1
|
Negrín Dastis JO, McGuinness B, Tadiri CP, Yargeau V, Gonzalez A. Connectivity mediates the spatial ecological impacts of a glyphosate-based herbicide in experimental metaecosystems. Oecologia 2024; 205:709-723. [PMID: 39133237 PMCID: PMC11358246 DOI: 10.1007/s00442-024-05601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Metacommunity ecology has shown that connectivity is important for the persistence of a species locally and across connected ecosystems, however we do not know if ecological effects in freshwater ecosystems exposed to biocides leaking from agriculture depend on metaecosystem connectivity. We experimentally replicated metaecosystems in the laboratory using gradostats as a model system. We tested the effects of connectivity, in terms of node distance from the pollutant-source, flow rate, and a glyphosate-based herbicide, on phytoplankton productivity, diversity and stability. Gradostats were composed of interconnected equally spaced nodes where resources and phytoplankton move directionally along a gradient of increasing distance from the source of the polluting herbicide. We hypothesised that ecological effects would be stronger in the node situated closer to the point of herbicide input, but that flow would suppress phytoplankton populations in distant nodes. Overall, RoundUp impacted phytoplankton productivity and stability by reducing algal biomass and abundances. This occurred especially in the node closest to the diluted herbicide point-source and under high flow, where species abundances were heavily suppressed by the effects of the rapidly flowing herbicide. At low flow on the other hand, distant nodes where buffered from the effects of the slow-moving herbicide. No differences in beta and gamma diversity among replicate metaecosystems was found; however, a significant loss of alpha diversity in all metaecosystems occurred through time until the end of the experiment. Together, these results point to the importance of considering aquatic connectivity in management plans for monitoring and mitigating unintended ecological consequences of agrochemical runoff.
Collapse
Affiliation(s)
- Jorge Octavio Negrín Dastis
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada.
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada.
- Fisheries and Oceans Canada, 200 Kent Street, Ottawa, ON, K1A 0E6, Canada.
| | - Brendon McGuinness
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada
| | - Christina P Tadiri
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada
- Department of Environmental Sciences, University of Basel, Vesalgasse 1, 4058, Basel, Switzerland
| | - Viviane Yargeau
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montreal, QC, H3A 1A3, Canada
| | - Andrew Gonzalez
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, QC, H3A 1B1, Canada.
- Quebec Center for Biodiversity Research Science (QCBS), Montreal, Canada.
| |
Collapse
|
2
|
Zhang CM, Zhou Q, Li YQ, Li J. Effects of clarithromycin exposure on the growth of Microcystis aeruginosa and the production of algal dissolved organic matter. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106918. [PMID: 38598945 DOI: 10.1016/j.aquatox.2024.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Antibiotics are commonly found in the aquatic environment, which can affect microbial community compositions and activities, and even have potential adverse impacts on human and ecosystem health. The current understanding of the effects of antibiotics on microalgae growth and algal dissolved organic matter (DOM) remains indistinct. To understand the toxic effects of antibiotics on the microalgae, Microcystis aeruginosa was exposed to clarithromycin (CLA) in this study. Cell density determination, chlorophyll content determination, and organic spectrum analysis were conducted to show the effect of CLA exposure on the growth, photosynthetic activity, and organic metabolic processes of Microcystis aeruginosa. The findings revealed that the physiological status of algae could be significantly influenced by CLA exposure in aquatic environments. Specifically, exposure to 1 μg/L CLA stimulated the growth and photosynthetic activity of algal cells. Conversely, CLA above 10 μg/L led to the inhibition of algal cell growth and photosynthesis. Notably, the inhibitory effects intensified with the increasing concentration of CLA. The molecular weight of DOM produced by Microcystis aeruginosa increased when exposed to CLA. Under the exposure of 60 μg/L CLA, a large number of algal cells ruptured and died, and the intracellular organic matter was released into the algal liquid. This resulted in an increase in high molecular weight substances and soluble microbial-like products in the DOM. Exposure to 1 and 10 μg/L CLA stimulated Microcystis aeruginosa to produce more humic acid-like substances, which may be a defense mechanism against CLA. The results were useful for assessing the effects of antibiotic pollution on the stability of the microalgae population and endogenous DOM characteristics in aquatic ecosystems.
Collapse
Affiliation(s)
- Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Qing Zhou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
3
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Hepatotoxicity, Nephrotoxicity, Hemotoxicity, Carcinogenicity, and Clinical Cases of Endocrine, Reproductive, Cardiovascular, and Pulmonary System Intoxication. ACS Pharmacol Transl Sci 2024; 7:1205-1236. [PMID: 38751624 PMCID: PMC11092036 DOI: 10.1021/acsptsci.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Glyphosate (GLP) is an active agent of GLP-based herbicides (GBHs), i.e., broad-spectrum and postemergent weedkillers, commercialized by Monsanto as, e.g., Roundup and RangerPro formulants. The GBH crop spraying, dedicated to genetically engineered GLP-resistant crops, has revolutionized modern agriculture by increasing the production yield. However, abusively administered GBHs' ingredients, e.g., GLP, polyoxyethyleneamine, and heavy metals, have polluted environmental and industrial areas far beyond farmlands, causing global contamination and life-threatening risk, which has led to the recent local bans of GBH use. Moreover, preclinical and clinical reports have demonstrated harmful impacts of GLP and other GBH ingredients on the gut microbiome, gastrointestinal tract, liver, kidney, and endocrine, as well as reproductive, and cardiopulmonary systems, whereas carcinogenicity of these herbicides remains controversial. Occupational exposure to GBH dysregulates the hypothalamic-pituitary-adrenal axis, responsible for steroidogenesis and endocrinal secretion, thus affecting hormonal homeostasis, functions of reproductive organs, and fertility. On the other hand, acute intoxication with GBH, characterized by dehydration, oliguria, paralytic ileus, as well as hypovolemic and cardiogenic shock, pulmonary edema, hyperkalemia, and metabolic acidosis, may occur fatally. As no antidote has been developed for GBH poisoning so far, the detoxification is mainly symptomatic and supportive and requires intensive care based on gastric lavage, extracorporeal blood filtering, and intravenous lipid emulsion infusion. The current review comprehensively discusses the molecular and physiological basics of the GLP- and/or GBH-induced diseases of the endocrine and reproductive systems, and cardiopulmonary-, nephro-, and hepatotoxicities, presented in recent preclinical studies and case reports on the accidental or intentional ingestions with the most popular GBHs. Finally, they briefly describe modern and future healthcare methods and tools for GLP detection, determination, and detoxification. Future electronically powered, decision-making, and user-friendly devices targeting major GLP/GBH's modes of actions, i.e., dysbiosis and the inhibition of AChE, shall enable self-handled or point-of-care professional-assisted evaluation of the harm followed with rapid capturing GBH xenobiotics in the body and precise determining the GBH pathology-associated biomarkers levels.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio
& Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- ENSEMBLE sp. z o. o., 01-919 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Department
of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional
Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Díaz-Soto JA, Mussali-Galante P, Castrejón-Godínez ML, Saldarriaga-Noreña HA, Tovar-Sánchez E, Rodríguez A. Glyphosate resistance and biodegradation by Burkholderia cenocepacia CEIB S5-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37480-37495. [PMID: 38776026 DOI: 10.1007/s11356-024-33772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024]
Abstract
Glyphosate is a broad spectrum and non-selective herbicide employed to control different weeds in agricultural and urban zones and to facilitate the harvest of various crops. Currently, glyphosate-based formulations are the most employed herbicides in agriculture worldwide. Extensive use of glyphosate has been related to environmental pollution events and adverse effects on non-target organisms, including humans. Reducing the presence of glyphosate in the environment and its potential adverse effects requires the development of remediation and treatment alternatives. Bioremediation with microorganisms has been proposed as a feasible alternative for treating glyphosate pollution. The present study reports the glyphosate resistance profile and degradation capacity of the bacterial strain Burkholderia cenocepacia CEIB S5-2, isolated from an agricultural field in Morelos-México. According to the agar plates and the liquid media inhibition assays, the bacterial strain can resist glyphosate exposure at high concentrations, 2000 mg·L-1. In the degradation assays, the bacterial strain was capable of fast degrading glyphosate (50 mg·L-1) and the primary degradation metabolite aminomethylphosphonic acid (AMPA) in just eight hours. The analysis of the genomic data of B. cenocepacia CEIB S5-2 revealed the presence of genes that encode enzymes implicated in glyphosate biodegradation through the two metabolic pathways reported, sarcosine and AMPA. This investigation provides novel information about the potential of species of the genus Burkholderia in the degradation of the herbicide glyphosate and its main degradation metabolite (AMPA). Furthermore, the analysis of genomic information allowed us to propose for the first time a metabolic route related to the degradation of glyphosate in this bacterial group. According to the findings of this study, B. cenocepacia CEIB S5-2 displays a great glyphosate biodegradation capability and has the potential to be implemented in glyphosate bioremediation approaches.
Collapse
Affiliation(s)
- José Antonio Díaz-Soto
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, CP, 62209, México
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Hugo Albeiro Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México.
| |
Collapse
|
5
|
Klátyik S, Takács E, Barócsi A, Lenk S, Kocsányi L, Darvas B, Székács A. Hormesis, the Individual and Combined Phytotoxicity of the Components of Glyphosate-Based Formulations on Algal Growth and Photosynthetic Activity. TOXICS 2024; 12:257. [PMID: 38668480 PMCID: PMC11055126 DOI: 10.3390/toxics12040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024]
Abstract
The occurrence of the market-leading glyphosate active ingredient in surface waters is a globally observed phenomenon. Although co-formulants in pesticide formulations were considered inactive components from the aspects of the required main biological effect of the pesticide, several studies have proven the high individual toxicity of formulating agents, as well as the enhanced combined toxicity of the active ingredients and other components. Since the majority of active ingredients are present in the form of chemical mixtures in our environment, the possible combined toxicity between active ingredients and co-formulants is particularly important. To assess the individual and combined phytotoxicity of the components, glyphosate was tested in the form of pure active ingredient (glyphosate isopropylammonium salt) and herbicide formulations (Roundup Classic and Medallon Premium) formulated with a mixture of polyethoxylated tallow amines (POEA) or alkyl polyglucosides (APG), respectively. The order of acute toxicity was as follows for Roundup Classic: glyphosate < herbicide formulation < POEA. However, the following order was demonstrated for Medallon Premium: herbicide formulation < glyphosate < APG. Increased photosynthetic activity was detected after the exposure to the formulation (1.5-5.8 mg glyphosate/L and 0.5-2.2 mg POEA/L) and its components individually (glyphosate: 13-27.2 mg/L, POEA: 0.6-4.8 mg/L), which indicates hormetic effects. However, decreased photosynthetic activity was detected at higher concentrations of POEA (19.2 mg/L) and Roundup Classic (11.6-50.6 mg glyphosate/L). Differences were demonstrated in the sensitivity of the selected algae species and, in addition to the individual and combined toxicity of the components presented in the glyphosate-based herbicides. Both of the observed inhibitory and stimulating effects can adversely affect the aquatic ecosystems and water quality of surface waters.
Collapse
Affiliation(s)
- Szandra Klátyik
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| | - Attila Barócsi
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - Sándor Lenk
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - László Kocsányi
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (A.B.); (S.L.); (L.K.)
| | - Béla Darvas
- Hungarian Society of Ecotoxicology, H-1022 Budapest, Hungary;
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary; (S.K.); (E.T.)
| |
Collapse
|
6
|
Wang C, Zhang H, Wang J, Sprecher B, Lin S. Glyphosate (Roundup) as phosphorus nutrient enhances carbon and nitrogen accumulation and up-regulates phosphorus metabolisms in the haptophyte Isochrysis galbana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169715. [PMID: 38160825 DOI: 10.1016/j.scitotenv.2023.169715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Inorganic phosphate limitation for phytoplankton may be intensified with water stratification by global warming, and with the increasing nitrogen: phosphorus (N:P) ratio in coastal zones resulting from continuous anthropogenic N overloading. Under these circumstances, phytoplankton's ability to use dissolved organic phosphorus (DOP) will give species a competitive advantage. In our previous study, we have shown that the haptophyte Isochrysis galbana can use glyphosate (Roundup) as a P nutrient source to support growth, but the mechanism of how remains unexplored. Here, we show that three genes encoding PhnC (IgPhnCs), which exhibit up-regulated expression in glyphosate-grown cultures, are probably responsible for glyphosate uptake, while homologs of PhnK and PhnL (IgPhnK and IgPhnL) probably provide auxiliary support for the intracellular degradation of glyphosate. Meanwhile, we found the use efficiency of glyphosate was low compared with phosphate, probably because glyphosate uptake and hydrolysis cost energy and because glyphosate induces oxidative stress in I. galbana. Meanwhile, genes encoding 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, the target of the herbicide, were up-regulated in glyphosate cultures. Furthermore, our data showed the up-regulation of P metabolisms (transcription) in glyphosate-grown cultures, which further induced the up-regulation of nitrate/nitrite transport and biosynthesis of some amino acids. Meanwhile, glyphosate-grown cells accumulated more C and N, resulting in remarkably high C:N:P ratio, and this, along with the up-regulated P metabolisms, was under transcriptional and epigenetic regulation. This study sheds lights on the mechanism of glyphosate utilization as a source of P nutrient by I. galbana, and these findings have biogeochemical implications.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States of America
| | - Jingtian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Brittany Sprecher
- Department of Marine Sciences, University of Connecticut, Groton, CT, United States of America
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT, United States of America.
| |
Collapse
|
7
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate: Impact on the microbiota-gut-brain axis and the immune-nervous system, and clinical cases of multiorgan toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115965. [PMID: 38244513 DOI: 10.1016/j.ecoenv.2024.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Glyphosate (GLP) and GLP-based herbicides (GBHs), such as polyethoxylated tallow amine-based GLP surfactants (GLP-SH), developed in the late 70', have become the most popular and controversial agrochemicals ever produced. Nowadays, GBHs have reached 350 million hectares of crops in over 140 countries, with an annual turnover of 5 billion and 11 billion USD in the U.S.A. and worldwide, respectively. Because of the highly efficient inhibitory activity of GLP targeted to the 5-enolpyruvylshikimate-3-phosphate synthase pathway, present in plants and several bacterial strains, the GLP-resistant crop-based genetic agricultural revolution has decreased famine and improved the costs and quality of living in developing countries. However, this progress has come at the cost of the 50-year GBH overuse, leading to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide farm and companies' workers. According to preclinical and clinical studies covered in the present review, poisoning with GLP, GLP-SH, and GBHs devastatingly affects gut microbiota and the microbiota-gut-brain (MGB) axis, leading to dysbiosis and gastrointestinal (GI) ailments, as well as immunosuppression and inappropriate immunostimulation, cholinergic neurotransmission dysregulation, neuroendocrinal system disarray, and neurodevelopmental and neurobehavioral alterations. Herein, we mainly focus on the contribution of gut microbiota (GM) to neurological impairments, e.g., stroke and neurodegenerative and neuropsychiatric disorders. The current review provides a comprehensive introduction to GLP's microbiological and neurochemical activities, including deviation of the intestinal Firmicutes-to-Bacteroidetes ratio, acetylcholinesterase inhibition, excitotoxicity, and mind-altering processes. Besides, it summarizes and critically discusses recent preclinical studies and clinical case reports concerning the harmful impacts of GBHs on the GI tract, MGB axis, and nervous system. Finally, an insightful comparison of toxic effects caused by GLP, GBH-SH, and GBHs is presented. To this end, we propose a first-to-date survey of clinical case reports on intoxications with these herbicides.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium.
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; ENSEMBLE(3) sp. z o. o., 01-919 Warsaw, Poland
| | - Włodzimierz Kutner
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
8
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384557 DOI: 10.1021/acs.est.3c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- ENSEMBLE3 sp. z o. o., 01-919 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
- Modified Electrodes for Potential Application in Sensors and Cells Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
9
|
Zhang Y, Chen Z, Li X, Wu X, Chen L, Wang G. Photosynthesis Responses of Tibetan Freshwater Algae Chlorella vulgaris to Herbicide Glyphosate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010386. [PMID: 36612715 PMCID: PMC9819295 DOI: 10.3390/ijerph20010386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/09/2023]
Abstract
With the development of agriculture and the widespread application of agrichemicals in Tibet, herbicide residues have become a threat to the ecological safety of Tibetan water bodies. Algae, as the producers in the food chain in water bodies, play an important role in aquatic ecosystems. Therefore, the impact of herbicides on Tibetan algae is of great significance for evaluating ecological health and the protection of Tibetan water ecosystems. In this study, we investigated the inhibitory effect of glyphosate, a herbicide, on the photosynthetic system of Chlorella vulgaris, Tibetan algae, by determining chlorophyll fluorescence and the activity of an antioxidant system. The results revealed that glyphosate at low concentration did not affect the photosynthetic activity of C. vulgaris; however, glyphosate at a high concentration significantly inhibited photosynthetic activity and reduced pigment content. Moreover, high levels of glyphosate also decreased photochemical efficiency and electron transport rate and resulted in ROS accumulation, high SOD activity, and lipid peroxidation. These results suggested that glyphosate could decrease the primary production of aquatic ecosystems and influence their performance. Therefore, reducing the herbicide levels could protect the Tibetan aquatic environment and maintain the health of ecosystems.
Collapse
Affiliation(s)
- Yixiao Zhang
- School of Science, Tibet University, Lhasa 850000, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zixu Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Resource & Environmental Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyan Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xinguo Wu
- School of Resource & Environmental Science, Wuhan University, Wuhan 430072, China
| | - Lanzhou Chen
- School of Resource & Environmental Science, Wuhan University, Wuhan 430072, China
| | - Gaohong Wang
- School of Science, Tibet University, Lhasa 850000, China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
10
|
Zheng Y, Wang Z, Xue D, Tao M, Jiang F, Jia B, Li Y, Huang G, Hu Z. Characterization of a new selenoprotein methionine sulfoxide reductase from Haematococcus pluvialis and its antioxidant activity in response to high light intensity, hydrogen peroxide, glyphosate, and cadmium exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113903. [PMID: 35870349 DOI: 10.1016/j.ecoenv.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Selenium incorporates into selenocysteine (Sec) which is a key component of selenoproteins implicated in antioxidant defense and redox homeostasis. Methionine sulfoxide reductases (Msr) play crucial roles in cellular defense against environmental stress. Whereas mammals have the MsrB selenoprotein form, unicellular organisms have MsrA. The Sec residue at the conserved catalytic sites of selenoprotein MsrA confers a metabolic advantage over the non-selenoprotein type MsrA. In the present study, the novel selenoprotein HpMsrA from Haematococcus pluvialis was cloned by the rapid amplification of cDNA ends and transformed into the model green alga Chlamydomonas reinhardtii. Alignment of homologs revealed the presence of the conserved catalytic domain GUFW and showed that the HpMsrA protein comprises Sec (U) at the N-terminus but no recycled Cys at the C-terminus. We studied the response of HpMsrA expression to selenite, high light intensity, hydrogen peroxide, cadmium nitrate, and glyphosate exposure via real-time quantitative PCR and enzyme activity analysis. The results demonstrated that HpMsrA protects cellular proteins against oxidative and environmental stressors. Compared with wild type C. reinhardtii, the transformant exhibited a superior antioxidant ability. The discoveries made herein shed light on the antioxidant physiology and environmental stress resistance mechanisms of the selenoproteins in microalgae. This information may aid in conducting environmental risk assessments of aquatic ecosystems involving microalgae known to respond rapidly and quantitatively to abiotic stress factors promoting excessive reactive oxygen species generation.
Collapse
Affiliation(s)
- Yihong Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ziyan Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Dengfeng Xue
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Ming Tao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Fajun Jiang
- Guangxi Key Laboratory of Marine Environmental Science, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bin Jia
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Youhao Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Guanqin Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Science and Oceanography, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
11
|
Effects of Glyphosate-Based Herbicide on Primary Production and Physiological Fitness of the Macroalgae Ulva lactuca. TOXICS 2022; 10:toxics10080430. [PMID: 36006109 PMCID: PMC9415031 DOI: 10.3390/toxics10080430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
The use of glyphosate-based herbicides (GBHs) worldwide has increased exponentially over the last two decades increasing the environmental risk to marine and coastal habitats. The present study investigated the effects of GBHs at environmentally relevant concentrations (0, 10, 50, 100, 250, and 500 μg·L−1) on the physiology and biochemistry (photosynthesis, pigment, and lipid composition, antioxidative systems and energy balance) of Ulva lactuca, a cosmopolitan marine macroalgae species. Although GBHs cause deleterious effects such as the inhibition of photosynthetic activity, particularly at 250 μg·L−1, due to the impairment of the electron transport in the chloroplasts, these changes are almost completely reverted at the highest concentration (500 μg·L−1). This could be related to the induction of tolerance mechanisms at a certain threshold or tipping point. While no changes occurred in the energy balance, an increase in the pigment antheraxanthin is observed jointly with an increase in ascorbate peroxidase activity. These mechanisms might have contributed to protecting thylakoids against excess radiation and the increase in reactive oxygen species, associated with stress conditions, as no increase in lipid peroxidation products was observed. Furthermore, changes in the fatty acids profile, usually attributed to the induction of plant stress response mechanisms, demonstrated the high resilience of this macroalgae. Notably, the application of bio-optical tools in ecotoxicology, such as pulse amplitude modulated (PAM) fluorometry and laser-induced fluorescence (LIF), allowed separation of the control samples and those treated by GBHs in different concentrations with a high degree of accuracy, with PAM more accurate in identifying the different treatments.
Collapse
|
12
|
Camilo Dos Santos JC, Ribeiro Silva DM, Jardim Amorim D, do Rosário Rosa V, Farias Dos Santos AL, Domingues Velini E, Carbonari CA, de Almeida Silva M. Glyphosate hormesis attenuates water deficit stress in safflower (Carthamus tinctorius L.) by modulating physiological and biochemical mediators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152204. [PMID: 34902413 DOI: 10.1016/j.scitotenv.2021.152204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Changes in photosynthetic machinery can induce physiological and biochemical damage in plants. Low doses of glyphosate have been shown to exert a positive effect in mitigating the deleterious effects of water deficit in plants. Here, the physiological and biochemical mechanisms of safflower plants (Carthamus tinctorius L.) were studied under conditions of water deficit mediated by the attenuating effect of low-dose glyphosate. The plants were divided into two groups of water regimes in soil, without water deficit (-10 kPa) and with water deficit (-70 kPa), and were exposed to different concentrations of glyphosate (0, 1.8, 3.6, 7.2, 18, 36, 72, 180, 360, and 720 g a.e. ha-1). Evident protective responses at the physiological and biochemical levels were obtained after applying low doses of glyphosate to plants under water deficit, with a limiting dose for the occurrence of hormesis (LDS) = 72 g a.e. ha-1. The water deficit in plants resulted in hydrogen peroxide (H2O2) accumulation and consequently lipid peroxidation (LPO) associated with the accumulation of shikimic acid and glyphosate in plants, which triggered an increase in the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) that act by dismuting the levels of reactive oxygen species (ROS), maintaining, and/or increasing the maximum quantum efficiency of photosystem II (Fv/Fm), effective quantum yield of photosystem II (ΦPSII), electron transport rate (ETR), photochemical extinction coefficient (qP), and non-photochemical extinction coefficient (NPQ). APX appears to be the main enzyme involved in eliminating H2O2. Low doses of glyphosate act as water deficit ameliorators, allowing the plant to maintain/increase metabolism at physiological and biochemical levels by activating antioxidant enzymes in the dismutation of ROS in safflower plants.
Collapse
Affiliation(s)
- Jania Claudia Camilo Dos Santos
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil
| | - Dayane Mércia Ribeiro Silva
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil
| | - Deoclecio Jardim Amorim
- University of São Paulo (USP), College of Agriculture "Luiz de Queiroz" (ESALQ), Department of Exact Sciences, 13418-900 Piracicaba, SP, Brazil
| | - Vanessa do Rosário Rosa
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil
| | - Anna Luiza Farias Dos Santos
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil
| | - Edivaldo Domingues Velini
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Protection, Center for Advanced Research on Weeds, 18610-034 Botucatu, SP, Brazil
| | - Caio Antonio Carbonari
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Protection, Center for Advanced Research on Weeds, 18610-034 Botucatu, SP, Brazil
| | - Marcelo de Almeida Silva
- São Paulo State University (UNESP), School of Agricultural Sciences, Department of Crop Production, Laboratory of Ecophysiology Applied to Agriculture (LECA), 18610-034 Botucatu, SP, Brazil.
| |
Collapse
|
13
|
Melero-Jiménez IJ, Bañares-España E, Reul A, Flores-Moya A, García-Sánchez MJ. Detection of the maximum resistance to the herbicides diuron and glyphosate, and evaluation of its phenotypic cost, in freshwater phytoplankton. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105973. [PMID: 34600397 DOI: 10.1016/j.aquatox.2021.105973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
One of the most important anthropogenic impacts on freshwater aquatic ecosystems close to intensive agriculture areas is the cumulative increase in herbicide concentrations. The threat is especially relevant for phytoplankton organisms because they have the same physiological targets as the plants for which herbicides have been designed. This led us to explore the evolutionary response of three phytoplanktonic species to increasing concentrations of two herbicides and its consequences in terms of growth and photosynthesis performance. Specifically, we used an experimental ratchet protocol to investigate the differential evolution and the limit of resistance of a cyanobacterium (Microcystis aeruginosa) and two chlorophyceans (Chlamydomonas reinhardtii and Dictyosphaerium chlorelloides) to two herbicides in worldwide use: glyphosate and diuron. Initially, the growth rate of M. aeruginosa and D. chlorelloides was completely inhibited when they were exposed to a dose of 0.23 ppm diuron or 40 ppm glyphosate, whereas a higher concentration of both herbicides (0.46 ppm diuron or 90 ppm glyphosate) was necessary to abolish C. reinhardtii growth. However, after running a ratchet protocol, the resistance of the three species to both herbicides increased by an adaptation process. M. aeruginosa and D. chlorelloides were able to grow at 1.84 ppm diuron and 80 ppm glyphosate and C. reinhardtii proliferated at twice these concentrations. Herbicide-resistant strains showed lower growth rates than their wild-type counterparts in the absence of herbicides, as well as changes on morphology and differences on photosynthetic pigment content. Besides, herbicide-resistant cells generally showed a lower photosynthetic performance than wild-type strains in the three species. These results indicate that the introduction of both herbicides in freshwater ecosystems could produce a diminution of primary production due to the selection of herbicide-resistant mutants, that would exhibit lower photosynthetic performance than wild-type populations.
Collapse
Affiliation(s)
- Ignacio J Melero-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | - Elena Bañares-España
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Andreas Reul
- Departamento de Ecología y Geología, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Antonio Flores-Moya
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María J García-Sánchez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| |
Collapse
|
14
|
Brovini EM, Cardoso SJ, Quadra GR, Vilas-Boas JA, Paranaíba JR, Pereira RDO, Mendonça RF. Glyphosate concentrations in global freshwaters: are aquatic organisms at risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60635-60648. [PMID: 34160765 DOI: 10.1007/s11356-021-14609-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate is the most used herbicide worldwide. Many studies have reported glyphosate risks to aquatic organisms of different trophic levels. Moreover, evidence suggests flaws in countries' legislation that may imply the non-protection of aquatic species exposed to glyphosate. Therefore, we aimed to investigate glyphosate concentrations in freshwater ecosystems worldwide based on a systematic literature review, to discuss the results considering each country's legislation, and to assess the relative tolerance and risk for aquatic species. Only articles providing in situ concentrations of glyphosate in freshwater systems were included in our study. In total, 73 articles met the inclusion criteria and were used in our analysis. The studies comprised freshwater ecosystems from 21 countries. Most countries evaluated (90%) did not have restrictive legislation for aquatic glyphosate concentrations, resulting in a potential non-protection of aquatic organisms. Glyphosate may pose a moderate to high risk in 95% of the countries investigated, reaching a maximum concentration of 105 mg L-1. Additionally, the risk analysis showed that glyphosate concentrations below 0.1 μg L-1 represent a low risk, whereas glyphosate concentrations above 1 μg L-1, which is below the limit established by some countries' legislation, represent a high risk to aquatic organisms. Therefore, we strongly recommend a revision of the countries' legislation for glyphosate concentration in freshwater systems.
Collapse
Affiliation(s)
- Emília Marques Brovini
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil.
| | - Simone Jaqueline Cardoso
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Gabrielle Rabelo Quadra
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Jéssica Andrade Vilas-Boas
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - José R Paranaíba
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| | - Renata de Oliveira Pereira
- Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Raquel Fernandes Mendonça
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-900, Brazil
| |
Collapse
|
15
|
Tang Y, Chen C, Sheng Y, Ding P, Wu X, Beardall J, Wu Y. The inhibitory effects of the antifouling compound Irgarol 1051 on the marine diatom Skeletonema sp. across a broad range of photosynthetically active radiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48535-48542. [PMID: 33909247 DOI: 10.1007/s11356-021-14135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The release of anthropogenic organic pollutants has resulted in extensive environmental risks to coastal waters. Among pollutants released, the most common antifoulant, Irgarol 1051, is an effective inhibitor of photosystem II of photoautotrophs; thus, the continuous release of this compound into surrounding seawater would potentially threaten marine algae. To investigate this, we grew the model marine diatom Skeletonema sp. at different concentrations of Irgarol 1051 and levels of photosynthetically active radiation (PAR). Irgarol did not affect the photochemical capacity when cells were incubated in the dark, but photochemical yields all significantly decreased, and relative inhibition by Irgarol increased once cells were exposed to even the lowest PAR, with lower photochemical yields observed under increased level of Irgarol. In addition, the rate of decrease in yield increased with Irgarol concentration but was unchanged among PAR treatments. The growth rates showed a similar pattern to photochemical yields, with lower values under higher Irgarol concentrations, but with no significant differences in the effect of Irgarol observed between the light levels employed. The ratio of repair to damage rates of PSII clearly shows that this ratio decreased with light intensity, largely due to increases in damage rates and that the PAR level at which repair balanced damage decreased under a high level of Irgarol. Our results suggest that the inhibitory effects of Irgarol become obvious after PAR exposure even at a relatively low light level, suggesting that Irgarol would affect phytoplankton throughout the daytime, and may therefore have a broad environmental risk, potentially limiting coastal primary production.
Collapse
Affiliation(s)
- Yao Tang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Cheng Chen
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yangjie Sheng
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Peijian Ding
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyu Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Yaping Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
16
|
Corrales N, Meerhoff M, Antoniades D. Glyphosate-based herbicide exposure affects diatom community development in natural biofilms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117354. [PMID: 34030084 DOI: 10.1016/j.envpol.2021.117354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Glyphosate herbicide is ubiquitously used in agriculture and weed control. It has now been identified in aquatic ecosystems worldwide, where numerous studies have suggested that it may have both suppressive and stimulatory effects on diverse non-target organisms. We cultured natural biofilms from a hypereutrophic environment to test the effects on periphytic diatoms of exposure to a glyphosate-based herbicide formulation at concentrations from 0 to 10 mg L-1 of active ingredient. There were clear and significant differences between treatments in diatom community structure after the 15-day experiments. Diversity increased more in low glyphosate treatments relative to higher concentrations, and compositional analyses indicated statistically significant differences between glyphosate treatments. The magnitude of change observed was significantly correlated with glyphosate-based herbicide concentration. Our results show that glyphosate-based herbicides have species-selective effects on benthic diatoms that may significantly alter trajectories of community development and therefore may affect benthic habitats and whole ecosystem function.
Collapse
Affiliation(s)
- Natalie Corrales
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay.
| | - Mariana Meerhoff
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Maldonado, 20000, Uruguay; Department of Bioscience, Aarhus University, Silkeborg, Denmark.
| | - Dermot Antoniades
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Département de géographie, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
17
|
Barbosa da Costa N, Fugère V, Hébert MP, Xu CCY, Barrett RDH, Beisner BE, Bell G, Yargeau V, Fussmann GF, Gonzalez A, Shapiro BJ. Resistance, resilience, and functional redundancy of freshwater bacterioplankton communities facing a gradient of agricultural stressors in a mesocosm experiment. Mol Ecol 2021; 30:4771-4788. [PMID: 34324752 DOI: 10.1111/mec.16100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2021] [Accepted: 07/23/2021] [Indexed: 01/04/2023]
Abstract
Agricultural pollution with fertilizers and pesticides is a common disturbance to freshwater biodiversity. Bacterioplankton communities are at the base of aquatic food webs, but their responses to these potentially interacting stressors are rarely explored. To test the extent of resistance and resilience in bacterioplankton communities faced with agricultural stressors, we exposed freshwater mesocosms to single and combined gradients of two commonly used pesticides: the herbicide glyphosate (0-15 mg/L) and the neonicotinoid insecticide imidacloprid (0-60 μg/L), in high or low nutrient backgrounds. Over the 43-day experiment, we tracked variation in bacterial density with flow cytometry, carbon substrate use with Biolog EcoPlates, and taxonomic diversity and composition with environmental 16S rRNA gene amplicon sequencing. We show that only glyphosate (at the highest dose, 15 mg/L), but not imidacloprid, nutrients, or their interactions measurably changed community structure, favouring members of the Proteobacteria including the genus Agrobacterium. However, no change in carbon substrate use was detected throughout, suggesting functional redundancy despite taxonomic changes. We further show that communities are resilient at broad, but not fine taxonomic levels: 24 days after glyphosate application the precise amplicon sequence variants do not return, and tend to be replaced by phylogenetically close taxa. We conclude that high doses of glyphosate - but still within commonly acceptable regulatory guidelines - alter freshwater bacterioplankton by favouring a subset of higher taxonomic units (i.e., genus to phylum) that transiently thrive in the presence of glyphosate. Longer-term impacts of glyphosate at finer taxonomic resolution merit further investigation.
Collapse
Affiliation(s)
- Naíla Barbosa da Costa
- Département des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada.,Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada
| | - Vincent Fugère
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.,Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada.,Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Marie-Pier Hébert
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada
| | - Charles C Y Xu
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada.,Redpath Museum, McGill University, Montreal, QC, Canada
| | - Rowan D H Barrett
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada.,Redpath Museum, McGill University, Montreal, QC, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Graham Bell
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Gregor F Fussmann
- Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.,Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada
| | - Andrew Gonzalez
- Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.,Department of Biology, McGill University, Montreal, QC, Canada
| | - B Jesse Shapiro
- Département des Sciences Biologiques, Université de Montréal, Montreal, QC, Canada.,Groupe de Recherche Interuniversitaire en Limnologie et environnement aquatique (GRIL), Montreal, QC, Canada.,Québec Centre for Biodiversity Science (QCBS), Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill Genome Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Tansay S, Issakul K, Ngearnpat N, Chunhachart O, Thuptimdang P. Impact of Environmentally Relevant Concentrations of Glyphosate and 2,4-D Commercial Formulations on Nostoc sp. N1 and Oryza sativa L. Rice Seedlings. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.661634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Wide applications of glyphosate and 2,4-dichlorophenoxyacetic acid (2,4-D) in rice paddy fields could lead to their residues in environment, posing adverse effects on rice growth and primary producers in the rice ecosystem. This research aims to determine the effects of environmentally relevant concentrations of glyphosate and 2,4-D commercial formulations on Nostoc sp. N1 and rice seedlings. The effects of herbicides on Nostoc sp. N1 were measured from the growth and acute toxicity. The germination and growth were used to determine the effects of herbicides on rice seedlings by measuring their physical and biochemical characteristics. Results showed that while glyphosate had higher toxicity than 2,4-D, both herbicides could stimulate the growth of Nostoc sp. N1 as indicated by their increase in biomass and chlorophyll a content. In Petri dish experiments, Nostoc sp. N1 cells not only promoted the germination of rice seedlings when added alone, but they also alleviated the toxicity of both herbicides to the rice seedlings. In pot experiments, the addition of Nostoc sp. N1 cells combined with herbicides promoted the biochemical characteristics of the rice seedlings by increasing the total chlorophyll, carotenoid and total amino acid content. Our results suggested that environmentally relevant concentrations of glyphosate and 2,4-D formulations should not pose any adverse effects on Nostoc sp. N1. Also, with their toxicity-mitigating and growth-promoting effects on rice seedlings, Nostoc sp. N1 cells could be applied in the alleviation of herbicide residue toxicity in paddy fields.
Collapse
|
19
|
Xu S, Liu Y, Zhang J, Gao B. Proteomic mechanisms for the combined stimulatory effects of glyphosate and antibiotic contaminants on Microcystis aeruginosa. CHEMOSPHERE 2021; 267:129244. [PMID: 33321278 DOI: 10.1016/j.chemosphere.2020.129244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
A single exposure to glyphosate or antibiotic may facilitate cyanobacterial growth at currently reported concentrations due to hormesis. However, the influence of these contaminants on cyanobacteria under combined exposure conditions has not been reported. In this study, proteomic mechanisms for the combined effects of glyphosate and a quaternary antibiotic mixture of amoxicillin, sulfamethoxazole, tetracycline, and ciprofloxacin in a dominant bloom-forming cyanobacterium (Microcystis aeruginosa) were investigated and compared with those for single exposure to glyphosate. The growth rate of M. aeruginosa, photosynthetic activity indicated by Fv/Fm, and microcystin production ability showed a typical U-shaped hormetic dose-response to glyphosate exposure. Upregulated proteins related to photosynthesis and biosynthesis, as well as increased photosynthetic activity, were responsible for the stimulated growth induced by 0.1-5 μg/L glyphosate, while the upregulation of mcyB protein contributed to increased microcystin synthesis in glyphosate-treated cells. The presence of 0.04-0.2 μg/L mixed antibiotics significantly (p < 0.05) enhanced the stimulation effects of glyphosate. Combined exposure to glyphosate and mixed antibiotics promoted microcystin synthesis through the upregulation of six microcystin synthesis regulatory proteins (mcyC, mcyF, mcyG, mcyI, MAE_56520, and ntcA) and stimulated cyanobacterial growth through the upregulation of proteins involved in photosynthesis, cell division, carbon fixation, pentose phosphate, translation, and chlorophyll synthesis. Combined exposure to glyphosate and antibiotic contaminants promoted cyanobacterial growth at no-effect concentrations of single exposure (0.04 μg/L for mixed antibiotics; 0.05, 10 and 100 μg/L for glyphosate), suggesting an increased threat from combined contamination to aquatic ecosystems through promoting the formation of cyanobacterial bloom.
Collapse
Affiliation(s)
- Sijia Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
20
|
Beecraft L, Rooney R. Bioconcentration of glyphosate in wetland biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143993. [PMID: 33310222 DOI: 10.1016/j.scitotenv.2020.143993] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Wetland biofilms were exposed to the herbicide glyphosate via in situ field exposures and controlled microcosm experiments to measure bioconcentration and metabolism of glyphosate by biofilm organisms. Concentrations of glyphosate in biofilms were two to four orders of magnitude higher than the surrounding water, bioconcentration factors averaged 835 and 199 L·kg-1 in field- and lab-exposed biofilms, respectively. Glyphosate in water where it had been detected in biofilms at field-exposed sites ranged from below detection (<1 μg·L-1) up to 130 μg·L-1. Bioconcentration of glyphosate in biofilms was inversely proportional to concentrations in the surrounding water, and the retention kinetics were similar to both adsorption and enzymatic models. Microorganisms present in both the water and biofilms metabolized glyphosate to its primary breakdown product aminomethyl phosphonic acid (AMPA), with increased rates of breakdown in and around the biofilms. Photosynthetic efficiency of the algae within the biofilms was not affected by 24 h controlled glyphosate exposures. Our results demonstrate the role of biofilms in improving wetland water quality by removing contaminants like glyphosate, but also as a potential exposure route to higher trophic levels via consumption. Due to bioconcentration of pesticides, exposure risk to organisms consuming or living in biofilms may be much higher than indicated by concentrations in ambient water samples.
Collapse
Affiliation(s)
- Laura Beecraft
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada.
| | - Rebecca Rooney
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
21
|
Wang W, Jiang M, Sheng Y. Glyphosate Accelerates the Proliferation of Microcystis aeruginosa, a Dominant Species in Cyanobacterial Blooms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:342-351. [PMID: 33238040 DOI: 10.1002/etc.4942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 11/21/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate is a commonly used herbicide known for its high performance in killing certain plants and grasses; however, its use is regulated due to its harmful effects on the aquatic environment. The present study investigated and compared the toxic mechanisms of glyphosate on Microcystis aeruginosa (a toxin-producing cyanobacterium) under 2 conditions: 0‰ saline media (experiment I) and 2.5‰ saline media (experiment II). The results indicated that an appropriate concentration of glyphosate provided a phosphate source for M. aeruginosa, resulting in an increased specific growth rate in both experimental groups compared with the controls. Glyphosate-enhanced alkaline phosphatase (ALP) activity increased by up to 1.37-fold in experiment I and 1.68-fold in experiment II. Moreover, the activities of superoxide dismutase (SOD) and catalase (CAT) decreased at glyphosate concentrations below 1.2 mg L-1 but increased at concentrations greater than 1.2 mg L-1 in experiment I, whereas SOD and CAT activities decreased in experiment II and declined by 64 and 49% in the 30 mg L-1 treatments. Furthermore, the transcript abundances of the pyruvate carboxylase (pcB), microcystin synthetase B (mcyB), and paired-like homeobox (phoX) genes were up-regulated by up to 6.92-, 3.63-, and 2.27-fold in experiment I and 6.74-, 6.55-, and 4.86-fold in experiment II after 96 h of incubation. The addition of glyphosate stimulated the production of dissolved organic matter including tryptophan-like substances, fulvic acid-like substances, (marine) humic acid-like substances, and microcystin-leucine-arginine in the culture. In conclusion, glyphosate stimulates the proliferation of M. aeruginosa and enhances the release of dissolved organic matter in saltwater ecosystems. Environ Toxicol Chem 2021;40:342-351. © 2020 SETAC.
Collapse
Affiliation(s)
- Wenjing Wang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Ming Jiang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| |
Collapse
|
22
|
Glyphosate-Based Herbicide Toxicophenomics in Marine Diatoms: Impacts on Primary Production and Physiological Fitness. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glyphosate is the main active component of the commercial formulation Roundup®, the most widely used chemical herbicide worldwide. However, its potential high toxicity to the environment and throughout trophic webs has come under increasing scrutiny. The present study aims to investigate the application of bio-optical techniques and their correlation to physiological and biochemical processes, including primary productivity, oxidative stress, energy balance, and alterations in pigment and lipid composition in Phaeodactylum tricornutum, a representative species of marine diatoms, using the case study of its response to the herbicide glyphosate-based Roundup® formulation, at environmentally relevant concentrations. Cultures were exposed to the herbicide formulation representing effective glyphosate concentrations of 0, 10, 50, 100, 250, and 500 μg L−1. Results showed that high concentrations decreased cell density; furthermore, the inhibition of photosynthetic activity was not only caused by the impairment of electron transport in the thylakoids, but also by a decrease of antioxidant capacity and increased lipid peroxidation. Nevertheless, concentrations of one of the plastidial marker fatty acids had a positive correlation with the highest concentration as well as an increase in total protein. Cell energy allocation also increased with concentration, relative to control and the lowest concentration, although culture growth was inhibited. Pigment composition and fatty acid profiles proved to be efficient biomarkers for the highest glyphosate-based herbicide concentrations, while bio-optical data separated controls from intermediate concentrations and high concentrations.
Collapse
|
23
|
Lozano VL, Allen Dohle S, Vera MS, Torremorell A, Pizarro HN. Primary production of freshwater microbial communities is affected by a cocktail of herbicides in an outdoor experiment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110821. [PMID: 32544746 DOI: 10.1016/j.ecoenv.2020.110821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Primary production (PP) is a key variable to evaluate the quality of the ecological services provided by freshwater bodies because it gives information on the amount of oxygen and organic matter incorporated into the system. We analysed the impact of a mixture of commercial formulations of glyphosate- and 2,4-D-based herbicides (Roundup Max® and AsiMax 50®, respectively) on freshwater primary production. Primary production was studied through the oxygen exchange method. Four measurements were made during a 23-day experiment in outdoor mesocosms using the light and dark bottle method. High and low concentrations of the active ingredients were assayed to evaluate a concentration-dependent effect. Our results indicated that the mixture of Roundup Max® and AsiMax 50® acted mostly additively on gross and net primary production. Moreover, we found a concentration-dependent effect of each herbicide on PP. Thus, AsiMax 50® at low and Roundup Max® at high concentration induced a significant early decrease in respiration and gross primary production 4 h after application, attributable to physiological responses. Besides, significant increases in primary production were simultaneously recorded with increases in chlorophyll a concentration and micro + nano-phytoplankton abundance 7 days after the application of Roundup Max® at high concentration. This study contributes to the knowledge of the impact of widely used herbicides on freshwater ecosystems.
Collapse
Affiliation(s)
- V L Lozano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - S Allen Dohle
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
| | - M S Vera
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A Torremorell
- Programa de Ecología de Protistas, Departamento de Ciencias Básicas, Universidad de Luján-CONICET, Lujan, Buenos Aires, Argentina
| | - H N Pizarro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Ostera JM, Malanga G, Puntarulo S. Assessment of oxidative balance in hydrophilic cellular environment in Chlorella vulgaris exposed to glyphosate. CHEMOSPHERE 2020; 248:125955. [PMID: 32028155 DOI: 10.1016/j.chemosphere.2020.125955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
The studied hypothesis is that glyphosate (GLY) can affect the oxidative balance in the hydrophilic intracellular medium in non-target Chlorella vulgaris cells. Analytical GLY (5 μM) and a commercial product (RUP) (5 μM) supplementation, did not affect the growth profile. Neither in latent (Lag) nor in exponential (Exp) phase of development, there were significant differences in the cellular abundance, evaluated as cell number, after the supplementation with GLY or RUP. The ascorbyl (A•) content was significantly increased in the presence of GLY or RUP, in Lag and Exp phase of growth. No changes were observed in stationary (St) phase after supplementation with either GLY or RUP. Ascorbate (AH-) content was decreased by 30% in Exp phase of development the presence of RUP. In St phase of the development both, the administration of either GLY or RUP decreased the antioxidant content by 34 and 37%, respectively. The supplementation with GLY and RUP lead to a significant 5- and 10-fold increase in Exp phase, respectively in the A•/AH-content ratio, assessed as a damage/protection ratio in the hydrophilic fraction of the cells, as compared to controls. Neither GLY nor RUP affected the ratio in cells in St phase of development. The data presented here showed experimental evidence that suggested that oxidative balance in the hydrophilic environment is affected by GLY, even at the low to medium concentrations currently used. The effect seems as reversible either because of the magnitude of the herbicide-dependent damage or the antioxidant activity activated.
Collapse
Affiliation(s)
- Juan M Ostera
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Gabriela Malanga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Susana Puntarulo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
25
|
Wu Y, Wan L, Zhang W, Ding H, Yang W. Resistance of cyanobacteria Microcystis aeruginosa to erythromycin with multiple exposure. CHEMOSPHERE 2020; 249:126147. [PMID: 32062559 DOI: 10.1016/j.chemosphere.2020.126147] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Here we report a set of experiments in which water blooming cyanobacteria Microcystis aeruginosa was repeatedly exposed to erythromycin. Growth inhibition increased with increasing erythromycin concentration (1-150 μg/L) upon first exposure. Maximum inhibition rate (76.06%), occurred under 150 μg/L erythromycin. Moreover, 96-h 50% effective concentration (EC50) was 22.97 μg/L, indicating that the growth of M. aeruginosa was affected by erythromycin under common environmental concentrations. Photosynthesis was hindered by chlorophyll and photosystem II limitations. Malondialdehyde, reactive oxygen species, and superoxide dismutase contents increased significantly under certain concentrations of erythromycin, but superoxide dismutase was suppressed by 150 μg/L erythromycin. Synthesis of intracellular and extracellular microcystins was promoted by 10-60 and by 20-60 μg/L erythromycin, respectively, but both were inhibited by 100-150 μg/L. Principal component analysis and Pearson's correlation revealed the accumulation of reactive oxygen species as the dominant mechanism of erythromycin toxicity to cells. M. aeruginosa repeatedly subjected to erythromycin exposure showed obvious resistance against the antibiotic, especially when treated twice with 60 μg/L erythromycin. The 96-h EC50 was 81.29 μg/L. As compared to the first exposure to erythromycin, photosynthetic and antioxidant activities increased, while growth inhibition and oxidation stress decreased upon multiple exposures. Production and release of microcystins were enhanced by repeated exposure to the antibiotic. Thus, erythromycin persistence in water should be examined, as repeated exposure may lead to serious environmental and human health hazards.
Collapse
Affiliation(s)
- Yixiao Wu
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Liang Wan
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| | - Weihao Zhang
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China.
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Provincial Institute of Water Sciences, Nanchang, 330029, China
| | - Wenfeng Yang
- Key Laboratory for Biomass -Resource Chemistry and Environmental Biotechnology of Hubei Province, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
26
|
Hernández-García CI, Martínez-Jerónimo F. Multistressor negative effects on an experimental phytoplankton community. The case of glyphosate and one toxigenic cyanobacterium on Chlorophycean microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137186. [PMID: 32084686 DOI: 10.1016/j.scitotenv.2020.137186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Aquatic ecosystems face serious pollution issues. Discharges of toxic substances and eutrophication may lead to changes in the phytoplankton community and foster cyanobacterial blooms. Glyphosate-based herbicides are chemical stressors of microalgae that may affect the structure of phytoplankton communities, and also stimulate the synthesis of cyanotoxins by cyanobacteria. The simultaneous presence of glyphosate and toxigenic cyanobacteria increases the stress on microalgae, jointly affecting their growth and development. This study evaluated the combined effect of a toxigenic cyanobacterium and glyphosate in the development of an experimental microalgal community. We studied the effect of Microcystis aeruginosa on the population growth of the microalgae Ankistrodesmus falcatus, Chlorella vulgaris, Pseudokirchneriella subcapitata, and Scenedesmus incrassatulus. We also evaluated the combined effect of sub-inhibitory glyphosate (Faena®) concentrations on the content of macromolecules and the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as on the concentration of TBARS. These effects were evaluated through the integrated biomarker response (IBR). In individual experiments, microalgae showed lower growth rates versus M. aeruginosa. In the mixed bioassays, both M. aeruginosa and microalgae showed reduced growth. IC50 values for Faena® ranged from 1.022 to 2.702 mg L-1. In the microalgae + cyanobacteria bioassays, the herbicide lowered the growth rates of microalgae but stimulated the proliferation of M. aeruginosa. The joint action of both stressors affected growth rate and population dynamics, macromolecule content, and led to increased CAT and GPx levels. Faena® influenced growth rate and caused oxidative stress. On the other hand, the herbicide stimulated the synthesis of cyanotoxins, which further affected microalgal development. The experimental community was not only affected by the herbicide, but the mixed culture with cyanobacteria magnified the effects of chemical stress. These results illustrate the potential damage to phytoplankton expected in anthropically eutrophic water bodies that are also polluted by glyphosate.
Collapse
Affiliation(s)
- Claudia I Hernández-García
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N. Col. Santo Tomás, México City 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N. Col. Santo Tomás, México City 11340, Mexico.
| |
Collapse
|
27
|
Rueda-Ruzafa L, Cruz F, Roman P, Cardona D. Gut microbiota and neurological effects of glyphosate. Neurotoxicology 2019; 75:1-8. [PMID: 31442459 DOI: 10.1016/j.neuro.2019.08.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/18/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
There are currently various concerns regarding certain environmental toxins and the possible impact they can have on developmental diseases. Glyphosate (Gly) is the most utilised herbicide in agriculture, although its widespread use is generating controversy in the scientific world because of its probable carcinogenic effect on human cells. Gly performs as an inhibitor of 5-enolpyruvylshikimate-3-phospate synthase (EPSP synthase), not only in plants, but also in bacteria. An inhibiting effect on EPSP synthase from intestinal microbiota has been reported, affecting mainly beneficial bacteria. To the contrary, Clostridium spp. and Salmonella strains are shown to be resistant to Gly. Consequently, researchers have suggested that Gly can cause dysbiosis, a phenomenon which is characterised by an imbalance between beneficial and pathogenic microorganisms. The overgrowth of bacteria such as clostridia generates high levels of noxious metabolites in the brain, which can contribute to the development of neurological deviations. This work reviews the impact of Gly-induced intestinal dysbiosis on the central nervous system, focusing on emotional, neurological and neurodegenerative disorders. A wide variety of factors were investigated in relation to brain-related changes, including highlighting genetic abnormalities, pregnancy-associated problems, diet, infections, vaccines and heavy metals. However, more studies are required to determine the implication of the most internationally used herbicide, Gly, in behavioural disorders.
Collapse
Affiliation(s)
- Lola Rueda-Ruzafa
- Department of Functional Biology and Health Sciences, Faculty of Biology- CINBIO, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - Francisco Cruz
- Department of Organic Chemistry, Faculty of Chemistry, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | - Pablo Roman
- Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Ctra. Sacramento s/n, La Cañada, 04120, Almeria, Spain; Health Sciences Research Group (CTS-451). University of Almería, Spain; Health Research Center. University of Almería, Spain.
| | - Diana Cardona
- Department of Nursing Science, Physiotherapy and Medicine, University of Almería, Ctra. Sacramento s/n, La Cañada, 04120, Almeria, Spain; Health Research Center. University of Almería, Spain; Research Center for Agricultural and Food Biotechnology BITAL, Universidad de Almería, Spain
| |
Collapse
|
28
|
Smedbol É, Lucotte M, Maccario S, Gomes MP, Paquet S, Moingt M, Mercier LLC, Sobarzo MRP, Blouin MA. Glyphosate and Aminomethylphosphonic Acid Content in Glyphosate-Resistant Soybean Leaves, Stems, and Roots and Associated Phytotoxicity Following a Single Glyphosate-Based Herbicide Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6133-6142. [PMID: 31067046 DOI: 10.1021/acs.jafc.9b00949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glyphosate-based herbicide (GBH) applications were reported to induce physiological damages to glyphosate-resistant (GR) soybean, which were mainly attributed to aminomethylphosphonic acid (AMPA). In order to study glyphosate and AMPA dynamics in plants and associated phytotoxic effects, a greenhouse experiment was set where GR soybeans were exposed to GBH (0.7 to 4.5 kg glyphosate ha-1) and sampled over time (2, 7, 14, and 28 days after treatment (DAT)). Hydrogen peroxide content increased 2 DAT, while a decrease was observed for the effective quantum yield (2, 7, 14 DAT), stomatal conductance (2 DAT), and biomass (14 DAT). Glyphosate content was higher in leaves, followed by stems, and then roots. AMPA content tended to increase with time, especially in roots, and the amount of AMPA in roots was negatively correlated to mostly all phytotoxicity indicators. This finding is important since AMPA residues are measured in agricultural soils several months after GBH applications, which could impact productivity in GR crops.
Collapse
Affiliation(s)
- Élise Smedbol
- Université du Québec à Montréal , GEOTOP & Institut des Sciences de l'Environnement , 201 Avenue du Président-Kennedy , H2X 3Y7 Montréal , Québec , Canada
| | - Marc Lucotte
- Université du Québec à Montréal , GEOTOP & Institut des Sciences de l'Environnement , 201 Avenue du Président-Kennedy , H2X 3Y7 Montréal , Québec , Canada
| | - Sophie Maccario
- Université du Québec à Montréal , GEOTOP & Institut des Sciences de l'Environnement , 201 Avenue du Président-Kennedy , H2X 3Y7 Montréal , Québec , Canada
| | - Marcelo Pedrosa Gomes
- Universidade Federal do Paraná , Departamento de Botânica, Setor de Ciências Biológicas , 80050-540 Curitiba , Paraná , Brazil
| | - Serge Paquet
- Université du Québec à Montréal , Département des Sciences Biologiques , 141 Avenue du Président-Kennedy , H2X 1Y4 Montréal , Québec , Canada
| | - Matthieu Moingt
- Université du Québec à Montréal , GEOTOP & Institut des Sciences de l'Environnement , 201 Avenue du Président-Kennedy , H2X 3Y7 Montréal , Québec , Canada
| | - Lila Lucero Celis Mercier
- Université du Québec à Montréal , Département des Sciences Biologiques , 141 Avenue du Président-Kennedy , H2X 1Y4 Montréal , Québec , Canada
| | - Millaray Rayen Perez Sobarzo
- Université du Québec à Montréal , Département de Chimie , 2101 rue Jeanne-Mance , H2X 2J6 Montréal , Québec , Canada
| | - Marc-André Blouin
- Université du Québec à Montréal , Département de Chimie , 2101 rue Jeanne-Mance , H2X 2J6 Montréal , Québec , Canada
| |
Collapse
|
29
|
Yu S, Liu Y, Zhang J, Gao B. Influence of mixed antibiotics on Microcystis aeruginosa during the application of glyphosate and hydrogen peroxide algaecides. JOURNAL OF PHYCOLOGY 2019; 55:457-465. [PMID: 30633819 DOI: 10.1111/jpy.12832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
Antibiotics regulate various physiological functions in cyanobacteria and may interfere with the control of cyanobacterial blooms during the application of algaecides. In this study, Microcystis aeruginosa was exposed to H2 O2 and glyphosate for 7 d in the presence of coexisting mixed antibiotics (amoxicillin, spiramycin, tetracycline, ciprofloxacin, and sulfamethoxazole) at an environmentally relevant concentration of 100 ng · L-1 . The mixed antibiotics significantly (P < 0.05) alleviated the growth inhibition effect of 15-45 μM H2 O2 and 40-60 mg · L-1 glyphosate. According to the increased contents of chlorophyll a and protein, decreased content of malondialdehyde, and decreased activities of superoxide dismutase and glutathione S-transferase, antibiotics may reduce the toxicity of the two algaecides through the stimulation of photosynthesis and the reduction in oxidative stress. The presence of coexisting antibiotics stimulated the production and release of microcystins in the M. aeruginosa exposed to low concentrations of algaecides and posed an increased threat to aquatic environments. To eliminate the secondary pollution caused by microcystins, high algaecide doses that are ≥45 μM for H2 O2 and ≥60 mg · L-1 for glyphosate are recommended. This study provides insights into the ecological hazards of antibiotic contaminants and the best management practices for cyanobacterial removal under combined antibiotic pollution conditions.
Collapse
Affiliation(s)
- Shikun Yu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ying Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
30
|
A Fluorescence Sensor Capable of Real-Time Herbicide Effect Monitoring in Greenhouses and the Field. SENSORS 2018; 18:s18113771. [PMID: 30400568 PMCID: PMC6263724 DOI: 10.3390/s18113771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 11/17/2022]
Abstract
Herbicide resistant weeds need to be identified early so that yield loss can be avoided by applying proper field management strategies. A novel chlorophyll-fluorescence-imaging sensor has been developed to conduct real-time herbicide effect evaluation. In this research, greenhouse and field experiments were conducted to calibrate the capability of the sensor in monitoring herbicide effects on different biotypes of two grass weeds (Alopecurus myosuroides, Apera spica-venti) in southwestern Germany. Herbicides with different modes of action were applied for the effect monitoring. Chlorophyll fluorescence yield of the plants was measured 3⁻15 days after treatment (DAT) using the new fluorescence sensor. Visual assessment of the weeds was carried out on 21 DAT. The results showed that the maximal PS II quantum yield (Fv/Fm) of herbicide sensitive weeds was significantly lower than the values of resistant populations in 5 DAT. The new technology was capable of quickly identifying the herbicide's effect on plants. It can be used to optimize management strategies to control herbicide resistant weeds.
Collapse
|
31
|
Smedbol É, Gomes MP, Paquet S, Labrecque M, Lepage L, Lucotte M, Juneau P. Effects of low concentrations of glyphosate-based herbicide factor 540 ® on an agricultural stream freshwater phytoplankton community. CHEMOSPHERE 2018; 192:133-141. [PMID: 29100121 DOI: 10.1016/j.chemosphere.2017.10.128] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Residual glyphosate from glyphosate based herbicides (GBH) are ubiquitously detected in streams draining agricultural fields, and may affect phytoplankton communities present in these ecosystems. Here, the effects of the exposure (96 h) of a phytoplankton community collected in an agricultural stream to various glyphosate concentrations (1, 5, 10, 50, 100, 500 and 1000 μg l-1) of Factor 540® GBH were investigated. The lowest GBH concentration of 1 μg l-1 reduced chlorophyll a and carotenoid contents. Low glyphosate concentrations, such as 5 and 10 μg l-1, promoted changes in the community's structure and reduced the diversity of the main algal species. At glyphosate concentrations ranging from 50 to 1000 μg l-1, the phytoplankton community's composition was modified and new main species appeared. The highest glyphosate concentrations (500 and 1000 μg l-1) affected the shikimate content, the lipid peroxidation and the activity of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase). These results indicate that GBH can modify structural and functional properties of freshwater phytoplankton communities living in streams located in agricultural areas at glyphosate concentrations much inferior to the 800 μg l-1 threshold set by the Canadian guidelines for the protection of aquatic life.
Collapse
Affiliation(s)
- Élise Smedbol
- Université du Québec à Montréal, Département des Sciences Biologiques - GRIL - TOXEN, Laboratory of Aquatic Microorganism Ecotoxicology, Succ. Centre-Ville, C.P. 8888, H3C 3P8, Montréal, Québec, Canada; Université du Québec à Montréal, Institut des Sciences de l'environnement & GEOTOP, Succ. Centre-Ville, C.P. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Marcelo Pedrosa Gomes
- Université du Québec à Montréal, Département des Sciences Biologiques - GRIL - TOXEN, Laboratory of Aquatic Microorganism Ecotoxicology, Succ. Centre-Ville, C.P. 8888, H3C 3P8, Montréal, Québec, Canada; Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Botânica, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-970, Belo Horizonte, Minas Gerais, Brazil
| | - Serge Paquet
- Université du Québec à Montréal, Institut des Sciences de l'environnement & GEOTOP, Succ. Centre-Ville, C.P. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Michel Labrecque
- Université de Montréal, Institut de Recherche en Biologie Végétale, 4101, Rue Sherbrooke Est, H1X 2B2, Montréal, Québec, Canada
| | - Laurent Lepage
- Université du Québec à Montréal, Institut des Sciences de l'environnement & GEOTOP, Succ. Centre-Ville, C.P. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Marc Lucotte
- Université du Québec à Montréal, Institut des Sciences de l'environnement & GEOTOP, Succ. Centre-Ville, C.P. 8888, H3C 3P8, Montréal, Québec, Canada
| | - Philippe Juneau
- Université du Québec à Montréal, Département des Sciences Biologiques - GRIL - TOXEN, Laboratory of Aquatic Microorganism Ecotoxicology, Succ. Centre-Ville, C.P. 8888, H3C 3P8, Montréal, Québec, Canada.
| |
Collapse
|