity of mycrocystins are reviewed herein; including cellular uptake, interaction with protein phosphatases PP1 and PP2A, cytoskeletal effects, formation of oxidative stress and induction of apoptosis. In general, the mode of action of toxicity by MCs in mammalian organs are similar to those that have been observed in liver tissues. A comprehensive understanding of the toxic mechanisms of microcystins in mammalian tissues and organs will assist in the development of risk assessment approaches to public health protection strategies and the development of robust drinking water policies.
Collapse
Affiliation(s)
- Nicole L McLellan
- School of Environmental Sciences , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Richard A Manderville
- Department of Chemistry and Toxicology , University of Guelph , Guelph , Ontario N1G 2W1 , Canada . ; ; Tel: +1-519-824-4120, x53963
| |
Collapse
|
46
|
Miller TR, Beversdorf LJ, Weirich CA, Bartlett SL. Cyanobacterial Toxins of the Laurentian Great Lakes, Their Toxicological Effects, and Numerical Limits in Drinking Water. Mar Drugs 2017; 15:E160. [PMID: 28574457 PMCID: PMC5484110 DOI: 10.3390/md15060160] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/22/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are ubiquitous phototrophic bacteria that inhabit diverse environments across the planet. Seasonally, they dominate many eutrophic lakes impacted by excess nitrogen (N) and phosphorus (P) forming dense accumulations of biomass known as cyanobacterial harmful algal blooms or cyanoHABs. Their dominance in eutrophic lakes is attributed to a variety of unique adaptations including N and P concentrating mechanisms, N₂ fixation, colony formation that inhibits predation, vertical movement via gas vesicles, and the production of toxic or otherwise bioactive molecules. While some of these molecules have been explored for their medicinal benefits, others are potent toxins harmful to humans, animals, and other wildlife known as cyanotoxins. In humans these cyanotoxins affect various tissues, including the liver, central and peripheral nervous system, kidneys, and reproductive organs among others. They induce acute effects at low doses in the parts-per-billion range and some are tumor promoters linked to chronic diseases such as liver and colorectal cancer. The occurrence of cyanoHABs and cyanotoxins in lakes presents challenges for maintaining safe recreational aquatic environments and the production of potable drinking water. CyanoHABs are a growing problem in the North American (Laurentian) Great Lakes basin. This review summarizes information on the occurrence of cyanoHABs in the Great Lakes, toxicological effects of cyanotoxins, and appropriate numerical limits on cyanotoxins in finished drinking water.
Collapse
Affiliation(s)
- Todd R Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Lucas J Beversdorf
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Chelsea A Weirich
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Sarah L Bartlett
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
47
|
Water metabolism dysfunction via renin-angiotensin system activation caused by liver damage in mice treated with microcystin-RR. Toxicol Lett 2017; 273:86-96. [PMID: 28330766 DOI: 10.1016/j.toxlet.2017.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 01/12/2023]
Abstract
Microcystins (MCs) are a group of monocyclic heptapeptide toxins that have been shown to act as potent hepatotoxins. However, the observed symptoms of water metabolism disruption induced by microcystin-RR (MC-RR) or MCs have rarely been reported, and a relatively clear mechanism has not been identified. In the present study, male mice were divided into 4 groups (A: 140μg/kg, B: 70μg/kg,C: 35μg/kg, and D: 0μg/kg) and administered MC-RR daily for a month. On day 8 of treatment, an increase in water intake and urine output was observed in the high-dose group compared with the control, and the symptoms worsened with the repeated administration of the toxin until day 30. In addition, the urine specific gravity decreased and serum enzymes that can reflect hepatic damage increased in the high-dose group compared with the control (P<0.05). The mRNA level of angiotensinogen (AGT) in hepatocytes was upregulated to approximately 150% of the control (P<0.05), and the serum renin-angiotensin system (RAS) was activated in the high-dose group; however, signs of renal injury were not observed throughout the experiment. After the toxin treatment was completed, the high levels of the RAS and vasopressin in group A returned to normal levels within 1 week. As expected, the symptoms of polyuria and polydipsia also disappeared. Therefore, we propose that water metabolism dysfunction occurs via RAS activation caused by liver damage because the increased serum RAS levels in the experiment were consistent with the increased urine output and water intake in the mice during the observation period. In addition, we found for the first time that a RAS blocker could alleviate the observed polyuria and polydipsia and inactivate the high level of the RAS induced by MC-RR in a dose-dependent manner, which further supported our hypothesis.
Collapse
|
48
|
Tzima E, Serifi I, Tsikari I, Alzualde A, Leonardos I, Papamarcaki T. Transcriptional and Behavioral Responses of Zebrafish Larvae to Microcystin-LR Exposure. Int J Mol Sci 2017; 18:ijms18020365. [PMID: 28208772 PMCID: PMC5343900 DOI: 10.3390/ijms18020365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/29/2017] [Accepted: 02/02/2017] [Indexed: 12/29/2022] Open
Abstract
Microcystins are cyclic heptapeptides that constitute a diverse group of toxins produced by cyanobacteria. One of the most toxic variants of this family is microcystin-LR (MCLR) which is a potent inhibitor of protein phosphatase 2A (PP2A) and induces cytoskeleton alterations. In this study, zebrafish larvae exposed to 500 μg/L of MCLR for four days exhibited a 40% reduction of PP2A activity compared to the controls, indicating early effects of the toxin. Gene expression profiling of the MCLR-exposed larvae using microarray analysis revealed that keratin 96 (krt96) was the most downregulated gene, consistent with the well-documented effects of MCLR on cytoskeleton structure. In addition, our analysis revealed upregulation in all genes encoding for the enzymes of the retinal visual cycle, including rpe65a (retinal pigment epithelium-specific protein 65a), which is critical for the larval vision. Quantitative real-time PCR (qPCR) analysis confirmed the microarray data, showing that rpe65a was significantly upregulated at 50 μg/L and 500 μg/L MCLR in a dose-dependent manner. Consistent with the microarray data, MCLR-treated larvae displayed behavioral alterations such as weakening response to the sudden darkness and hypoactivity in the dark. Our work reveals new molecular targets for MCLR and provides further insights into the molecular mechanisms of MCLR toxicity during early development.
Collapse
Affiliation(s)
- Eleni Tzima
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece.
- Division of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 45110 Ιοannina, Greece.
| | - Iliana Serifi
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece.
- Division of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 45110 Ιοannina, Greece.
| | - Ioanna Tsikari
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece.
| | | | - Ioannis Leonardos
- Laboratory of Zoology, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Thomais Papamarcaki
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece.
- Division of Biomedical Research, Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, 45110 Ιοannina, Greece.
| |
Collapse
|
49
|
Chen L, Hu Y, He J, Chen J, Giesy JP, Xie P. Responses of the Proteome and Metabolome in Livers of Zebrafish Exposed Chronically to Environmentally Relevant Concentrations of Microcystin-LR. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:596-607. [PMID: 28005350 DOI: 10.1021/acs.est.6b03990] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, for the first time, changes in expressions of proteins and profiles of metabolites in liver of the small, freshwater fish [Formula: see text] (zebrafish) were investigated after long-term exposure to environmentally relevant concentrations of microcystin-LR (MC-LR). Male zebrafish were exposed via water to 1 or 10 μg MC-LR/L for 90 days, and iTRAQ-based proteomics and 1H NMR-based metabolomics were employed. Histopathological observations showed that MC-LR caused damage to liver, and the effects were more pronounced in fish exposed to 10 μg MC-LR/L. Metabolomic analysis also showed alterations of hepatic function, which included changes in a number of metabolic pathways, including small molecules involved in energy, glucose, lipids, and amino acids metabolism. Concentrations of lactate were significantly greater in individuals exposed to MC-LR than in unexposed controls. This indicated a shift toward anaerobic metabolism, which was confirmed by impaired respiration in mitochondria. Proteomics revealed that MC-LR significantly influenced multiple proteins, including those involved in folding of proteins and metabolism. Endoplasmic reticulum stress contributed to disturbance of metabolism of lipids in liver of zebrafish exposed to MC-LR. Identification of proteins and metabolites in liver of zebrafish responsive to MC-LR provides insights into mechanisms of chronic toxicity of MCs.
Collapse
Affiliation(s)
- Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yufei Hu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Biological Sciences, University of Hong Kong , Hong Kong SAR, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing, 210089, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
50
|
Machado J, Azevedo J, Freitas M, Pinto E, Almeida A, Vasconcelos V, Campos A. Analysis of the use of microcystin-contaminated water in the growth and nutritional quality of the root-vegetable, Daucus carota. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:752-764. [PMID: 27752954 DOI: 10.1007/s11356-016-7822-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Toxic cyanobacterial blooms are often observed in freshwaters and may reflect the increased eutrophication of these environments and alterations in climate. Cyanotoxins, such as microcystins (MCs), are an effective threat to many life forms, ranging from plants to humans. Despite the research conducted to date on cyanotoxins, the risks associated to the use of contaminated water in agriculture require further elucidation. To tackle this aim, a research was conducted with the root-vegetable Daucus carota. The specific aims of this work were the following: (i) to evaluate the effects of MC-LR on the plant growth and photosynthesis; (ii) to evaluate the nutritional quality of carrot roots; and (iii) to measure bioaccumulation. To this purpose, young carrots were grown in soil during 1 month in natural conditions and exposed to Mycrocystis aeruginosa aqueous extracts containing environmentally realistic concentrations of MC-LR (10 and 50 MC-LR μg/L). The results showed that MC-LR may decrease root growth after 28 days of exposure to 50 μg/L and increase photosynthetic efficiency. We also observed changes in mineral and vitamin content in carrots as a result of the exposure to contaminated water. Moreover, MC-LR was detected in carrot roots by ELISA at very low concentration 5.23 ± 0.47 ng MC eq./g FW. The soil retained 52.7 % of the toxin potentially available for plants. This result could be attributed to MC-LR adsorption by soil particles or due to microbial degradation of the toxin. We conclude that the prolonged use of MC-LR-contaminated water may affect crop growth, alter the nutritional value of vegetable products, and potentiate contamination.
Collapse
Affiliation(s)
- J Machado
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123, Porto, Portugal
| | - J Azevedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123, Porto, Portugal
| | - M Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123, Porto, Portugal
- Department of Environmental Health of School of Allied Health Technologies, and CISA/Research Center in Environment and Health, Polytechnic Institute of Porto, Rua de Valente Perfeito, 322, P 440-330, Gaia, Portugal
| | - E Pinto
- REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
- Department of Environmental Health of School of Allied Health Technologies, and CISA/Research Center in Environment and Health, Polytechnic Institute of Porto, Rua de Valente Perfeito, 322, P 440-330, Gaia, Portugal
| | - A Almeida
- REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, P 4050-313, Porto, Portugal
| | - V Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, P 4069-007, Porto, Portugal
| | - A Campos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Rua dos Bragas 289, P 4050-123, Porto, Portugal.
| |
Collapse
|